2016年重庆高考数学试题及答案(理科)
2016届重庆市全国普通高考适应性测试(第三次)数学(理)试题
2016届重庆市全国普通高考适应性测试(第三次)数学(理)试题(满分150分 考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U =R ,集合M ={x |y =3-2x },N ={y |y =3-2x }, 则图中阴影部分表示的集合是( )A .{x |32<x ≤3}B .{x |32<x <3}C .{x |32≤x <2}D .{x |32<x <2}2.已知复数z =1+2i1-i,则1+z +z 2+…+z 2 016为( )A .1+iB .1-iC .iD .1 3.若52345012345(13)x a a x a x a x a x a x -=+++++,则012345||||||||||||a a a a a a +++++的值等于( )A .1024B . 243C . 32D . 24 4.若某程序框图如图所示,则输出的n 的值是( )A . 43B . 44C .45D .465.给出下列四个结论:①“若am 2<bm 2,则a <b ”的逆命题是真命题; ②若x ,y ∈R ,则“x ≥2或y ≥2”是“x 2+y 2≥4”的充分不必要条件; ③函数y =log a (x +1)+1(a >0且a ≠0)的图象必过点(0,1);④已知ξ服从正态分布N (0,σ2),且P (-2≤ξ≤0)=0.4,则P (ξ>2)=0.2. 其中正确的结论是( )A .①②B .①③C .②③D .③④ 6.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形, 俯视图是半径为1的半圆,则其侧视图的面积是( ) A.12 B.32C .1 D. 3 7.已知实数x 、y 满足:⎩⎪⎨⎪⎧x -2y +1≥0x <2x +y -1≥0,z =|2x -2y -1|,则z 的取值范围是( )A .[53,5]B .[0,5]C . [0,5)D . [53,5)8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年 国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能 参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为( ) A .72 B .108 C .180 D .216开始 p =1,n =1n =n +1p >2016?输出n 结束第4题图是否p =p +2n -1第1题图第6题图9.若sin 2α=55,sin (β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π410.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1B .12C .52D .2211.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,点O 为坐标原点,点P 在双曲线右支上,△PF 1F 2内切圆的圆心为Q ,圆Q 与x 轴相切于点A ,过F 2作直线PQ 的垂线,垂足为B ,则|OA |与|OB | 的长度依次为( )A .a ,aB .a ,a 2+b 2C .a 2,3a 2D .a 2,a12.设D 是函数y =f (x )定义域内的一个区间,若存在x 0∈D ,使f (x 0)=-x 0,则称x 0是f (x )的一个“次不动点”,也称f (x )在区间D 上存在“次不动点”,若函数f (x )=ax 2-3x -a +52在区间[1,4]上存在“次不动点”,则实数a 的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12 C.⎣⎡⎭⎫12,+∞ D.⎝⎛⎦⎤-∞,12 二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题线上.13.已知向量3OA AB OA ⊥=,,则OA OB ⋅ = .14.设等差数列{}n a 的前n 项和为n S ,若25301(2)2a a x dx =⋅+⎰,则95S S = ____________. 15.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720. 家庭的月储蓄y 对月收入x 的线性回归方程为y =bx +a ,若该居民区某家庭的月储蓄为2千元,预测该家庭的月收入为_________千元.(附:线性回归方程y =bx +a 中,b =∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a =y -b x .)16.已知P 点为圆1O 与圆2O 的公共点,2221:()()O x a y b b -+-=,2222:()()O x c y d d -+-= ,若9,a cac b d==,则点P 与直线l :34250x y --=上任意一点M 之间的距离的最小值为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知233b c =,3A C +=p . (I )求sin B 的值;(II )若33b =,求△ABC 的面积.18.(本小题满分12分)某市积极倡导学生参与绿色环保活动,其中代号为“环保卫士—12369”的绿色环保活动小组对2015年1月-2015年12月(一年)内空气质量指数API 进行监测,下表是在这一年随机抽取的100天的统计结果:指数API [0,50] (50,100] (100,150] (150,200] (200,250] (250,300] >300 空气质量 优良轻微污染 轻度污染 中度污染 中重度污染 重度污染天数413183091115 (I )若某市某企业每天由空气污染造成的经济损失P (单位:元)与空气质量指数API (记为t )的关系为:0,01004400,1003001500,300t P t t t ≤≤⎧⎪=-<≤⎨⎪>⎩,在这一年内随机抽取一天,估计该天经济损失(]200,600P ∈元的概率;(II )若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成22⨯列联表,并判断是否有95%的把握认为某市本年度空气重度污染与供暖有关?非重度污染 重度污染 合计 供暖季 非供暖季节 合计100下面临界值表供参考.2()P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.(本小题满分12分)在四棱锥P ABCD -中,AD ⊥平面PDC ,PD DC ⊥,底面ABCD 是梯形,//AB DC ,1AB AD PD ===,2CD =. (I )求证:平面PBC ⊥平面PBD ;(II )设Q 为棱PC 上一点,PQ PC λ= ,试确定λ的值使得二面角Q BD P --为60 . 20.(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b +=>>的离心率12e =,直线:10()l x my m --=∈R 过椭圆C 的右焦点F ,且交椭圆C 于A ,B 两点.(I )求椭圆C 的标准方程;(II )过点A 作垂直于y 轴的直线1l ,设直线1l 与定直线24l x =:交于点P ,试探索当m 变化时,直线BP是否过定点? 21.(本小题满分12分)已知函数()xf x e =,()g x mx n =+. (I )设()()()h x f x g x =-.① 若函数()h x 在0x =处的切线过点(1,0),求m n +的值;② 当0n =时,若函数()h x 在(1,)-+∞上没有零点,求m 的取值范围; (II )设函数1()()()nxr x f x g x =+,且4(0)n m m =>,求证:当0x ≥时,()1r x ≥. 请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是⊙O 的直径,C ,F 为⊙O 上的点,CA 是∠BAF 的角平分线,过点C 作CD ⊥AF 交AF 的延长线于D 点,作CM ⊥AB ,垂足为点M .求证:(Ⅰ)DC 是⊙O 的切线;(Ⅱ) AM · MB =DF · DA .23.(本小题满分10分)选修4-4;坐标系与参数方程在直角坐标系xoy 中,直线l 的参数方程为212212x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 的方程为2sin 4cos ρθθ=.(I )求曲线C 的直角坐标方程;(II )设曲线C 与直线l 交于点A 、B ,若点P 的坐标为(1,1),求|P A |+|PB |的值. 24. (本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -4|+|x +5|.(I )试求使等式f (x )=|2x +1|成立的x 的取值范围;(II )若关于x 的不等式f (x )<a 的解集不是空集,求实数a 的取值范围.2016年全国普通高考适应性测试(第三次)理科数学参考答案(满分150分 考试时间120分钟)一、选择题:BDACC BCCAD AD11.如图,由题意知,|PF 1|-|PF 2|=2a ,|PF 1|=|PC |+|CF 1|,|PF 2|=|PD |+|DF 2|,又|CF 1|=|F 1A |,|DF 2|=|F 2A |,∴|PF 1|-|PF 2|=|F 1A |-|F 2A |=|OF 1|+|OA |-(|OF 2|-|OA |)=2|OA |=2a ,∴|OA |=a ,延长F 2B 交F 1P 于E ,可得|PF 2|=|PE |,在△EF 1F 2中由中位线定理可求得|OB |=a .12.设g (x )=f (x )+x ,依题意,存在x ∈[1,4],使g (x )=f (x )+x =ax 2-2x -a +52=0.当x =1时,g (1)=12≠0;当x ≠1时,由ax 2-2x -a +52=0,得a =2452(1)x x --. 记h (x )=2452(1)x x -- (1<x ≤4),则由h ′(x )=222252(1)x x x -+--=0得x =2或x =12(舍去). 当x ∈(1,2)时,h ′(x )>0;当x ∈(2,4)时,h ′(x )<0,即函数h (x )在(1,2)上是增函数,在(2,4)上是减函数,因此当x =2时,h (x )取得最大值,最大值是h (2)=12,故满足题意的实数a 的取值范围是⎝⎛⎦⎤-∞,12. 故选D. 二、填空题:13.9 14.9 15.8 16.2 16.设a ck b d==则圆22221:()()O x a y ka k a -+-=,2222(2)()0a x ky a x y -+++= 圆22222:()()O x c y kc k c -+-=,2222(2)()0c x ky c x y -+++= 故,a c 是关于m 的方程2222(2)()0m x ky m x y -+++=的两根因此由韦达定理得229ac x y =+=,所以点P 在圆229x y +=上,其到直线l 距离就是点P 与直线l 上任意一点M 之间的距离的最小值,为|304025|3 2.5d ⨯-⨯-=-=17.(I )因为A B C p ++=,3A C p +=,所以2B C =. 又由正弦定理,得sin sin b c B C =,sin sin b B c C =, 232sin cos 3sin C CC=, 化简得,3cos 3C =.因为()0,C p ∈,所以216sin 1cos 133C C =-=-=.所以6322sin sin 22sin cos 2333B C C C ===⨯⨯=. ………………………6分 (II )因为2B C =,所以211cos cos 22cos 12133B C C ==-=⨯-=-.因为A B C p ++=,所以22sin sin()sin cos cos sin 33166()3339A B C B C B C +-=+⨯+⨯===. 因为233b c =, 33b =,所以92c =. 所以△ABC 的面积119692sin 3322294S bc A ==⨯⨯⨯=. ………………………12分 18.(I )设“在本年内随机抽取一天,该天经济损失P ∈(200,600]元”为事件A由200<4t ﹣400≤600,得150<t≤250,频数为39,∴39()100P A =.………5分 (II )根据以上数据得到如表:非重度污染 重度污染 合计供暖季 22 8 30 非供暖季 637 70 合计8515100K 2的观测值22100(638227)85153070K ⨯-⨯=⨯⨯⨯≈4.575>3.841.所以有95%的把握认为某市本年度空气重度污染与供暖有关.………12分19.(I )∵AD ⊥平面PDC ,PD ⊂平面PDC ,DC ⊂平面PDC ,∴AD PD ⊥,AD DC ⊥, 在梯形ABCD 中,过点作B 作BH CD ⊥于H ,在BCH ∆中,145BH CH BCH ︒==⇒∠=, 又在DAB ∆中,145AD AB ADB ︒==⇒∠=, ∴4590BDC DBC BC BD ︒︒∠=⇒∠=⇒⊥,①∵PD AD ⊥,PD DC ⊥,AD DC D = ,AD ⊂平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥平面ABCD ,∵BC ⊂平面ABCD ,∴PD BC ⊥,②由①②,∵BD PD D = ,BD ⊂平面PBD ,PD ⊂平面PBD ,∴BC ⊥平面PBD ,∵BC ⊂平面PBC ,∴平面PBC ⊥平面PBD ;………6分(II )以D 为原点,DA ,DC ,DP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图)则(0,0,1)P ,(0,2,0)C ,(1,0,0)A ,(1,1,0)B ,令000(,,)Q x y z ,则000(,,1)PQ x y z =- ,(0,2,1)PC =-,∵PQ PC λ=,∴000(,1)(0,2,1)x y z λ-=-,,∴(0,2,1)Q λλ=-,∵BC ⊥平面PBD ,∴(1,1,0)n =-是平面PBD 的一个法向量,设平面QBD 的法向量为()m x y z = ,,,则00m DB m DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,即 02(1)0x y y z λλ+=⎧⎨+-=⎩ 即 21x y z y λλ=-⎧⎪⎨=⎪-⎩,不妨令1y =,得2(1,1,)1m λλ=-- ,∵二面角Q BD P --为60︒,∴221cos(,)2222()1m n m n m nλλ⋅===⋅+- ,解得36λ=±, ∵Q 在棱PC 上,∴0λ<<1,故6λ=3-为所求.………12分 20.(I )由题设,得11,2c c a =⎧⎪⎨=⎪⎩,解得12,c a =⎧⎨=⎩,从而2223b a c =-=,所以椭圆C 的标准方程为22143x y +=. ………………………4分 (II )令0m =,则3(1)2A ,,3(1)2B -,或者3(1)2A -,,3(1)2B ,.当3(1)2A ,,3(1)2B -,时,3(4)2P ,;直线5:2BP y x =-当3(1)2A -,,3(1)2B ,时,3(4)2P -,,直线5:2BP y x =-+所以,满足题意的定点只能是5(,0)2. 设为D 点 .下面证明P,B,D 三点共线.设11()A x y ,,22()B x y ,,由于PA 垂直于y 轴,所以点P 的纵坐标为1y ,从而只要证明1(4)P y ,在直线BD 上.由2210143x my x y --=⎧⎪⎨+=⎪⎩,,得22(43)690m y my ++-=,2144(1)0m D =+> ,122643m y y m -∴+=+,122943y y m -=+.① ∵212212122233()002255533341()222222DB DPy y my y y y y k k x my my -----=-=-=--+--121222+332y y my y my -=-,①式代入上式,得0DB DP k k -=, 所以 =DB DP k k .∴点1(4)P y ,恒在直线BD 上,从而P,B,D 三点共线.即直线BP 恒过定点5(,0)2. ………………12分21.(I )①由题意,得()(()())()x x h x f x g x e mx n e m '''=-=--=-, 所以函数()h x 在0x =处的切线斜率1k m =-,又(0)1h n =-,所以函数()h x 在0x =处的切线方程(1)(1)y n m x --=-,将点(1,0)代入,得2m n +=. ……………3分 ②当0n =,可得()()x x h x e mx e m ''=-=-,因为1x >-,所以1xe e>, 1)当1m e≤时,()0x h x e m '=->,函数()h x 在(1,)-+∞上单调递增,而(0)1h =, 所以只需1(1)0h m e -=+≥,解得1m e ≥-,从而11m e e -≤≤.2)当1m e>时,由()0x h x e m '=-=,解得ln (1,)x m =∈-+∞,当(1,ln )x m ∈-时,()0h x '<,()h x 单调递减;当(ln ,)x m ∈+∞时,()0h x '>,()h x 单调递增. 所以函数()h x 在(1,)-+∞上有最小值为(ln )ln h m m m m =-, 令ln 0m m m ->,解得m e <,所以1m e e<<. 综上所述,1[,)m e e∈-. ……………6分(II )由题意,1114()()()4x x n xnx x m r x n f x g x e e x x m=+=+=+++,而14()14x xr x e x =+≥+等价于(34)40x e x x -++≥, 令()(34)4x F x e x x =-++,则(0)0F =,且()(31)1x F x e x '=-+,(0)0F '=, 令()()G x F x '=,则()(32)x G x e x '=+, 因0x ≥, 所以()0G x '>,所以导数()F x '在[0,)+∞上单调递增,于是()(0)0F x F ''≥=,从而函数()F x 在[0,)+∞上单调递增,即()(0)0F x F ≥=. ……………12分22.(Ⅰ)连结OC ,则∠OAC =∠OCA . 又∠OAC =∠F AC ,所以∠F AC =∠OCA ,所以OC ∥AD ,因为CD ⊥AD ,所以CD ⊥OC ,即CD 是⊙O 的切线.(Ⅱ)连结BC . 在Rt △ACB 中,CM 2=AM · MB .因为CD 是⊙O 的切线,所以CD 2=DF ·DA .又Rt △AMC ≌Rt △ADC ,所以C M =CD , 所以AM · MB =DF · DA . 23.(Ⅰ)曲线C 的直角坐标方程为24y x =..⋯⋯⋯4分(Ⅱ)将212212x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩带入24y x =得26260t t +-=, 所以12121212||||||||||()446PA PB t t t t t t t t +=+=-=+-=.⋯⋯⋯10分24.(I )f (x )=|x -4|+|x +5|=⎩⎪⎨⎪⎧-2x -1,x ≤-5,9,-5<x <4,2x +1,x ≥4.又|2x +1|=⎩⎨⎧-2x -1,x ≤-12,2x +1,x >12,所以若f (x )=|2x +1|,则x 的取值范围是(-∞,-5]∪[4,+∞)..⋯⋯⋯5分 (II )因为f (x )=|x -4|+|x +5|≥|(x -4)-(x +5)|=9,∴f (x )min =9. 所以若关于x 的不等式f (x )<a 的解集非空,则a >f (x )min =9, 即a 的取值范围是(9,+∞)..⋯⋯⋯10分。
2016年高考数学新课标Ⅱ(理科)试题及答案 【解析版】
2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.【2016新课标Ⅱ(理)】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A.()31-,B.()13-,C.()1,∞+D.()3∞--,【答案】A【解析】∴30m +>,10m -<,∴31m -<<,故选A .【2016新课标Ⅱ(理)】已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B = A.{}1B.{12},C.{}0123,,,D.{10123}-,,,, 【答案】C【解析】()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B = ,,,, 故选C .【2016新课标Ⅱ(理)】已知向量(1,)(3,2)a m b =- ,=,且()a b b +⊥,则m = A.8- B.6- C.6 D.8【答案】D【解析】 ()42a b m +=-,, ∵()a b b +⊥ ,∴()122(2)0a b b m +⋅=--=解得8m =, 故选D .【2016新课标Ⅱ(理)】圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=A.43-B.34- D.2【答案】A【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d =,解得43a =-,故选A .【2016新课标Ⅱ(理)】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.9 【答案】B【解析】E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法故选B .【2016新课标Ⅱ(理)】右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A.20πB.24πC.28πD.32π 【答案】C【解析】几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .【2016新课标Ⅱ(理)】若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 A.()ππ26k x k =-∈Z B.()ππ26k x k =+∈Z C.()ππ212Z k x k =-∈ D.()ππ212Z k x k =+∈ 【答案】B【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =A.7B.12C.17D.34 【答案】C【解析】第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=,故选C .【2016新课标Ⅱ(理)】若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=A.725B.15C.15-D.725-【答案】D【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .【2016新课标Ⅱ(理)】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为A.4n m B.2n m C.4m n D.2mn【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .【2016新课标Ⅱ(理)】已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为B.32D.2 【答案】A【解析】离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====--- 故选A .【2016新课标Ⅱ(理)】已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )A.0B.mC.2mD.4m【答案】B【解析】由()()2f x f x =-得()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +, ∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.【2016新课标Ⅱ(理)】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4c o s 5A =,5cos 13C =,1a =,则b = . 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B AC A C A C =+=+=,由正弦定理得:sin sin b a B A =解得2113b =.【2016新课标Ⅱ(理)】α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 【解析】②③④【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 【解析】 (1,3)由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3),【2016新课标Ⅱ(理)】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 【解析】 1ln2-ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++ ∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x =212x =-∴1ln 11ln 2b x =+=-.三、解答题:解答应写出文字说明、证明过程或演算步骤.【2016新课标Ⅱ(理)】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.【2016新课标Ⅱ(理)】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯ 0.2550.150.250.30.1750.a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.【2016新课标Ⅱ(理)】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置OD '(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==,∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF D H ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I , ∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r ,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩ 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴1212cos n n n n θ⋅===u r u u ru r u u r∴sin θ=【2016新课标Ⅱ(理)】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+=++ 因为AM AN ⊥,所以21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM ⎫==⎪+⎭. ⑵直线AM的方程为(y k x =,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM =所以3AN k k+因为2AM AN =所以23k k=+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.【2016新课标Ⅱ(理)】(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;xx x -++>(II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 【解析】⑴证明:()2e 2xx f x x -=+ ()()()22224e e 222x xx x f x x x x ⎛⎫-'⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞ ,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+∴()2e 20x x x -++>⑵ ()()()24e 2e xx a x x ax a g x x ----'=()4e 2e 2x x x x ax a x-++=()322e 2x x x a x x-⎛⎫+⋅+⎪+⎝⎭=[)01a ∈,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1ee 1e 22t ttt t t a t t h a t t t -++⋅-++===+记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号【2016新课标Ⅱ(理)】如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F . (I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【解析】(Ⅰ)证明:∵DF CE ⊥∴Rt Rt DEF CED △∽△∴GDF DEF BCF ∠=∠=∠ DF CFDG BC= ∵DE DG =,CD BC = ∴DF CFDG BC= ∴GDF BCF △∽△ ∴CFB DFG ∠=∠∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒ ∴180GFB GCB ∠+∠=︒. ∴B ,C ,G ,F 四点共圆. (Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =, 连接GB ,Rt Rt BCG BFG △≌△,∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.【2016新课标Ⅱ(理)】选修4—4:坐标系与参数方程在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB l的斜率.【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,=即22369014k k =+,整理得253k =,则k =【2016新课标Ⅱ(理)】选修4—5:不等式选讲已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+, 证毕.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏) 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【2016新课标Ⅱ(理)】已知z=(m+3)+(m ﹣1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(﹣3,1) B .(﹣1,3) C .(1,+∞) D .(﹣∞,﹣3)2.【2016新课标Ⅱ(理)】已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∪B=()A.{1} B.{1,2} C.{0,1,2,3} D.{﹣1,0,1,2,3}3.【2016新课标Ⅱ(理)】已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C.6 D.84.【2016新课标Ⅱ(理)】圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.25.【2016新课标Ⅱ(理)】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.96.【2016新课标Ⅱ(理)】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.【2016新课标Ⅱ(理)】若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)8.【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.349.【2016新课标Ⅱ(理)】若cos(﹣α)=,则sin2α=()A.B.C.﹣D.﹣10.【2016新课标Ⅱ(理)】从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.B.C.D.11.【2016新课标Ⅱ(理)】已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A.B.C.D.212.【2016新课标Ⅱ(理)】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0 B.m C.2m D.4m二、填空题:本题共4小题,每小题5分.13.【2016新课标Ⅱ(理)】△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.14.【2016新课标Ⅱ(理)】α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是(填序号)15.【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.16.【2016新课标Ⅱ(理)】若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.【2016新课标Ⅱ(理)】S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.【2016新课标Ⅱ(理)】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.【2016新课标Ⅱ(理)】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点M,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C的正弦值.20.【2016新课标Ⅱ(理)】已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(12分)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.请考生在第22~24题中任选一个题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.【2016新课标Ⅱ(理)】如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.[选修4-4:坐标系与参数方程]23.【2016新课标Ⅱ(理)】在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l 的斜率.[选修4-5:不等式选讲]24.【2016新课标Ⅱ(理)】已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.。
2016年全国普通高考重庆适应性测试(第三次)数学(理)试题 含答案
2016年全国普通高考适应性测试(第三次)理科数学试题(满分150分 考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集U =R ,集合M ={x |y =3-2x },N ={y |y =3-2x },则图中阴影部分表示的集合是( )A .{x |错误!<x ≤3}B .{x |错误!〈x <3}C .{x |错误!≤x 〈2}D .{x |错误!<x 〈2} 2.已知复数z =1+错误!,则1+z +z 2+…+z 2 016为( )A .1+iB .1-iC .iD .13.若52345012345(13)x a a x a x a x a x a x-=+++++,则012345||||||||||||aa a a a a +++++的值等于()A .1024B . 243C . 32D . 244.若某程序框图如图所示,则输出的n 的值是( )A . 43B . 44C .45D .465.给出下列四个结论:①“若am 2〈bm 2,则a 〈b "的逆命题是真命题;②若x ,y ∈R ,则“x ≥2或y ≥2”是“x 2+y 2≥4”的充分不必要条件;开始 p =1,n =1 n =n +1 p >2016?输出n结束 第4题图是否p =p +2n -1第1题图③函数y=log a(x+1)+1(a>0且a≠0)的图象必过点(0,1);④已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0。
4,则P (ξ>2)=0。
2。
其中正确的结论是()A.①②B.①③C.②③D.③④6.某几何体的三视图如图所示,其中正视图是腰第6题图长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A。
错误! B.错误!C.1 D。
错误!7.已知实数x、y满足:错误!,z=|2x-2y-1|,则z的取值范围是( )A.[错误!,5]B.[0,5]C.[0,5)D.[错误!,5)8.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社"、“科技社"、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为()A.72 B.108 C.180 D.2169.若sin 2α=错误!,sin (β-α)=错误!,且α∈错误!,β∈错误!,则α+β的值是( )A.7π4 B.错误! C.错误!或错误! D 。
重庆市2016届高考适应性数学试卷(理科) Word版含解析
2016年重庆市高考适应性数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U=R,集合A={x∈R|},B={x∈R|0<x<2},则(∁U A)∩B=()A.(1,2]B.[1,2)C.(1,2) D.[1,2]2.已知实数a、b满足(a+i)(1﹣i)=3+bi,则复数a+bi的模为()A.B.2 C.D.53.据我国西部各省(区、市)2013年人均地区生产总值(单位:千元)绘制的频率分布直方图如图所示,则人均地区生产总值在区间[28,38)上的频率是()A.0.3 B.0.4 C.0.5 D.0.74.下列函数为奇函数的是()A.y=x3+3x2B.y=C.y=xsinx D.y=log25.在数列{a n}中,若a1=2,且对任意正整数m、k,总有a m+k=a m+a k,则{a n}的前n项和为S n=()A.n(3n﹣1)B.C.n(n+1) D.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.已知圆C:(x﹣1)2+(y﹣2)2=2与y轴在第二象限所围区域的面积为S,直线y=2x+b 分圆C的内部为两部分,其中一部分的面积也为S,则b=()A.B.±C.D.±8.执行如图所示的程序框图,则输出的s的值为()A.﹣7 B.﹣5 C.2 D.99.设x0为函数f(x)=sinπx的零点,且满足|x0|+f(x0+)<33,则这样的零点有()A.61个B.63个C.65个D.67个10.已知三棱锥P﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,PC为球O的直径,该三棱锥的体积为,则球O的表面积为()A.4πB.8πC.12πD.16π11.若以F1(﹣3,0),F2(3,0)为焦点的双曲线与直线y=x﹣1有公共点,则该双曲线的离心率的最小值为()A.B. C.D.12.设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f()=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为()A.(0,)B.(0,)C.(,)D.(,)二、填空题:本大题共4小题,每小题5分.13.若向量满足:||=1,||=2,(),则的夹角是.14.已知x、y满足约束条件,则z=2x+y的最小值为.15.某校安排小李等5位实习教师到一、二、三班实习,若要求每班至少安排一人且小李到一班,则不同的安排方案种数为.(用数字作答)16.设S n为数列{a n}的前n项和,且a1=,a n+1=2S n﹣2n,则a8=.三、解答题:解答应写出文字说明、证明过程或演算步骤。
2016年普通高等学校招生全国统一考试理科数学卷(含答案及解析)
2016年普通高等学校招生全国统一考试理科数学.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()(A)1(B) (C)2( D) 3⑶已知方程m+n-mb=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()则它的表面积是()C1)设集合A{x|x2 4x 3 0},B {x|2x 3 0},则AI(2)(3)(A)( 3,设(1 i)x(A)13)(B) (3,3)(C)(谆(D) (23)已知等差数列(A) 1001 yi,其中x,y是实数,则x yi =((B) (C).'3 (D){a n}前9项的和为27, 印0=8,则a100=((B) 99 (C) 98 (D) 97(4)(A) ( -,3) (B) (-1^/3) (C) (0,3) (D) (0,「3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28 n(A) 17n(B) 18n(C) 20n(D) 28 n(7)函数ynZx2—^在[22]的图像大致为((A))则m 、n 所成角的正弦值为()(D)3尹-为f(x)的零点,x 4为y f(x)图像的对称轴5且f(x)在一,J 单调,则的最大值为()18 36:■、填空题:本大题共 3小题,每小题 5分(13) 设向量 a=(m , 1),b=(1,2),且 |a+b|2=|a|2+|b|2,贝U m= _______ .(14) _________________________________________ (2x Vx)5的展开式中,x 3的系数是 .(用数字填写答案) (15) _____________________________________________________________ 设等比数列满足 a 1+a 3=10, a 2+a 4=5,则a 1a 2・・・an 的最大值为 ________________________________________ . (16)某高科技企业生产产品 A 和产品B 需要甲、乙两种新型材料。
2016年全国各省市高考数学(理)试题及答案
2016年全国各省市高考数学(理)试题及答案2016年全国各省市高考数学(理)试题及答案试题类型:2016年普通高等学校招生全国统一考试卷3 理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S xx x =--≥=I > ,则S T =(A)[2,3](B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41i zz =-(A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA = ,31(,),2BC = 则∠ABC= (A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825(C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC△中,π4B,BC边上的高等于13BC,则cos A (A)310(B)10(C)10(D)310(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)185+(B)545+(C)90(D)81(10) 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是π(A)4π (B)92π(C)6π (D)323(11)已知O为坐标原点,F是椭圆C:22221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分 (13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
2016年全国高考数学(理科)试题与答案_全国1卷(解析版)
绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =I (A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (C 3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B.考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )34【答案】B考点:几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度由:长度、面积、体积等.(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 (A )17π (B )18π (C )20π (D )28π【答案】A 【解析】试题分析: 该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(7)函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C ) (D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项. (8)若101a b c >><<,,则(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C 【解析】试题分析:用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C . 考点:指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x =结束【答案】C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.(11)平面α过正方体ABCD-A1B1C1D1的顶点A,α//平面CB1D1,αI平面ABCD=m,αI平面AB B1A1=n,则m、n所成角的正弦值为(A)32(B)22(C)33(D)13【答案】A【解析】试题分析:如图,设平面11CB D I 平面ABCD ='m ,平面11CB D I 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//DE B C ,连接11,CE B D ,则CE 为'm ,同理11BF 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12).已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线x x =对称,则()0f x A= 或()0f x A=-.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】2- 【解析】试题分析:由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-. 考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10考点:二项式定理【名师点睛】确定二项展开式指定项的系数通常是先写出通项1r T +,再确定r 的值,从而确定指定项系数.(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 【答案】64 【解析】试题分析:设等比数列的公比为q ,由1324105a a a a +=⎧⎨+=⎩得,2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=L L ,于是当3n =或4时,12n a a a L 取得最大值6264=.考点:等比数列及其应用高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做.(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000作出二元一次不等式组②表示的平面区域(如图),即可行域.考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分为12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ;(II )若7,c ABC =∆的面积为33,求ABC V 的周长. 【答案】(I )C 3π=(II )57+【解析】 试题分析:(I )先利用正弦定理进行边角代换化简得得1cosC 2=,故C 3π=;(II )根据133sin C 22ab =.及C 3π=得6ab =.再利用余弦定理得 ()225a b +=.再根据7c =可得C ∆AB 的周长为57+.考点:正弦定理、余弦定理及三角形面积公式【名师点睛】三角形中的三角变换常用到诱导公式,()()sin sin ,cos cos ,A B C A B C +=+=- ()tan tan A B C +=-,就是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边.”(18)(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o .(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )219- 试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E .又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D 3.由已知,//F AB E ,所以//AB 平面FDC E . CA BD EF又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,C F 60∠E =o.从而可得(C -.所以(C E =u u u r ,()0,4,0EB =u u u r,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r是平面C B E 的法向量,则 C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩u u u r r u u u r r ,即040x y ⎧=⎪⎨=⎪⎩,所以可取(3,0,n =r . 设m r 是平面CD AB 的法向量,则C 00m m ⎧⋅A =⎪⎨⋅AB =⎪⎩u u u r r u u u r r ,同理可取()4m =r.则cos ,n m n m n m ⋅==r r r r r r 故二面角C E-B -A的余弦值为. 考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【答案】(I )见解析(II )19(III )19n =【解析】试题分析:(I )先确定X 的取值分别为16,17,18,18,20,21,22,,再用相互独立事件概率模型求概率,然后写出分布列;(II )通过频率大小进行比较;(III )分别求出n =9,n =20的期望,根据19=n 时所需费用的期望值小于20=n 时所需费用的期望值,应选19=n .所以X 的分布列为 X 16 17 18 19 20 21 22P 04.0 16.0 24.0 24.0 2.0 08.0 04.0(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+.当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n . 考点:概率与统计、随机变量的分布列【名师点睛】本题把随机变量的分布列与统计及函数结合在一起进行考查,有一定综合性但难度不是太大大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20). (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为: 13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x . 所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[.考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)(本小题满分12分)已知函数()()()221x f x x e a x =-+-有两个零点.(I)求a 的取值范围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.【答案】(0,)+∞试题解析;(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+.(i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln 2a b <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2e a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.考点:导数及其应用【名师点睛】,对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;,解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,12OA为半径作圆.(I)证明:直线AB与e O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.OD CBA【答案】(I)见解析(II)见解析试题解析:(Ⅰ)设E 是AB 的中点,连结OE ,因为,120OA OB AOB =∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径,所以直线AB 与⊙O 相切. E O'DC OBA(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥. 同理可证,'OO CD ⊥.所以//AB CD .考点:四点共圆、直线与圆的位置关系及证明【名师点睛】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,a >0). 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=Q ,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)(本小题满分10分),选修4—5:不等式选讲已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,,试题解析:⑴如图所示:考点:分段函数的图像,绝对值不等式的解法【名师点睛】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。
重庆市2016年高考理科试题及答案汇总(Word版)
重庆市2016年高考理科试题及答案汇总(word版)语文------------------- 2~15 理科综合-------------------16~37 理科数学-------------------38~44 英语-------------------46~58重庆市2016年高考语文试题及答案(满分150分,时间150分钟)注意事项:1.本试卷分第I卷(阅读题)和第II卷(表达题)两部分。
考生务必将自己的姓名、考生号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后.将本试卷和答题卡一并交回。
第I卷阅读题甲必考题一、现代文阅读(9分,毎小题 3分)阅读下面的文宇,完成1〜3题.人们常说“小说是讲故事的艺术”,但故事不等于小说,故事讲述人与小说家也不能混为一谈。
就传统而言,讲故事的讲述亲身经历或道题听途说的故事,口耳相传,把它们转化为听众的经验;小说家则通常记录见闻传说,虚构故事,经过艺术处理,把它们变成小说交给读者。
除流传形式上的简单差异外,早期小说和故事的本质区别并不明显,经历和见闻是它们的共同要素,在传统较为落后的过去,作为远行者的商人和水手最适合充当故事讲述人的角色,故事的丰富程度与远行者的游历成比。
受此影响,国外古典小说也常以人物的经历为主线组织故事,《荷马史诗》《一千零一夜》都是描述某种特殊的经历和遭遇,《唐吉可德》中的故事是唐吉可德的行侠奇遇和所见所闻,17世纪欧洲的流浪汉小说也体现游历见闻的连缀。
在中国,民间传说和历史故事为志怪类和史传类的小说提供了用之不竭的素材,话本等古典小说形式也显示出小说和传统故事的亲密关系。
虚构的加强使小说和传统质检的区别清晰起来。
小说中的故事可以来自想象。
不一定是作者的亲历亲闻。
小说家常闭门构思,作品大多诞生于他们的离群索居的时候,小说家可以闲坐在布宜诺斯艾利斯的图书馆中,或者在巴黎一间终年不见阳光的阁楼里,杜撰他们想象中的历险故事,但是,一名水手也许历尽千辛万苦才能把在东印度群岛听到的故事带回伦敦;一个匠人漂泊一生,积攒下无数的见闻、掌故或趣事,当他晚年作在火炉旁给孩子们讲述这一切的时候,他本人就是故事的一部分,传统故事是否值得转述,往往只取决于故事本身的趣味性和可流传性,与传统的故事方式不同,小说家一般并不单纯转述故事,他是在从事故事的制作和生产,有深思熟虑的讲述目的。
重庆一中2016届高三下学期高考模拟考试试卷理科数学试题及答案
秘密★启用前2016年重庆一中高2016级高三下期高考模拟考试数 学 试 题 卷(理科)2016.5注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}ln(1)M x y x ==-,集合{|,}x N y y e x R ==∈(e 为自然对数的底数),则MN =( )A .{|1}x x <B .{|1}x x >C .{|01}x x <<D .∅ 2.若复数i z )54(cos 53sin -+-=θθ是纯虚数,则tan θ的值为( )A .34B . 43C .34- D .43- 3.设平面α与平面β相交于直线l ,直线a 在平面α内,直线b 在平面β内,且b l ⊥,则“a b ⊥”是“αβ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.若()f x 为偶函数,且当[)0,x ∈+∞时,()2sin (01)2ln (1)x x f x x x x π⎧≤≤⎪=⎨⎪+>⎩,则不等式()11f x -<的解集 为( )A.{}02x x <<B.{}11x x -<<C.{}01x x <<D.{}22x x -<<5.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺,容纳米2000斛(1丈=10尺,斛为容积单位,1斛≈1.62立方尺,3π≈),则圆柱底面周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺6.设点O 是边长为1的正ABC ∆的中心(如图所示),则()()OA OB OA OC ++=( ) A. 19B.19- C.16-D.167.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为( )A.110B.15C.310D.258.设实数x ,y 满足约束条件32404020x y x y x ay -+≥⎧⎪+-≤⎨⎪--≤⎩,已知2z x y =+的最大值是7,最小值是26-,则实数a 的值为( )A.6B. 6-C. 1-D. 1 9.把周长为1的圆的圆心C 放在y 轴,顶点()0,1A ,一动点M 从A 开始逆时针绕圆运动一周,记走过的弧长A M x =,直线AM 与x 轴交于点(),0N t ,则函数()t f x =的大致图像为( )10.一个几何体的三视图如图所示,该几何体的体积为( ) A.83B. 43C. 89D. 4911.已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 是双曲线C 的中心,直线y =是双曲线C 的一条渐近线,以线段OF 为边作正三角形AOF ,若点A在双曲线C 上,则m 的值为( )A.3+3-3 D. 3 12.设函数32()f x ax bx cx d =+++有两个极值点12,x x ,若点11(,())P x f x 为坐标原点,点22(,())Q x f x 在圆22:(2)(3)1C x y -+-=上运动时,则函数()f x 图象的切线斜率的最大值为( )A.3+2+2+3AB O第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年重庆高考数学试题及答案(理科)
2016年重庆高考数学试题及答案(理科)一.单选题本大题共12小题,每小题5分,共60分。
在每小题给出的4个选项中,有且只有一项是符合题目要求。
1.已知在复平面内对应的点在第四象限,则实数m的取值范围是
A
B
C
D
答案:A
2.已知集合,,则
A
B
C
D
答案:C
3.已知向量,且,则m=
A-8
B18
C12
D9
答案:B
6.右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为
A20π
B24π
C28π
D32π
答案:C
7.若将函数y=2sin 2x的图像向左平移个单位长度,则评议后图象的对称轴为
A x=–(k∈Z)
B x=+ (k∈Z)
C x=–(k∈Z)
D x =+ (k ∈Z)
答案:B
8. 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行
该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =
A7 B12 C17 D34
答案:C 9. 若cos(
4
–α)=53 ,则sin 2α=
A
275
B 51
1
C–
5
5
D–
27
答案:D
10.从区间随机抽取2n个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率的近似值为
A
B
C
D
答案:C
11.已知F1,F2是双曲线E:的左,右焦点,点M在E上,M F1与轴垂直,sin ,则E的离心率为
A
B
C
D2
答案:A
12.已知函数满足,若函数与图
像的交点为则
A0
B m
C2m
D4m
答案:B
二.填空题本大题共10小题,每小题5分,共50分。
把答案填写在题中横线上。
13.△ABC的内角A、B、C的对边分别为a、b、c,若cos A=,cos C=,a=1,则b= . 答案:
14.α、β是两个平面,m、n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β.
②如果m⊥α,n∥α,那么m⊥n.
③如果α∥β,mα,那么m∥β.
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题有 .(填写所有正确命题的编号)
答案:②③④
15.有三张卡片,分别写有1和2,1和3,2和3。
甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是。
答案:1和3
16.若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b= 。
答案:
17. (本小题满分12分)
为等差数列的前n项和,且记,其中表示不超过x的最大整数,如.
(I)求;
(II)求数列的前1 000项和.
答案:
试题解析:(Ⅰ)设的公差为,据已知有,解得
所以的通项公式为
(Ⅱ)因为
所以数列的前项和为
18.(本小题满分12分)
某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
设该险种一续保人一年内出险次数与相应概率如下:
(I)求一续保人本年度的保费高于基本保费的概率;
(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(III)求续保人本年度的平均保费与基本保费的比值.
答案:(Ⅰ)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故
(Ⅱ)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故
又,故
因此所求概率为
(Ⅲ)记续保人本年度的保费为,则的分布列为
因此续保人本年度的平均保费与基本保费的比值为
19.(本小题满分12分)
如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△的位置,.
(I)证明:平面ABCD;
(II)求二面角的正弦值.
答案:(I)由已知得,,又由得,故.
因此,从而.由,得
.
由得.所以,.
于是,,
故.
又,而,
所以.
(II)如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,,,,,,
,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即
,所以可以取.于是
,.因此二面角的正弦值是.
20.(本小题满分12分)
已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(I)当t=4,时,求△AMN的面积;
(II)当时,求k的取值范围.
答案:(I)设,则由题意知,当时,的方程为,.
由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.
将代入得.解得或,所以.
因此的面积.
(II)由题意,,.
将直线的方程代入得
.
由得,故
.
由题设,直线的方程为,故同理可得
,
由得,即.
当时上式不成立,
因此.等价于,即.由此得,或,解得. 因此的取值范围是.
21.(本小题满分12分)
(I)讨论函数的单调性,并证明当 >0时,
(II)证明:当时,函数有最小值.设g(x)的最小值为,求函数的值域.
答案:(Ⅰ)的定义域为.
且仅当时,,所以在单调递增,
因此当时,
所以
(II)
由(I)知,单调递增,对任意
因此,存在唯一使得即,当时,单调递减;
当时,单调递增.
因此在处取得最小值,最小值为
于是,由单调递增
所以,由得
因为单调递增,对任意存在唯一的
使得所以的值域是
综上,当时,有,的值域是
请考生在22~24题中任选一题作答,如果多做,则按所做的第一题计分。
22.(本小题满分10分)选修4-1:几何证明选讲
如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
(I) 证明:B,C,E,F四点共圆;
(II)若AB=1,E为DA的中点,求四边形BCGF的面积.
答案:(I)因为,所以
则有
所以由此可得
由此所以四点共圆.
(II)由四点共圆,知,连结,由为斜边的中点,知,故
因此四边形的面积是面积的2倍,即
23.(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(II)直线l的参数方程是(t为参数),l与C交于A、B两点,∣AB ∣=,求l的斜率。
答案:(I)由可得的极坐标方程
(II)在(I)中建立的极坐标系中,直线的极坐标方程为
由所对应的极径分别为将的极坐标方程代入的极坐标方程得
于是
由得,
所以的斜率为或.
24.(本小题满分10分),选修4—5:不等式选讲
已知函数f(x)= ∣x-∣+∣x+∣,M为不等式f(x) <2的解集.
(I)求M;
(II)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。
答案:(I)
当时,由得解得;
当时,;
当时,由得解得.
所以的解集.
(II)由(I)知,当时,,从而
,
因此。