蜗轮蜗杆传动设计
蜗轮蜗杆传动计算和设计流程
![蜗轮蜗杆传动计算和设计流程](https://img.taocdn.com/s3/m/2f7a0b63492fb4daa58da0116c175f0e7cd11930.png)
蜗轮蜗杆传动计算和设计流程
蜗轮蜗杆传动的计算和设计流程一般包括以下几个步骤:
1. 确定传动比:根据传动的要求,确定所需的传动比。
传动比可以通过计算Worm轮的齿数与Worm杆的螺旋线数之比来确定。
2. 确定蜗杆的参数:在确定传动比的基础上,确定蜗杆的螺旋线的角度、蜗杆的喉圆距离等参数。
这些参数可以通过蜗杆的传动比、齿数和齿距等来计算。
3. 确定蜗轮的参数:根据蜗杆的参数和传动比,确定蜗轮的齿数和齿形。
根据蜗杆和蜗轮的参数,可以使用蜗轮的设计公式来计算蜗轮的参数。
4. 验证传动性能:根据设计的参数,利用传动计算公式,
验证蜗轮蜗杆传动的传动效率、载荷分配、齿面接触应力
等性能指标,确保传动的可靠性和合理性。
5. 进行材料选择:根据传动性能和使用要求,选择合适的
材料来制造蜗轮和蜗杆,确保传动的强度和耐磨性等要求。
6. 进行结构设计:根据蜗轮和蜗杆的参数和材料,进行结
构设计,包括蜗杆的螺纹加工、蜗轮的齿形加工等。
7. 进行制造和装配:根据结构设计,进行蜗轮和蜗杆的制造,并进行装配。
在制造和装配的过程中,要注意工艺控
制和质量检验,确保传动件的质量和精度。
8. 完成传动系统的调试和测试:在装配完成后,进行传动
系统的调试和测试,检查传动的运行情况,验证设计的正
确性和合理性。
总之,蜗轮蜗杆传动的计算和设计流程就是根据传动要求确定传动比、确定蜗杆和蜗轮的参数,验证传动性能,选择材料,进行结构设计,制造和装配,最后进行调试和测试,以确保传动系统的性能和可靠性。
蜗轮蜗杆传动计算和设计流程
![蜗轮蜗杆传动计算和设计流程](https://img.taocdn.com/s3/m/5faa78317ed5360cba1aa8114431b90d6c85891d.png)
蜗轮蜗杆传动计算和设计流程1. 背景介绍蜗轮蜗杆传动是一种常见的传动方式,具有传动比大、传动效率高等优点,广泛应用于机械传动系统中。
本文将介绍蜗轮蜗杆传动的计算和设计流程,帮助读者了解和掌握该传动方式的设计和计算方法。
2. 设计目标在进行蜗轮蜗杆传动的计算和设计之前,需要明确设计目标。
主要包括: - 传动比:根据实际需求确定传动比,以满足工作要求。
- 载荷:确定传动系统的工作载荷,包括转矩和速度等。
- 工作环境:考虑传动系统所处的工作环境,如温度、湿度等。
3. 计算和设计流程蜗轮蜗杆传动的计算和设计流程主要包括以下步骤:3.1 确定传动比传动比是蜗轮蜗杆传动中一个重要的参数,决定了输出轴的转速与输入轴的转速之间的关系。
根据实际需求和要求,确定传动比的大小。
3.2 确定功率和转矩根据传动系统的工作需求和工作环境,确定传动系统所需的功率和转矩。
功率和转矩将作为设计的重要依据。
3.3 选择蜗杆材料根据传动系统所需的载荷和工作环境,选择合适的蜗杆材料。
材料的选择要考虑到强度、耐磨性和耐腐蚀性等因素。
3.4 计算蜗杆参数根据确定的传动比、功率和转矩,计算蜗杆的基本参数。
主要包括蜗杆的模数、蜗杆齿数、蜗杆的效率等。
3.5 计算蜗轮参数根据传动比、蜗杆参数和工作环境等要求,计算蜗轮的基本参数。
主要包括蜗轮的模数、蜗轮齿数、蜗轮的效率等。
3.6 进行强度校核根据蜗轮蜗杆传动的设计参数,进行强度校核。
主要包括蜗杆的弯曲强度、蜗轮的弯曲强度和齿面强度等。
3.7 进行传动效率计算根据蜗轮蜗杆传动的参数和工作条件,计算传动的效率。
可以根据计算结果对传动系统进行优化和调整。
4. 结论蜗轮蜗杆传动是一种重要的传动方式,在机械传动系统中得到了广泛的应用。
通过本文介绍的计算和设计流程,读者可以了解和掌握蜗轮蜗杆传动的设计方法及其在机械传动中的应用。
为了保证传动的性能和可靠性,设计者需要综合考虑传动比、转矩、功率等因素,并进行强度校核和传动效率计算,确保设计满足实际工作要求。
蜗轮蜗杆传动设计
![蜗轮蜗杆传动设计](https://img.taocdn.com/s3/m/e614b197370cba1aa8114431b90d6c85ec3a88f9.png)
蜗轮蜗杆传动设计
一、设计原理:
二、设计步骤:
1.确定传动参数:包括传动比、转速比、传递功率等。
传动比决定了蜗轮齿数和蜗杆的螺纹走向,转速比决定了蜗轮和蜗杆的转速。
传递功率则决定了蜗轮和蜗杆的材料和尺寸。
2.选择合适的蜗轮和蜗杆材料:蜗轮和蜗杆一般选择高强度和耐磨损的材料,如合金钢、铸铁等。
3.计算蜗轮和蜗杆的尺寸:根据传动参数和材料性能,计算蜗轮和蜗杆的齿数、模数、齿宽等。
4.计算传动效率:传动效率是指输入输出转矩之比,根据蜗轮和蜗杆的齿数、螺距、入射角等参数计算传动效率。
5.进行设计验证和优化:通过有限元分析、实验验证等方法对蜗轮蜗杆传动进行验证和优化。
三、设计注意事项:
1.蜗轮蜗杆传动的啮合精度要求高,齿轮和螺距的误差不能超过一定范围,否则会导致传动效率下降和噪音增加。
2.蜗轮和蜗杆的材料选择要根据传递功率和工作环境来确定,要保证材料的强度和耐磨损性能。
3.蜗杆的螺纹走向要和蜗轮的齿数匹配,以保证蜗轮能够完全啮合在蜗杆上。
4.设计时要考虑传动效率和传动噪音,通过选用合适的齿轮参数和优化传动结构来提高传动效率和降低噪音。
5.在设计过程中要进行强度校核,包括弯曲强度、齿面接触应力、表面损伤强度等,以保证传动的安全可靠性。
总结:蜗轮蜗杆传动是一种常用的传动方式,设计蜗轮蜗杆传动需要确定传动参数、选择材料、计算尺寸、计算效率、验证优化等步骤,同时要注意啮合精度、材料选择、螺纹走向、传动效率和强度校核等问题。
通过合理的设计和优化,可以实现高效、可靠的蜗轮蜗杆传动。
(有全套图纸)蜗轮蜗杆传动减速器设计
![(有全套图纸)蜗轮蜗杆传动减速器设计](https://img.taocdn.com/s3/m/c2106991c281e53a5802ffcb.png)
目录一、课程设计任务书 (2)二、传动方案 (3)三、选择电动机 (3)四、计算传动装置的总传动比及其分配各级传动比 (5)五、传动装置的运动和动力参数 (5)六、确定蜗杆的尺寸 (6)七、减速器轴的设计计算 (9)八、键联接的选择与验算 (17)九、密封和润滑 (18)十、铸铁减速器箱主要结构尺寸 (18)十一、减速器附件的设计 (20)十二、小结 (23)十三、参考文献 (23)一、课程设计任务书2007—2008学年第 1 学期机械工程学院(系、部)材料成型及控制工程专业 05-1 班级课程名称:机械设计设计题目:蜗轮蜗杆传动减速器的设计完成期限:自 2007年 12 月 31 日至 2008年 1 月 13 日共 2 周指导教师(签字):年月日系(教研室)主任(签字):年月日二、传动方案我选择蜗轮蜗杆传动作为转动装置,传动方案装置如下:三、选择电动机1、电动机的类型和结构形式按工作要求和工作条件,选用选用笼型异步电动机,封闭式结构,电压380v,Y型。
2、电动机容量工作机所需功率wpKWFvpww30.196.010005.25001000=⨯⨯==η根据带式运输机工作机的类型,可取工作机效率96.0=wη。
电动机输出功率dpηwdpp=传动装置的总效率433221ηηηηη⋅⋅⋅=式中,21ηη、…为从电动机至卷筒之间的各传动机构和轴承的效率。
由表10-2KWPw3.1=电动机外形尺寸:四、计算传动装置的总传动比及其分配各级传动比传动装置总传动比:由选定的电动机满载转速m n 和工作机主轴的转速n ,可得传动装置的传动比是:98.82.1591430===n n i m 所得i 符合单级蜗杆减速器传动比的常用范围。
五、传动装置的运动和动力参数1、各轴转速1n 为蜗杆的转速,因为和电动机用联轴器连在一起,其转速等于电动机的转速,则:min /14301r n n m ==2n 为蜗轮的转速,由于和工作机连在一起,其转速等于工作主轴转速,则:m in /2.1592r n n ==各轴输入功率按电动机额定功率cd P 计算各轴输入功率,设1P 为蜗杆轴的功率,2P 为蜗轮轴的功率,3P 为工作机主轴的功率。
蜗轮蜗杆设计步骤
![蜗轮蜗杆设计步骤](https://img.taocdn.com/s3/m/d416f97cc950ad02de80d4d8d15abe23482f03bf.png)
蜗轮蜗杆设计步骤蜗轮蜗杆设计步骤:步骤一:确定工作参数首先需要确定蜗轮蜗杆的工作参数,例如传递功率、转速、转矩、受力方向等。
这些参数将决定蜗轮蜗杆的基本设计参数。
步骤二:选择材料在确定工作参数之后,需要根据工作条件选择适合的材料。
蜗轮一般选用高强度的材料,例如硬质合金、铸钢、铸铁等。
对于蜗杆来说,一般选用高硬度、高强度的材料,例如45钢、40Cr、35CrMo等。
步骤三:计算传动比传动比 = 蜗轮齿数 ÷蜗杆螺旋线高度。
传动比决定了蜗轮和蜗杆的相对转速和转矩大小。
步骤四:选择蜗杆模数蜗杆的模数可以根据蜗轮和蜗杆的传动比和齿数来选择,一般在0.2~2之间。
步骤五:计算齿距和齿宽齿距和齿宽需要结合蜗轮和蜗杆的模数和齿数来计算,保证蜗轮蜗杆的齿轮啮合平稳。
步骤六:计算螺距角螺距角是蜗杆的重要参数。
螺距角过大会造成摩擦力过大,螺距角过小则会导致螺杆摩擦力不足。
一般螺距角为5°至30°。
步骤七:计算轴心距和啮合角轴心距和啮合角是设计蜗轮蜗杆过程中非常重要的参数,需要根据传动比、模数、齿数等因素来计算。
步骤八:校核设计参数设计蜗轮蜗杆的参数后,需要进行校核检验,确保设计参数的合理性和可靠性。
校核包括强度校核、接触应力校核等。
步骤九:设计蜗轮蜗杆装配尺寸蜗轮蜗杆装配尺寸需要考虑啮合状态下的轴向间隙、径向间隙和公差等因素。
在设计装配尺寸时需要考虑到装配的方便性和精度要求。
步骤十:绘制蜗轮蜗杆图纸蜗轮蜗杆图纸需要按照设计参数进行详细绘制,包括蜗轮和蜗杆的各项参数和装配尺寸等。
绘制时需要考虑到制造的方便性和加工精度要求。
以上是蜗轮蜗杆的设计步骤,设计时需要注意各个参数的合理性和可靠性,同时考虑到加工和制造的实际情况。
蜗轮蜗杆设计步骤
![蜗轮蜗杆设计步骤](https://img.taocdn.com/s3/m/200f297ece84b9d528ea81c758f5f61fb736281c.png)
蜗轮蜗杆设计步骤第一步:确定传动比蜗轮蜗杆传动是一种非常特殊的传动方式,它的传动比取决于蜗杆的头数、蜗轮的齿数、蜗杆的导程角以及蜗轮与蜗杆轴线的交角等因素。
设计蜗轮蜗杆传动时,要根据传动要求和传动动力参数来计算传动比。
第二步:选择材料在选择蜗轮和蜗杆的材料时,考虑到它们的载荷、传动功率和工作环境温度等因素。
通常,蜗轮和蜗杆都可以采用高强度的合金钢材料。
第三步:确定齿轮参数蜗轮的齿数和模数都是通过计算得到。
注意,蜗轮的轴向厚度越小,蜗杆的导程角越小,那么蜗轮和蜗杆的接触线就会越靠近齿面根部。
在选择齿轮参数时需要进行综合考虑,以保证蜗轮蜗杆传动的良好性能。
第四步:计算蜗杆的导程和展角根据蜗杆轴线与垂直轴线的夹角以及螺旋线的参数,可以计算出蜗杆的导程和展角。
展角的计算对于蜗轮蜗杆传动来说非常重要,因为它直接影响到传动效率和噪声。
一般来说,展角越大,传动效率越高,但噪声也会增加。
第五步:计算蜗轮蜗杆的几何参数根据蜗杆的导程、蜗轮的模数和齿数,可以计算出蜗轮和蜗杆的几何参数,包括齿顶直径、节圆直径、齿根直径、齿顶高度、齿根高度和重要齿廓参数。
这些参数决定了蜗轮蜗杆传动的传动效率、运行平稳性和噪声等关键性能指标。
第六步:进行蜗轮蜗杆的装配在进行蜗轮蜗杆的装配之前,需要对蜗轮齿形进行测量,以保证齿形质量。
然后,将蜗轮和蜗杆进行配合,精确控制配合间隙大小。
还要注意蜗轮和蜗杆的对中度和平行度等装配要求,以保证传动系统的稳定性和性能。
总结:1. 传动效率的优化:传动效率是蜗轮蜗杆传动系统的重要性能指标,也是设计过程中需要优化的关键因素之一。
通常情况下,使用高质量的蜗轮和蜗杆、采用适当的润滑方式、控制装配精度、优化齿轮参数以及合理设计蜗杆展角等方法,可以大大提高传动效率。
2. 噪声的控制:蜗轮蜗杆传动在工作时容易产生噪声,主要是由于蜗轮和蜗杆的接触面积较小,表面接触压力较大,同时还会在传动过程中产生震动和共振。
为了降低噪声,可以优化设计参数、采用低噪声等级的蜗轮和蜗杆材料、选用合适的蜗杆展角、进行制造精度控制以及采用降噪材料等方式。
蜗轮蜗杆设计步骤
![蜗轮蜗杆设计步骤](https://img.taocdn.com/s3/m/5f487507b80d6c85ec3a87c24028915f804d84c1.png)
蜗轮蜗杆设计步骤蜗轮蜗杆是一种常见的传动机构,它可以将高速旋转的电机转换成低速高扭矩的输出,广泛应用于各种机械设备中。
在设计蜗轮蜗杆时,需要遵循一定的步骤,以确保传动系统的可靠性和高效性。
本文将介绍蜗轮蜗杆设计的步骤和注意事项。
一、确定传动比和输出扭矩在设计蜗轮蜗杆传动系统时,首先需要确定传动比和输出扭矩。
传动比是指输入轴转速与输出轴转速的比值,通常用i表示。
输出扭矩是指输出轴所能提供的扭矩大小,通常用T表示。
传动比和输出扭矩的确定需要考虑到传动系统的工作条件和要求,如负载大小、转速范围、传动效率等。
二、选择蜗轮和蜗杆的材料和加工工艺蜗轮和蜗杆是蜗轮蜗杆传动系统的核心部件,其材料和加工工艺的选择对传动系统的性能和寿命有着重要的影响。
一般来说,蜗轮和蜗杆的材料应具有高强度、高硬度、高耐磨性和高耐腐蚀性等特点。
常用的材料有合金钢、不锈钢、铜合金等。
加工工艺方面,蜗轮和蜗杆的加工精度要求较高,通常采用数控加工或磨削加工等高精度加工工艺。
三、确定蜗轮和蜗杆的几何参数蜗轮和蜗杆的几何参数包括蜗轮的齿数、蜗杆的螺旋角、蜗杆的导程等。
这些参数的确定需要考虑到传动比、输出扭矩、传动效率等因素。
一般来说,蜗轮的齿数越多,传动效率越高,但制造难度也越大;蜗杆的螺旋角越小,传动效率越高,但输出扭矩也越小。
四、进行传动系统的设计计算在确定了传动比、输出扭矩、蜗轮和蜗杆的几何参数后,需要进行传动系统的设计计算,以确定各个部件的尺寸和工作参数。
设计计算包括蜗轮和蜗杆的模数、齿宽、轴径、轴承尺寸、传动效率等参数的计算。
设计计算的准确性和合理性对传动系统的性能和寿命有着重要的影响。
五、进行传动系统的结构设计在进行传动系统的结构设计时,需要考虑到传动系统的安装、维修和保养等方面的要求。
传动系统的结构设计应尽可能简单、紧凑、可靠,方便安装和维修。
同时,还需要考虑到传动系统的密封性、散热性等方面的问题,以确保传动系统的正常工作。
六、进行传动系统的试验和验证在完成传动系统的设计和制造后,需要进行试验和验证,以确保传动系统的性能和可靠性。
蜗轮蜗杆设计
![蜗轮蜗杆设计](https://img.taocdn.com/s3/m/f08390286137ee06eef9187f.png)
蜗轮蜗杆设计蜗杆传动从属齿轮传动,在现代工业中应用非常广泛。
蜗轮蜗杆包含两个部分:蜗杆和蜗轮,其齿形大多数由直线、平面或者平面上的曲线经过一次或两次展成运动形成。
由于蜗轮蜗杆结构性特点,它用于传递空间两相错轴间的运动和动力。
蜗杆传动机构多数情况下蜗杆为主动件,蜗轮为被动件。
蜗杆传动具有传动比大、体积小、运转平稳、噪音小等特点。
在机床制造业中,平常圆柱蜗杆传动的应用尤为普遍,并且几乎成了一般低速传动工作台和连续分度机构的唯一传动形式;冶金工业轧机压下机构都采用大型蜗杆传动;煤矿设备中的各种类型的绞车及采煤机组牵引传动;起重运输业中各种提升设备及无轨电车等都采用蜗杆传动。
其他,在精密仪器设备、军工、宇宙观测仪器中,蜗杆传动常用作分度机构、操纵机构、计算机构、测距机构等等,大型天文望远镜、雷达等也离不开蜗杆传动。
关键词:蜗轮蜗杆目录T O C\o"1-3"\h\z\u第一章蜗杆传动的类型和特点 (89)1.1蜗杆传动的类型 (89)1.2蜗杆传动的特点 (90)第二章蜗轮传动的基本参数和几何尺寸计算 (91)2.1蜗杆传动的基本参数 (91)2.2蜗杆传动的几何尺寸计算 (94)第三章蜗轮传动的失效形式、设计准则、材料和结构 (95)3.1蜗杆传动的失效形式和设计准则 (95)3.2蜗杆、蜗轮的材料和结构 (96)第四章蜗轮传动的强度计算 (98)4.1蜗杆传动的受力分析 (98)4.2蜗轮齿面接触疲劳强度计算 (98)4.3蜗轮轮齿的齿根弯曲疲劳强度计算 (100)第五章蜗轮传动的效率、润滑和热平衡计算 (101)5.1蜗杆传动的效率 (101)5.2蜗杆传动的润滑 (101)5.3蜗杆传动的热平衡计算........................错误!未定义书签。
结论.. (105)致谢 (106)参考文献 (107)第一章蜗杆传动的类型和特点蜗杆传动由蜗杆、蜗轮和机架组成,用来传递空间两交错轴的运动和动力。
蜗轮蜗杆设计
![蜗轮蜗杆设计](https://img.taocdn.com/s3/m/5fbe64b7336c1eb91b375dc7.png)
蜗轮蜗杆设计(2)设计原则:根据给定的中心距及传动比(或按照结构及设计的要求自定中心距和传动比)然后从蜗杆传动中心距标准值系列表中选取中心距的标准系列值,然后从经验公式先估算相关参数值,估算后在参考标准值系列表,确定标准值。
1计算传动比上式中:δp 为脉冲当量,β为步距角,L 为滚珠丝杠导程。
2初选几何参数参照蜗轮蜗杆参数推荐值表[1],i =4时,选z 1=6;则z 2= i z 1=24; 3蜗轮输出转矩T 21955021i P T n η=[2]123ηηηη=[3] tan =1tan +γηγρ()[3] =arctan ρμ[4]=μμ[5]式中:P 1, n 1分别为蜗杆轴输入功率,转速。
η1为螺旋副啮合效率;η2为轴承效率,滚动轴承时取0.990.9952η≈;η3为搅油及溅油效率,0.960.993η≈;μ为啮合摩擦系数;η0为标准圆盘滚子试件摩擦系数;R z 为设计蜗杆的齿面粗糙度;R z0为标准圆盘试件的表面粗糙度;代入数据得η=0。
76 根据所选电机得P 1=8kW,n 1=800r/min所以30.7649550290.322300T Nm ⨯⨯==4载荷系数123456K K K K K K K =[6]上式中:K 为载荷系数;K 1为动载荷系数,当蜗轮圆周速度23m /s v ≤时K 1取1。
0;K 2为啮合质量系数,查表得0.95;K 3为小时载荷率系数,查表得0。
78;K 4为环境温度系数,查表得1.09;K 5为工作情况系数,查表得1。
0;K 6为风扇系数,查表得0.92。
代入数据得:10.950.78 1.0910.920.74K =⨯⨯⨯⨯⨯=5计算m 和q7]代入数据:14.65≥==查表取16.443= m =6。
3 q =186主要几何尺寸18 6.3113.41d qm ==⨯= 6.324151.222m d z ==⨯=7蜗杆传动强度及刚度验算 确定许用接触应力σHp采用锡青铜蜗轮:Hp Hbp z z s n σσ=[8]分别查滑动速度曲线表,滑动速度影响系数表及寿命系数得2220/Hbp N mm σ= 0.96z s =0.78z n =所以22200.960.78165/Hp N mm σ=⨯⨯=3603600.00511.264p i L δβ⨯===⨯0.5(2)0.5 6.3(18240)132.322a m q x z =++=⨯⨯++=确定许用接触应力σHH σ=9]代入数据得:2134.57/H mm N σ=== 可见134.57165HHP σσ=<=,所以接触强度足够。
普通圆柱讲义蜗轮蜗杆传动设计计算
![普通圆柱讲义蜗轮蜗杆传动设计计算](https://img.taocdn.com/s3/m/3d82fda8168884868662d668.png)
力的方向判断例题
2 蜗杆传动的计算载荷
计算载荷=K*名义载荷
KKAKK
式中KA—工作情况系数 K—动载荷系数 K—齿向载荷分布系数
二、蜗轮齿面接触疲劳强度计算
校核公式为:
HZE
9 dK 1d2 2 2TZE
9K2T[ m 2d1Z2 2
]H
MPa
设计公式为:
m2d1 9KT 2(Z2Z[E]H)2 mm3
中间平面上的参数作为设计基准
一、普通圆柱蜗杆传动的主要参数及其选择
1 、蜗杆传动的正确啮合条件及模数m和压力角
m a1 m t2 m
a1 t2 2
旋向相同
2 、蜗杆分度圆直径d1和导程角
为了限制蜗轮滚刀的 数目并便于滚刀的标 准化,因此对每一标 准模数规定了一定数 量的蜗杆分度圆直径 d1(表9-1)
a'
1 2
d1 mz'2 2mx
a
1 2
d1
mz2
一般取 ∣x∣≤ 1
z '2 z2 2 x
x
z2
z
' 2
2
5 相对滑动速度S
s
2 1
2 2
1 co s
d 1n1
60 1000 cos
m/s
式中:
d1--蜗杆分度圆直径,mm n1--蜗杆的转速,r/min
--蜗杆分度圆上的导程角, 度
精品
普通圆柱蜗轮蜗杆传动设计计算
一、蜗杆传动的特点和应用
1、特点:
单级传动比大; 结构紧凑; 传动平稳,无噪音; 可自锁; 传动效率低; 成本高。
2、应用:
机床:数控工作台、分度 汽车:转向器 冶金:材料运输 矿山:开采设备 起重运输:提升设备、电梯、 自动扶梯
机械设计课程设计报告蜗轮蜗杆传动(修订版)
![机械设计课程设计报告蜗轮蜗杆传动(修订版)](https://img.taocdn.com/s3/m/320674ec240c844769eaeea6.png)
六、滚动轴承的选择及计算 (24)6.1.高速轴滚动轴承校核 (24)6.2.低速轴滚动轴承校核 (25)设计题目:链式运输机传动装置一、传动方案的确定1.4设计工作量减速器装配图一张;零件图4张;设计说明书一份。
二、电动机的选择及传动装置的运动及动力参数计算则_^D5Dd55电动机数据引自[5]第152页第155因此初步取综合比较传动比范围,则齿轮的传动比效率3.1蜗轮蜗杆传动的设计计算由前计算可知,轴的输出功率为P=1.12kW,蜗杆转速=1450 _8D8D传动比确定作用在齿轮上的转矩(2).确定载荷系数K因工作载荷较稳定,故取载荷分布不均系数;由参考文献[2]表11-5选取使用系数;由于转速不高,冲击不大,可选取动267~268页, 参考文献[3]第37~38页载荷系数确定弹性影响系数因选用的是铸锡磷青铜蜗轮和钢蜗杆配合,故选确定许用接触应力(5).计算的值因12Z =,由参考文献[2]表11-22取模数m=4,蜗杆分度圆直径1d 40mm =。
④.蜗杆与蜗轮的主要参数和几何尺寸(1).中心距124044410822d d a mm ++⨯===中心距不符合5的倍数圆整至 a 110w =,则变位系数为0.5w a a x m-==(2).蜗杆尺寸分度圆直径:140d qm ==,所以q 10=节圆直径:1(2)4(1020.5)44w d m q x mm =+=⨯+⨯=齿顶圆直径:112402448a d d m mm =+=+⨯=齿根圆直径:111122 1.2402 1.2430.4f f d d h d m mm =-=-⨯=-⨯⨯=蜗杆齿宽:12(13.50.1)(13.50.144)471.6b z m ≥+⨯=+⨯⨯=取80mm(3).蜗轮尺寸分度圆直径:22444176d mz mm ==⨯=节圆直径:22176w d d mm ==齿顶圆直径:222222(1)17624(10.5)188a a d d h d m x mm =+=++=+⨯⨯+=[2]246页表11-3(2).计算小齿轮传递扭矩:T 1=9.55×610×P/n 1=9.55×610×0.864/63.6=129736 N ·mm(3).由参考文献[2]表10-7选取齿宽系数d φ=0.5计算数N1=60jn1L h=60×1×63.6×22400=855×107;N2=60jn2L h=60×1×15.9×22400=855×107得齿轮计算公式和有关系数皆引自查参考文献[2]第公式引自参考文献[2]式10-5=212.14MPa=④参数计算(1)计算分度圆直径d1=_57=28.5mm根据参考文献[2]P115表16-2,取A=110,主要参数:②计算作用在轴上的力蜗轮受力分析径向力:轴向力:③计算支反力:水平面:因为和左右关于C点对称,受力相互对称,所以垂直面:由,得:由④作弯矩图水平面弯矩:垂直面矩:合成弯矩:⑤作转矩图⑥按弯扭合成应力校核轴的强度.号钢,调质处理,其拉伸强度极限(3)按弯扭合成应力校核轴的强度①轴的计算简图(见图)蜗轮受力分析圆周力:径向力:轴向力:③计算支反力:水平面:因为和左右关于C点对称,受力相互对称,所以垂直面:由,得:由④作弯矩图水平面弯矩:垂直面矩:合成弯矩:⑤作转矩图⑥按弯扭合成应力校核轴的强度.轴的材料是45号钢,调质处理,其拉伸强度极限[_###) ]_21D21D由附图零件图1可知.蜗轮轴各处轴径相近.但C截面处轴弯矩明显大于其它轴段.故截面C处为危险截面。
蜗杆蜗轮传动设计计算
![蜗杆蜗轮传动设计计算](https://img.taocdn.com/s3/m/5acd7dd55ff7ba0d4a7302768e9951e79b8969c9.png)
蜗杆蜗轮传动设计计算.txt蜗杆蜗轮传动设计计算一、简介蜗杆蜗轮传动是一种常见的传动方式,常用于机械设备中。
本文将介绍蜗杆蜗轮传动的设计计算方法。
二、设计计算1. 轴心距计算:蜗杆蜗轮传动中,轴心距的确定直接影响到传动性能。
一般可根据设备要求和材料选择来确定轴心距的大小。
2. 蜗杆蜗轮参数计算:- 蜗杆参数计算:蜗杆的参数包括蜗杆齿轮模数、齿数、蜗杆导程等。
根据蜗杆传动的工作要求,可通过相关公式计算得到蜗杆的参数。
- 蜗轮参数计算:蜗轮的参数包括蜗轮齿数、齿轮模数等。
蜗轮参数的确定需要考虑到蜗杆蜗轮传动的匹配性,一般可通过公式计算得到蜗轮的参数。
3. 力学计算:- 扭矩计算:根据传动功率和旋转速度,可以计算传动中所需的扭矩。
- 轴强度计算:蜗杆蜗轮传动的轴强度是设计中需要考虑的重要因素之一。
根据传动扭矩、材料强度等参数,可以进行轴强度的计算。
4. 效率计算:蜗杆蜗轮传动的效率影响着传动的能量损失。
通过相关公式和参数,可以计算蜗杆蜗轮传动的效率。
三、注意事项在进行蜗杆蜗轮传动设计计算时,需要注意以下几点:1. 使用合理的参数值和公式,确保计算结果准确可靠。
2. 考虑到材料的强度和耐磨性等因素,在选择蜗杆和蜗轮的材料时要谨慎。
3. 需要根据实际情况对设计参数进行适当调整,以满足工作要求和设备性能。
四、总结蜗杆蜗轮传动设计计算是机械设备设计中的重要内容,通过合理的设计计算能够确保传动的准确性和可靠性。
要注意选择合适的参数和材料,并根据实际情况对设计参数进行调整。
以上为蜗杆蜗轮传动设计计算的简要介绍,希望对您有所帮助。
普通圆柱蜗轮蜗杆传动设计计算
![普通圆柱蜗轮蜗杆传动设计计算](https://img.taocdn.com/s3/m/12ae9588a0c7aa00b52acfc789eb172dec639948.png)
蜗轮蜗杆传动的传动比等于蜗轮齿数与蜗杆头数之比。它是蜗轮蜗杆传动设计中的重要参数,决定了传动的方向 和减速比。
传动效率
蜗轮蜗杆传动的效率取决于多个因素,如模数、压力角、润滑条件等。在理想情况下,单头蜗杆传动的效率约为 90%,多头蜗杆传动的效率会相应降低。
03
蜗轮蜗杆传动的强度计 算
蜗杆的强度计算
02
蜗轮蜗杆传动的设计参 数
蜗杆的几何参数
模数
模数是蜗杆设计中的重要参数,它决定了蜗杆的尺寸和传动效率。模数越大, 蜗杆的直径就越大,传动效率越高,但同时也会增加蜗杆的弯曲和剪切应力。
压力角
压力角是蜗杆螺旋线与蜗轮齿面接触点处的法线方向与蜗轮轴线之间的夹角。 压力角的大小对蜗杆传动的平稳性和传动效率有影响。通常,较小的压力角可 以获得更好的传动平稳性,但也会降低传动效率。
蜗轮的几何参数
齿数
蜗轮的齿数是蜗轮的一个重要参数, 它决定了蜗轮的传动比和传动能力。 齿数越多,传动比就越大,但同时也 会增加蜗轮的尺寸和重量。
分度圆直径
分度圆直径是蜗轮的一个关键参数, 它决定了蜗轮的大小和强度。分度圆 直径越大,蜗轮的承载能力就越强, 但同时也会增加蜗轮的尺寸和重量。
传动的基本参数
定期更换润滑剂:根据工作条件和润滑剂的使用 情况,定期更换润滑剂以保证良好的润滑效果。
06
蜗轮蜗杆传动设计计算 的实例分析
设计实例一
总结词:基础设计
详细描述:该实例主要介绍了普通圆柱蜗轮蜗杆传动的基本设计计算过程,包括 蜗杆的几何参数、传动效率、承载能力等方面的计算。
设计实例二
总结词
高温环境适应性
防尘密封
通过密封圈、密封垫等密封件,防止灰尘、杂质等进入蜗轮蜗杆 的接触表面。
小模数蜗轮蜗杆设计标准
![小模数蜗轮蜗杆设计标准](https://img.taocdn.com/s3/m/9228faacf9c75fbfc77da26925c52cc58bd69026.png)
小模数蜗轮蜗杆设计标准蜗轮蜗杆传动是一种常用的传动方式,广泛应用于机械传动系统中。
它具有传动比大、传动效率高、结构紧凑等优点,因此得到了广泛的应用。
在设计蜗轮蜗杆传动时,需要遵循一定的设计标准,以确保传动系统的可靠性和稳定性。
小模数蜗轮蜗杆设计标准是指对小模数范围内蜗轮蜗杆传动的设计要求和规范。
本文将对小模数蜗轮蜗杆设计标准进行详细的介绍。
一、材料选用在小模数蜗轮蜗杆传动的设计中,材料的选用是非常重要的。
通常情况下,蜗轮采用高强度合金钢制造,而蜗杆采用优质的硬质合金制造。
这样可以确保蜗轮蜗杆传动具有较高的耐磨性和耐用性,能够满足长期工作的要求。
同时,还需要对材料的力学性能、耐磨性能和热处理性能等进行评估,以确保其符合设计要求。
二、结构设计小模数蜗轮蜗杆传动的结构设计需要考虑到传动效率、传动误差、承载能力等因素。
在蜗杆的设计中,需要考虑螺杆的牙形、润滑方式、强度等因素,以确保其能够承受传动力和转矩的要求。
在蜗轮的设计中,需要考虑蜗轮的齿形、硬度、强度等因素,以确保其具有较高的耐磨性和传动效率。
同时,还需要考虑蜗轮蜗杆传动的间隙、轴向游隙、径向游隙等因素,以确保传动系统的稳定性和运行平稳性。
三、工艺要求小模数蜗轮蜗杆传动的制造工艺对传动系统的性能和质量有着重要的影响。
制造蜗轮蜗杆的工艺需要符合相关的标准和规范,以确保其具有较高的精度和质量。
在蜗轮的制造过程中,需要进行热处理、齿轮加工、平衡加工等工艺,以确保蜗轮具有较高的硬度和精度。
在蜗杆的制造过程中,需要进行热处理、车削加工、磨削加工等工艺,以确保蜗杆具有较高的硬度和精度。
同时,还需要对蜗轮蜗杆传动的装配工艺和调试工艺进行规范,以确保传动系统具有较高的可靠性和稳定性。
四、质量控制小模数蜗轮蜗杆传动的质量控制是非常重要的。
在蜗轮蜗杆传动的设计和制造过程中,需要进行严格的质量控制,以确保其质量符合设计要求。
在蜗轮蜗杆传动的使用过程中,需要进行定期的检测和维护,以确保其性能和质量。
蜗杆蜗轮传动设计计算
![蜗杆蜗轮传动设计计算](https://img.taocdn.com/s3/m/0a27622b5e0e7cd184254b35eefdc8d376ee1423.png)
蜗杆蜗轮传动设计计算介绍蜗杆蜗轮传动是一种常用的传动方式,适用于需要减速大扭矩输出的机械设备。
本文档将介绍蜗杆蜗轮传动的设计计算方法。
设计计算步骤1. 确定传动比:传动比是蜗杆蜗轮传动的一个重要参数,用于确定输出转速与输入转速之间的比值。
根据实际应用需求和传动效率,选择合适的传动比。
2. 计算传动效率:传动效率是蜗杆蜗轮传动的重要性能指标,影响传动的能量损失情况。
根据蜗杆和蜗轮的材料、齿数、齿形等参数,采用标准公式计算传动效率。
3. 确定蜗轮和蜗杆的参数:根据传动比、输入转速、输出转矩等要求,选择适当的蜗轮和蜗杆的参数。
包括蜗轮的模数、齿数、导程系数等,以及蜗杆的摩擦系数、喉圆直径等关键参数。
4. 进行强度校核:根据所选材料、载荷情况等,进行蜗轮蜗杆传动系统的强度校核。
包括静态强度、疲劳强度等方面考虑,保证传动系统的安全稳定运行。
设计计算示例以一个减速器设计为例,输入转速为1000 rpm,输出扭矩为5000 Nm,要求传动比为10。
假设蜗杆材料为45号钢,蜗轮材料为ZCuSn10Pb1。
1. 计算传动效率:传动效率 = (传动比 x 蜗杆效率 x 蜗轮效率)/ 100%,根据实际参数计算传动效率为80%。
2. 确定蜗轮和蜗杆的参数:蜗轮模数 m = (输出扭矩 x 1000)/ (传动比 x 输入转速 x 齿数) = (5000 x 1000)/ (10 x 1000 x 100) = 5 mm;蜗杆摩擦系数μ = 0.1,喉圆直径 d = (输出扭矩 x 输入转速)/ ( x 传动比 x 齿数x μ) = (5000 x 1000)/ ( x 10 x 20 x 0.1) = 8 mm。
3. 进行强度校核:根据蜗杆和蜗轮的尺寸、材料强度等参数,进行静态强度和疲劳强度的校核。
确保蜗杆蜗轮传动系统的强度满足设计要求。
结论本文档介绍了蜗杆蜗轮传动的设计计算步骤,并以一个减速器设计为例进行了示例计算。
蜗轮蜗杆传动设计
![蜗轮蜗杆传动设计](https://img.taocdn.com/s3/m/96061d56fd4ffe4733687e21af45b307e871f9e6.png)
723
二、蜗轮蜗杆传动设计
—设计实例
1、蜗轮轮齿齿面接触强度计算 (1)选材料:确定许用接触压力[σH] 蜗杆用45钢,表面淬火45-50HRC; 蜗轮用ZCuSn10P1(10-1锡青铜)砂型铸造。由表查得 [σH]=200。 (2)选用蜗杆头数z1,确定蜗轮齿数z2 传动比i=n1/n2=960/70=13.71 因为传动比不大,为了提高传动效率,可选z1=2 则z2=i·z1=13.71×2=27.42,取z2=27。
mm
式中:Zρ为蜗杆传动的接触线长度和曲率半径对接触强度的影响系数 。
K为载荷系数。 其它的符号含义与齿轮传动部分相同。
713
三、蜗轮蜗杆传动设计
—普通蜗杆传动的承载能力计算
许用接触应力[σH],根据蜗轮材料的不同,可在下两表中选取。 1、蜗轮材料为灰铸铁及铸铝铁青铜时,其许用应力直接在下表选取 :
考虑啮合摩擦损耗是蜗杆的传动效率:
77
三、蜗轮蜗杆传动设计
—普通蜗杆传动的参数与尺寸
导程角γ增大时,传动效率将提高,导程角γ 与蜗杆 头数z1之间有如下关系:
显然,当蜗杆头数z1增多时,导程角γ增大,从而使传动效率提高。 但头数增多给制造带来困难,且效率提高不显著,故通常蜗杆头数取为1 、2、4、6 。
由于上述特点,蜗杆传动主要用于运动传递,而在动力传输中的应用 受到限制。
73
三、蜗轮蜗杆传动设计
—蜗杆传动类型
普通圆柱蜗杆传动
阿基米德蜗杆、渐开线蜗杆 法向直廓蜗杆、锥面包络圆柱蜗杆
其齿面一般是在车床上用直线刀刃的车刀切制而成,车刀安装
圆柱蜗杆传动 位置不同,加工出的蜗杆齿面的齿廓形状不同。
圆弧圆柱蜗杆传动
724
机械设计蜗轮蜗杆
![机械设计蜗轮蜗杆](https://img.taocdn.com/s3/m/cca9972b24c52cc58bd63186bceb19e8b9f6ec47.png)
机械设计蜗轮蜗杆蜗轮蜗杆是一种常见的传动装置,常用于机械中的减速装置。
它由蜗轮和蜗杆两部分组成,通过它们之间的啮合作用来实现传动。
蜗轮蜗杆传动具有传动比大、传动平稳、紧凑结构等优点,广泛应用于机械中。
首先介绍蜗杆的设计。
蜗杆是一种旋转的锥面,并且蜗杆的螺旋线与轴线呈一定的螺距,以便与蜗轮进行啮合。
蜗杆的设计中,需要确定螺距和蜗杆的压力角。
螺距决定了蜗杆传动时的速比,一般情况下,蜗杆的螺距越小,速比越大。
压力角则是蜗杆传动的另一个重要参数,它决定了蜗轮蜗杆传动的传动效率。
一般情况下,蜗杆的压力角应该选择在20°~30°之间。
其次是蜗轮的设计。
蜗轮是一个圆柱形的齿轮,蜗轮的齿数一般比蜗杆的螺旋线的圈数少一个。
蜗轮的设计需要确定齿数、齿轮模数和齿形等参数。
齿数决定了蜗轮的啮合角,一般情况下,蜗轮的啮合角应该在15°~25°之间。
齿轮模数则是决定蜗轮齿形的重要参数,一般情况下,模数应该选择在蜗轮齿高的0.3~0.5倍之间。
在蜗轮蜗杆传动的设计中,还需要考虑到蜗轮和蜗杆的材料选择以及传动装置的润滑和冷却等问题。
一般情况下,蜗轮和蜗杆的材料应该选择强度高、硬度大的材料,以保证传动装置的使用寿命。
传动装置的润滑和冷却则可以采用润滑油和冷却水等方式进行。
在实际的机械设计中,蜗轮蜗杆传动常常用于对转速要求较低、扭矩要求较大的场合。
例如,蜗轮蜗杆传动常用于一些矿山、冶金、化工等行业的设备中,用来实现减速装置的功能。
总的来说,蜗轮蜗杆传动是一种常用的传动装置,其优点包括传动比大、传动平稳、紧凑结构等。
在设计过程中需要考虑到蜗杆和蜗轮的参数选择、润滑和冷却等问题,以保证传动装置的性能和使用寿命。
蜗轮蜗杆传动计算和设计流程
![蜗轮蜗杆传动计算和设计流程](https://img.taocdn.com/s3/m/86dbbc58c4da50e2524de518964bcf84b9d52d85.png)
蜗轮蜗杆传动计算和设计流程1. 引言蜗轮蜗杆传动是一种常见的传动方式,其作用是将蜗杆的旋转运动转化为蜗轮的旋转运动。
在机械设计中,蜗轮蜗杆传动常用于需要减速和扭矩放大的场合,如工程机械和输送设备等。
本文将介绍蜗轮蜗杆传动的计算和设计流程,以帮助读者理解和应用该传动方式。
2. 蜗轮蜗杆传动基本原理蜗轮蜗杆传动是由蜗轮和蜗杆两个主要部分组成的。
蜗轮是一种圆柱面上的齿轮,其齿数通常为13到50个不等。
蜗杆则是一种螺旋形的轴,其表面有一条或多条螺旋齿。
蜗杆的螺旋齿与蜗轮的齿轮齿咬合,通过蜗杆的旋转运动将扭矩传递给蜗轮。
传动比是蜗轮蜗杆传动中一个重要的参数,它定义了蜗轮每转动一周所需的蜗杆转动圈数。
传动比越大,蜗轮的转速越慢,扭矩放大效果越好。
传动比的计算依赖于蜗轮和蜗杆的几何参数,如齿数、螺距等。
3. 蜗轮蜗杆传动的计算和设计流程下面将介绍蜗轮蜗杆传动的计算和设计流程,包括几何参数的选择、传动比的计算和校核等。
3.1 选择蜗轮和蜗杆的几何参数蜗轮和蜗杆的几何参数选择是蜗轮蜗杆传动设计的首要步骤。
蜗轮的齿数和蜗杆的螺旋齿数直接影响传动比的计算和传动效果。
通常情况下,蜗轮的齿数要求为13到50个,而蜗杆的螺旋齿数则较少,通常为1到4个。
3.2 计算传动比传动比的计算是蜗轮蜗杆传动设计的核心步骤。
传动比的计算公式为:传动比=蜗轮齿数/蜗杆螺旋齿数。
由于蜗杆的螺旋齿数较少,所以传动比通常较大,一般在10到100之间。
3.3 蜗轮和蜗杆的啮合校核为了保证蜗轮和蜗杆能够顺利啮合并传递扭矩,需要进行蜗轮和蜗杆的啮合校核。
啮合校核主要包括齿面接触和齿面强度的计算。
齿面接触校核考虑了蜗轮和蜗杆的啮合情况,确保齿面接触压力和接触面积处于合适的范围。
齿面强度校核则考虑了蜗轮和蜗杆的齿廓变形和强度问题,确保传动过程中不会发生过大的变形和破坏。
3.4 蜗轮蜗杆传动的轴的设计蜗轮蜗杆传动中的轴承和轴的设计也是非常重要的一步。
轴承要能够承受蜗轮蜗杆传递的扭矩和径向力,并保证传动的正常运转。
机械设计-蜗轮蜗杆
![机械设计-蜗轮蜗杆](https://img.taocdn.com/s3/m/046e893cf111f18583d05ae7.png)
许用弯曲应力 =KFN× ,
查表11-8 由ZCuSn10P1制造的蜗轮的基本许用弯曲应力 ,=56MPa。
寿命系数KFN= =0.6281
=KFN× ,=35.17 MPa
= ×YFa2×
所以弯曲疲劳强度满足,合格。
6、验算效率η
η=(0.95~0.96)×
3、按齿面接触疲劳强度进行设计
根据闭式蜗杆传动的设计准则,先按齿面接触疲劳强度进行设计,再校核齿根弯曲疲劳强度。传动中心距:
a
(1)确定作用在蜗轮上的转矩T2
按z1=2, 估取效率η=0.8,则
T2=9.5×106× =9.55×106× =9.55×106× =889589N.mm
(2)确定载荷系数
,=268MPa
a=200mm
m=8
d1=80mm
z1=2
q=10.00
=11°18′36″
z2=41
x2=-0.500
《机械设计》
作
业
设计题目:蜗轮蜗杆传动
学 院:____机械电气化工程学院______
专业班级:_机械设计制造及其自动化15-1_
****************_______________
蜗轮齿根圆直径df2=d2-2df2=328-2×1.2×8=308.8mm
蜗轮咽喉母圆半径rg2=a- da2=200- ×344=28mm
5、校核齿根弯曲疲劳强度
= ×YFa2×
当量齿数 zv2= = =43.48
根据x2=-0.5,zv2=43.48,
查图11-19得齿形系数YFa2=2.85
因工作载荷较稳定,故取载荷分布不均系数Kβ=1.0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7 蜗杆传动应用和类型传动的特点和应用组成:蜗杆、蜗轮(一般蜗杆为主动件,蜗轮为从动件)作用:传递空间交错的两轴之间的运动和动力。
通常Σ=90°应用:用在机床、汽车、仪器、起重运输机械、冶金机械以及其他机械制造工业中。
最大传递功率为750Kw,通常用在50Kw以下。
1)、传动比大。
单级时i=5~80,一般为i=15~50,分度传动时i可达到1000,结构紧凑。
2)、传动平稳、噪声小。
3)、自锁性,当蜗杆导程角小于齿轮间的当量摩擦角时,可实现自锁。
4)、蜗杆传动效率较低,其齿面间相对滑动速度大,齿面磨损严重。
5)、蜗轮的造价较高。
为降低摩擦,减小磨损,提高齿面抗胶合能力,蜗轮常用贵重的铜合金制造。
7.1.2 蜗杆传动的类型照蜗杆的形状不同分为:圆柱蜗杆传动(a)、环面蜗杆传动(b)、锥面蜗杆传动(c)。
(a)圆柱蜗杆传动(c)锥面蜗杆传动图7-1 蜗杆传动的类型、圆柱蜗杆传动右旋之分。
螺杆的常用齿数(头数)z1=1~4,头数越多,传动效率越高。
蜗杆加工由于安装位置不同,产生的螺旋面在相对剖面内的齿廓曲线形状不同。
)、阿基米德蜗杆(ZA蜗杆)米德蜗杆是齿面为阿基米德螺旋面的圆柱蜗杆。
通常是在车床上用刃角α0=20°的车刀车制而成,切削刃平面通过蜗杆曲线,端面齿廓为阿基米德螺旋线、缺点:蜗杆车制简单,精度和表面质量不高,传动精度和传动效率低。
头数不宜过多。
用:头数较少,载荷较小,低速或不太重要的场合。
图7-2 阿基米德蜗杆2)、法向直廓蜗杆(ZN蜗杆)杆加工时,常将车刀的切削刃置于齿槽中线(或法向剖面内,端面齿廓为延伸渐开线。
点:常用端铣刀或小直径盘铣刀切制,加工简便,利于加工多头蜗杆,可以用砂轮磨齿,加工精度和表面质量较高。
:用于机场的多头精密蜗杆传动。
)、渐开线蜗杆(ZI蜗杆)杆是齿面为渐开线螺旋面的圆柱蜗杆。
用车刀加工时,刀具切削刃平面与基圆相切,端面齿廓为渐开线。
缺点:可以用单面砂轮磨齿,制造精度、表面质量、传动精度及传动效率较高。
用:用于成批生产和大功率、高速、精密传动,故最常用。
、环面蜗杆传动特点:(1)、齿轮表面有较好的油膜形成条件,抗胶合的承载能力和效率都较高;(2)、同时接触的齿数较多,承载能力为圆柱蜗杆传动的1.5~4倍;(3)、制造和安装较复杂,对精度要求高;(4)、需要考虑冷却的方式。
、锥面蜗杆传动数多,重合度大,传动平稳,承载能力强;(2)、蜗轮用淬火钢制造,节约有色金属。
图7-6 锥面蜗图7-7 蜗轮动的主要参数和几何尺寸蜗杆轴线的平面,称为中间平面。
在中间平面内蜗杆与蜗轮的啮合就相当于渐开线齿条与齿轮的啮合。
在蜗杆传动的设计计算中,均以中间平面上的基本参参数1、模数m和压力角a杆与蜗轮啮合时,蜗杆的轴向模数mx1、压力角αx1应与蜗轮的端面模数、mx1= mt2 = m=αt2=α=20°的螺旋角,γ:螺杆的导程角。
表7-1 圆柱蜗杆的基本尺寸和参数2、螺杆导程角γ杆轴向齿距,px1=πm(mm);γ为导程角(°)。
导程角越大,传动效率越高,γ=3.5°~55°。
传动效率高时,常取γ=15°~30°,采用多头蜗杆。
3、蜗杆分度圆直径d1杆尺寸相同的蜗轮滚刀配对加工而成的,为了限制滚刀的数目,国家标准对每一标准模数规定了一定数目的标准蜗杆分度圆直径d1。
大,其传动效率高,但会使蜗杆的强度、刚度降低。
在蜗杆刚度允许的情况下,设计蜗杆传动时,要求传动效率高时,d1可以选小值,当要求强度和刚度4、蜗杆的头数z1、蜗轮齿数z2和传动比 i头数(如:单头蜗杆)可以实现较大的传动比,但传动效率较低,可以实现自锁;蜗杆头数越多,传动效率越高,但蜗杆头数过多时不易加工。
通常蜗杆要取决于传动比,即z2= i z1 。
z2不宜太小(如z2<28),否则将使传动平稳性变差。
z2也不宜太大,否则在模数一定时,蜗轮尺寸越大,刚度越小0,常取32~80。
z1、z2之间最好互质,利于磨损均匀。
(7.1)5,7.5,10*,12.5,15,20*,25,30,40*,50,60,70,80*。
带*的为基本传动比,优先选用。
5、中心距:(7.2)减少箱体类型,有利于标准化、系列化,国标中对一般圆柱蜗杆减速装置的中心距推荐为:40,50,63,80,100,125,160,(180),200,(225),500。
传动何尺寸表7-2 蜗杆传动何尺寸动的失效形式、材料和精度.3.1蜗杆传动的失效形式及设计准则1、失效形式疲劳点蚀、胶合、磨损及轮齿折断。
间相对滑动速度vs:(7.3)及散热不良时,闭式传动易出现胶合,但由于蜗轮的材料通常合时,蜗轮表面金属粘到蜗杆的螺旋面上,使、。
蜗轮轮齿的磨损严重,尤其在开式传动和润滑油不清洁的闭式传动中。
2、计算准则式蜗轮传动,通常按齿面接触疲劳强度来设计,并校核齿根弯曲疲劳强度。
传动时载荷变动较大,或蜗轮齿数z2大于90时,通常只须按齿根弯曲疲劳强度进行设计。
重、发热大、效率低,对闭式蜗杆传动还必须作热平衡计算,以免发生胶合失效。
蜗轮常用材料及热处理和蜗杆材料要有一定的强度,还要有良好的减摩性、耐摩性和抗胶合能力。
蜗杆传动常用青铜(低速时用铸铁)做蜗轮齿圈,与淬硬并磨制的钢制蜗杆相1、蜗杆材料及热处理一般不重要的蜗杆用45钢调质处理;高速、重载但载荷平稳时用碳钢、合金钢,表面淬火处理;高速、重载且载荷变化大时,可采用合金钢渗碳淬火处理。
表7-3蜗杆材料及热处理2、蜗轮材料及许用应力摩性、耐磨性好,抗胶合能力强,但价格高,用于相对滑动速度vs≤25m/s的高速重要蜗杆传动中;冲击而且价格便宜,但抗胶合能力和耐磨性不如锡青铜,一般用于vs ≤10m/s的蜗杆传动中;s的低速、轻载、不重要的蜗杆传动中。
表7-3 锡青铜蜗轮的许用应力表7-4 铝铁青铜及铸铁蜗轮的许用应力传动的精度等级B 10089-88对普通圆柱蜗杆传动规定了1~12个精度等级级依次降低,12级为最低,6~9级精度应用最多,6级精度传动一般用于中等精度的机床传动机构,蜗轮圆周速度v2>5m/s,7级精度用于中等精度的运输/s,8级精度一般用于一般的动力传动中,蜗轮圆周速度v2<3m/s,9级精度一般用于不重要的低速传动机构或手动机构,蜗轮圆周速度v2<1.5m/s。
动的强度计算.4.1蜗杆传动的受力分析力分析与斜齿圆柱齿轮相似,轮齿在受到法向载荷Fn的情况下,可分解出径向载荷Fr、周向载荷Ft、轴向下关系:图7-8 蜗杆传动的受力分析传动的强度计算、蜗轮齿面接触疲劳强度计算触疲劳强度的校核公式为:(7.4)蜗杆对青铜或铸铁蜗轮(齿圈)配对度的设计公式为:(7.5)、蜗轮齿根弯曲疲劳强度计算核公式为:(7.6)设计公式为:(7.7)动的效率、润滑和热平衡计算.5.1 蜗杆传动的效率(7.8)轮齿啮合齿面间摩擦损失的效率;——考虑油的搅动和飞溅损耗时的效率;——考虑轴承摩擦损失时的效率;大的因素,可由下式确定:(7.9)程角;jv——当量摩擦角。
(7.10)关系为:1 124η 0.65 ~0.75 0.75~0.82 0.82~0.92η<0.5z1=1、2时η=0.60~0.70传动的润滑润滑的主要目的在于减摩与散热。
具体润滑方法与齿轮传动的润滑相近。
润滑油:润滑油的种类很多,需根据蜗杆、蜗轮配对材料和运转条件选用。
润滑载荷类型进行选择。
给油方法包括:油池润滑、喷油润滑等,若采用喷油润滑,喷油嘴要对准蜗杆啮入端,而且要控制一定的油压。
润滑油量:润滑油量的选择既要考虑充分的润滑,又不致产生过大的搅油损耗。
对于下置蜗杆或侧置蜗杆传动,浸油深度应为蜗杆的一个齿高;当蜗杆上传动的热平衡计算传动效率较低,对于长期运转的蜗杆传动,会产生较大的热量。
如果产生的热量不能及时散去,则系统的热平衡温度将过高,就会破坏润滑状态,从而导因摩擦功耗产生的热量为:(7.11)冷却从箱壁散去的热量为:(7.12)面的散热系数,自然通风良好时:K =(14~17.5)W/(m2?℃);在没有循环空气流动的场所: K =(8.7~10.5)W/(m2?℃);的可散热面积(m2);A=A1+0.5A2,A1指箱体外壁与空气接触而内壁能被油飞溅到的箱壳面积,A2指箱体的散热片面积。
油的工作温度(℃);t2——环境温度(℃),一般取20 ℃ 。
(7.13)热平衡验算,一般t1≤90℃度t1超过了[t1],则首先考虑在不增大箱体尺寸的前提下,设法增加散热面积。
如不能满足要求可用下列强制措施解决。
1)在蜗杆轴端装设风扇;2)采用循环压力喷油冷却;3)在箱体油池内装蛇形官。
蜗轮的结构.6.1 蜗杆的结构蜗杆螺旋部分的直径不大,所以常和轴做成一个整体。
当蜗杆螺旋部分的直径较大时,可以将轴与蜗杆分开制作。
无退刀槽,加工螺旋部分时只螺旋部分可用车制,也可用铣制加工,但该结构的刚度较前一种差,如图7-10所示。
图7-9 无退刀槽时螺旋部分的加图7-10 有退刀槽时螺旋部分的加工的结构为了减摩的需要,蜗轮通常要用青铜制作。
为了节省铜材,当蜗轮直径较大时,采用组合式蜗轮结构,齿圈用青铜,轮芯用铸铁或碳素钢。
常用蜗轮的图7-11 蜗轮的结构。