空间向量与平行关系

合集下载

空间向量与平行关系课件

空间向量与平行关系课件

(3)空间直线的向量表达式的两点作用: ①定位置:点A和向量a可以确定直线的_位__置__; ②定点:可以具体表示出l上的任意_一__点__. 3.向量a为平面α的法向量应满足的两个条件 (1)向量a表示直线l的_方__向__向__量__; (2)直线l_⊥__平面α.
4.用向量描述空间平行关系 设空间两条直线l,m的方向向量分别为a=(a1,a2,a3), b=(b1,b2,b3),两个平面α,β的法向量分别为u=(u1,u2,u3), v=(v1,v2,v3),则有如下结论

m
AN
0,
m NM 0,
所以
a 2
x1
0
y1
az1
0,
a 2
x1
a 2
y1
0
z1
0,
所以y1=-x1=-2z1.取z1=1,
所以平面AMN的一个法向量为m=(2,-2,1).
同理由
n n
DB DF
可00,,得x2=-y2,y2=-2z2.
令z2=1,
所以平面EFDB的一个法向量为n=(2,-2,1).
2.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直. (2)证明直线的方向向量与平面内的某一直线的方向向量共线. (3)证明直线的方向向量可用平面内的任两个不共线的向量表 示.即用平面向量基本定理证明线面平行.
3.证明面面平行的方法 设平面α的法向量为n1=(a1,b1,c1),平面β的法向量为 n2=(a2,b2,c2),则α//β⇔n1∥n2⇔(a1,b1,c1)=k(a2,b2,c2) (k∈R).
位置关系 向量关系 向量运算关系
l∥m
_a_∥__b_ _a_=_k_b_,_k_∈__R_

空间向量与平行关系 课件

空间向量与平行关系   课件

[证明] 法一:如图5所示,以D为原点,DA、DC、 DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标 系,设正方体的棱长为1,则可求得
图5
M(0,1,12),N(12,1,1), D(0,0,0),A1(1,0,1),B(1,1,0), 于是M→N=(12,0,12),D→A1=(1,0,1), D→B=(1,1,0), 设平面 A1BD 的法向量是 n=(x,y,z),
x-2y-4z=0, 2x-4y-3z=0,
解得 z=0 且 x=2y,
令 y=1,则 x=2.
∴平面 α 的一个法向量为 n=(2,1,0).
[点评] 求平面法向量的方法与步骤: (1)选向量 求平面的法向量时,要选取两 相交向量A→C、A→B. (2)设坐标 设平面法向量的坐标为 n= (x,y,z).
图 11
解:以D为原点,分别以DA、DC、DD1所在直线 为x、y、z轴,建立空间直角坐标系,
法三:∵M→N=C→1N-C→1M=12D→A-12D→1D
=12(D→B+B→A)-12(D→1A1+A→1D)
=12D→B+12B→A-12D→1A1-12A→1D
=12D→B+12D→A1+12(B→A-D→A)
=12D→B+12D→A1+12B→D
=12D→A1

→ 0DB.
即M→N 可用D→A1 与D→B线性表示 , 故M→N 与D→A1 、D→B是共面向量 . 又 MN⊄平面 A1BD, DA1,DB⊂平面 A1BD,且 DA1∩DB=D, ∴MN∥平面 A1BD.
①u=(1,-1,2),v=(3,2,-12); ②u=(0,3,0),v=(0,-5,0); ③u=(2,-3,4),v=(4,-2,1).

空间向量与平行关系 课件

空间向量与平行关系   课件

探究点三 利用空间向量证明平行关系 问题 怎样利用向量证明空间中的平行关系?
答案 可以按照下列方法证明空间中的平行关系. 线线 设直线 l1、l2 的方向向量分别是 a、b,则要证明 平行 l1∥l2,只需证明 a∥b,即 a=kb (k∈R) ①设直线 l 的方向向量是 a,平面 α 的法向量是 线面 u,则要证明 l∥α,只需证明 a⊥u,即 a·u=0; 平行 ②根据线面平行判定定理在平面内找一个向量 与已知直线的方向向量是共线向量即可;
则有 D(0,0,0),A(2,0,0),C(0,2,0),C1(0,2,2), E(2,2,1),F(0,0,1),B1(2,2,2), 所以F→C1=(0,2,1),D→A=(2,0,0),A→E=(0,2,1). 设 n1=(x1,y1,z1)是平面 ADE 的法向量, 则 n1⊥D→A,n1⊥A→E,
∴平面 ABC 的一个法向量为 n=(1,1,1).
例 1 根据下列条件,判断相应的线、面位置关系: (1)直线 l1,l2 的方向向量分别是 a=(1,-3,-1), b=(8,2,2); (2)平面 α,β 的法向量分别是 u=(1,3,0),v=(-3,-9,0); (3)直线 l 的方向向量,平面 α 的法向量分别是 a=(1, -4,-3),u=(2,0,3); (4)直线 l 的方向向量,平面 α 的法向量分别是 a=(3,2,1), u=(-1,2,-1).
因为 p·v=(xa+yb)·v=xa·v+yb·v=0, 即平面 β 的法线与平面 α 内任一直线垂直. 所以平面 β 的法向量也是平面 α 的法向量,即 u∥v. 因此,α∥β.
小结 在“平面与平面平行的判定定理”的证明过程中突 出了直线的方向向量和平面的法向量的作用.以后我们用 向量证明有关结论时,直线的方向向量和平面的法向量是 重要的工具.

空间向量的垂直和平行关系

空间向量的垂直和平行关系

空间向量的垂直和平行关系空间向量是三维空间中具有大小和方向的量,它们之间存在着不同的关系。

其中最常见的关系是垂直和平行关系。

本文将深入探讨空间向量的垂直和平行关系,并分析其特点和性质。

一、垂直关系当两个向量的数量积等于零时,它们被称为垂直向量。

具体地说,对于空间中的向量A和A来说:A⋅A=AAA cos A=0其中,A⋅A表示向量A和A的数量积,AAA表示向量A和A的叉积,A表示两个向量之间的夹角。

当A为90度时,cos A=0,表明向量A和A 垂直。

垂直向量的特点和性质如下:1. 垂直向量的数量积为零,即两个向量之间的夹角为90度。

2. 向量的数量积等于零并不意味着它们一定是垂直的,还需考虑向量的长度和方向。

3. 若两个向量垂直,则它们的叉积为非零向量。

4. 若两个向量平行,则它们的数量积为非零常数。

5. 若一个向量与另一个非零向量垂直,则它与另一个向量平行。

二、平行关系当两个向量的叉积为零时,它们被称为平行向量。

具体地说,对于空间中的向量A和A来说:AAA=AAA sin A=0其中,AAA表示向量A和A的代数长度,sin A表示两个向量之间的夹角的正弦值。

当sin A等于零时,表明向量A和A平行。

平行向量的特点和性质如下:1. 平行向量的叉积为零,即两个向量之间的夹角的正弦值为零。

2. 平行向量之间的数量积可能为非零常数,也可能为零。

3. 若两个向量平行,则它们的数量积为非零常数。

4. 若两个向量垂直,则它们的叉积为非零向量。

5. 若一个向量与另一个非零向量平行,则它与另一个向量垂直。

通过对空间向量的垂直和平行关系进行分析,我们可以得出以下结论:1. 垂直和平行是空间向量最基本的关系,它们之间存在着一定的对应性。

2. 垂直和平行关系可以通过向量的数量积和叉积进行判断。

3. 垂直和平行向量在解决实际问题中具有重要的应用价值,如物理力学中的受力分析和几何学中的平面垂直关系。

在实际问题中,我们常常需要确定向量之间的关系,特别是垂直和平行关系。

3.2.2空间向量与平行.垂直关系

3.2.2空间向量与平行.垂直关系
∴A→B1⊥M→N,∴AB1⊥MN.
法二 (坐标法) 设 AB 中点为 O,作 OO1∥AA1. 以 O 为坐标原点,OB 为 x 轴,OC 为 y 轴, OO1 为 z 轴建立如图所示的空间直角坐标 系.由已知得
A(-12,0,0),B(12,0,0),C(0, 23,0),N(0, 23,14),B1(12,0, 1), ∵M 为 BC 中点,∴M(14, 43,0).
题型二 证明线线垂直
【例2】 已知正三棱柱 ABC-A1B1C1 的各棱长
都为 1,M 是底面上 BC 边的中点,N 是侧
棱 CC1 上的点,且 CN=14CC1.求证:AB1⊥ MN. [思路探索] 解答本题可先选基向量,证明A→B1·M→N=0 或先 建系,再证明A→B1·M→N=0.
解 法一 (基向量法)
(3)若直线 l 的方向向量是 u,平面α的法向量是 v,则有 l∥α⇔u⊥v⇔u·v=0;l⊥α⇔u∥v⇔u=kv(k∈R).
空间垂直关系的向量表示
(1)线线垂直
设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b =(b1,b2,b3),则l⊥m⇔a_⊥__b__⇔ a_·_b_=__0__⇔ _a_1_b_1+__a_2b2+a3b3=0 (2)线面垂直
设直线l的方向向量是u=(a1,b1,c1),平面α的法向量是v=(a2, b2,c2),则l⊥α⇔u∥v⇔ __u_=__k_v.
(3)面面垂直
设平面α的法向量u=(a1,b1,c1),平面β的法向量v= (a2,b2,c2),则α⊥β⇔__u_⊥__v_⇔ ___u_·_v=__0_ ⇔ _a_1_a_2_+__b_1b_2_+__c_1_c_2=__0___ .
试一试:若平面α与β的法向量分别是a=(4,0,-2),

2.4.1 空间向量与平行关系 课件(北师大选修2-1)

2.4.1 空间向量与平行关系 课件(北师大选修2-1)
1 ①n1=(1,-1,2),n2=(3,2,- ); 2 ②n1=(0,3,0),n2=(0,-5,0); ③n1=(2,-3,4),n2=(4,-2,1).
(3)设n是平面π的法向量,a是直线l的方向向量,根据
下列条件判断π和l的位置关系:
①n=(2,2,-1),a=(-3,4,2); ②n=(0,2,-3),a=(0,-8,12); ③n=(4,1,5),a=(2,-1,0). [思路点拨] 本题可由直线的方向向量、平面的法向
(
)
解析:当a· b=0时,lπ或l∥π. 答案:D
2.已知直线l1,l2的方向向量分别为a,b,平面π1、π2的 法向量分别为n1,n2,若a=n1=(1,-2,-2),b=n2 =(-2,-3,2),试判断l1与l2,π1与π2,l1与π2间的位置 关系.
解:∵a· b=n1·2=a·2 n n
AC 的中点,所以 OB⊥AC,OA=OB=OC, 如图,建立空间直角坐标系,设 OA=a, 则 A(a,0,0), B(0, a,0), C(-a,0,0), P(0,0,
a a a),D-2,0,2,
a a 所以 OD =-2,0,2.
设平面 PAB 的法向量为 n=(x,y,z).
SD1=2SD,点N,R分别为A1D1,BC的中点.求证:
MN∥平面RSD.
证明:法一:如图所示,建立空间直角 坐标系,则根据题意得
4 M 3,0,3 ,
2 N(0,2,2),R(3,2,0),S0,4,3.
2 2 ∴ MN =-3,2,3, RS =-3,2,3, MN = RS . ∴ MN ∥ RS .
一点及其法向量确定,因此可利用直线的方向向量与平

空间向量的垂直与平行解析几何的几何关系

空间向量的垂直与平行解析几何的几何关系

空间向量的垂直与平行解析几何的几何关系空间向量在解析几何中具有广泛的应用,它们可以描述物体在空间中的位置、方向和运动等属性。

在学习空间向量时,了解其垂直与平行的几何关系是非常重要的。

本文将通过几何解析的方式,深入探讨空间向量垂直与平行的性质及其应用。

一、垂直向量在空间中,当两个向量的数量积为零时,我们称这两个向量是垂直的。

数学上可以表达为:两个向量的数量积等于零,则它们垂直。

设有两个向量a和b,它们的坐标分别表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b垂直的条件可以表示为:a1 * b1 + a2 * b2 + a3 * b3 = 0这个条件求解出的结果就是两个向量垂直的充要条件。

垂直向量在几何上有许多重要的应用。

例如在平面几何中,两条直线互相垂直,则它们的方向向量必然垂直;在立体几何中,两个平面互相垂直,其法向量也必然垂直。

因此,熟练掌握垂直向量的性质对于解析几何的应用非常重要。

二、平行向量在空间中,当两个向量之间存在倍数关系时,我们称这两个向量是平行的。

数学上可以表达为:两个向量之间存在倍数关系,则它们平行。

设有两个向量a和b,它们的坐标表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b平行的条件可以表示为:a1/b1 = a2/b2 = a3/b3 = k (k为常数)其中k为两个向量平行的倍数关系。

平行向量的性质可以应用于线段、直线和平面的平行关系的判断。

例如,在平面几何中,两个直线互相平行,则它们的方向向量之间必然存在倍数关系;在立体几何中,平面与直线平行,则平面的法向量与直线的方向向量必然平行。

三、垂直与平行向量的应用举例1. 垂直向量的应用考虑一个示例问题:已知一条直线L的向量方程为(r - r1) · n = 0,其中r1为已知点,n为已知向量。

求直线L上与已知点A垂直的点B 的坐标。

解析:根据向量方程可以得知,L上的任意点P满足向量n与r - r1垂直的关系。

空间向量与平行关系(公开课)

空间向量与平行关系(公开课)
D1
A1
z
B1
C1
F
D
E
B
C
y
x
A
利用向量解决立体几何问题的三步曲:
①建立立体图形与空间向量的联系,用空间向量 表示问题中涉及的点、直线、平面. (化为向量问题) ②通过向量运算,研究点、直线、平面之间的位置关 系以及它们之间的距离和夹角的问题. (进行向量运算) ③把向量的运算结果“翻译”成相应的几何意义. (回到图形)
b ( a 2 , b 2 , c 2 ). n a 0 a1 x b1 y c1 z 0 ③建立方程组 a x b y c z 0 n b 0 2 2 2
④解方程组,利用赋值法,给 x, y, z 中的一个变量 赋一特值.
量为 n (2 ,0 ,3 ).
(4)直线 l 的方向向量为 a (3, 2,1), 为 n (1, 2, 1).
平面 的法向量
例2:如图,已知正方体
ABCD A1B1C1D1的棱长为2,
E , F分别是 BB1 , DD1的中点.
证明: FC1∥平面 ADE.
探究:
直线可以用方向向量进行描述,平面呢?
问题1:经过定点A且与向量 n 平行的平面有几个? 问题2:经过定点A且与向量 n 垂直的平面有几个?
定义:
直线 l , 取直线 l 的方向向量 n , 则向量 n 叫作 平面 的法向量. l

思考:平面的法向量有什么特点? ①非零 ②有无数条且互相平行
练习:如图所示,正方体的棱长为1. (1)平面 ABCD 的一个法向量为 (2)平面 CDD1C1 的一个法向量为 (3)平面 AB1D1 的一个法向量为

3-2第1课时空间向量与平行关系

3-2第1课时空间向量与平行关系

1. 平面法向量的求法 (1)当已知平面的垂线时,在垂线上取一非零向量即可作
为平面的法向量. (2)当已知平面α内两不共线向量a=(a1,a2,a3),b=(b1,
b2,b3)时,常用待定系数法求法向量:
设法向量
a· n= 0, n=(x,y,z),由 n=0, b·
a1x+ a2y+ a3z= 0, 得 b1x+ b2y+ b3z= 0,
题型二 求平 ABCD 是直角梯形,∠ ABC 面的法向量 例2 如图,
= 90°, SA⊥平面 ABCD,SA= AB= 1 BC= 1, AD= ,求平面 SCD 与平面 2 SBA 的法向量.
解 ∵ AD、AB、AS 是三条两两垂直的线段,∴以 A 为原点,以
AD、AB、AS的方向为 x 轴,y 轴,z 轴的正方向建立坐标系,则 1 A(0, 0, 0), D( , 0, 0), C(1, 1, 0), S(0, 0,1), 2
在上述方程组中,对x,y,z中的任一个赋值,求出另两 个,所得n即为平面的法向量.
向量法解决几何问题的步骤 2. (1)建立空间图形与空间向量的关系,把几何问题转化为 向量问题. (2)进行向量的加减、数乘、数量积运算,得出向量运算
的结果.
(3)把向量运算的结果转化为相应的几何问题的结果.
题型一



→ 1 AD= ( , 0, 0)是平面 SAB 的法向量, 2
设平面 SCD 的法向量 n= (1, λ, u),
→ 1 1 1 则 n· DC= (1, λ, u)· ( , 1, 0)= + λ= 0,∴ λ=- . 2 2 2 → 1 1 n· DS= (1, λ, u)· (- , 0, 1)=- + u= 0, 2 2

空间向量与平行关系

空间向量与平行关系

服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
【解】以点 A 为原点,AD、AB、AS 所在的直线分别为 x 轴、 y 轴、z 轴,建立如图所示的坐标系,则 A(0,0,0),B(0,1,0),C(1,1,0), D12,0,0,S(0,0,1).
(1)∵SA⊥平面 ABCD, ∴A→S=(0,0,1)是平面 ABCD 的一个法向量. (2)∵AD⊥AB,AD⊥SA,∴AD⊥平面 SAB, ∴A→D=12,0,0是平面 SAB 的一个法向量.
A.6 和-10
B.-6 和 10
C.-6 和-10
D.6 和 10
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
【解析】 因为 a 与 b 平行,∴42=-x3=5y, 解得 x=-6,y=10. 【答案】 B
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
3.若 u=(2,-3,1)是平面 α 的一个法向量,则下列向量中能
【思路探究】 两直线的方向向量满足什么条件能说明它们平 行.
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
【解】以点 D 为坐标原点,分别以D→A,D→C,D→D1为正交基底 建立空间直角坐标系,不妨设正方体的棱长为 1,则 A(1,0,0), E0,0,12,C1(0,1,1),F1,1,12,
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
【证明】 如图所示,分别以 DA,DC,DD1 所在的直线为 x 轴、y 轴、z 轴建立空间直角坐标系,设 DA=a,DC=b,DD1=c, 则得下列各点的坐标:A(a,0,0),C1(0,b,c),E23a,23b,c,Fa,b3,23c.

3.2.1 空间向量与平行、垂直关系

3.2.1  空间向量与平行、垂直关系

3.2.1空间向量与平行、垂直关系预习课本P102~108,思考并完成以下问题1.平面的法向量的定义是什么?2.设直线l的方向向量u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l∥α,l ⊥α的充要条件分别是什么?[新知初探]1.平面的法向量(1)直线的方向向量直线的方向向量是指和这条直线平行或共线的向量.(2)平面的法向量直线l⊥α,取直线l的方向向量a,则a叫做平面α的法向量.2.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔a=λb⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔a·u=0⇔a1a2+b1b2+c1c2=0.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔u=λv ⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).3.空间垂直关系的向量表示(1)线线垂直设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.(2)线面垂直设直线l 的方向向量是a =(a 1,b 1,c 1),平面α的法向量是u =(a 2,b 2,c 2),则l ⊥α⇔a ∥u ⇔a =λu ⇔a 1=λa 2,b 1=λb 2,c 1=λc 2(λ∈R).(3)面面垂直若平面α的法向量u =(a 1,b 1,c 1),平面β的法向量v =(a 2,b 2,c 2),则α⊥β⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)直线l 的方向向量是惟一的( )(2)若点A ,B 是平面α上的任意两点,n 是平面α的法向量,则AB ·n =0( ) (3)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行( )答案:(1)× (2)√ (3)√2.若A (1,0,-1),B (2,1,2)在直线l 上,则直线l 的一个方向向量是( ) A .(2,2,6) B .(-1,1,3) C .(3,1,1) D .(-3,0,1)答案:A3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( )A .-2B .2C .6D .10 答案:D[典例] 已知平面α经过三点A (1,2,3),B (2,0,-,求平面α的一个法向量.[解] 因为A (1,2,3),B (2,0,-1),C (3,-2,0),所以AB =(1,-2,-4),AC =(2,-4,-3).设平面α的法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB =0,n ·AC =0,即⎩⎪⎨⎪⎧x -2y -4z =0,2x -4y -3z =0.得z =0,x =2y ,令y =1,则x =2,所以平面α的一个法向量为n =(2,1,0).利用待定系数法求法向量的解题步骤[活学活用]四边形ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =2,AD =1.在如图所示的坐标系Axyz 中,分别求平面SCD 和平面SAB 的一个法向量.解:A (0,0,0),D (1,0,0),C (2,2,0),S (0,0,2).∵AD ⊥平面SAB ,∴AD =(1,0,0)是平面SAB 的一个法向量. 设平面SCD 的法向量为n =(1,y ,z ),则n ·DC =(1,y ,z )·(1,2,0)=1+2y =0,∴y =-12.又n ·DS =(1,y ,z )·(-1,0,2)=-1+2z =0, ∴z =12.∴n =⎝⎛⎭⎫1,-12,12即为平面SCD 的一个法向量.[典例] 已知正方体ABCD -A 111111的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] 如图所示建立空间直角坐标系D -xyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1=(0,2,1),DA =(2,0,0),AE =(0,2,1).(1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量, 则n 1⊥DA ,n 1⊥AE , 即⎩⎨⎧n 1·DA =2x 1=0,n 1·AE =2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1, 令z 1=2,则y 1=-1, 所以n 1=(0,-1,2).因为FC 1·n 1=-2+2=0,所以FC 1⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C B 11=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1,n 2⊥C B 11,得⎩⎪⎨⎪⎧n 2·FC 1=2y 2+z 2=0,n 2·C B 11=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2. 令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F .利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.[活学活用]在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明:法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1),PQ =(-3,2,1),RS =(-3,2,1),∴PQ =RS ,∴PQ ∥RS ,即PQ ∥RS .法二:RS =RC +CS =12DC -DA +12DD 1,PQ =PA 1+A Q 1=12DD 1+12DC -DA ,∴RS =PQ ,∴RS ∥PQ , 即RS ∥PQ .利用空间向量证明垂直问题[典例] 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE ,∴以O 为原点建立空间直角坐标系O -xyz .如图所示.则由已知条件有C (1,0,0),E (0,-3,0),D (1,0,1),A (0,3,2).设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA =(a ,b ,c )·(0,23,2)=23b +2c =0, n ·DA =(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3), 又AB ⊥平面BCE , ∴AB ⊥OC , ∴OC ⊥平面ABE ,∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE .(1)用向量法判定线面垂直,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.(2)用向量法判定两个平面垂直,只需求出这两个平面的法向量,再看它们的数量积是否为0.[活学活用]在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为BB 1,D 1B 1的中点,求证:EF ⊥平面B 1AC . 证明:设正方体的棱长为2,建立如图所示的空间直角坐标系D -xyz ,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).法一:EF =(-1,-1,1),AB 1=(0,2,2),AC =(-2,2,0), ∴EF ·AB 1=(-1,-1,1)·(0,2,2)=0,EF ·AC =(-1,-1,1)·(-2,2,0)=0,∴EF ⊥AB 1,EF ⊥AC ,又AB 1∩AC =A , ∴EF ⊥平面B 1AC .法二:设平面B 1AC 的法向量为n =(x ,y ,z ). 又AB 1=(0,2,2),AC =(-2,2,0),则⎩⎪⎨⎪⎧ n ⊥AB 1,n ⊥AC ⇒⎩⎪⎨⎪⎧n ·AB 1=2y +2z =0,n ·AC =-2x +2y =0,令x =1,可得平面B 1AC 的一个法向量为n =(1,1,-1). 又EF =-n ,∴EF ∥n ,∴EF ⊥平面B 1AC .层级一 学业水平达标1.若n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( )A .(0,-3,1)B .(2,0,1)C .(-2,-3,1)D .(-2,3,-1)解析:选D 问题即求与n 共线的一个向量.即n =(2,-3,1)=-(-2,3,-1). 2.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9解析:选C ∵l ⊥α,v 与平面α平行, ∴u ⊥v ,即u ·v =0, ∴1×3+3×2+z ×1=0, ∴z =-9.3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个法向量是( ) A .(1,1,-1) B .(1,-1,1) C .(-1,1,1)D .(-1,-1,-1)解析:选D AB =(-1,1,0),AC =(-1,0,1).设平面ABC 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧-x +y =0,-x +z =0,取x =-1,则y =-1,z =-1.故平面ABC 的一个法向量是(-1,-1,-1).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A .AC B .BD C .A 1D D .A 1A解析:选B 建立如图所示的空间直角坐标系.设正方体的棱长为1. 则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫12,12,1, ∴CE =⎝⎛⎭⎫12,-12,1, AC =(-1,1,0),BD =(-1,-1,0),A D 1=(-1,0,-1),A A 1=(0,0,-1).∵CE ·BD =(-1)×12+(-1)×⎝⎛⎭⎫-12+0×1=0,∴CE ⊥BD .5.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,平行六面体的各棱长均相等.给出下列结论:①A 1M ∥D 1P ; ②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1.这四个结论中正确的个数为( ) A .1 B .2 C .3D .4解析:选C ∵A M 1=A A 1+AM =A A 1+12AB ,D P 1=D D 1+DP =A A 1+12AB ,∴A M 1∥D P 1,从而A 1M ∥D 1P ,可得①③④正确. 又B 1Q 与D 1P 不平行,故②不正确.6. 已知点P 是平行四边形ABCD 所在的平面外一点,如果AB =(2,-1,-4),AD=(4,2,0),AP =(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP 是平面ABCD 的法向量;④AP ∥BD .其中正确的是_______(填序号).解析:由于AP ·AB =-1×2+(-1)×2+(-4)×(-1)=0,AP ·AD =4×(-1)+2×2+0×(-1)=0,所以①②③正确. 答案:①②③7.在直角坐标系O -xyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π],若直线OP 与直线OQ 垂直,则x 的值为________.解析:由OP ⊥OQ ,得OP ·OQ =0. 即(2cos x +1)·cos x +(2cos 2x +2)·(-1)=0. ∴cos x =0或cos x =12.∵x ∈[0,π],∴x =π2或x =π3.答案:π2或π38.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面是以∠ABC 为直角的等腰三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点E 在棱AA 1上,要使CE ⊥面B 1DE ,则AE =________.解析:建立如图所示的空间直角坐标系, 则B 1(0,0,3a ),C (0,2a,0), D2a 2,2a 2,3a . 设E (2a,0,z )(0≤z ≤3a ), 则CE =()2a ,-2a ,z ,B E 1=(2a,0,z -3a ),B D 1=⎝⎛⎭⎫2a 2,2a 2,0.又CE ·B D 1=a 2-a 2+0=0,故由题意得2a 2+z 2-3az =0,解得z =a 或2a . 故AE =a 或2a . 答案:a 或2a9.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 为PC 的中点,EF ⊥BP 于点F .求证:(1)P A ∥平面EDB ; (2)PB ⊥平面EFD .证明:以D 为坐标原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z轴建立空间直角坐标系D -xyz ,如图,设DC =PD =1,则P (0,0,1),A (1,0,0),D (0,0,0),B (1,1,0),E ⎝⎛⎭⎫0,12,12. ∴PB =(1,1,-1),DE =⎝⎛⎭⎫0,12,12,EB =⎝⎛⎭⎫1,12,-12,设F (x ,y ,z ),则PF =(x ,y ,z -1),EF =⎝⎛⎭⎫x ,y -12,z -12. ∵EF ⊥PB ,∴x +⎝⎛⎭⎫y -12-⎝⎛⎭⎫z -12=0,即x +y -z =0.① 又∵PF ∥PB ,可设PF =λPB , ∴x =λ,y =λ,z -1=-λ.② 由①②可知,x =13,y =13,z =23,∴EF =⎝⎛⎭⎫13,-16,16. (1)设n 1=(x 1,y 1,z 1)为平面EDB 的一个法向量,则有⎩⎨⎧n 1·DE =0,n 1·EB =0,即⎩⎨⎧12y 1+12z 1=0,x 1+12y 1-12z 1=0,∴⎩⎪⎨⎪⎧x 1=z 1,y 1=-z 1. 取z 1=-1,则n 1=(-1,1,-1). ∵PA =(1,0,-1),∴PA ·n 1=0. 又∵P A ⊄平面EDB ,∴P A ∥平面EDB .(2)设n 2=(x 2,y 2,z 2)为平面EFD 的一个法向量,则有⎩⎨⎧n 2·EF =0,n 2·DE =0,即⎩⎨⎧13x 2-16y 2+16z 2=0,12y 2+12z 2=0,∴⎩⎪⎨⎪⎧x 2=-z 2,y 2=-z 2. 取z 2=1,则n 2=(-1,-1,1).∴PB ∥n 2,∴PB ⊥平面EFD .10.已知在长方体ABCD -A 1B 1C 1D 1中,E ,M 分别是BC ,AE 的中点,AD =AA 1=a ,AB =2a .试问在线段CD 1上是否存在一点N 使MN ∥平面ADD 1A 1,若存在确定N 的位置,若不存在说明理由.解:以D 为原点,建立如图所示的空间直角坐标系, 则A (a ,0,0),B (a,2a,0), C (0,2a,0),D 1(0,0,a ), E ⎝⎛⎭⎫12a ,2a ,0,M ⎝⎛⎭⎫34a ,a ,0, DC =(0,2a,0),CD 1=(0,-2a ,a ),假设CD 1上存在点N 使MN ∥平面ADD 1A 1并设CN =λCD 1=(0,-2aλ,aλ)(0<λ<1).则DN =DC +CN =(0,2a,0)+(0,-2aλ,aλ) =(0,2a (1-λ),aλ),MN =DN -DM =⎝⎛⎭⎫-34a ,a -2aλ,aλ. 又DC 是平面ADD 1A 1的一个法向量. ∴MN ⊥DC ,则2a (a -2aλ)=0,λ=12.又MN ⊄平面ADD 1A 1.故存在N 为CD 1的中点使MN ∥平面ADD 1A 1.层级二 应试能力达标1.已知a =⎝⎛⎭⎫1,2,52,b =⎝⎛⎭⎫32,x ,y 分别是直线l 1,l 2的一个方向向量.若l 1∥l 2,则( ) A .x =3,y =152B .x =32,y =154C .x =3,y =15D .x =3,y =154解析:选D ∵l 1∥l 2,∴321=x 2=y 52,∴x =3,y =154,故选D.2.在如图所示的空间直角坐标系中,ABCD -A 1B 1C 1D 1是棱长为1的正方体,给出下列结论:①平面ABB 1A 1的一个法向量为(0,1,0); ②平面B 1CD 的一个法向量为(1,1,1); ③平面B 1CD 1的一个法向量为(1,1,1); ④平面ABC 1D 1的一个法向量为(0,1,1).其中正确结论的个数为( )A .1B .2C .3D .4解析:选B ∵AD =(0,1,0),AB ⊥AD ,AA 1⊥AD ,又AB ∩AA 1=A ,∴AD ⊥平面ABB 1A 1,∴①正确;∵CD =(-1,0,0),而(1,1,1)·CD =-1≠0,∴(1,1,1)不是平面B 1CD 的法向量,∴②不正确;∵B C 1=(0,1,-1),CD 1=(-1,0,1),(1,1,1)·B C 1=0,(1,1,1)·CD 1=0,B 1C ∩CD 1=C ,∴(1,1,1)是平面B 1CD 1的一个法向量,∴③正确;∵BC 1=(0,1,1),而BC 1·(0,1,1)=2≠0,∴(0,1,1)不是平面ABC 1D 1的法向量,即④不正确.因此正确结论的个数为2,选B.3.若平面α,β的一个法向量分别为m =⎝⎛⎭⎫-16,13,-1,n =⎝⎛⎭⎫12,-1,3,则( ) A .α∥βB .α⊥βC .α与β相交但不垂直D .α∥β或α与β重合解析:选D ∵n =-3m ,∴m ∥n ,∴α∥β或α与β重合.4.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B ,AC 的中点,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B 建系如图,设正方体的棱长为2,则A (2,2,2),A1(2,2,0),C (0,0,2),B (2,0,2),∴M (2,1,1),N (1,1,2),∴MN =(-1,0,1).又平面BB 1C 1C 的一个法向量为n =(0,1,0),∵-1×0+0×1+1×0=0,∴MN ⊥n ,∴MN ∥平面BB 1C 1C .故选B.5.若直线l 的一个方向向量为a =(1,0,2),平面α的一个法向量为u =(-2,0,-4),则直线l 与平面α的位置关系为________.解析:∵u =-2a ,∴a ∥u ,∴l ⊥α.答案:l ⊥α6.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(x -1,y ,-3),且BP ⊥平面ABC ,则BP =________.解析:∵AB ⊥BC ,∴AB ·BC =0,∴3+5-2z =0,∴z =4.∵BP =(x -1,y ,-3),且BP ⊥平面ABC ,∴⎩⎨⎧ BP ·AB =0,BP ·BC =0,即⎩⎪⎨⎪⎧ x -1+5y +6=0,3x -3+y -12=0,解得⎩⎨⎧ x =407,y =-157,故BP =⎝⎛⎭⎫337,-157,-3.答案:⎝⎛⎭⎫337,-157,-37.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E ,F 分别是棱AB ,BC 的中点.求证:平面B 1EF ⊥平面BDD 1B 1.证明:以D 为坐标原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系如图,由题意,知D (0,0,0),A (22,0,0),C (0,22,0),B 1(22,22,4),E (22,2,0),F (2,22,0),则B E 1=(0,-2,-4), EF =(-2,2,0).设平面B 1EF 的法向量为n =(x ,y ,z ).则n ·B E 1=-2y -4z =0,n ·EF =-2x +2y =0,得x =y ,z =-24y ,令y =1,得n =⎝⎛⎭⎫1,1,-24.又平面BDD 1B 1的一个法向量为AC =(-22,22,0),而n ·AC =1×(-22)+1×22+⎝⎛⎭⎫-24×0=0,即n ⊥AC ,∴平面B 1EF ⊥平面BDD 1B 1.8.如图,在三棱锥P -ABC 中,三条侧棱P A ,PB ,PC 两两垂直,且P A =PB =PC =3,G 是△P AB 的重心,E ,F 分别为BC ,PB 上的点,且BE ∶EC =PF ∶FB =1∶2.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 与直线PG 和BC 都垂直.证明:(1)如图,以三棱锥的顶点P 为原点,以P A ,PB ,PC 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系P -xyz .则A (3,0,0),B (0,3,0),C (0,0,3),E (0,2,1),F (0,1,0),G (1,1,0),P (0,0,0). 于是EF =(0,-1,-1),EG =(1,-1,-1).设平面GEF 的法向量是n =(x ,y ,z ),则⎩⎨⎧ n ⊥EF ,n ⊥EG ,即⎩⎪⎨⎪⎧ y +z =0,x -y -z =0,可取n =(0,1,-1).显然PA =(3,0,0)是平面PBC 的一个法向量.又n ·PA =0,∴n ⊥PA ,即平面PBC 的法向量与平面GEF 的法向量垂直,∴平面GEF ⊥平面PBC .(2)由(1),知EG =(1,-1,-1), PG =(1,1,0),BC =(0,-3,3),∴EG ·PG =0,EG ·BC =0,∴EG ⊥PG ,EG ⊥BC ,∴EG 与直线PG 和BC 都垂直.。

空间向量的平行与垂直关系解析

空间向量的平行与垂直关系解析

空间向量的平行与垂直关系解析在三维空间中,向量是常用来表示大小和方向的物理量。

当我们研究向量时,经常会遇到它们之间的平行与垂直关系。

本文将对空间向量的平行与垂直关系进行解析,并介绍相关的概念和性质。

一、向量的定义与表示在三维空间中,一个向量可以由它的起点和终点表示。

一个向量通常用字母加箭头来表示,如向量AB记作→AB。

向量的起点和终点可以是任意两个点,向量的长度可以用有向线段的长度来表示。

在直角坐标系中,一个三维向量可以表示为一个有序三元组(a, b, c),其中a、b、c是向量在x轴、y轴和z轴上的投影。

二、向量的平行关系1. 定义当两个非零向量的方向相同或相反时,这两个向量被称为平行向量。

简而言之,如果两个向量的方向相同或相反,则它们是平行的。

使用数学符号表示,则有向量→AB ∥向量→CD,或者写作向量→AB || 向量→CD。

2. 判断方法有几种方法可以判断两个向量是否平行,以下是两种常用方法:- 方法一:比较向量的方向比率。

如果两个向量的两个分量的比例相同,则这两个向量是平行的。

例如,向量A(1, 2, 3)与向量B(2, 4, 6)的三个分量的比例都是1:2:3,因此向量A与向量B是平行的。

- 方法二:比较向量的法向量。

如果两个向量的法向量是平行的,那么这两个向量是平行的。

法向量是指将向量的分量进行交换,并改变其中一个分量的符号得到的新向量。

例如,向量A(1, 2, 3)的法向量是向量(-3, 1, -2)。

如果向量A和向量B的法向量平行,那么向量A和向量B是平行的。

三、向量的垂直关系1. 定义当两个非零向量的夹角为直角(90度)时,这两个向量被称为垂直向量。

使用数学符号表示,则有向量→AB ⊥向量→CD,或者写作向量→AB⊥向量→CD。

2. 判断方法有几种方法可以判断两个向量是否垂直,以下是两种常用方法:- 方法一:通过向量的点乘运算。

如果两个向量的点乘结果为0,则这两个向量是垂直的。

空间向量平行结论

空间向量平行结论

空间向量平行结论
空间向量平行结论指的是,如果两个向量在空间中平行,则它们的长度相等,方向相同,且它们的坐标分量之间保持比例关系。

这个结论可以通过向量的定义和几何性质推导得出。

具体地,如果向量a和向量b在空间中平行,那么它们的长度相等,即|a|=|b|。

此外,它们的方向也相同,因为它们的起点和终点重合。

因此,可以用一个非零实数k来表示它们之间的比例关系,即a=k*b。

由于a和b都有三个坐标分量,所以这个比例关系可以表示为:
a1=k*b1
a2=k*b2
a3=k*b3
这个式子表明,a和b的每个坐标分量之间都保持着相同的比例关系。

换句话说,它们的坐标分量在一个平面内呈现出比例关系,这个平面与它们所在的平行平面重合。

空间向量平行结论在物理学、工程学、计算机图形学等领域都有应用。

在物理学中,向量的平行性质可以用来描述力的平行和力的分解问题。

在工程学中,向量的平行性质可以用来计算构件的静力平衡。

在计算机图形学中,向量的平行性质可以用来计算三维图形的表面法向量,从而实现光照效果。

- 1 -。

空间向量与平行、垂直关系

空间向量与平行、垂直关系

第三章
空间向量与立体几何
1 1 → ∴MN· n= 2, 0, 2 · (1,- 1,- 1)=0,


→ ∴MN⊥ n. 又 MN 不在平面 A1BD 内, ∴ MN∥平面 A1BD.
栏目 导引
第三章
空间向量与立体几何
1 → 1→ 1 → → → 法二:∵ MN = C1N - C1M = C1B1 - C1C = 2 2 2 1→ → → → → (D1A1-D1D)= DA1,∴MN∥DA1, 2 又 MN 不在平面 A1BD 内, ∴ MN∥平面 A1BD.
则有 D(0, 0, 0), A(2, 0,0), C(0, 2, 0), C1(0,2,2),E(2,2,1),F(0,0,1),B1(2, 2,2), → 所以FC1 = (0, 2, 1), → → DA= (2,0,0),AE= (0, 2, 1).
栏目 导引
第三章
空间向量与立体几何
(1)设 n1= (x1, y1, z1)是平面 ADE 的法向量, → → 则 n1⊥DA, n1⊥AE, → n1· DA= 2x1= 0 即 ,得 → n1·AE= 2y1+ z1=0
(-3,-9,0).
栏目 导引
第三章
空间向量与立体几何
解:(1)a· b= 1× 8+ (- 3)×2+ (- 1)× 2=0, ∴直线 l1, l2 垂直. 1 (2)∵ u=- v,∴ u∥ v,即平面 α, β 平行. 3
栏目 导引
第三章
空间向量与立体几何
典题例证技法归纳
题型探究 求平面的法向量
栏目 导引
第三章
空间向量与立体几何
z3=-2 令 x3= 2,∴ ,∴ n3= (2,- 1,- 2).(10 y3=- 1

空间向量与平行、垂直关系

空间向量与平行、垂直关系


5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 320.12. 1308:5 9:3608: 59:36D ecembe r 13, 2020

6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月13 日星期 日上午 8时59 分36秒0 8:59:36 20.12.1 3
• 13、无论才能知识多么卓著,如果缺乏热情,则无异 纸上画饼充饥,无补于事。Sunday, December 13, 20201
3-Dec-2020.12.13
• 14、我只是自己不放过自己而已,现在我不会再逼自 己眷恋了。20.12.1308:59:3613 December 202008:59
应用举例:
例1.在正方体ABCD-A1B1C1D1中, M, N分别是
C1C, B1C1 的中点, 求证:MN∥平面zA1BD.
解题思路:如图建立空间直
D1
C1
角坐标系,求出平面A1BD的 A1
B1
法向量 n (1,1,1) ,只需
证明 MN n ,即证 MN n 0
y
M(0, 2, 1 ), N(1, 2, 2 )
MN (1, 0, 1)
x
MN n 1 0 1 0
例2.正方体ABCD-A1B1C1D1中,E、F分别 是BB1、CD的中点,求证:平面AED⊥平面
A1FD1.
z
略解:如图建立空间直角坐标系
设棱长为2 则 E(2, 2, 1), A( 2, 0, 0 )
DE (2, 2, 1), AE (0, 2, 1)
• 10、你要做多大的事情,就该承受多大的压力。12/13/
2020 8:59:36 AM08:59:362020/12/13

空间向量与平行关系 课件

空间向量与平行关系  课件
空间向量与平行关系
[知识提炼·梳理] 1.直线的方向向量 直线的方向向量是指和这条直线平行或共线的向 量.
温馨提示 一条直线的方向向量不唯一.直线的方向向量有无数 条,它们都是平行向量.
2.平面的法向量 直线 l⊥α,取直线 l 的方向向量 a,则 a 叫做平面 α 的法向量. 温馨提示 平面的法向量不唯一,平面的法向量有无数条,它们 都是平行向量.
解:(1)①因为 a=(4,6,-2),b=(-2,-3,1), 所以 a=-2b,所以 a∥b,所以 l1∥l2. ②因为 a=(5,0,2),b=(0,1,0), 所以 a·b=0,所以 a⊥b,所以 l1⊥l2.
(2)①因为 u=(-1,1,-2),v=3,2,-12, 所以 u·v=-3+2+1=0,所以 u⊥v,所以 α⊥β. ②因为 u=(3,0,0),v=(-2,0,0), 所以 u=-32 v,所以 u∥v,所以 α∥β.
①u=(-1,1,-2),v=3,2,-12; ②u=(3,0,0),v=(-2,0,0);
(Байду номын сангаас)设 u 是平面 α 的法向量,a 是直线 l 的方向向量, 根据下列条件判断平面 a 与 l 的位置关系:
①u=(2,2,-1),a=(-6,8,4); ②u=(2,-3,0),a=(8,-12,0).
归纳升华 平面法向量的求法
(1)当已知平面的垂线时,在垂线上取一非零向量即 可作为平面的法向量.
(2)当已知平面 α 内两不共线向量 a=(a1,a2,a3),b =(b1,b2,b3)时,常用特定系数法求法向量:
设法向量 n=(x,y,z),
a·n=0, a1x+a2y+a3z=0,


b·n=0 b1x+b2y+b3z=0,

空间向量与平行关系

空间向量与平行关系

[题后感悟] 利用直线的方向向量与平面的法向量判断直线与直 线、直线与平面、平面与平面的位置关系是直线的方向向量与 平面的法向量的基本应用,解决此类问题时需注意以下几点: (1)能熟练的判断两向量的共线与垂直; (2)搞清直线的方向向量,平面的法向量和直线、平面位置关系 之间的内在联系; (3)将向量问题转化为几何问题时的等价性.
(3)设u是平面α的法向量,a是直线l的方向向量,判断直线l与α 的位置关系. ①u=(1,1,-1),a=(-3,4,1). ②u=(0,2,-3),a=(0,-6,9).
已知平面α经过三点A(1,2,3),B(2,0,-1),C(3,- 2,0),试求平面α的一个法向量.
2.正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点, 分别求平面AED与平面A1FD的法向量.
.
线面 平 行
设直线l的方向向量为a=(a1,b1,vac·1u),=平0 面α的
法向量为u=(a2,b2,c2),则l∥α⇔
.
面面 平 行
设α,β的法向量分别为vuu=∥v(a⇔1,u-b1λ,v c1),v=(a2
,b2,c2),则α∥β⇔α的法向量为b,若a·b=0,则(
答案: -14 6
4.已知在长方体ABCD-A1B1C1D1中,E、M、N分别是BC、 AE、CD1的中点,AD=AA1=a,AB=2a. 求证:MN∥平面ADD1A1. 证明:以D为坐标原点,建立如图所示的空间直角坐标系,
(1)设a,b分别是不重合的直线l1,l2的方向向量,根据下 列条件判断l1,l2的位置关系: ①a=(4,6,-2),b=(-2,-3,1) ②a=(5,0,2),b=(0,1,0) ③a=(-2,-1,-1),b=(4,-2,-8)

空间向量与平行关系 课件

空间向量与平行关系 课件

【解析】1.选A.(-2,0,2)=-2(1,0,-1),故v1∥v2,又l1和
l2不重合,所以直线l1和l2的位置关系是平行.
2.存在.如图所示,建立空间直角坐标系,设正方体ABCD-
A1B1C1D1的棱长为1,则E(1,1 ,0),F(1,0,1 ),C 0,1,0 ,
2
3
假设在DD1上存在一点G,使CG∥EF则,CG EF,由于点G在z
2.∵l∥α,∴l的方向向量与平面α的法向量垂直,
则2, m,1 (1, 1 , 2) 0,
2 2 1 m 2 0标系,则有D(0,0,0),A(2,
0,0),B1(2,2,2),C1(0,2,2),E(2,2,1),F(0,0,
1),所以 FC1 0,2,1,AD 2,0,0,AE 0,2,1,C1B1 2,0,0,
A(0,0,0),A1(0,0,4),B(1,0,0),
B1(1,0,4),C1(0,2,4).
(1) AB1 1,0,4,AC1 0,2,4,
设平面AB1C1的法向量为n=(x,y,z),则 n AB1且n AC1,

x 4z 0, 2y 4z 0,
令z=1,则x=-4,y=-2,
类型 三 利用空间向量处理线面平行与面面平行问题
【典型例题】
1.已知平面α的一个法向量是(2,3,-1),平面β的一个法
向量是(4,λ,-2),若α∥β,则λ的值是( )
A. 10
B.-6
C.6
D.10
3
3
2.已知l∥α,且l的一个方向向量为(2,m,1),平面α的一个法
向量为 (1, 1 , 2),则m=_________.
2.利用空间向量证明两个平面平行的思路方法 (1)直接证明法:建立空间直角坐标系,分别求出两个平面的法向 量,证明两个法向量平行. (2)间接证明法:根据两个平面平行的判定定理,把证明两个平面 平行转化为证明线面平行或线线平行,再利用空间向量证明.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《空间向量与平行关系》
教学目标:
知识与技能:掌握线线平行,线面平行,面面平行的传统,基底,坐标方法.
过程与方法:在简单例题中利用这三种方法,循序渐进,慢慢熟练掌握.
情感与价值:通过对线,面平行,两种方法的比较.发现其中的数学规律,
学会总结,慢慢理解加深对数学的认识.
教育目标:数学课到底教什么?
一教知识:传授人类在历史发展的过程中对各类事物观察、归纳、推演和论证过的共有的和特有的稳定属性,即事物在变化过程中保持的不变性。

如三角形(类),其内角和
为180度(共有属性),而多边形的外角和为360度(更高层面的总结).
二教方法和思想:引导学生重演知识的发生发展的过程,感受人类先哲们探索的艰辛,体会数学先驱们天才的思想,从而学会观察事物,提出问题并加以解决,让数学知识
这“冰冷的美丽唤出火热的思考”。

三引导学生融会贯通:简化记忆,构建起自己的数学结构,即总结出自己解决问题的“中途点”,以期能站在前人的肩膀上思考和分析问题.
教学难点:线,面平行传统方法的回顾
处理办法:在学案进行复习巩固
教学重点:用向量解决线,面平行问题
处理办法:通过例题循序渐进
教学设计
一.(复习回顾)
2.方向向量:在空间中直线的方向上用一个与该直线平行的非零向量来表示,该向量称为这条直线
的一个方向向量.法向量:垂直于平面的向量(非零向量)
向量垂直:0=⋅⇔⊥→→→→b a b a (两非零向量)“思考为什么要强调两非零向量”?
二.新知引入:向量法
1.设直线m l ,的方向向量分别为→→b a ,,平面βα,的法向量分别为→→v u ,,则:
R
b a b a m l ∈=⇔⇔→→→→λλ,∥∥0
=⋅⇔⊥⇔→→→→u a u a l α∥R
v u v u ∈=⇔⇔→→→→λλβα,∥∥1.线线平行
①设直线n m ,的方向向量分别为→→b a ,,根据下列条件判断直线n m ,的位置关系:()2,1,2--=→a ()6,3,6--=→b ,()2,1,2--=→a ()
2,1,2--=→b ,②已知→1e ,→2e 是空间任意两个非零向量,根据下列条件判断直线n m ,的位置关系:→→→-=2132e e a →→→
+-=2132e e b →
→→-=2132e e a →


-=2
164e e b 2.线面平行
①设直线l 的方向向量为→a ,平面α的法向量为→u ,且直线l 不在平面α内.若0=⋅→→u a ,则(
)A.l α∥B.l ⊂α
C.l ⊥αD.l ⊂α或l α
∥②设直线l 的方向向量为→a ,平面α的法向量为→u ,若0=⋅→→u a ,则()
A.l α∥B.l ⊂α
C.l ⊥αD.l ⊂α或l α∥
③设直线m 的方向向量为→a ,平面σ的法向量为,→u 直线m 不在平面α内.
根据下列条件判断直线m 与平面σ的位置关系:()5,2,2-=→a ()4,46-=→,u ()5,2,2-=→a ()
2,23-=→,u 3.面面平行
①设平面βα,的法向量分别为→→v u ,,根据下列条件判断直线βα,的位置关系()2,2,1-=→u ()4,4,2--=→v ()6,6,3-=→u ()
4,4,2--=→v ②设平面σ的法向量为(1,2,-2),平面β的法向量为(-1,-2,k ),若βα∥,则k =(
)
A.2B.-4
C.4D.-2
在处理空间立体几何类题目的时候,可以考虑用这3种方法⎪⎩
⎪⎨⎧⎩⎨⎧)坐标(空间直角坐标系基底向量法传统方法.2.1下面就从这个题目简单的体会一下三种方法处理问题的过程吧.
例.已知正方体1111D C B A ABCD -棱长为2,F E ,分别是1BB 和1DD 的中点:求证:(1)AE FC ∥1(尝试上面总结的3种方法)
(2)∥1FC 平面ADE
(3)平面ADE ∥平面F
B C 11方法一:(传统方法)
证明:
(1)过E 点作1CC 的垂线,与1CC 交于点O ,连接DO
1111D C B A ABCD -是正方体
则有=∥EO BC =
∥AD ,即四边形AEOD 为平行四边形.∴DO
AE ∥ E 分别是1BB 的中点,即O 为中点1
CC 又因为F 为1DD 的中点,即FD =
∥1OC ,即四边形1FDOC 为为平行四边形.∴DO FC ∥1,即AE
FC ∥1(2)由(1)可知,AE
FC ∥1则⇒⎪⎭⎪⎬⎫⊄⊂ADE FC ADE AE AE
FC 平面平面∥11∥1FC 平面ADE
(3)AD C B AD BC BC C B ∥∥∥1111⇒⎭⎬⎫,AED C B AED C B AED AD AD C B 平面∥平面平面∥111111⇒⎪⎭
⎪⎬⎫⊄⊂由(2)可知∥1FC 平面ADE ,则
AED
B F
C AE
D C F AED C B C C B FC B FC C B B FC FC 平面∥平面平面∥平面∥平面平面1111111111111111⇒⎪⎪⎪⎭
⎪⎪⎪⎬⎫
=⊂⊂
1.已知正方体1111D C B A ABCD -棱长为2,F E ,分别是1BB 和1DD 的中点:求证:(1)AE FC ∥1(尝试上面总结的3种方法)
(2)∥1FC 平面ADE
(3)平面ADE ∥平面F
B C 11(1)解:法2(用“基底”)
法3(用“坐标”)
由于(2),(3)用基底不便于处理问题,
所以(2)(3)在此处采用“坐标法”(2)解:因为1111D C B A ABCD -是正方体,可以−→−DA ,−→−DC ,−→−1DD 分别为x 轴,y 轴,z 轴
建立如图所示的空间直角坐标系Dxyz .
(3)。

相关文档
最新文档