单因素方差分析列表计算

合集下载

单因素试验方差分析(试验数据处理)

单因素试验方差分析(试验数据处理)

SST ( X ij X ) 2
j 1 i 1
r nj
r
nj
SSA ( X j X ) 2
j 1 i 1
n j ( X j X )2
j 1
s
SSA反映了在每个水平下的样本均值与样本总均 值的差异,它是由因子A 取不同水平引起的,所以, 称SA是因子A的效应(组间)平方和.
单因素试验——在一项试验中只有一个因素改变.
多因素试验——在一项试验中有多个因素在改变.
例1 下表列出了随机选取的、用于计算器的四种 类型的电路的响应时间(以毫秒计). 表1 电路的响应时间 类型Ⅰ 类型Ⅱ 类型Ⅲ 类型Ⅳ 19 20 16 18 22 21 15 22 20 33 18 19 18 27 26 试验指标:电路的响应时间 因素:电路类型 水平: 四种电路类型为因素的四个不同的水平 单因素试验 试验目的:考察电路类型这一因素对响应时间有无 显著的影响.(从哪些值来看是否有影响呢?)
F值 31.10
显著性
934.73
2
6
467.36
**
组内 总和
90.17
1024.89
15.03
8
不同的饲料对猪的体重有非常显著的影响。
三、单因素试验方差分析的简化计算
由于方差分析的计算量比较大,所以引入一种离 差平方和的简单算法:

Ti —Ai 水平时,ni个试验值之和 Qi —Ai 水平时,ni个试验值的平方和 T—n个试验值之和 Q—n个试验值的平方和
r
列平均X i Ti ni
(组内平均值)
X1
X2
...
r i 1
Xr
n n i 其中诸 ni 可以不一样,

单因素方差分析(1)

单因素方差分析(1)

H
0:
2 1
2 2
2 r
vs
H1:诸
2 i
不全相等
感谢下 载
第六章 方差分析
第一节 单因素方差分析 第二节 双因素方差分析
第一节 方差分析
一、问题的提出
方差分析(analysis of variance)就是采用数理 统计方法对数据进行分析,以鉴别各种因素及因素间 的交互作用对研究对象某些试验指标的影响大小的一 种有效方法. 注:方差分析简记为ANOVA.
水平 A1
A2

Ar 合计
重复数
m1 m2
mr n
试验数据 y11, y12 ,…., y1m1
y21, y22 ,…., y2m2
…….
yr1, yr2 ,…., yrmr
T

平均
T1
y1
T2
y2
……
Tr
yr
T
y
2. 基本假定、平方和分解、方差分析及判断准则相

计算公式稍有不同。特别注意 SA 的计算公式!
( yij
y)2,
fT
n 1
它反映了观测数据 总的变异程度
i1 j1
组间(因子A的)偏 差平方和:
r
SA m ( yi y)2, fA r 1 i1
r
m (i i )2
反映因子A的不同水平效 应间的差异
i1
rm
组和内: (误差)偏差平方Se
i 1
( yij yi
j 1
)2 ,
例2(第一节中例1续)检验不同饲料对鸡增重 的效应中,饲料因子显著.试进行多重比较.
补充:方差齐性检验
(齐性,即相等)

单因素方差分析的计算步骤

单因素方差分析的计算步骤

单因素方差分析的计算步骤Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、 单因素方差分析的计算步骤假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。

结果如下表:m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设()m j n i a N x j ij ,2,1;,2,1,,~2==σ。

可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。

因此检验因素A 的各水平之间是否有显着的差异,就相当于检验:μ====m a a a H 210:或者 具体的分析检验步骤是:(一)计算水平均值令j x 表示第j 种水平的样本均值,式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数(二)计算离差平方和在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。

首先,总离差平方和,用SST 代表,则,其中,n x x ij ∑∑=它反映了离差平方和的总体情况。

其次,组内离差平方和,用SSE 表示,其计算公式为:其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。

最后,组间平方和,用SSA 表示,SSA 的计算公式为:用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。

可以看出,它所表现的是组间差异。

其中既包括随机因素,也包括系统因素。

根据证明,SSA SSE SST ,,之间存在着一定的联系,这种联系表现在: 因为:在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,即 SSA SSE SST +=(三)计算平均平方用离差平方和除以各自自由度即可得到平均平方。

生物统计第三节单因素试验资料的方差分析

生物统计第三节单因素试验资料的方差分析

C T / N 460.5 / 25 8482.41
2
2
上一张 下一张 主 页
退 出
SST x C
2
ij
(21.5 2 19.5 2 17.0 2 16.0 2 ) 8482 . 41
8567 . 75 8482 . 41
Байду номын сангаас85.34
MSE
P
⑥ 列出方差分析表
df
3、确定P值、下结论
•从上表得F=14.32,查附表5(方差分析界值表,
单侧),自由度相同时,F界值越大,P值越小。
因F0.01,2,27= 5.49;故P<0.01,按α=0.05水准
拒绝H0,接受HA,可认为三个不同时期切痂对
ATP含量的影响有统计显著性差异。
方差分析的结果只能总的来说多组间是否
S,即
x
得各最小显著极差,所得结果列于表6-15。
上一张 下一张 主 页
退 出
表6-15 SSR值及LSR值
dfe
上一张 下一张 主 页
退 出
将表6-14中的差数与表6-15中相应的最小显
著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数
极显著高于2号品种母猪,显著高于4号和1号品
③ 计算总的变异及总的自由度
SST x C
2
ij
dfT kn 1 N 1
④ 计算组间变异及相应的自由度
SSB Ti 2 / ni C
df b k 1
⑤ 计算组内变异及相应的自由度
SSE SST SSB
df e dfT df b
N k

方差分析第2部分单因素试验资料的方差分

方差分析第2部分单因素试验资料的方差分

(一)两因素单独观测值试验资料的方差分析 对于A、B两个试验因素的全部ab个水 平组合,每个水平组合只有一个观测值, 全
试验共有ab个观测值,其数据模式如表620所示。
上一张 下一张 主 页 退 出
表6-20 两因素单独观测值试验数据模式
表6-20中
x i.
x
j 1
bБайду номын сангаас
ij
, x. j x..
Cx /N
2 ..
SST x C
2 ij
dfT N 1
df t k 1 df e dfT df t
上一张 下一张 主 页 退 出
SSt xi2 . / ni C
SSe SST SSt
【例6.4】 5个不同品种猪的育肥试验,后期30天增 重(kg)如下表所示。试比较品种间增重有无差异。
这是一个单因素试验,k=5,n=5。
上一张 下一张 主 页 退 出
1、计算各项平方和与自由度
C
2 SST xij C (82 132 142 132 ) 2809.00
2 x..
/ kn 265 /(5 5) 2809 .00
2
2945.00 2809.00 136.00 1 1 2 2 SSt xi. C (51 412 60 2 482 652 ) 2809.00 n 5 2882.20 2809.00 73.20
系统分组方差分析两种,现分别介绍如下。
上一张 下一张 主 页 退 出
一、交叉分组资料的方差分析
设试验考察A、B两个因素,A因素分a个水
平,B因素分b个水平 。 所谓交叉分组是指A因

检验多组独立样本均值的差异—单因素方差分析

检验多组独立样本均值的差异—单因素方差分析

二、操作方法
(2)此时弹出【单因素方差分析】 对话框,从左侧列表框中选定所要分析 的变量,单击中间上方的 按钮,将 其移到【因变量列表】列表框中;再从 左侧列表框中选定所要分析的类别变量, 并单击中间下方的 按钮,将其移到 【因子】列表框中,如图6-3所示。
7
图6-3 【单因素方差分析】对话框
——
组和一个对照组的比较,选择此项可激活下方的【控制类别】下拉列表框,可设定第 一个或最后一个作为对照组,系统默认的是最后一个作为对照组。此外,下方激活的 【检验】栏中有【双侧】、【<控制】和【>控制】3个选项。其中,【双侧】表示双 侧t检验;【<控制】表示比较组的各组均值均小于对照组均值的单侧t检验;【>控制】 表示比较组的各组均值均大于对照组均值的单侧t检验。
11
——
任 务
检 验 单多 因组 素独 方立 差样 分本 析均 值 的 差 异
12
二、操作方法
➢ 【R-E-G-W F】复选框:用基于F检验的逐步缩小的多重比较显示一致性子集表。 ➢ 【R-E-G-W Q】复选框:用基于学生化极差分布(Student-Range)的逐步缩小的多
元统计过程进行子集一致性检验。 ➢ 【S-N-K】复选框:用学生化极差分布进行子集一致性检验。 ➢ 【Tukey】复选框:用学生化极差分布进行所有组间均值的配对比较,用所有配对比较
的累计误差率作为实验误差率,同时还进行子集一致性检验。该方法设定的临界值也 是恒定的,但也比Scheffe方法的临界值低。 ➢ 【Tukey s-b】复选框:用Tukey的交替过程检验进行组间均值的配对比较,其精确性 为S-N-K和Tukey两种检验相应值的平均值。 ➢ 【Duncan】复选框:指定一系列的极差值,逐步进行计算比较得出结论,显示一致性 子集检验结果。

单因素方差分析

单因素方差分析

2根据来自两个总体的独立样本对其总体均值 的检验 • ( 数据: drug.txt) 为检测某种药物对攻击性情 绪的影响,对处理组的100名服药者和对照组的 150名非服药者进行心理测试,得到相应的某指 标。要检验处理组指标的总体均值 m1 是否等于 对照组指标的总体均值 m2 。相应的假设检验问 题为:
2 方差分析的基本思想
• 基本思想: – 把总体变异按不同原因分成若干个部分,各部分的均 方和表示个体间差异的误差均方进行比较,两个均方 的比值即F值,通过这个比值的大小来确定各因素作用 的是否显著。
2 方差分析的基本思想
k n • 1、总离差平方和SST(Sum SST ( xij x)2 of Squares for Total) j 1 i 1 • 2、误差项离差平方和(组内) n k SSE(Sum of Squares For SSE [ ( xij x j )2 ] Error) j 1 i 1 • 3、水平项离差平方和(组间) k SSA或SSb (Sum of Squares 2 2 SSA ( x j x) n j ( x j x) for factor A)或(bossom)
– 至少有一个总体的均值是不同的 – 四个样本分别来自均值不同的四个正态总体
f(X)
3 1 2 4
X
2 方差分析的基本思想
2.2 计算平均值 • 令 x j 表示第j种水平的样本均值,则 • nj xij / n j • xj =

i 1
• 式中:xij为第j种水平下的第I个观察值; • nj第j种水平的观察值个数。 • 计算总均值的一般表达式为: • 总均值:是所有观察值的总和除以观察值的总数。 k nj • xij • (注:各个样本容量相等) j 1 i 1

单因素方差分析

单因素方差分析

基 本 概 念
试验指标——试验结果。 试验结果。 试验指标 试验结果 因素——影响一个试验的指标变化的原因。 影响一个试验的指标变化的原因。 因素 影响一个试验的指标变化的原因 可控因素——在影响试验结果的众多因素中, 可控因素——在影响试验结果的众多因素中,可人为 在影响试验结果的众多因素中 控制的因素。 控制的因素。 水平——可控因素所处的各种不同的状态。每个水 可控因素所处的各种不同的状态。 水平 可控因素所处的各种不同的状态 平又称为试验的一个处理。 平又称为试验的一个处理。 单因素试验——如果在一项试验中只有一个因素改变, 如果在一项试验中只有一个因素改变, 单因素试验 如果在一项试验中只有一个因素改变 其它的可控因素不变, 其它的可控因素不变,则该类试验称为 单因素试验。 单因素试验。
r
因此, 因此, X i1 , X i 2 ,... X ir 相互独立,且与 X i同分布。 相互独立, 同分布。 我们的目的是通过试验数据来判断因素 A 的不 同水平对试验指标是否有影响。 同水平对试验指标是否有影响。
单因素试验资料表
重复 1 ... r
列和 Ti • = ∑ X ij
j =1
例:五个水稻品种单位产量的观测值 品种 重复 1 2 3
3
A1
A2
A3
A4
A5
41 39 40
xij
33 37 35
105
38 35 35
108
37 39 38
114
31 34 34
99

xi
120
∑∑x
i = 1 j =1
3
5
3
ij
= 546
15 = 36.4
j =1

单因素方差分析步骤(1)

单因素方差分析步骤(1)

单因素方差分析步骤:对于只有一种因素影响的资料,例如本例只检测血型这一种变量是否影响肺活量。

我们先确立假设和确立检验标准H0:假设不同血型的人的肺活量是有差异的H1:假设不同血型的人的肺活量是没有差异的。

第一步:选择检验方式第二步:确定比较方式第三布:在选项里选择描述方式第四步:得出结果:由本图可知,p》0.05,可知肺活量的总体方差无差异,方差齐则可做方差分析再有下图可知:p= 0.789是大与0.05的,所以不是小概率事件,不拒绝H0,所以认为不同血型的人的肺活量是没有差异的。

随机区组设计资料的方差分析2.如果对四种饲料对猪体重增加量有无差异进行分析,则可将猪随机分组,本例中以a代表分组,b代表饲料,x代表体重增加量如图:对于这种资料分析,应选用单变量方差分析,主要是影响因素是多样的,主要描述的是体重增加量。

那么我们首先应1、确定假设:对于处理组:H0,假设三种处理方式体重增加量是相等的H1,假设三种处理方式体重增加量是不等的。

对于区组:H0,假设三组之间体重增加量是相等的H1,假设三组之间体重增加量是不等的。

2、确立检验标准a=0.053、计算统计量F F1=MS处理/MS误差F2=MS区组/MS误差4、确定p值,做出推断结论。

第一步:选择分析方式第二步:选择确立因变量,本题描述的是体重增加量,故选用x,确立区间,处理措施。

如图:第三步:确定模型,本题为确定区组a与处理措施b的交互作用,因此选用a,b交互模式。

如图:如需作图比较分组a 与处理措施b 的交互作用对体重影响有无差异可添加对比组,如图:确定观察均值的两两比较,主要针对与各分组的均值比较,及各处理方式的均值比较:在选项里设定输出,描述统计及方差齐性检验,显示分组及处理方式的均值。

最后得出结果:有本图可知F<3,p>0.05,可知各组间方差齐,可做方差检验。

如下图所示,可知p≥0.05,统计无差异,所以可知,三种处理方式对体重增加是无差异的。

SAS 单因素方差分析

SAS 单因素方差分析
第三Байду номын сангаас 单因素试验的方差分析,案例
• 例2. 设有三台机器,用来生产规格相同的铝合金薄板. 取样,测量薄板的厚度精确至 • 千分之一厘米. 得结果如表所示. • 问不同机器对生产的铝合金板的厚度有无影响 • 请看分别用菜单系统和程序进行讨论 • 程序名data lb给出了单因素方差分析的典型解法,进行 了方差分析同时又在各水平组间 • 进行了均值的比较,作了直方图,菜单系统和程序中均有 选项”Dunnett”进行某一水平和其余水平的均值差异 比较和检验,选项”snk”则进行所有水平间均值差异的 比较和检验.
自由度公式 总自由度ft=试验次数n-1; 误差自由度fe=总自由度ft-模型自由度f模型 方差分析中 (单因素模型)因素A (即模型)的自由度fA=水平数-1 (A,B双因素考虑交互效应模型) 因素A的自由度fA=水平数-1 因素B的自由度fB=水平数-1 交互效应A*B的自由度fA*B= fA* fB 模型自由度f模型= fA +fB +fA*B 回归分析中 项自由度=1 模型自由度f模型=项自由度之和

单因素方差分析与双因素方差分析 原理的相同点与不同点?

单因素方差分析与双因素方差分析 原理的相同点与不同点?

2
型号
A型
9.5
8.8
B型
4.3
7.8
C型
6.5
8.3
D型
6.1
7.3
E型
10.0 4.8
F型
9.3
8.7
3
11.4 3.2 8.6 4.2 5.4 7.2
4
7.8 6.5 8.2 4.1 9.6 10.1
Ti
Ti2
37.5 1406.25 21.8 475.24 31.6 998.56 21.7 470.89 29.8 888.04 35.3 1246.09
第八章 方差分析
6.2.1 数学模型和数据结构
在单因素试验中,为了考察因素A的k个水平A1, A2,…,Ak对Y的影响(如k种型号对维修时间的影响), 设想在固定的条件Ai下作试验.所有可能的试验结果 组成一个总体Yi,它是一个随机变量.可以把它分解
为两部分
(8-1)
第八章 方差分析
6.2.1 数学模型和数据结构
研究的指标:维修时间记作Y,
控制因素是生产线的型号,分为6 个水平即A,B,C,D,E,F,每个水平对
应一个总体Yi(i=1,2,…,6)。
第八章 方差分析
6.1 方差分析的基本问题
现在的试验就是进行调查,每种型号调查4台,相当
于每个总体中抽取一个容量为4的样本,得到的数据记
作yij(i=1,2,…,6;j=1,2,3,4),即为下表数据。
第八章 方差分析
6.3.1 双因素方差分析的类型
若把饮料的颜色看作影响销售量的因素A,饮料 的销售地区则是影响因素B。对因素A和因素B同时进 行分析,就属于双因素方差分析。
双因素方差分析的内容,是对影响因素进行检 验,究竟是一个因素在起作用,还是两个因素都起 作用,或是两个因素的影响都不显著。

One-Way_ANOVA单因素方差分析

One-Way_ANOVA单因素方差分析

i1 ,2 ,,a j1 ,2 ,,n
模型中的xij是在第i次处理下的第j次观测值。μ是总
平均数。αi是对应于第i次处理的一个参数,称为 第i次处理效应(treatment effect)。εij是随机误差, 是服从N(0,σ2)的独立随机变量。
方差分析原理
固定因素:
①因素的a个水平是人为特意选择的。 ②方差分析所得结论只适用于所选定的a个水平。
固定效应模型其中是处理平均数与总平均数的离差因这些离差的正负值相抵因此如果不存在处理效应各ijij平方和的分割总平方和处理平方和误差平方和自由度的分割总自由度处理自由度误差自由度msssdfmsssdf处理均方误差均方固定效应模型单因素固定效应模型的方差分析表处理效应对均方的贡献固定效应模型dfdf若零假设成立不存在处理效应则组内变异和组间变异都只反映随机误差的大小此时处理均方和误差大小相当f值则接近1各组均数间的差异没有统计学意义
Within 1G5r.o5u8p0s
20
.779
Total 147.320
24
Between Groups: 处理间 Within Groups: 处理内
Sig. .000
F4,20=42.279,P≈0.000<0.01。因此,上述 5个小麦品系的株高差异极显著。
多重比较
当 对方 之差 间分 存析 在拒显绝著差H0异,,为须探对究各具处体理是平在均哪数些之组 间进行逐对比较,即多重比较(multiple comparison)— post-ANOVA analysis (Post Hoc test)。
2
an
an
2
xij xi 2
xij xi xix
xi x
i1 j1

单因素方差分析

单因素方差分析

其他选项(Options)对话框
统计量 描述性统计量 固定、随机效应模型标准差标准误置信区间 方差齐性检验 B-F近似方差分析法,一种稳健检验方法 Welch近似方差分析法,一种稳健检验方法
均数图(横轴为分类变量,纵轴为分析变量均数的线图)
剔除分析变量中含缺失值的观察单位 剔除所选变量中含缺失值的观察单位
大鼠烫伤后肝脏ATP含量(mg)的测量结果
A组 7.67 7.53 8.39 8.51 10.18 7.03 11.69 5.74 6.72 7.07 B组 11.24 11.70 11.52 13.65 13.43 14.19 7.21 12.87 13.89 16.93 C组 10.74 8.68 7.32 9.41 9.62 8.78 8.32 9.85 11.31 8.73
2、结果解释
ANOVA ATP Sum of Squares 114.065 97.663 211.729 df 2 27 29 Mean Square 57.033 3.617 F 15.767 Sig. .000
Between Groups Within Groups Total
2.双因素方差分析(two-way ANOVA) 称为随机区组设计的方差分析。该设计可以分 析两个因素。一个为处理因素,也称为列因素;一 个为区组因素,也称为行因素。
分析步骤如下: 1、建立假设,确定检验水准 H0:μ1=μ2=μ3 ,即不同时期切痂对大鼠肝脏 ATP含量无影响;
0.05
2、在SPSS中选择方法和计算统计量
4、 Dunnett’s C:基于学生化极差的多重比较方 法,是一种可信区间的方法。
均数趋势检验
多项式选项
线性组合比较 依次输入系数

单因素方差分析方法

单因素方差分析方法

单因素方差分析方法首先在单因素试验结果的基础上,求出总方差V 、组内方差vw、组间方差vB。

总方差 v=()2ijx x -∑组内方差 v w =()2ij x x i-∑ 组间方差 v B=b ()2ix x -∑从公式可以看出,总方差衡量的是所有观测值xij对总均值x 的偏离程度,反映了抽样随机误差的大小,组内方差衡量的是所有观测值xij对组均值x 的偏离程度,而组间方差则衡量的是组均值x i对总均值x 的偏离程度,反映系统的误差。

在此基础上,还可以得到组间均方差和组内均方差: 组间均方差2Bs∧=1B-a v组内均方差2ws∧=aab vw-在方差相等的假定下,要检验n 个总体的均值是否相等,须首先给定原假设和备择假设。

原假设 H:均值相等即μ1=μ2=…=μn备择假设H 1:均值不完全不相等则可以应用F 统计量进行方差检验:F=)()(b ab a vv w--1B =22∧∧ss WB该统计量服从分子自由度a —1,分母自由度为ab-a 的F 分布。

给定显著性水平a ,如果根据样本计算出的F 统计量的值小于等于临界值)(a ab 1a F --,α,则说明原假设H不成立,总体均值不完全相等,差异并非仅由随机因素引起。

下面通过举例说明如何在Excel 中实现单因素方差分析。

例1:单因素方差分析某化肥生产商需要检验三种新产品的效果,在同一地区选取3块同样大小的农田进行试验,甲农田中使用甲化肥,在乙农田使用乙化肥,在丙地使用丙化肥,得到6次试验的结果如表2所示,试在0.05的显著性水平下分析甲乙丙化肥的肥效是否存在差异。

表2 三块农田的产量甲 50 46 49 52 48 48 乙 49 50 47 47 46 49 丙515049465050要检验三种化肥的肥效是否存在显著差异,等同于检验三者产量的均值是否相等:给定原假设H:三者产量均值相等;备择假设H 1:三者的产量均不相等,对于影响产量的因素仅化肥种类一项,因此可以采用单因素方差分析进行多总体样本均值检验. ⑴新建工作表“例1”,分别单击B3:D8单元格,输入表2的产量数值。

i第八章单因素方差分析

i第八章单因素方差分析

第二节 固定效应模型
一、线性统计模型
yij i ij
要检验a个处理效应的相等性,就要判断各αi是否为0。
H0:α1= α2 =……= αa =0
HA:αi ≠ 0
(至少有1个
i)
若接受H0,则不存在处理效应,每个观测值是由总
平均数加上随机误差构成;
若拒绝H0,则存在处理效应,每个观测值是由总平
34.7 33.3 26.2 31.6 125.8 31.450
33.2 26.0 28.6 32.3 120.1 30.025
27.1 23.3 27.8 26.7 104.9 26.225
32.9 31.4 25.7 28.0 118.0 29.500
2、单因素方差分析的数据格式:
Y1
Y2
Y3
均数、处理效应及误差三部分构成。
总变异
处理间 (组间)变异
误差或处理内 (组内)变异
1. 总变异是测量值yij与总的均数间的差异。
2. 处理间变异是由处理效应引起的变异。 3. 处理内变异是由随机误差引起的变异。
用离均差平方和的平均(均方、方差)反映变异的大小
二、平方和与自由度的分解
1. 总平方和(total sum of squares, SST): 每
著性t 检验的延伸。
ANOVA 由 英 国 统 计 学 家 R.A.Fisher 首 创 , 用 于 推 断多个总体均数有无差异。
单因素方差分析(一种方式分组的方差分析): 研究对象只包含一个因素(factor)的方差分析 。单因素实验:实验只涉及一个因素,该因素
有a个水平(处理),每个水平有n次实验重复
na 4 4
SST
a i1

单因素方差分析

单因素方差分析

2.
对前面的例子
H0: µ1 = µ2 = µ3 = µ4 • 颜色对销售量没有影响 H0: µ1 ,µ2 ,µ3, µ4不全相等 • 颜色对销售量有影响
方差分析的基本思想和原理
(两类方差) 两类方差)
1.
组内方差
因素的同一水平(同一个总体) 因素的同一水平(同一个总体)下样本数据的方差 比如,无色饮料A 比如,无色饮料A1在5家超市销售数量的方差 组内方差只包含随机误差
构造检验的统计量
(计算检验的统计量 F )
1. 将 MSA 和 MSE 进行对比,即得到所需要的检 MSA和 MSE进行对比 , 2.
验统计量F 验统计量F 当H0为真时,二者的比值服从分子自由度为 为真时, k-1、分母自由度为 n-k 的 F 分布,即 分布, MSA F= ~ F(k −1, n − k) MSE
k 2 k i=1 j =1 i=1 ni 2
前例的计算结果:SSA 前例的计算结果:SSA = 76.8455
构造检验的统计量
(三个平方和的关系) 三个平方和的关系 的关系)
总离差平方和(SST) 总离差平方和 (SST) 、 误差项离差平方和 (SSE)、水平项离差平方和 (SSA) 之间的关系 SSE) SSA)
对于因素的每一个水平, 对于因素的每一个水平,其观察值是来自服从正态分 布总体的简单随机样本 比如, 比如,每种颜色饮料的销售量必需服从正态分布
2.
各个总体的方差必须相同
对于各组观察数据, 对于各组观察数据,是从具有相同方差的总体中抽取 的 比如, 比如,四种颜色饮料的销售量的方差都相同
3.
观察值是独立的
误差的大小;SSA反映了随机误差和系统误差的大小 误差的大小;SSA反映了随机误差和系统误差的大小 2. 如果原假设成立,即H1= H2 =…= Hk为真,则表明 如果原假设成立, 为真, 没有系统误差,组间平方和SSA除以自由度后的均方 没有系统误差,组间平方和SSA除以自由度后的均方 与组内平方和SSE和除以自由度后的均方 与组内平方和SSE和除以自由度后的均方差异就不会 均方差异就不会 太大;如果组间均方 太大;如果 组间均方 显著地大于组内均方 , 说明各 组间均方显著地大于 组内均方 组内均方, 水平(总体)之间的差异不仅有随机误差, 水平(总体)之间的差异不仅有随机误差,还有系统误 差 3. 判断因素的水平是否对其观察值有影响 , 实际上就 判断因素的水平是否对其观察值有影响, 是比较组间方差 组内方差之间差异的大小 是比较组间方差与组内方差之间差异的大小 组间方差与 4. 为检验这种差异,需要构造一个用于检验的统计量 为检验这种差异,

单因素试验的方差分析

单因素试验的方差分析
2
j
μ 各个随机误差 ε ij 相互独立, 1 , μ 2 , , μ s 和 σ
未知.
单因素试验表 部分总体 样 本 A1 A2 … As
X11
X21
· · ·
X12 …
X22 … Xn22 … T.2 …
X 2
· · ·
X1s
X2s
· · ·

Xn11 样本和T.j 样本均值 X j T.1
是 σ 的无偏估计
.
结合定理(1)(2)(3),有
F S A /( s 1 ) S E /( n s ) ~ F ( s 1, n s )
ST ,SA ,SE 的计算方法
n
j
记 T j 化简得

i1
X
ij
, T

j1 i1
s
2
s
n
j
X
ij

T
j1
s
j
j1 i1
s
n
j
(X
ij
X
j )
2
说明:
SE 表示在每个水平下的样本值与该水平下的样本 均值的差异,它是由随机误差引起的,所以,称SE是 误差(组内)平方和.
平方和分解公式:
ST S A S E
证明:S
i1
s
n
j
(X
ij
X)
2

( X
j1 i1
2
都是未知参数。
在水平Aj下进行nj次独立试验,得样本
X 1 j, X
2 j
, ,X
nj j



X
ij
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S A 96438
方差来源 组 组 总 间 内 和
1 13142 516 18
自由度 2 15 17 平均平方和 258 28.67
得方差分析表如下:
平方和 516 43界 值
F0.05 3.68
因为 F 9 3.68 F0.05 ,所以三工厂的员工成绩有显著差异.
单因素方差分析列表计算 1. 列出数据计算表与方差分析表
试验 试验 结果 序号 因素水平 1 2 …
mi
Ti
Ti 2
1 2 Ti mi
1 2 T1 m1 1 2 T2 m2 1 2 Tr mr
Q

2
A1 A2 Ar
y11 y12 y1m1 y21 y22 y 2 m2


T1 T2 Tr
2 75 75 64
3 82 73 62
4 76 74 69
5 71 69 75
6 85 82 67
A1
A2 A3
试检验三工厂的员工成绩是否有显著差异? 解 列表计算如下:
数 据 工厂 观察 值 1 85 71 59 2 75 75 64 3 82 73 62 4 76 74 69 5 71 69 75 6 85 82 67
Ti
474 444 396 1314
Ti 2
224676 197136 156816
Ti 2 mi
37446 32856 26136 96438

2
A1
A2
A3
37616 32956 26296 96868

r 3
ST 96868 1 13142 946, 18
S E 946 516 430 , n 18
F

临界值
SA
SE ST
r 1
组 总
内 和
nr
n 1
SA r 1 S SE E nr SA
F
S A (r 1) =? S E (n r )
Fa
由上表提供的 F 与 Fa 的值,即得对 H 0 的检验.
例6.1.1
数 据 工 厂
员工考分数据如下:
观察 值
1 85 71 59
T12 T Tr2
2 2
y
j 1
m1
2 1j
y
j 1
m2
2 2j

yr1 yr 2 y rmr
y
j 1
mr
2 rj

r
n mi
i 1 r
T
S E ST S A
R
T2 n T2 SA Q n ST R
方差分析表
方差来源 组 间 平方和 自由度 均方和
相关文档
最新文档