saber_corenl磁芯使用手册

合集下载

S l a rc Metal Halide Arc Lamp操作及安装指南说明书

S l a rc Metal Halide Arc Lamp操作及安装指南说明书

OPERATIONand INSTALLATIONMANUAL18,21&24S l a rcLamp Products WATT1.Description:S l a rc arc lamp is a high intensity metal halide light source.The light is emitted from an arc discharge between two closely spaced electrodes hermetically sealed inside a small quartz glass tubular envelope.Refer to lamp data sheets and section11of this manual for arc lamp specifications. The light emitted from this arc tube is intense and appropriate safety precautions relating to exposure protection are required.Refer to Figure3of this manual for arc lamp spectral distribution.Metal halide lamps operate at very high temperatures and pressures.The quartz glass must be kept clean. The glass lamps should be handled with care giving special attention of the quartz arc tube.Proper mounting,cooling,and ventilation is required to assure reliable operation of metal halide lamps.Metal halide lamps use high voltage,short duration pulses to initiate operation.The S l a rc is a DClamp and proper electrical wiring polarity must be observed to prevent damage to the lamp.2.PhotobiologicalSafety Compliance Standard RP-27.3: CAUTION:Ultraviolet,visible,and infrared radiation is emitted from metal halide lamps.Possible skin or eye irritation can result from exposures e appropriate shielding.Do not stare at exposed lamp in operation.During operation,the lamp should be enclosed in a housing to prevent injury.Do not remove lamp from equipment until it has cooled.Never handlethe lampwhen it is operating!3.Handling:Protect the quartz arc tube when handling the lamp.The arc tube may be protruding from the end of some reflectorized lamp assemblies.Keep the arc lamp clean.Do not touch the quartz tube,the inside surface of the reflector,and the connectingwires.Contamination can degrade lamp performance or cause premature failures.If necessary,clean the lamp by wiping with a lint free towel or swab immersed in denatured alcohol.Ballast products are electrostatic sensitive electronic assemblies and should be handled as such.Proper Electro-Static Discharge(ESD)handling procedures should be employed.4.Cooling:To ensure proper arc lamp operation and acceptable life,appropriate forced air cooling should be provided when housed in an enclosure.Cooling must beo C sufficient to maintain the temperature at the tip of the arc tube between200 and285o C.Care must also be taken not to overcool the lamp.This will result an arc that is bluer in color and may cause some flicker.The ballast should reside in a well ventilated housing.Forced air cooling is highly recommended,but not a strict requirement.Q401FET heat sink (largest heat sink on PC board)locatedadjacentto the input powero C.See Figures1or2for Q401 connectionsmust be maintainedbelow90FET location.For an optimumtemperaturemeasurementlocation, position and adherea thermocoupleon the reverse side of the Q401heat sink at the same height as the FET.5.Mounting:S l a rc arc lamps are specified for operation in a specific orientation,such as horizontal or vertical base down.Verify specified orientation with the appropriate lamp data mps specified for horizontal operation have a preferred rotational orientation.Refer to the specific lamp data sheet or follow the designation T H IS SIDE UP marked on the lamp base.To prevent damage during lamp installation,mounting,and replacements,care must be taken to avoid mechanical interference with the quartz arc tube. Mount the ballast as desired using the4corner through holes provided on the circuit board assembly or some other acceptable means.See Figure1for mounting hole locations and dimensions.Handling and mounting care should be exercised to prevent mechanical stressing of the prone components on the through hole side of this assembly.6.Ballast Wiring:Inherently,the ballast provides a series of high voltage pulses during lamp starting.To avoid electric shock and arcing,implement appropriate isolation techniques from equipment directly adjacent to the lamp and ballast.As an example,under normal relative humidity conditions,an air gap of9.53mm (0.375)is recommended if no additional isolation techniques are employed.6.1Input Wiring Instructions:Construct an input power connector assembly compatible with the input connector(Molex41761connector2-pin series or equivalent)located on the ballast circuit board assembly.The physical location of the input connector can be found at the bottom edge of the ballast assembly shown in Figure1, J101location.Pin1is the positive input voltage and Pin2is the negative input return voltage.Slide the connector housing portion of the assembly onto the input power connector,J101location,until the mating halves lock in place.Observe the wiring voltage polarity as specified in the pinouts section in the performance specifications table.Failure to observe input power wiring polarity couldresult incatastrophicfailure of the product.Read Section8of this manualprior to operation.6.2Output Wiring Instructions:Welch Allyn arc lamps are direct current(DC)mode of operation.It is vital that the proper voltage polarity of power to the lamp be correctly installed and maintained.The supplied polarized connectors which electrically couple the arc lamp and ballast,are designed to provide the proper voltage polarity. The two insulated electrical wires supplied with the connection assemblies are colored-coded;the black wire is connected to the Cathode and the white wire is connected to the Anode of the arc lamp.The wires are terminated at the ballast and are designated b y P1for the white wire(Anode)andP2for the blackwire(Cathode).Solder the Anode lead(white wire)of the lamp connector assembly to P1.Solder the Cathode lead(black wire)of the lamp connector assembly to P2.The physical location of the P1and P2output termination can be found at the top middle edge of the ballast assemblies shown in Figures1and2.Avoid connecting the P1and P2terminals to anything other than the arc lamp.Instrumentation and/or other circuitry connected to either of these electrical nodes can drastically affect normal ballast operatingperformance.High voltage pulses are present on P1termination during ignition. Failure to observe input power wiring polarity couldresult incatastrophicfailure of the product.7.Input Power Supply Selection:The power ratings of the ballast s identified in the data sheets and section10 of this manual refers to the output power to the lamp.The ballast input power willalways be greater than its output power because of it s efficiency limitations.The ballast has a capacitive input which willdemand a short duration inrush current from the power supply.This is usually not a cause for concern.8.Troubleshooting:8.1If the lamp fails to ignite;Check input and output wiring polarity and integrity.Attempt ignition a second time after properly resetting the ballast bydisconnecting and reconnecting the input voltage.Pre-set the input power supply current limit adjustment is at least50% abovethe specifiedSteady-State Current in Section10table.Pre-set the input power supply voltage adjustment as specified inSection10tableand use the on/off switch to operatethe arc lamp.8.2If the steps in8.1fail to correct the problem;Ensure the anode wire is not routed near any metal or other conductor. Ensure that no arcing occurs on the ballast assembly in the area near the P1connector.(A dark room enables visual detection of arcing). Ensure that no arcing occurs between the ballast assembly and anyadjacent subassembly within the system(components,subassemblies,wire harnesses,etc.).A9.53mm(0.375")air spacing(or higher dielectricstrength)is recommended in the above mentioned areas.9.System Integration Hints:Physically locate the ballast away from circuitry that is noise sensitive or circuitry that is routed outside of the system housing.This willhelp control EMI/RFI emissions and help enable the ballast to be compatible within the system.Do not bundle sensitive signal leads with the ballast input and outputpower leads.Intentional spacing or shielding may be required in enabling the ballast to be compatible with adjacent circuitry.A common symptom is corruption of adjacent circuits during ignition.Figure1.Ballast Mounting Configuration Dimensions in mm[inches]Figure2.Ballast/Arc Lamp ConfigurationFigure 3.Spectral Output -Typical0.10.20.30.40.50.60.70.80.91365467566664760855Wavelength (nm)Intensity。

Saber入门教程

Saber入门教程

第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。

有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。

注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。

如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。

一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。

1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。

2. 进入analogy_tutorial目录。

3. 创建一个名为amp的目录。

4. 进入amp目录。

二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。

1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。

2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。

此时将出现一个Save Schematic As对话框,如图1所示。

图 12) 在File Name字段输入名称Single_amp。

3) 单击OK。

3. 检查Saber Sketch工作面1)将光标置于某一图符上并保持在那里。

会显示一个文字窗口来识别该图符。

在工作面底部的Help字段也可查看有关图符的信息2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。

三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。

图中增加了如r1、r2等部件标号以便参照。

图 2 单级晶体管放大器部件布局1.按以下方式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所示。

saber2007的基础使用方法

saber2007的基础使用方法

一般来说我们用saber2007我们会用到两个应用,一个是saber simulator这个是标准用来仿真的,另一个是saber sketch这个是用来画电路图的,但是呢,现在我们就用一个应用saber sketch 它有个快捷键可以调用saber simulator 就是下图这个。

PASS:不要懒网上教程一大堆多搜搜吧。

点开前的界面↓。

点开后的界面↓。

上面就介绍到那,我们继续下一步,器件的查找和放置。

下面是如何查找器件↓。

下面这个是放置器件↓器件的参数填写和一般的参数代表的意思,其一↓(在这有必要的提醒下对于英语不好的同学还是安装一个翻译软件比较好,我安装的是必应词典。

)器件的参数填写和一般的参数代表的意思,其二↓下面是saber不知道是那个版本的器件库介绍,我估计着是2006吧?但是我看了下都可以找到,我们就多了两个A开头的库(Aerospace和Automotive)。

呃,貌似有点乱,你们也就将就着看了吧!!!Saber Parts Gallery:Assembled by SubLater( 按中文意思归类,括号中是特殊部件和必要注释)★Characterized Parts Libraries 特性元件├─DX├─Diode 二极管(Zener 齐纳、Power 功率)├─BJT 三极管(Darlington 达林顿、Power 功率、Array 阵列)├─JFET/MOSFET/ 功率MOSFET 场效应管├─SCR/IGBT ,Switch 模拟开关器件├─Analog Multiplexer 模拟多路开关├─OpAmp 运算放大器├─Comparator 比较器├─ADC 、DAC├─Fuse 保险丝、Resettable Fuse 可复位保险丝(PPTC)├─Inductor 电感线圈├─Transformer 变压器├─Motor 电机模型├─PWM 控制器、PFC 元件├─Schmitt Trigger 施密特触发器├─Sensor 传感器├─Timer 定时器├─Transient Suppressor 暂态抑制器├─Voltage Reference 电压参考给定├─Voltage Regulator 电压调节器├─SL├─Diode 二极管(Zener 齐纳)├─BJT 三极管(Darlington 达林顿)├─JFET/ 电力MOSFET 场效应管├─SCR/IGBT ,Switch 模拟开关器件├─OpAmp 运算放大器├─Comparator 比较器================================ =============================== ★Integrated Circuit 集成电路IC├─Wire&Cable 导线和线缆( 导线、线缆、传输线) ├─DSP Building Block:DSP 数字信号处理单元( 和采样离散控制单元一样)├─Data Conversion 数据转换单元├─ADC 、DAC├─Data Acquisition System 数据获取元件├─Sample&Hold Amplifier 采样- 保持放大器├─Sample Data Conversion Block 采样数据转换单元( 和采样离散控制单元类似)├─Digital Block 数字电路单元├─Digital Source 置位信号源├─Gate 门电路├─Comparator 比较器├─Multiplexer:MUX 数据选择器├─Demultiplexer:DeMUX 数据分配器├─Flip-Flop&Latch:FF 双稳态触发器、锁存器├─Counter 计数器├─Register 寄存器Logic Clock 逻辑时钟BJT,Logic Case,TransistorSwitch 开关Adder,Full 1 bit 加法器Buffer 缓冲器(Logic 逻辑、Tri-State 三态) PWM 输出├─Power&Ground 直流电源和接地├─Electrical Source 交流信号源├─Voltage Source 电压源(Controlled 受控) ├─Current Source 电流源(Controlled 受控) ├─Passive Element 无源器件├─Capacitor 电容├─Inductor&Coupling 电感线圈、耦合变压器├─Resistor 电阻Piecewise Linear Conductance 分段线性电导Short 短接线├─Semiconductor Device 半导体器件├─Diode 二极管(Zener 齐纳)├─BJT 三极管(Power 功率)├─JFET/MOSFET 场效应管(Power 功率)├─Thyristor 晶闸管/IGBT 开关管├─OpAmp 运算放大器├─Transmission Line 传输线├─Voltage Comparator 电压比较器├─Voltage Controlled Oscillator 压控振荡器================================ =============================== ★★Power System 电力系统( 基本就是MAST Parts Library 中的Electronic、再加上Schmatic Design 、Source PowerGround 、Thermal Devices)├─Behavioral Compensastor 行为补偿单元├─Control System 控制系统├─Data Conversion 数据转换单元├─Digital Block 数字电路单元├─Electrical 电路单元├─Electro-Mechanical 机- 电系统├─Functional Element 功能单元├─Instrument 仪器├─Graphical Modeling 图形化建模├─Interface Model 变量接口模块├─Source,Power&Ground 交流信号源,直流电源和接地├─Passive Element 无源元件├─Semiconductor Device 半导体器件├─OpAmp 运算放大器├─Voltage Comparator 电压比较器├─Voltage Regulator 电压调节器├─PWM Control:PWM 控制器├─Thermal Device 发热元件├─Schematic Design 原理图设计================================ =============================== ★Control System 控制系统├─Continuous Control Block 连续控制单元├─Control System Source 控制信号源├─Signal Combiner 信号综合点├─Function 数学函数(+-*/ 算术运算、舍入函数、三角函数)├─Derivative 微分器、Integrator 积分器├─Nonlinear 非线性函数├─Relational Operator 关系运算符Biquadratic Filter 双二次滤波器DC Motor w/Var Output 直流电机w/Var 输出Gain 增益PProportional-Integral:PI 控制器传递函数(Rational Polynomial 有理多项式/Zero_Pole 零极点形式)State Space 状态空间表达式Lag 滞后/Lead-Lag 超前- 滞后环节├─Digital Logic Block 逻辑运算单元├─AND(NAND),OR(NOR),NOT,XOR(XNOR) 逻辑运算├─Interface Model 变量接口模块├─Technology 物理量<->var,var<->Z├─Sampled Data Control Block 采样离散控制单元(Z 域)├─Z Domain Source:Z 域信号源├─Algebraic:Z 域算术运算├─Linear Combination 线性综合点├─Adder 加法器、Subtractor 减法器、Multiplier 乘法器├─Amplifier 放大器├─Comparator 比较器├─Modulator 调制器、Delta Modulator 三角调制器├─Differentiator 微分器、Integrator 积分器├─Interface 接口模块(var<->Z)(SDS)├─Rational Polynomial 有理多项式├─Miscellaneous 杂项├─ADC 、DAC├─Counter 计数器├─Integral Decimation├─RMS Voltage 输入电压方均根rms( 即有效值eff)├─Sinc Singal:Sinc 信号├─State Delay 延迟器================================ =============================== ★★MAST Parts Library MAST 元件├─Control System 控制系统( 基本是从Control System 中抽取的常用单元)├─Continuous System 连续控制单元├─Digital Logic Block 逻辑运算单元├─Interface Model 变量接口模块├─Sampled Data Control Block 采样离散控制单元├─Electrical 电路单元(Electrical 电路单元和独立的Power System 电力系统并无重复)├─Wire&Cable 导线和线缆(Wire 导线、Cable 线缆、Transmission Line 传输线)├─Circuit Protection Device 电路保护装置(Fuse 保险熔丝、Resettable Fuse 可复位保险(PPTC))├─Energy Source&Stroage 能量来源和存储装置(Battery 电池(Lead-Acid 铅酸Li-ion 锂离子) 、Fuel Cell 燃料电池、SuperCapacitor 超大电容)├─Switch&Relay 开关和继电器├─Simple Switch 简单开关├─Multi Pole or Throw Switch 多刀/ 多掷开关├─Switch Driver 开关驱动器├─Relay 继电器├─Electro-Mechanical 机- 电系统├─Alternator 交流发电机├─Generator 直流发电机├─Motor 直流、交流电动机模型├─Motor Control Component 电机控制部件├─Motor Driver 电机驱动器├─Motor 电机部件├─Solenoid Building Block 螺线管├─Damper 阻尼器├─Electromagnet 电磁铁├─Winding 线圈、绕组├─Magnetic Core 磁芯├─Magnetic Actuator 励磁器├─Mass 重物├─Spring 弹簧├─Stop 制动├─Switch&Relay 开关和继电器├─Simple Switch 简单开关├─Multi Pole or Throw Switch 多刀/ 多掷开关├─Switch Driver 开关驱动器├─Relay 继电器├─Electronic 电子系统( 除了行为补偿单元是Power System 中的外,其他都是从Integrated Circuit 中抽取的常用单元)├─Behavioral Compensator 行为补偿器├─Wire&Cable 导线和线缆(Wire 导线、Cable 线缆、Transmission Line 传输线)├─DSP Building Block:DSP 数字信号处理单元├─Data Conversion 数据转换单元├─Digital Block 数字电路单元├─Electrical Source 交流信号源├─Voltage Source 电压源(Controlled 受控)├─Current Source 电流源(Controlled 受控)├─Functional Element 功能单元├─Power Device 功率元件├─Voltage Controlled Oscillator 压控振荡器DC/DC Convertor:DC/DC 变换器Three Phase Voltage Source 三相电压源Voltage Gain 电压增益、Voltage Summer 加法器、Voltage Subtractor/Difference 减法/ 差分器、Voltage Multiplier 乘法器Selector Switch 选择开关Constant Power Load 恒定功率负载Resistor 电阻Ideal 3-pin HyperModel: 理想3 端HyperModel Ramp Oscillator 斜坡振荡器├─Ideal Functional Element 理想功能单元├─Pole&Zero 零极点模型├─Switch 理想开关├─Two Port Block 双口网络├─Voltage Controlled Oscillator 压控振荡器Delay,Ideal 理想电压延迟Diode,Ideal 理想二极管MOSFET,P Ideal/N Ideal 理想P/N MOSFET 场效应管SCR,with logic gate 理想SCR 、Switch 开关、Power Semiconductor 功率半导体OpAmp,Ideal 理想OpAmp 运算放大器PWM Averaged Continuous,Ideal Logic Out: 理想PWM 控制器Sample and Hold,Ideal 理想采样- 保持器Short 理想短接线Transcapacitor,LinearVoltage Clamp 理想电压箝位Voltage Gain 理想电压增益、Voltage Summer 加法器、Voltage Subtractor/Difference 减法/ 差分器、Voltage Multiplier 乘法器├─Instrument 仪器├─Detection 检测仪器├─Voltage Limit 电压限幅、Current Limit 电流限幅├─Var Limit:var 限幅├─Measurement 测量仪器├─Frequency 频率(Frequency Capture Time 频率捕获时间、Rise/Fall Time上升/ 下降时间、Period 周期、Duty Cycle 占空比、Jitter 抖动)├─Peak 峰值、Average 平均值、RMS 均方根├─Interface 变量接口单元(Electrical 电量<->var)├─Power&Ground 直流电源和接地├─Passive Element 无源元件├─Semiconductor Device 半导体器件├─OpAmp 运算放大器├─Voltage Comparator 电压比较器├─Voltage Regulator 电压调节器├─PWM Control:PWM 控制器├─Graphical Modeling 图形化建模├─Analog Model Synthesis 模拟系统模型( 从PlotFile)├─Electrical Modeling 电路系统模型├─Control Modeling 控制模型(S 域、频域)├─Z Domain Modeling:Z 域模型├─Interface Model 变量接口单元(Technology 物理量<->var ,var<->Z 域)├─Interface,Micro-Controller 数据接口微控制器(SMCI)├─Address I/O Port 地址IO 端口、Data I/O Port 数据IO 端口├─Analog Input 模拟量输入端口、PWM Output:PWM 数字量输出端口├─Serial I/O Port 串行IO 端口、BUS Control Port 总线控制端口├─Magnetic 磁路元件├─Inductor&Coupling 电感线圈、耦合变压器├─Meterial Compoent 磁材料├─Magnetic Source 磁源Magnetic Core 磁芯Magnetic Actuator 励磁器Magnetic Short 磁短接线Winding 绕组├─Schematic Design 原理图设计├─Border 页面边界├─Connector 页间连接点├─直流电源和接地├─SamePage/OffPage 同层( 小模块, 即Symbol) 输入输出连接点,Hierarchical 下层( 大模块, 即Hierarchy Symbol) 输入输出连接点Saber Include File Saber 头文件元件( 全局变量) ├─检测Sensor 传感器、Transducer 变送器├─Source 交流信号源、Power 直流电源和Ground 接地├─Thermal Device 发热元件好了到了这,怎么添加器件和器件库就介绍完了。

SABER创建模型教程

SABER创建模型教程

SABER创建模型教程第⼀章使⽤Saber Designer创建设计本教材的第⼀部分介绍怎样⽤Saber Design创建⼀个包含负载电阻和电容的单级晶体管放⼤器。

有以下任务:*怎样使⽤Part Gallery来查找和放置符号*怎样使⽤Property Editor来修改属性值*怎样为设计连线*怎样查找⼀些常⽤模板在运⾏此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运⾏(找系统管理员)。

注:对于NT⿏标⽤户:两键⿏标上的左、右键应分别对应于本教材所述的左、右键⿏标功能。

如果教材定义了中键⿏标功能,还介绍了完成该任务的替代⽅法。

⼀、创建教材⽬录你需要创建两个⽬录来为你所建⽴的单级放⼤器电路编组数据。

1. 创建(如有必要的话)⼀个名为analogy_tutorial的⽬录,以创建教材实例。

2. 进⼊analogy_tutorial⽬录。

3. 创建⼀个名为amp的⽬录。

4. 进⼊amp⽬录。

⼆、使⽤Saber Sketch创建设计在这⼀部分中,你将使⽤Saber Sketch设计⼀个单级晶体管放⼤器。

1. 调⽤Saber Sketch(Sketch),将出现⼀个空⽩的原理图窗⼝。

2. 按以下⽅法为设计提供名称3) 通过选择File>Save As …菜单项,存储⽬前空⽩的设计。

此时将出现⼀个Save Schematic As对话框,如图1所⽰。

图 12) 在File Name字段输⼊名称Single_amp。

3) 单击OK。

3. 检查Saber Sketch⼯作⾯1)将光标置于某⼀图符上并保持在那⾥。

会显⽰⼀个⽂字窗⼝来识别该图符。

在⼯作⾯底部的Help字段也可查看有关图符的信息2)注意有⼀个名为Single_amp的Schematic窗⼝出现在⼯作⾯上。

三、放置部件在教材的这⼀部分你将按图2所⽰在原理框图上放置符号。

图中增加了如r1、r2等部件标号以便参照。

图 2 单级晶体管放⼤器部件布局1.按以下⽅式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所⽰。

Saber使用手册

Saber使用手册

Saber使⽤⼿册第⼀章使⽤Saber Designer创建设计本教材的第⼀部分介绍怎样⽤Saber Design创建⼀个包含负载电阻和电容的单级晶体管放⼤器。

有以下任务:*怎样使⽤Part Gallery来查找和放置符号*怎样使⽤Property Editor来修改属性值*怎样为设计连线*怎样查找⼀些常⽤模板在运⾏此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运⾏(找系统管理员)。

注:对于NT⿏标⽤户:两键⿏标上的左、右键应分别对应于本教材所述的左、右键⿏标功能。

如果教材定义了中键⿏标功能,还介绍了完成该任务的替代⽅法。

⼀、创建教材⽬录你需要创建两个⽬录来为你所建⽴的单级放⼤器电路编组数据。

1. 创建(如有必要的话)⼀个名为analogy_tutorial的⽬录,以创建教材实例。

2. 进⼊⽬录。

3. 创建⼀个名为amp的⽬录。

4. 进⼊amp⽬录。

⼆、使⽤Saber Sketch创建设计在这⼀部分中,你将使⽤Saber Sketch设计⼀个单级晶体管放⼤器。

1. 调⽤Saber Sketch(Sketch),将出现⼀个空⽩的原理图窗⼝。

2. 按以下⽅法为设计提供名称3) 通过选择File>Save As …菜单项,存储⽬前空⽩的设计。

此时将出现⼀个Save Schematic As对话框,如图1所⽰。

图 12) 在File Name字段输⼊名称Single_amp。

3) 单击OK。

3. 检查Saber Sketch⼯作⾯1) 将光标置于某⼀图符上并保持在那⾥。

会显⽰⼀个⽂字窗⼝来识别该图符。

在⼯作⾯底部的Help字段也可查看有关图符的信息2) 注意有⼀个名为Single_amp的Schematic窗⼝出现在⼯作⾯上。

三、放置部件在教材的这⼀部分你将按图2所⽰在原理框图上放置符号。

图中增加了如r1、r2等部件标号以便参照。

图 2 单级晶体管放⼤器部件布局1. 按以下⽅式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所⽰。

saber非线性电感参数设置

saber非线性电感参数设置

Saber非线性电感1:ref标识2:n 绕线匝数;3:nk 绕组耦合系数;(-1 <= nk <= 1) 4:r 绕组直流电阻值,单位欧姆;5:area 磁芯截面积Ae,单位平方米;6:len_fe 磁路长度,单位米;7: len_air 气隙长度,单位米;8:matl 磁芯材质8:b0 初始磁通密度9:sf层叠因子10:tempc核心模型的温度,单位°C11:rth_ja 从结点到环境热阻,单位(°C/W)12: rth_jc结间热阻,单位(°C/W)13: rth_sh外部散热器的热阻,单位(°C/W)14: temp 环境温度15: include stress 应力;关闭应力测量include_stress = 0 Saber_model模型1:ui初始磁导率2:uhc矫顽力相对渗透率3:bmax最大磁通密度,单位T or G4:hmax H最大值,单位A•t/m or Oe5:bsat饱和磁通密度,单位T or G6:hsat H饱和值,单位A•t/m or Oe7:br剩余磁通密度,单位T or G8:hc矫顽力,单位A•t/m or Oe9:ptemp定义模型参数的温度,单位°C10:tau B与H频率相关的时间常数,单位s11:taulim频率依赖性限制,单位sRatings最大额定值1:pdmax_ja与rth_ja最大耗散功率,单位W2: pdmax_jc与rth_jc和rth_hs最大耗散功率,单位W 3: tjmax内部最高温度,单位°C4: tjmin内部最低温度,单位°C5: imax最大的绕组电流,单位A6: vmax最大的绕组电压,单位Vja_model Jiles Atherton模型的参数1:a形状参数2:alpha平均场参数3:c弯曲常数4: k钉扎常数5: ms饱和磁化强度,单位A/m6:ptemp温度,α,C,K和MS,单位°C7:tau B与H频率相关的时间常数,单位s8:taulim频率依赖性限制,单位s。

Saber2006中文手册

Saber2006中文手册

5
3) 单击 OK。
4) 单击 Search 按键。
5) 在 Available Parts 表中,选择 Capacitor(一)。
6) 单击 place 按键放置 C 符号。
7) 如图 2 所示放置符号。如下可旋转符号 180°。
* 将光标移至符号上以便选择该符号。
* 按下并保持住鼠标右键以便引出上托符号菜单。选择 Rotate>180 菜单
7) 单击 place 按钮 5 次来放置 5 个电阻。
8) 通过单击 Saber Sketch Icon Bar 中的 Toggle Grid 图符 图窗口中打开网格。
9) 将 5 个电阻按图 2 所示放置在晶体管周围,步骤如下: *一一将鼠标光标放置在每个电阻上。 *按下并保持鼠标左键。 *将部件拖至合适的位置并释放鼠标。
Category Name

Search String
V_dc
1) Parts Gallery Preferences 表格中参数设定值同上。单击 Search 按

2) 在 Available Parts 表中,选择 Voltage Source, Constant.
单击 Place 按钮放置 V_dc 符号。
图符。在工作面底部的 Help 字段也可查看有关图符的信息 2) 注意有一个名为 Single_amp 的 Schematic 窗口出现在工作面上。
三、放置部件
在教材的这一部分你将按图 2 所示在原理框图上放置符号。图中增加了如 r1、r2 等部件标号以便参照。
2
图2
单级晶体管放大器部件布局
1. 按以下方式查找和放置 npn 晶体管符号:
,在原理
4

Saber仿真软件入门教程

Saber仿真软件入门教程

SABER讲义第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。

有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。

注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。

如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。

一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。

1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。

2. 进入analogy_tutorial目录。

3. 创建一个名为amp的目录。

4. 进入amp目录。

二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。

1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。

2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。

此时将出现一个Save Schematic As对话框,如图1所示。

图 12) 在File Name字段输入名称Single_amp。

3) 单击OK。

3. 检查Saber Sketch工作面1)将光标置于某一图符上并保持在那里。

会显示一个文字窗口来识别该图符。

在工作面底部的Help字段也可查看有关图符的信息2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。

三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。

图中增加了如r1、r2等部件标号以便参照。

图 2 单级晶体管放大器部件布局1.按以下方式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所示。

(整理)Saber仿真实例.

(整理)Saber仿真实例.

(整理)Saber仿真实例.Saber 仿真开关电源中变压器的Saber仿真辅助设计 (2)⼀、Saber在变压器辅助设计中的优势 (2)⼆、Saber 中的变压器 (3)三、Saber中的磁性材料 (7)四、辅助设计的⼀般⽅法和步骤 (9)1、开环联合仿真 (9)2、变压器仿真 (10)3、再度联合仿真 (11)五、设计举例⼀:反激变压器 (12)五、设计举例⼀:反激变压器(续) (15)五、设计举例⼀:反激变压器(续⼆) (19)Saber仿真实例共享 (26)6KW移相全桥准谐振软开关电焊电源 (27)问答 (28)开关电源中变压器的Saber仿真辅助设计经常在论坛上看到变压器设计求助,包括:计算公式,优化⽅法,变压器损耗,变压器饱和,多⼤的变压器合适啊?其实,只要我们学会了⽤Saber这个软件,上述问题多半能够获得相当满意的解决。

⼀、Saber在变压器辅助设计中的优势1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的⼯作环境相当真实,变压器不是孤⽴地被防真,⽽是与整个电源主电路的联合运⾏防真。

主要功率级指标是相当接近真实的,细节也可以被充分体现。

2、Saber的磁性材料是建⽴在物理模型基础之上的,能够⽐较真实的反映材料在复杂电⽓环境中的表现,从⽽可以使我们得到诸如⽓隙的精确开度、抗饱和安全余量、磁损这样⼀些⽤平常⼿段很难获得的宝贵设计参数。

3、作为⼀种⾼性能通⽤仿真软件,Saber并不只是针对个别电路才奏效,实际上,电⼒电⼦领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。

从⽽放弃⼤部分繁杂的计算⼯作量,极⼤地加快设计进程,并获得⽐⼿⼯计算更加合理的设计参数。

saber⾃带的磁性器件建模功能很强⼤的,可以随意调整磁化曲线。

但⼀般来说,⽤mast模型库⾥⾃带的模型就⾜够了。

⼆、Saber 中的变压器我们⽤得上的 Saber 中的变压器是这些:(实际上是我只会⽤这些分别是:xfrl 线性变压器模型,2~6绕组xfrnl ⾮线性变压器模型,2~6绕组单绕组的就是电感模型:也分线性和⾮线性2种线性变压器参数设置(以2绕组为例):其中:lp 初级电感量ls 次级电感量np、ns 初级、次级匝数,只是显⽰⽤,不是真参数,可以不设置rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议⾄少设置⼀个⾮0值,⽐如1p(1微微欧姆)k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。

saber使用手册

saber使用手册
默认的 Hypermodel 用 5V CMOS 技术理想 Hypermodel,该模型只是为了方便模拟, 提高模拟速度,得出模拟的近似结果。网表器会自动添加默认的 Hypermodel。 ▲使用理想的 Hypermodel 理想 Hypermodel 在数字信号和模拟信号间提供近似的传输,它们不会考虑实际中器 件的行为,这种模拟需要较少的时间。在初次设计,要对电路的性能有个大体的了 解时,使用这些理想的 Hypermodel 是比较有用的。添加 Hypermodel 将在下面具体 介绍。
5V CMOS
Ideal CD (cd_ide.shm)
RCA CD 5V (cd5.shm)
15V CMOS ECL MC1600 系列 军用高速 CMOS
Ideal CD (cd_ide.shm) Ideal ECL (ecl_ide.shm) Ideal MHC (mhc_ide.shm)
RCA CD 15V (cd15.shm) ECL (ecl.shm) Military HC (mhc.shm)
如果在 Saber/Netlister Settings 框中仅定义一个指定技术的 Hypermodel 文件,网表器
将为在模拟和数字边界的指定族添加一个类属 Hypermodel。如果想让一部分有象实际
元件一样的特性,必须在元件的每个管脚处定义一个指定的 Hypermodel。例如:用
74LS04 反相器对数字管脚定义一个 Hypermodel,具体过程如下:
打开电路图编辑窗口
在启动 SaberSketch 后,要打开电路图编辑窗口,操作如下: ▲要创建一个新的设计,选择 File>New>Design,或者点击快捷图标,会打开一个空白窗
口。 ▲要打开一个已有的设计,选择 File>Open>Design,或者点击快捷图标,在 Open Design

线性变压器参数设置

线性变压器参数设置

线性变压器参数设置(以2绕组为例):其中:lp 初级电感量ls 次级电感量np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆)k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。

需要注意的是,k 为 0。

99 时,漏感并不等于 lp 或者 ls 的 1/100。

漏感究竟是多少,后述。

其他设置项我没有用过,不懂的可以保持默认值。

非线性变压器参数设置(以2绕组为例):其中:np、ns 初级、次级匝数rp、rs 初级、次级绕组直流电阻值area 磁芯截面积,即 Ae,单位平方米,84.8u 即 84.8 微平方米,也就是 84.8 平方毫米。

len_fe 磁路长度,单位米,这里的 69.7m 是EE3528磁芯的数据len_air 气隙长度,单位米,这里的 1.8m 是最后获得的设计参数之一。

matl 磁芯材质,下一讲了其他参数我也不会用,特别是没有找到表达漏感的设置。

有了Saber 中这两类变压器模型,基本上足以应付针对变压器的仿真了。

他们的特点是,xfrl 模型速度快,不会饱和,而且有漏感表达,xfrnl 模型真实,最后得出设计数据主要靠它了。

应用这两个模型有几个小技巧需要掌握:1、已知 lp、ls 求匝比,或者已知 lp、匝比求 ls2、已知线径、股数、匝数、温度,计算绕组电阻值3、已知磁芯型号,查磁芯手册获得 area、len_fe 参数。

绿山xsaber模块操作手册

绿山xsaber模块操作手册
balancegain平衡增益bandpassfiltering带通滤波datumstatics基准面静校正topmuting顶部切除linearmoveout线性动校正美国绿山地球物理公司xsaber用户使用手册美国绿山地球物理公司xsaber用户使用手册bandpassfiltering带通滤波在tracedisplay道显示窗口点击processingparameters处理参数按钮并选择tracepreprocessing道预处理参数列表栏对地震道进行butterworth带通滤波的参数设置
3. Batch Picking 批量拾取
你应该用少量的炮点记录来测试你的道预处理和图像预处理的参数设置。查看工区内不同地区的 炮点记录,查看初至参数去除初至到达前噪音的效果及初至趋势增强效果如何。你可以在 Trace Display(道显示)窗口中使用导航工具,或者在 Fold Plot (覆盖显示)窗口按下 shift 键并 在一个特定炮点处点击鼠标左键,以获取不同的炮点记录。用同一参数设置将一个真实的地震测 线上每一炮点记录转化为一个良好的可进行拾取的位图,是不可想象的。你只需要调整此设置并 进行足够多的点校验,以确认你的参数对多数炮点记录是否也能得到合理结果。
在 XSaber 中,我们决心使用一个不同的方法以处理拾取初至问题。我们不再看地震道的属 性,而是试图简化此问题。人眼对于识别线性趋势的图像很擅长。经过一定的对数据准备, 计算机边缘检测的算法已经证明是很成熟的。XSaber 使用多种图像处理技术以加强和分离 出地震记录的初至。
Method 方法
XSaber 将地震炮点记录转化为灰度位图图像。每一道代表位图中的一列像素。图像中每一 个样点像素值代表着原始地震道样点上的瞬时振幅,标准化为 0 到 255。在将数据转化为位 图前,有一些标准化地震处理技巧可以先应用于炮点记录,以极大地改进这一转换过程。 XSaber 在转换图像之前,可应用一些常规处理功能如滤波、振幅标定、初至切除和应用静 校正。

SABER创建模型教程

SABER创建模型教程

第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。

有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。

注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。

如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。

一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。

1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。

2. 进入analogy_tutorial目录。

3. 创建一个名为amp的目录。

4. 进入amp目录。

二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。

1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。

2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。

此时将出现一个Save Schematic As对话框,如图1所示。

图 12) 在File Name字段输入名称Single_amp。

3) 单击OK。

3. 检查Saber Sketch工作面1)将光标置于某一图符上并保持在那里。

会显示一个文字窗口来识别该图符。

在工作面底部的Help字段也可查看有关图符的信息2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。

三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。

图中增加了如r1、r2等部件标号以便参照。

图 2 单级晶体管放大器部件布局1.按以下方式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所示。

矽譜NAXSEN manual workbench v2.1 使用說明書说明书

矽譜NAXSEN manual workbench v2.1 使用說明書说明书

產品使用說明書1.內容1. 介紹 (3)2. 下載方式 (3)3. 登入 (3)4. 軟體佈局一覽 (4)5. 功能介紹 (5)6. 檔案匯入匯出 (6)7. 資料處理 (7)7.1. 連接裝置 (7)7.2. 資料讀取 (8)7.3. 資料操作 (9)7.4. 圖表顏色調整 (11)7.5. 資料分列顯示 (12)8. 圖表檢視 (13)8.1. 放大曲線圖(Zoom In) (13)8.2. 縮小曲線圖(Zoom Out) (13)8.3. 尺寸回復全版尺寸(Fit Plot) (14)9. 資料標記 (15)9.1. 游標(Cursor) (15)9.2. 選取區域(Select Region) (15)9.3. 標記(Marker) (16)10. 濾波器(Filter) (17)10.1. 示範Butterworth Filter 的低通濾波器 (17)11. AI Algorithm Plugin (進階) (19)1. 介紹HD-Workbench 意在提供感測資料處理與分析之Windows 應用程式。

AI 增益集可方便的與現有程式整合。

2. 下載方式請至/workbench 網頁 1. 軟體 ->選擇 HD-Workbench2. 下拉至網頁底部,選擇Download3. 登入必填項目 1. 名字 2. 姓氏 3. E-mail 4. 連絡電話 5. 密碼 6.選填項目 1. 性別 2. 身高 3. 體重 4. 生日4.軟體佈局一覽圖表標籤(Tab)以及Design Algorithm(常駐) 資料曲線圖區(Plot)工具列(Tool) Display(資料列)File manager (檔案管理)5. 功能介紹工具列詳細功能介紹以及中英對照表 圖示功能英文功能中文Design Algorithm即為Block Diagram可以顯示資料(Sensor Data)與圖表(Plot)連接關係圖Create New Project 開啟新視窗Open Sensor Data開啟CSV 檔Save Data 將NAXSEN 資料存成CSV 檔 Scan Device fromUSBNAXSEN 連結至電腦USB 後 須點功能鍵連結資料至WorkbenchZoom in 放大資料曲線圖Fit Plot 將資料曲線圖回復成全部顯示狀態Zoom out 縮小資料曲線圖 Design Algorithm 查看Block DiagramLoad AlgorithmPlugin 讀取演算法Help manual幫助、說明手冊6.檔案匯入匯出1.透過USB連結NAXSEN至電腦點選USB連結功能2.在檔案管理裡選擇欲匯出的資料點選匯出功能3.選擇輸出位置,匯出CSV檔。

SABER软件入门教程

SABER软件入门教程

第一章使用Saber Designer创建设计本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。

有以下任务:*怎样使用Part Gallery来查找和放置符号*怎样使用Property Editor来修改属性值*怎样为设计连线*怎样查找一些常用模板在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。

注:对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。

如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。

一、创建教材目录你需要创建两个目录来为你所建立的单级放大器电路编组数据。

1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实例。

2. 进入analogy_tutorial目录。

3. 创建一个名为amp的目录。

4. 进入amp目录。

二、使用Saber Sketch创建设计在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。

1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。

2. 按以下方法为设计提供名称3) 通过选择File>Save As …菜单项,存储目前空白的设计。

此时将出现一个Save Schematic As对话框,如图1所示。

图 12) 在File Name字段输入名称Single_amp。

3) 单击OK。

3. 检查Saber Sketch工作面1)将光标置于某一图符上并保持在那里。

会显示一个文字窗口来识别该图符。

在工作面底部的Help字段也可查看有关图符的信息2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。

三、放置部件在教材的这一部分你将按图2所示在原理框图上放置符号。

图中增加了如r1、r2等部件标号以便参照。

图 2 单级晶体管放大器部件布局1.按以下方式查找和放置npn晶体管符号:1) 单击Parts Gallery图符出现Parts Gallery对话框,如图3所示。

Saber2007磁心材质库

Saber2007磁心材质库

分享与世纪电源网论坛的网友们Saber 2007磁心材质库:Core Materials LibraryA library of materials for nonlinear cores is provided. This involves specifying argument values that define the characteristics of thematerial's B-H curve.The material argument appears in the nonlinear core templates (corenl and corenl2) under the name matl. It is a string argument, meaning that you specify its value by entering the name of the desired core material fromthe library between double quotation marks, " ". The template then usesthis string value to look up the material in the library, find the datathat characterizes it, and use that data in the template.The material library presently contains characterization data for the following materials (see the References). The string name of the materialis shown between double quote marks (" "). In addition, the MAST Template Library contains inductors and transformers that use cores with these materials.Material Manufacturer Name String NameFerrite Philips Components 3B7 "3B7"Philips Components 3C8 "3C8"Philips Components 3C85 "3C85"Philips Components 3D3 "3D3"Philips Components 3E2A "3E2A"Philips Components 3F3 "3F3"Philips Components 4C4 "4C4"Philips Components 3B9 "3B9"Philips Components 3C6A "3C6A"Silicon-Iron Laminate Magnetic Metals 3% Silicon Iron, 1 50 EI "si_re"Square Permalloy Magnetics Square Permalloy 80, 50 038 5d "sq_perm_80"金山快译2006之译文:一间非线性核心的材料图书馆被提供。

Saber基本操作和注意事项

Saber基本操作和注意事项

Saber基本操作和注意事项1.翻转元件:选中该元件(可选多个),按R键,可实现90度翻转。

2.电容或电感初始电压或电流值设置:在电容或电感元件的属性里有一项ic 设置,默认未设置(undef),设置其为想要的值即可。

3.Saber中,设置元件属性时,不能带任何单位符号,如电阻的“Ω”,电压的“V”,时间的“S”等,否则saber会报错。

4.Saber中,仿真文件名不能和元件库中的元件同名,否则会报错。

5.Saber中,原理图名称最好不要与路径名中有重复,否则会报错。

6.原理图放大或缩小:按“page up”或“page down”即可7.局部放大显示波形:直接拖动鼠标放大,或按“page up”即可8.恢复波形显示原始大小:按“page down”,或在右键菜单里点“zoom →to fit”即可9.按鼠标中键可拖动整个原理图包括波形显示图。

10.波形高级分析:①.双击波形图标,进入cosmosScooe 窗口界面,②.点击tools → measurement tool 显示measurement 窗口,③.点击measurement 窗口的measurement 后面的按钮,默认为At X 按钮,④.共有general 、time domain 、levels 、statistics 、RF 共5个可设置项,分别说明如下:*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ******A.general(综合)设置,共有14 个参数:*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ******At X :显示X轴Y轴参数At Y :只显示X轴参数Delta X :测量X轴任意两点间的时间,单位:SDelta Y :测量Y轴任意两点间的电压,单位:V(电压有方向)Length :测量Y轴任意两点间的电压,单位:V(电压无方向,取绝对值)Slope :测量斜坡???Local max/min :局部最大、最小测量Crossing :交叉Horizontal level :水平测量线Vertical level :垂直测量线Vertical cursor :垂直测量指针Point marker :波形任意单个点数据测量Point to point :波形任意两点间综合测量Vertical marker :垂直测量线*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ******B.time domain(时频)设置,共有14 个参数:*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***falltime :测量脉冲下降时间risetime :测量脉冲上升时间slew rate :脉冲从0上升到最大值所需的时间period :测量脉冲周期frequency :测量脉冲频率fulse width :测量脉冲频率delay :测量脉冲延迟时间overshoot :测量脉冲正峰值undershoot :测量脉冲负峰值settle time :测量脉冲稳定时间eye diagram :*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***C.levels 设置,共11 个测量参数*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***maximum :波形最大值minimum :波形最小值x at maximum :最大值出现时间x at minimum :最小值出现时间peak to peak :脉冲峰–峰值topline :脉冲群顶线base line :脉冲群基线amplitude :脉冲振幅(0 ~ 正最大值)arerage :脉冲直流平均值(包括脉冲负值)RMS :脉冲直流均方根值(正平均值)AC coupled RMS :脉冲交流有效值*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***D.statistics(统计)设置,共13 个测量参数*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***maximum :波形最大值minimum :波形最小值rangl :脉冲峰–峰值mean :脉冲直流平均值(包括脉冲负值)median :中线值standard deviation :标准背离mean +3 std_dev :mean -3 std_dev :histogram :直方图。

saber学习经验

saber学习经验

1.创建新项目时,文件不能放入中文路径中,否则saber软件无法识别中文路径,而会出现not open plotfile.2.一般小型电源变压器的初级都是接在220伏上。

那么:1、圈数比:初级电压/次级电压*105%100,即220伏/次级电压*105%100;2、初级圈圈数的确定:40至50除以铁芯截面积(经验公式),视铁芯质量的好坏而定,好铁芯可以取40,较差的铁芯可以取50;3、铁芯截面积:S=1.2乘以根号下的功率/效率(效率:100VA以下的变压器的效率为60至95%);4、铜线截面积:根据电流计算,一般取每平方毫米2.5A。

电源变压器的初级电流为功率/220伏;次级电流为功率/次级电压。

3.saber中pwl设置:双击元件后出现的元件属性栏中有pwl选项,单击该选项后面的*req*,会出现阻值的表格,time列代表你的仿真时间,resistance为对应时间下的阻值。

比如help文档中的设定如下:time resistance0 1k1u 2k1.5u 10k2u 1k含义是:仿真开始时,变阻器阻值为1k,1微秒时变为2k,1.5微秒时变为10k,2微秒时又变为1k。

4.如想在连线时想使连线能变成任意角度,则在连线过程中按鼠标右键,在列出的菜单中选择anyangele.5.不同的模板,它的属性也不同,所要修改的参数也不同,我们在这里介绍最基本的参数。

比如线性磁芯(Magnetic core,linear),它的属性框中的参数有很多,但最基本的参数却很少。

它的填写方法有两种:第一种是只需填写磁芯的电感量(al);第二种是填写磁芯的长度、面积和磁导率(len、area、ur),如果磁导率使用默认值1,那么它只是代表磁芯的空隙。

又如线圈(winding)我们只需填上匝数n就可,当然其它参数(面积、电阻),越详细越好。

我们知道变压器也是一种磁性器件,是电源中不可缺少的器件。

在Saber的Library 中提供了三种类型五种型号的变压器模板。

saber_corenl磁芯使用手册

saber_corenl磁芯使用手册

corenl corenl (Nonlinear Magnetic Core with Temperature Dependence)Associated Symbols:corenlLicense Requirements:OPT_TEMPLATE_LIBPart Category:Magnetic TemplatesRelated Topics:Introduction to Magnetic TemplatesMagnetic Core Characterization Toolcore - linear magnetic corecorenl2 - nonlinear magnetic core with hysteresiswind - windingFunctional DescriptionThe corenl template models a nonlinear magnetic core (note the magnetic connection points). It is normally used with the windtemplate to model an inductor or a transformer in an electricalcircuit. Because of the proprietary information of the Jiles-Atherton model, this template is encrypted so you can’t read it past theargument declarations (see Model Arguments).Template Description SectionsConnection PointsSymbol PropertiesModel ArgumentsStress ArgumentsPost-Processing InformationExport VariablesExternal ParametersModel DescriptionUsage NotesNetlist ExamplesAdditional ExamplesReferencescorenl Connection PointsName Type Descriptionp magnetic positive end of core m magnetic negative end of corecorenlp mNonlinear magnetic core (corenl)corenl corenl Symbol PropertiesPropertyprimitive Description:This symbol calls the templatecorenl, which models a nonlinearmagnetic core. It is normally usedwith the wind template to function asan inductor or a transformer in anelectrical circuit. You must specifyeither a string value for the argumentmatl or specify numeric values for allthe other model arguments exceptptemp and tau. Specifying a value formatl overrides the values for model.Matl is a string specifying acommercially available core material;model allows you to specify a group ofcore characteristics at as manydifferent temperatures (ptemp) asdesired.ref Description:Suffix appended to a template namethat uniquely identifies a part in aschematic.Default:If not specified, will be assigned bythe schematic capture toolExampleInput:Can be any alpha-numeric string len Description:Magnetic path lengthDefault (units):Value required (m)ExampleInput:1.27marea Description:Cross-sectional area of magnetic pathDefault (units):Value required (m2)ExampleInput:5.9e-5matl Description:Core material name (from library).This overrides the saber_modelproperty. See Usage Notes.Default (units):none (—)Example Input:“3c8” (Note that the quotation marks are required.)sf Description:Stacking factor adjustment to area ina laminated core. This is the ratio ofarea that is magnetically active.Default (units):1 (—)Example Input:1Propertycorenl saber_model Description:saber_model automatically maps tothe template argument model, whichis a grouping of ten B vs H modelarguments defining a material at aspecified temperature (ptemp).Default (units):none (—)Example Input:[(ptemp=27,ui=2700,hc=0.2, uhc=6000,br=1000,hsat=2.5, bsa t=4500,hma x=15, bma x=4800, tau=0.6u,taulim=50n),(ptemp=100,ui=2100,hc=0.2, uhc=4300,br=900,hsat=2.0, bsat=3300,hmax=15,bmax=3600, tau=0.6u,taulim=50n)]ja_model Description:Jiles-Atherton model arguments, usedonly if matl and saber_model areundefined.Default (units):none (—)b0Description:Initial flux density (B) in addition toanhysteretic. Units depend on unitsselection.Default (units):0(G if units=gauss; T if units=si)Example Input:0Propertytempc Description:Core model temperatureDefault (units):undef (°C)ExampleInput:37units Description:System of units for nonlinearmagnetic properties saber_modeland b0.Default (units):gauss (—)Values:gausssiExampleInput:sigeo_units Description:Allows the geometry units (len,area) to be specified in inch, meter, orcm.Default (units):meter (—)ExampleInput:cmtemp Description:Ambient temperature for temperatureeffects (see External Parameters).Default (units):27 (°C)Example Input:32Propertycorenl ratings Description:Structure of maximum ratings for thisdevice.Default (units):Available stress ratings for this model are: pdmax_ja, pdmax_jc, tjmax, tjmin, bmax. All values are set to undef by default (see Usage Notes).Example Input:(bmax=5k,pdmax_ja=.25,tjmax=1 50)rth_ja Description:Thermal resistance from junction toambient (see Usage Notes).Default (units):undef (°C/W)ExampleInput:0.2rth_jc Description:Thermal resistance from junction tocase (see Usage Notes).Default (units):undef (°C/W)ExampleInput:0.2rth_hs Description:Thermal resistance of an externalheat sink (see Usage Notes).Default (units):undef (°C/W)Example Input:0.2Propertypart_type Description:Part type string. Limited to 9characters.Default (units):mag core (—)ExampleInput:nonlin corepart_class Description:Part class string. Limited to 18characters.Default (units):nonlin generic (—)ExampleInput:componentinclude_ stress Description: A flag to allow stress analysis in thenetlisted template (see ExternalParameters).Default(units):1(—)ExampleInput:To turn off stress measurement:include_stress=0Propertycorenl corenl Model ArgumentsName Default Units/ValuesDescriptionmodel undef— a grouping of ten B vs H modelarguments defining a material ata specified temperature (ptemp)ui undef—initial relative permeabilityuhc undef—relative permeability at coercivelevel of H (hc). See MagneticHysteresis for more details.bmax undef T or G maximum value of B (unitsdepend on units selection). SeeMagnetic Hysteresis for moredetails.hmax undef A•t/m orOe maximum value of H (units depend on units selection). See Magnetic Hysteresis for more details.bsat undef T or G value of B at saturation (unitsdepend on units selection). SeeMagnetic Hysteresis for moredetails.hsat undef A•t/m orOe value of H at saturation; must be less than hmax (units depend on units selection). See Magnetic Hysteresis for more details.br undef T or G residual B (units depend onunits selection). See MagneticHysteresis for more details.hc undef A•t/m orOe coercive force (units depend on units selection). See Magnetic Hysteresis for more details.ptemp 27°C temperature at which model arguments are defined tau 0s time constant for B vs. H frequency dependence. taulimsfrequency dependence limit (taulim should be specified as much less than tau )ja_model[*][()]—grouping of Jiles-Atherton arguments (used only if matl and model are undefined) a undef —shape argument alpha undef —mean field argument c undef —domain wall flexing constant k undef —domain wall pinning constant ms undef A/m magnetization saturation ptemp 27°C temperature for a , alpha , c , k , and mstau 0s time constant for B vs. H frequency dependencetaulimsfrequency dependence limit (taulim should be specified as much less than tau )Name DefaultUnits/Valu esDescriptioncorenlcorenl Stress ArgumentsStress arguments are intended for use with the stress analysis, which is a part of the InSpecs Stress Analysis Option.DescriptionName Default Units/Valuesbmax undef T maximum flux densitytjmax undef°C maximum internal temperaturetjmin undef°C minimum internal temperaturepdmax_ja undef W maximum power dissipationwith rth_japdmax_jc undef W maximum power dissipationwith rth_jc and rth_hscorenl Post Processing InformationThe variables in the following table are available forpost-processing. You can specify them in a signal list or asarguments to the extract command.Name Type Units Descriptionmmf val mmf A•t magnetomotive forcehin val hm A•t/m magnetic field strength of Hacross the magnetic input pins mtotal val mm A/m total magnetizationhg val hg Oersted magnetic field strength of H he val hm A•t/m effective internal H field (acomputational variable usedinternal to the template) mirr val mm A/m irreversible magnetizationcorenl Export Variablespwrd, tempj, f, b, bgThese are post-processing variables that can be referenced at the next higher level of the hierarchy . mrevval mm A/m reversible magnetization temp_case val tc °Ccase temperature rth_hs_tjm ax val rth °C/Wmaximum heat sink thermal resistance f val f Wbflux (see Export Variables )b var bsi Teslamagnetic field density (see Export Variables )bg val bg Gaussmagnetic field density of B (see Export Variables )pwrd val p W instantaneous powerdissipation (see ExportVariables )tempj val tc °Cinstantaneous junctiontemperature (see ExportVariables )Name Type Units Descriptioncorenlcorenl External Parameterstemp, include_stressThese are global parameters declared in header.sin. You can assign values to them for an instance of this template (such as in a netlist) without affecting their global values in the rest of your design. For example, the following netlist statement allows you to change the simulation temperature to 58°C for corenl.e1 only: corenl.e1 b 0 = len=3e-2, area=6e-5, model=[(ui=2700,uhc=6000, bmax=4800, hmax=15, bsat=4500, hsat=2.5,br=1000, hc=0.2, ptemp=20, tau=50n), (ui=2100, uhc=4300, bmax=3600, hmax=15, bsat=3300, hsat=2.0, br=900, hc=0.2, ptemp=100, tau=50n)], units=gauss, temp=58corenl Model Description (the Jiles-Atherton Model) Hysteretic magnetization is characterized by the classic B-H curve described in the Magnetic Fundamentals topic Hysteresis. A basic simulation problem presented by hysteresis is that there is not a unique value of B for any given value of H.Anhysteretic magnetization provides a method for selecting a unique value of B for a given value of H. The principal uses of the anhysteretic value of B are:•to provide initial point values for B in a DC analysis•to provide an equilibrium point for a transient analysisThe Jiles-Atherton model (see the References) provides a workable characterization of anhysteretic magnetization. It consists of a mathematical approach to the theoretical anhysteretic behavior of a core material, given a few basic input arguments for the material. The J-A model derives both the anhysteretic characteristic and the major hysteresis loop for a given material. This procedure has been found to compare favorably with experimental results for many ferromagnetic materials.Since the value of B at time t is a function not only of the value of H at time t, but also of the initial values of H and B, this means that B 0 can assume any value within the hysteresis envelope, leading to a significant problem in a DC analysis. Even if H = 0 at t 0, B 0 can still lie anywhere between -B res and +B res , as shown in the following figure. Although selecting B 0 = 0 seems like a reasonable value, it can be grossly inaccurate if ⏐H 0⏐ is large. HB0+B res-B resEnvelope for values of B0Anhysteretic magnetization provides a more accurate method for selecting a unique value of B for a given value of H. This value of B lies between the upper and lower limits determined by the given value of H on the B-H curve. The principal advantage in using the anhysteretic value of magnetization is that it determines the same value of B for a given value of H regardless of whether H isincreasing or decreasing. This means there is no hysteresis—hence the name anhysteretic.The following equation describes the anhysteretic characteristic of a given material:M an = M s ·(coth[H eff /A] - A/H eff )where:H eff = H + α·M anM an = anhysteretic magnetizationcorenlHeff= effective magnetic field strengthMs= saturation magnetizationA = shape argument for magnetizationα = mean field argument for interdomain couplingThe J-A model represents the anhysteretic magnetization of a material as a state of magnetic equilibrium. This is an optimum configuration of magnetic characteristics, corresponding to a point of minimum internal energy.The curve for the anhysteretic level lies between the upper and lower curves of the major hysteresis loop and passes through the origin, as illustrated in the following figure.BHAnhysteretic magnetization levelThe most significant advantage of this curve is that it provides acontinuum of reasonable single values for Bfor arbitrary values ofH0. The corenl templates allows the selection of a value of Bthatdiffers from the anhystereticvalue, if desired: however, this is not generally recommended.This state of anhysteretic magnetization is represented by a value of magnetization, Man(which is related to flux density B) and lies between upper and lower hysteretic values of M (corresponding to upper and lower limits for values of B). The J-A model specifies atendency for these hysteretic values of M (M ≠ Man ) to approach Man.corenl Usage NotesIf the device is operating without a heat sink, use pdmax_ja for the power dissipation rating and rth_ja for the thermal resistance (rth_ja must be specified if you want the device temperature rise calculated).If the device is operating with a heat sink, use pdmax_jc for the power dissipation rating and a combination of rth_jc and rth_hs for the thermal resistance.This template is principally used as a “building block” template in conjunction with the wind template. There are threemutually-exclusive ways to specify characteristics of the corenl template:•The model argument allows you to specify values for permeability, flux density, field strength, and coercive force atone or more temperatures. You must specify values for eachargument contained within model.•The ja_model argument allows you to specify values for Jiles-Atherton arguments (which are less commonlyavailable).•The matl argument allows you to specify a string for a commercially-available core material. The library of modelsfor core materials contains characterization data for ferritecores, silicon-iron laminate cores, and permalloy cores (seecorenlcorenl References).Material Manufacturer Name String Name Ferrite Philips Components 3B7"3B7"Philips Components 3B9"3B9"Philips Components 3C6A"3C6A"Philips Components 3C8"3C8"Philips Components 3C85"3C85"Philips Components 3D3"3D3"Philips Components 3E2A"3E2A"Philips Components 3E5"3E5"Philips Components 3F3"3F3"Philips Components 4C4"4C4"Silicon-Iron Laminate Magnetic Metals 3% SiliconIron, 1 50 EI“si_re”Square Permalloy Magnetics Square Permalloy80, 50 038 5d“sq_perm_80”Specifying a value for matl overrides the values for model, and ja_model is used only if matl and model are undefined.corenl Netlist ExamplesThis example uses model to specify characteristics at two different temperatures (i.e., two values of ptemp), and specifies a value for the external parameter temp.corenl.e1 b 0 = len=3e-2, area=6e-5, model=[(ui=2700,uhc=6000, bmax=4800, hmax=15, bsat=4500, hsat=2.5,br=1000, hc=0.2, ptemp=20, tau=50n), (ui=2100, uhc=4300, bmax=3600, hmax=15, bsat=3300, hsat=2.0, br=900, hc=0.2, ptemp=100, tau=50n)], units=gauss, temp=58This example uses matl to specify a predefined,commercially-available core material.corenl.e2 c 0 = len=2.8e-2, area=5.9e-5, matl="3c8",tempc=37corenl Additional ExamplesListed below are different ways to specify a core model by changing the netlist entry, with a brief explanation of why each is useful. Refer to Section 3.4 of the MAST Reference Manual for more information on using the operators (.. -> and <-).•If all desired arguments are listed (the simplest specification for a core), use the following:corenl.e3 wb 0 = len=3e-2, area=6e-5,model=[(ui=2700, uhc=6000, bmax=4800, hmax=15,bsat=4500, hsat=2.5, br=1000, hc=0.2, ptemp=20,tau=50n)], tempc=60, units=gauss•If referring to a model specification in more than one netlist entry (useful where several cores will share the same model orsimilar models), use the following:corenl..model fred = [(ui=2700, uhc=6000,bma x=4800, hma x=15, bsa t=4500, hsa t=2.5, br=1000,hc=0.2, ptemp=20, tau=50n)]This example defines the fred model, and must appear beforecorenl any core that refers to it. The related example below uses thefred model with a length of 2 cm and an area of 0.5 cm2.corenl.e4 wb 0 = len=2e-2, area=5e-5, model=fred •If one model references another model (useful if a new model is similar to another model), use the following:corenl..ja_model duff = [(a=8.366, alpha=-100.8u,c=0.4500, k=14.2, ms=380777, ptemp=20, tau=600n,taulim=50n)]The duff model defined above is used with a length of 2 cmand an area of 0.5 cm2 as follows:corenl.e5 wb 0 = len=2e-2, area=5e-5,ja_model=duffcorenl References1.Soft Ferrite Cores Short Form Catalog, Philips Components,Magnetic Products Group, Saugerties, NY.2.Colonel William T. McLyman, Magnetic Core Selection forTransformers and Inductors, Marcel Dekker Inc., 1982.3.Tape Wound Cores Design Manual, TWC-400, Magnetics,Division of Sprang and Company, 900 E. Butler Road, Butler,PA, 16003.D.C.4.Jiles and D.L. Atherton, Theory of Ferromagnetic Hysteresis,Journal of Magnetism and Magnetic Materials, Vol. 61,1986.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

corenl corenl (Nonlinear Magnetic Core with Temperature Dependence)Associated Symbols:corenlLicense Requirements:OPT_TEMPLATE_LIBPart Category:Magnetic TemplatesRelated Topics:Introduction to Magnetic TemplatesMagnetic Core Characterization Toolcore - linear magnetic corecorenl2 - nonlinear magnetic core with hysteresiswind - windingFunctional DescriptionThe corenl template models a nonlinear magnetic core (note the magnetic connection points). It is normally used with the windtemplate to model an inductor or a transformer in an electricalcircuit. Because of the proprietary information of the Jiles-Atherton model, this template is encrypted so you can’t read it past theargument declarations (see Model Arguments).Template Description SectionsConnection PointsSymbol PropertiesModel ArgumentsStress ArgumentsPost-Processing InformationExport VariablesExternal ParametersModel DescriptionUsage NotesNetlist ExamplesAdditional ExamplesReferencescorenl Connection PointsName Type Descriptionp magnetic positive end of core m magnetic negative end of corecorenlp mNonlinear magnetic core (corenl)corenl corenl Symbol PropertiesPropertyprimitive Description:This symbol calls the templatecorenl, which models a nonlinearmagnetic core. It is normally usedwith the wind template to function asan inductor or a transformer in anelectrical circuit. You must specifyeither a string value for the argumentmatl or specify numeric values for allthe other model arguments exceptptemp and tau. Specifying a value formatl overrides the values for model.Matl is a string specifying acommercially available core material;model allows you to specify a group ofcore characteristics at as manydifferent temperatures (ptemp) asdesired.ref Description:Suffix appended to a template namethat uniquely identifies a part in aschematic.Default:If not specified, will be assigned bythe schematic capture toolExampleInput:Can be any alpha-numeric string len Description:Magnetic path lengthDefault (units):Value required (m)ExampleInput:1.27marea Description:Cross-sectional area of magnetic pathDefault (units):Value required (m2)ExampleInput:5.9e-5matl Description:Core material name (from library).This overrides the saber_modelproperty. See Usage Notes.Default (units):none (—)Example Input:“3c8” (Note that the quotation marks are required.)sf Description:Stacking factor adjustment to area ina laminated core. This is the ratio ofarea that is magnetically active.Default (units):1 (—)Example Input:1Propertycorenl saber_model Description:saber_model automatically maps tothe template argument model, whichis a grouping of ten B vs H modelarguments defining a material at aspecified temperature (ptemp).Default (units):none (—)Example Input:[(ptemp=27,ui=2700,hc=0.2, uhc=6000,br=1000,hsat=2.5, bsa t=4500,hma x=15, bma x=4800, tau=0.6u,taulim=50n),(ptemp=100,ui=2100,hc=0.2, uhc=4300,br=900,hsat=2.0, bsat=3300,hmax=15,bmax=3600, tau=0.6u,taulim=50n)]ja_model Description:Jiles-Atherton model arguments, usedonly if matl and saber_model areundefined.Default (units):none (—)b0Description:Initial flux density (B) in addition toanhysteretic. Units depend on unitsselection.Default (units):0(G if units=gauss; T if units=si)Example Input:0Propertytempc Description:Core model temperatureDefault (units):undef (°C)ExampleInput:37units Description:System of units for nonlinearmagnetic properties saber_modeland b0.Default (units):gauss (—)Values:gausssiExampleInput:sigeo_units Description:Allows the geometry units (len,area) to be specified in inch, meter, orcm.Default (units):meter (—)ExampleInput:cmtemp Description:Ambient temperature for temperatureeffects (see External Parameters).Default (units):27 (°C)Example Input:32Propertycorenl ratings Description:Structure of maximum ratings for thisdevice.Default (units):Available stress ratings for this model are: pdmax_ja, pdmax_jc, tjmax, tjmin, bmax. All values are set to undef by default (see Usage Notes).Example Input:(bmax=5k,pdmax_ja=.25,tjmax=1 50)rth_ja Description:Thermal resistance from junction toambient (see Usage Notes).Default (units):undef (°C/W)ExampleInput:0.2rth_jc Description:Thermal resistance from junction tocase (see Usage Notes).Default (units):undef (°C/W)ExampleInput:0.2rth_hs Description:Thermal resistance of an externalheat sink (see Usage Notes).Default (units):undef (°C/W)Example Input:0.2Propertypart_type Description:Part type string. Limited to 9characters.Default (units):mag core (—)ExampleInput:nonlin corepart_class Description:Part class string. Limited to 18characters.Default (units):nonlin generic (—)ExampleInput:componentinclude_ stress Description: A flag to allow stress analysis in thenetlisted template (see ExternalParameters).Default(units):1(—)ExampleInput:To turn off stress measurement:include_stress=0Propertycorenl corenl Model ArgumentsName Default Units/ValuesDescriptionmodel undef— a grouping of ten B vs H modelarguments defining a material ata specified temperature (ptemp)ui undef—initial relative permeabilityuhc undef—relative permeability at coercivelevel of H (hc). See MagneticHysteresis for more details.bmax undef T or G maximum value of B (unitsdepend on units selection). SeeMagnetic Hysteresis for moredetails.hmax undef A•t/m orOe maximum value of H (units depend on units selection). See Magnetic Hysteresis for more details.bsat undef T or G value of B at saturation (unitsdepend on units selection). SeeMagnetic Hysteresis for moredetails.hsat undef A•t/m orOe value of H at saturation; must be less than hmax (units depend on units selection). See Magnetic Hysteresis for more details.br undef T or G residual B (units depend onunits selection). See MagneticHysteresis for more details.hc undef A•t/m orOe coercive force (units depend on units selection). See Magnetic Hysteresis for more details.ptemp 27°C temperature at which model arguments are defined tau 0s time constant for B vs. H frequency dependence. taulimsfrequency dependence limit (taulim should be specified as much less than tau )ja_model[*][()]—grouping of Jiles-Atherton arguments (used only if matl and model are undefined) a undef —shape argument alpha undef —mean field argument c undef —domain wall flexing constant k undef —domain wall pinning constant ms undef A/m magnetization saturation ptemp 27°C temperature for a , alpha , c , k , and mstau 0s time constant for B vs. H frequency dependencetaulimsfrequency dependence limit (taulim should be specified as much less than tau )Name DefaultUnits/Valu esDescriptioncorenlcorenl Stress ArgumentsStress arguments are intended for use with the stress analysis, which is a part of the InSpecs Stress Analysis Option.DescriptionName Default Units/Valuesbmax undef T maximum flux densitytjmax undef°C maximum internal temperaturetjmin undef°C minimum internal temperaturepdmax_ja undef W maximum power dissipationwith rth_japdmax_jc undef W maximum power dissipationwith rth_jc and rth_hscorenl Post Processing InformationThe variables in the following table are available forpost-processing. You can specify them in a signal list or asarguments to the extract command.Name Type Units Descriptionmmf val mmf A•t magnetomotive forcehin val hm A•t/m magnetic field strength of Hacross the magnetic input pins mtotal val mm A/m total magnetizationhg val hg Oersted magnetic field strength of H he val hm A•t/m effective internal H field (acomputational variable usedinternal to the template) mirr val mm A/m irreversible magnetizationcorenl Export Variablespwrd, tempj, f, b, bgThese are post-processing variables that can be referenced at the next higher level of the hierarchy . mrevval mm A/m reversible magnetization temp_case val tc °Ccase temperature rth_hs_tjm ax val rth °C/Wmaximum heat sink thermal resistance f val f Wbflux (see Export Variables )b var bsi Teslamagnetic field density (see Export Variables )bg val bg Gaussmagnetic field density of B (see Export Variables )pwrd val p W instantaneous powerdissipation (see ExportVariables )tempj val tc °Cinstantaneous junctiontemperature (see ExportVariables )Name Type Units Descriptioncorenlcorenl External Parameterstemp, include_stressThese are global parameters declared in header.sin. You can assign values to them for an instance of this template (such as in a netlist) without affecting their global values in the rest of your design. For example, the following netlist statement allows you to change the simulation temperature to 58°C for corenl.e1 only: corenl.e1 b 0 = len=3e-2, area=6e-5, model=[(ui=2700,uhc=6000, bmax=4800, hmax=15, bsat=4500, hsat=2.5,br=1000, hc=0.2, ptemp=20, tau=50n), (ui=2100, uhc=4300, bmax=3600, hmax=15, bsat=3300, hsat=2.0, br=900, hc=0.2, ptemp=100, tau=50n)], units=gauss, temp=58corenl Model Description (the Jiles-Atherton Model) Hysteretic magnetization is characterized by the classic B-H curve described in the Magnetic Fundamentals topic Hysteresis. A basic simulation problem presented by hysteresis is that there is not a unique value of B for any given value of H.Anhysteretic magnetization provides a method for selecting a unique value of B for a given value of H. The principal uses of the anhysteretic value of B are:•to provide initial point values for B in a DC analysis•to provide an equilibrium point for a transient analysisThe Jiles-Atherton model (see the References) provides a workable characterization of anhysteretic magnetization. It consists of a mathematical approach to the theoretical anhysteretic behavior of a core material, given a few basic input arguments for the material. The J-A model derives both the anhysteretic characteristic and the major hysteresis loop for a given material. This procedure has been found to compare favorably with experimental results for many ferromagnetic materials.Since the value of B at time t is a function not only of the value of H at time t, but also of the initial values of H and B, this means that B 0 can assume any value within the hysteresis envelope, leading to a significant problem in a DC analysis. Even if H = 0 at t 0, B 0 can still lie anywhere between -B res and +B res , as shown in the following figure. Although selecting B 0 = 0 seems like a reasonable value, it can be grossly inaccurate if ⏐H 0⏐ is large. HB0+B res-B resEnvelope for values of B0Anhysteretic magnetization provides a more accurate method for selecting a unique value of B for a given value of H. This value of B lies between the upper and lower limits determined by the given value of H on the B-H curve. The principal advantage in using the anhysteretic value of magnetization is that it determines the same value of B for a given value of H regardless of whether H isincreasing or decreasing. This means there is no hysteresis—hence the name anhysteretic.The following equation describes the anhysteretic characteristic of a given material:M an = M s ·(coth[H eff /A] - A/H eff )where:H eff = H + α·M anM an = anhysteretic magnetizationcorenlHeff= effective magnetic field strengthMs= saturation magnetizationA = shape argument for magnetizationα = mean field argument for interdomain couplingThe J-A model represents the anhysteretic magnetization of a material as a state of magnetic equilibrium. This is an optimum configuration of magnetic characteristics, corresponding to a point of minimum internal energy.The curve for the anhysteretic level lies between the upper and lower curves of the major hysteresis loop and passes through the origin, as illustrated in the following figure.BHAnhysteretic magnetization levelThe most significant advantage of this curve is that it provides acontinuum of reasonable single values for Bfor arbitrary values ofH0. The corenl templates allows the selection of a value of Bthatdiffers from the anhystereticvalue, if desired: however, this is not generally recommended.This state of anhysteretic magnetization is represented by a value of magnetization, Man(which is related to flux density B) and lies between upper and lower hysteretic values of M (corresponding to upper and lower limits for values of B). The J-A model specifies atendency for these hysteretic values of M (M ≠ Man ) to approach Man.corenl Usage NotesIf the device is operating without a heat sink, use pdmax_ja for the power dissipation rating and rth_ja for the thermal resistance (rth_ja must be specified if you want the device temperature rise calculated).If the device is operating with a heat sink, use pdmax_jc for the power dissipation rating and a combination of rth_jc and rth_hs for the thermal resistance.This template is principally used as a “building block” template in conjunction with the wind template. There are threemutually-exclusive ways to specify characteristics of the corenl template:•The model argument allows you to specify values for permeability, flux density, field strength, and coercive force atone or more temperatures. You must specify values for eachargument contained within model.•The ja_model argument allows you to specify values for Jiles-Atherton arguments (which are less commonlyavailable).•The matl argument allows you to specify a string for a commercially-available core material. The library of modelsfor core materials contains characterization data for ferritecores, silicon-iron laminate cores, and permalloy cores (seecorenlcorenl References).Material Manufacturer Name String Name Ferrite Philips Components 3B7"3B7"Philips Components 3B9"3B9"Philips Components 3C6A"3C6A"Philips Components 3C8"3C8"Philips Components 3C85"3C85"Philips Components 3D3"3D3"Philips Components 3E2A"3E2A"Philips Components 3E5"3E5"Philips Components 3F3"3F3"Philips Components 4C4"4C4"Silicon-Iron Laminate Magnetic Metals 3% SiliconIron, 1 50 EI“si_re”Square Permalloy Magnetics Square Permalloy80, 50 038 5d“sq_perm_80”Specifying a value for matl overrides the values for model, and ja_model is used only if matl and model are undefined.corenl Netlist ExamplesThis example uses model to specify characteristics at two different temperatures (i.e., two values of ptemp), and specifies a value for the external parameter temp.corenl.e1 b 0 = len=3e-2, area=6e-5, model=[(ui=2700,uhc=6000, bmax=4800, hmax=15, bsat=4500, hsat=2.5,br=1000, hc=0.2, ptemp=20, tau=50n), (ui=2100, uhc=4300, bmax=3600, hmax=15, bsat=3300, hsat=2.0, br=900, hc=0.2, ptemp=100, tau=50n)], units=gauss, temp=58This example uses matl to specify a predefined,commercially-available core material.corenl.e2 c 0 = len=2.8e-2, area=5.9e-5, matl="3c8",tempc=37corenl Additional ExamplesListed below are different ways to specify a core model by changing the netlist entry, with a brief explanation of why each is useful. Refer to Section 3.4 of the MAST Reference Manual for more information on using the operators (.. -> and <-).•If all desired arguments are listed (the simplest specification for a core), use the following:corenl.e3 wb 0 = len=3e-2, area=6e-5,model=[(ui=2700, uhc=6000, bmax=4800, hmax=15,bsat=4500, hsat=2.5, br=1000, hc=0.2, ptemp=20,tau=50n)], tempc=60, units=gauss•If referring to a model specification in more than one netlist entry (useful where several cores will share the same model orsimilar models), use the following:corenl..model fred = [(ui=2700, uhc=6000,bma x=4800, hma x=15, bsa t=4500, hsa t=2.5, br=1000,hc=0.2, ptemp=20, tau=50n)]This example defines the fred model, and must appear beforecorenl any core that refers to it. The related example below uses thefred model with a length of 2 cm and an area of 0.5 cm2.corenl.e4 wb 0 = len=2e-2, area=5e-5, model=fred •If one model references another model (useful if a new model is similar to another model), use the following:corenl..ja_model duff = [(a=8.366, alpha=-100.8u,c=0.4500, k=14.2, ms=380777, ptemp=20, tau=600n,taulim=50n)]The duff model defined above is used with a length of 2 cmand an area of 0.5 cm2 as follows:corenl.e5 wb 0 = len=2e-2, area=5e-5,ja_model=duffcorenl References1.Soft Ferrite Cores Short Form Catalog, Philips Components,Magnetic Products Group, Saugerties, NY.2.Colonel William T. McLyman, Magnetic Core Selection forTransformers and Inductors, Marcel Dekker Inc., 1982.3.Tape Wound Cores Design Manual, TWC-400, Magnetics,Division of Sprang and Company, 900 E. Butler Road, Butler,PA, 16003.D.C.4.Jiles and D.L. Atherton, Theory of Ferromagnetic Hysteresis,Journal of Magnetism and Magnetic Materials, Vol. 61,1986.。

相关文档
最新文档