陕西省西安市中考数学试卷

合集下载

2022年陕西省中考数学试卷(a卷)(解析版)

2022年陕西省中考数学试卷(a卷)(解析版)

2022年陕西省中考数学试卷(A卷)(真题)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)(2022•陕西)﹣37的相反数是()A.﹣37 B.37 C.D.2.(3分)(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°3.(3分)(2022•陕西)计算:2x•(﹣3x2y3)=()A.6x3y3B.﹣6x2y3C.﹣6x3y3D.18x3y34.(3分)(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AC B.AC⊥BD C.AB=AD D.AC=BD 5.(3分)(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为()A.3B.3C.3D.66.(3分)(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m 相交于点P(3,n),则关于x,y的方程组的解为()A.B.C.D.7.(3分)(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°8.(3分)(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1二、填空题(共5小题,每小题3分,计15分)9.(3分)(2022•陕西)计算:3﹣=.10.(3分)(2022•陕西)实数a,b在数轴上对应点的位置如图所示,则a﹣b.(填“>”“=”或“<”)11.(3分)(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB 的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为米.12.(3分)(2022•陕西)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为.13.(3分)(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)(2022•陕西)计算:5×(﹣3)+|﹣|﹣()0.15.(5分)(2022•陕西)解不等式组:.16.(5分)(2022•陕西)化简:(+1)÷.17.(5分)(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)18.(5分)(2022•陕西)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.19.(5分)(2022•陕西)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是;(2)请在图中画出△A'B'C'.20.(5分)(2022•陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.21.(6分)(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.22.(7分)(2022•陕西)如图,是一个“函数求值机”的示意图,其中y是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6 ﹣4 ﹣2 0 2 …输出y…﹣6 ﹣2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.23.(7分)(2022•陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60 8 50B60≤t<90 16 75C90≤t<120 40 105D t≥120 36 150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.24.(8分)(2022•陕西)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.25.(8分)(2022•陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O 垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.26.(10分)(2022•陕西)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.2022年陕西省中考数学试卷(A卷)参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)(2022•陕西)﹣37的相反数是()A.﹣37 B.37 C.D.【分析】根据相反数的意义即可得到结论.【解答】解:﹣37的相反数是﹣(﹣37)=37,故选:B.【点评】本题主要考查了相反数,熟记相反数的定义是解决问题的关键.2.(3分)(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.【点评】本题考查的是平行线的判定和性质,掌握平行线的性质是解题的关键.3.(3分)(2022•陕西)计算:2x•(﹣3x2y3)=()A.6x3y3B.﹣6x2y3C.﹣6x3y3D.18x3y3【分析】单项式乘以单项式,首先系数乘以系数,然后相同字母相乘,最后只在一个单项式含有的字母照写.【解答】解:原式=2×(﹣3)x1+2y3=﹣6x3y3.故选:C.【点评】本题主要考查了单项式乘单项式,解决本题的关键是掌握单项式乘单项式法则.4.(3分)(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AC B.AC⊥BD C.AB=AD D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A、▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项A不符合题意;B、∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C、∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项C不符合题意;D、∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟练掌握矩形的判定和菱形的判定是解题的关键.5.(3分)(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为()A.3B.3C.3D.6【分析】利用三角函数求出AD=6,在Rt△ABD中,利用勾股定理可得AB的长.【解答】解:∵2CD=6,∴CD=3,∵tan C=2,∴=2,∴AD=6,在Rt△ABD中,由勾股定理得,AB=,故选:D.【点评】本题主要考查了解直角三角形,勾股定理等知识,熟练掌握三角函数的定义是解题的关键.6.(3分)(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m 相交于点P(3,n),则关于x,y的方程组的解为()A.B.C.D.【分析】先将点P代入y=﹣x+4,求出n,即可确定方程组的解.【解答】解:将点P(3,n)代入y=﹣x+4,得n=﹣3+4=1,∴P(3,1),∴关于x,y的方程组的解为,故选:C.【点评】本题考查了一次函数与二元一次方程组的关系,求出两直线的交点坐标是解题的关键.7.(3分)(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB =()A.44°B.45°C.54°D.67°【分析】根据圆周角定理可得∠AOB的度数,再进一步根据等腰三角形和三角形的内角和定理可求解.【解答】解:如图,连接OB,∵∠C=46°,∴∠AOB=2∠C=92°,∵OA=OB,∴∠OAB==44°.故选:A.【点评】此题综合运用了等腰三角形的性质,三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.8.(3分)(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1【分析】先求出抛物线的对称轴为直线x=1,由于﹣1<x1<0,1<x2<2,x3>3,于是根据二次函数的性质可判断y1,y2,y3的大小关系.【解答】解:抛物线的对称轴为直线x=﹣=1,∵﹣1<x1<0,1<x2<2,x3>3,而抛物线开口向上,∴y2<y1<y3.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.确定x1,x2,x3离对称轴的远近是解决本题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)(2022•陕西)计算:3﹣=﹣2 .【分析】首先利用算术平方根的定义化简,然后加减即可求解.【解答】解:原式=3﹣5=﹣2.故答案为:﹣2.【点评】本题主要考查了实数的运算,主要利用算术平方根的定义.10.(3分)(2022•陕西)实数a,b在数轴上对应点的位置如图所示,则a<﹣b.(填“>”“=”或“<”)【分析】根据正数大于0,0大于负数即可解答.【解答】解:∵b与﹣b互为相反数∴b与﹣b关于原点对称,即﹣b位于3和4之间∵a位于﹣b左侧,∴a<﹣b,故答案为:<.【点评】本题考查了有理数大小的比较,解决本题的关键是熟记正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小.11.(3分)(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB 的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为﹣1+米.【分析】根据BE2=AE•AB,建立方程求解即可.【解答】解:∵BE2=AE•AB,设BE=x,则AE=(2﹣x),∵AB=2,∴x2=2(2﹣x),即x2+2x﹣4=0,解得:x1=﹣1,x2=﹣1﹣(舍去),∴线段BE的长为(﹣1+)米.故答案为:﹣1+.【点评】本题主要考查了黄金分割,熟练掌握线段之间的关系列出方程是解决本题的关键.12.(3分)(2022•陕西)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为y=﹣.【分析】根据轴对称的性质得出点A'(2,m),代入y=x求得m=1,由点A(﹣2,1)在一个反比例函数的图象上,从而求得反比例函数的解析式.【解答】解:∵点A'与点A关于y轴对称,点A(﹣2,m),∴点A'(2,m),∵点A'在正比例函数y=x的图象上,∴m==1,∴A(﹣2,1),∵点A(﹣2,1)在一个反比例函数的图象上,∴反比例函数的表达式为y=﹣,故答案为:y=﹣.【点评】本题考查了一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,求得A的坐标是解题的关键.13.(3分)(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.【分析】连接AC交BD于O,根据菱形的性质得到BD⊥AC,OB=OD=,OA =OC,根据勾股定理求出OA,证明△DEM∽△DOA,根据相似三角形的性质列出比例式,用含AM的代数式表示ME、NF,计算即可.【解答】解:连接AC交BD于O,∵四边形ABCD为菱形,∴BD⊥AC,OB=OD=,OA=OC,由勾股定理得:OA===,∵ME⊥BD,AO⊥BD,∴ME∥AO,∴△DEM∽△DOA,∴=,即=,解得:ME=,同理可得:NF=,∴ME+NF=,故答案为:.【点评】本题考查的是相似三角形的判定和性质、菱形的性质、勾股定理,掌握相似三角形的判定定理是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)(2022•陕西)计算:5×(﹣3)+|﹣|﹣()0.【分析】根据有理数混合运算法则计算即可.【解答】解:5×(﹣3)+|﹣|﹣()0=﹣15+﹣1=﹣16+.【点评】此题考查了有理数的混合运算,零指数幂,熟练掌握有理数混合运算的法则是解题的关键.15.(5分)(2022•陕西)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x+2>﹣1,得:x>﹣3,由x﹣5≤3(x﹣1),得:x≥﹣1,则不等式组的解集为x≥﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(5分)(2022•陕西)化简:(+1)÷.【分析】根据分式混合运算的法则计算即可.【解答】解:(+1)÷=•==a+1.【点评】本题考查了分式混合运算,熟练掌握运算法则是解题的关键.17.(5分)(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)【分析】利用尺规作图作出∠ACD的平分线,得到射线CP.【解答】解:如图,射线CP即为所求.【点评】本题考查的是尺规作图、平行线的判定,能够利用基本尺规作图作出已知角的角平分线是解题的关键.18.(5分)(2022•陕西)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.【点评】本题主要考查了平行线的性质,全等三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.19.(5分)(2022•陕西)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是 4 ;(2)请在图中画出△A'B'C'.【分析】(1)根据两点间的距离公式即可得到结论;(2)根据平移的性质作出图形即可.【解答】解:(1)∵A(﹣2,3),A'(2,3),∴点A、A'之间的距离是2﹣(﹣2)=4,故答案为:4;(2)如图所示,△A'B'C'即为所求.【点评】本题考查作图﹣平移变换,解题的关键是掌握平移变换的性质.20.(5分)(2022•陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种,再由概率公式求解即可.【解答】解:(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是,故答案为:;(2)画树状图如下:共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种,∴所选两个纸箱里西瓜的重量之和为15kg的概率为=.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.【分析】先证明△AOD∽△EFG,列比例式可得AO的长,再证明△BOC∽△AOD,可得OB的长,最后由线段的差可得结论.【解答】解:∵AD∥EG,∴∠ADO=∠EGF,∵∠AOD=∠EFG=90°,∴△AOD∽△EFG,∴=,即=,∴AO=15,同理得△BOC∽△AOD,∴=,即=,∴BO=12,∴AB=AO﹣BO=15﹣12=3(米),答:旗杆的高AB是3米.【点评】本题考查相似三角形的判定与性质等知识,解题的关键掌握相似三角形的判定,属于中考常考题型.22.(7分)(2022•陕西)如图,是一个“函数求值机”的示意图,其中y是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6 ﹣4 ﹣2 0 2 …输出y…﹣6 ﹣2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为8 ;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.【分析】(1)把x=1代入y=8x,即可得到结论;(2)将(﹣2,2)(0,6)代入y=kx+b解方程即可得到结论;(3)解方程即可得到结论.【解答】解:(1)当输入的x值为1时,输出的y值为y=8x=8×1=8,故答案为:8;(2)将(﹣2,2)(0,6)代入y=kx+b得,解得;(3)令y=0,由y=8x得0=8x,∴x=0<1(舍去),由y=2x+6,得0=2x+6,∴x=﹣3<1,∴输出的y值为0时,输入的x值为﹣3.【点评】本题考查了待定系数法求一次函数的解析式,函数值,正确地求得函数的解析式是解题的关键.23.(7分)(2022•陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60 8 50B60≤t<90 16 75C90≤t<120 40 105D t≥120 36 150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在C组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.【分析】(1)利用中位数的定义解答即可;(2)根据平均数的定义解答即可;(3)用样本估计总体即可.【解答】解:(1)(2)把100名学生的“劳动时间”从小到大排列,排在中间的两个数均在C组,故这100名学生的“劳动时间”的中位数落在C组,故答案为:C;(2)=×(50×8+75×16+105×40+105×36)=112(分钟),答:这100名学生的平均“劳动时间”为112分钟;(3)1200×=912(人),答:估计在该校学生中,“劳动时间”不少于90分钟的人数为912人.【点评】本题考查了频数(率)分布表.从频数(率)分布表中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.24.(8分)(2022•陕西)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.【分析】(1)根据平行线的判定和切线的性质解答即可;(2)通过添加辅助线,构造出直角三角形,利用勾股定理和相似三角形的判定和性质解答即可.【解答】(1)证明:∵AM是⊙O的切线,∴∠BAM=90°,∵∠CEA=90°,∴AM∥CD,∴∠CDB=∠APB,∵∠CAB=∠CDB,∴∠CAB=∠APB.(2)解:如图,连接AD,∵AB是直径,∴∠CDB+∠ADC=90°,∵∠CAB+∠∠C=90°,∠CDB=∠CAB,∴∠ADC=∠C,∴AD=AC=8,∵AB=10,∴BD=6,∵∠BAD+∠DAP=90°,∠PAD+∠APD=90°,∴∠APB=∠DAB,∵∠BDA=∠BAP∴△ADB∽△PAB,∴=,∴PB===,∴DP=﹣6=.故答案为:.【点评】本题主要考查了切线的性质定理,勾股定理,相似三角形的判定和性质,熟练掌握这些性质定理是解题的关键.25.(8分)(2022•陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O 垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.【分析】(1)设抛物线的解析式为y=a(x﹣5)2+9,把(0,0)代入,可得a=﹣,即可解决问题;(2)把y=6,代入抛物线的解析式,解方程可得结论.【解答】解:(1)由题意抛物线的顶点P(5,9),∴可以假设抛物线的解析式为y=a(x﹣5)2+9,把(0,0)代入,可得a=﹣,∴抛物线的解析式为y=﹣(x﹣5)2+9;(2)令y=6,得﹣(x﹣5)2+9=6,解得x1=+5,x2=﹣+5,∴A(5﹣,6),B(5+,6).【点评】本题考查二次函数的应用,待定系数法,一元二次方程等知识,解题的关键是熟练掌握待定系数法,属于中考常考题型.26.(10分)(2022•陕西)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为75°.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.【分析】(1)根据等边三角形的性质得到AB=AC,∠BAC=60°,根据等腰三角形的三线合一得到∠PAC=30°,根据三角形内角和定理、等腰三角形的性质计算,得到答案;(2)连接PB,证明四边形PBCA为菱形,求出PB,解直角三角形求出BE、PE、OE,根据三角形的面积公式计算即可;(3)过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F,根据线段垂直平分线的性质得到PA=PF,根据等边三角形的性质得到∠PAF =60°,进而求出∠BAP=15°,根据要求判断即可.【解答】解:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵AD是等边△ABC的中线,∴∠PAC=∠BAC=30°,∵AP=AC,∴∠APC=×(180°﹣30°)=75°,故答案为:75°;(2)如图2,连接PB,∵AP∥BC,AP=BC,∴四边形PBCA为平行四边形,∵CA=CB,∴平行四边形PBCA为菱形,∴PB=AC=6,∠PBC=180°﹣∠C=60°,∴BE=PB•cos∠PBC=3,BE=PB•sin∠PBC=3,∵CA=CB,∠C=120°,∴∠ABC=30°,∴OE=BE•tan∠ABC=,∴S四边形OECA=S△ABC﹣S△OBE=×6×3﹣×3×=;(3)符合要求,理由如下:如图3,过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F,∵CA=CD,∠DAC=45°,∴∠ACD=90°,∴四边形FDCA为正方形,∵PE是CD的垂直平分线,∴PE是AF的垂直平分线,∴PF=PA,∵AP=AC,∴PF=PA=AF,∴△PAF为等边三角形,∴∠PAF=60°,∴∠BAP=60°﹣45°=15°,∴裁得的△ABP型部件符合要求.【点评】本题考查的是正方形的性质、菱形的性质、等腰三角形的性质、线段垂直平分线的性质,得出△PAF为等边三角形是解题的关键.。

2021年陕西省中考数学试卷(解析版)

2021年陕西省中考数学试卷(解析版)

2021年陕西省中考数学试卷(解析版)一、选择题(共8小题,每小题3分,计24分。

每小题只有一个选项是符合题意的)1.(3分)计算:3×(﹣2)=()A.1B.﹣1C.6D.﹣6【分析】根据有理数乘法法则进行运算.【解答】解:3×(﹣2)=﹣6.故选:D.【点评】本题考查有理数的乘法,熟练掌握有理数乘法法则是解题关键.2.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形的定义进行解答即可.【解答】解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.(3分)计算:(a3b)﹣2=()A.B.a6b2C.D.﹣2a3b【分析】直接利用负整数指数幂的性质分别化简得出答案.【解答】解:(a3b)﹣2==.故选:A.【点评】此题主要考查了负整数指数幂的性质以及积的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为()A.60°B.70°C.75°D.85°【分析】由三角形的内角和定义,可得∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,所以∠1=180°﹣(∠B+∠A+∠C),由此解答即可.【解答】解:∠∠1=∠B+∠ADB,∠ADB=∠A+∠C,∠∠1=180°﹣(∠B+∠A+∠C),∠∠1=180°﹣(25°+35°+50°),∠∠1=180°﹣110°,∠∠1=70°,故选:B.【点评】本题考查了三角形内角和定理和三角形外角性质,掌握这些知识点是解题的关键.5.(3分)在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为()A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC∠BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∠四边形ABCD是菱形,∠AO=CO,BO=DO,AC∠BD,∠ABD=∠ABC=30°,∠tan∠ABD=,∠,故选:D.【点评】本题考查了菱形的性质,锐角三角函数,掌握菱形的性质是解题的关键.6.(3分)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5B.5C.﹣6D.6【分析】根据平移的规律得到平移后抛物线的解析式为y=2(x+3)+m﹣1,然后把原点的坐标代入求值即可.【解答】解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,把(0,0)代入,得到:0=6+m﹣1,解得m=﹣5.故选:A.【点评】主要考查的是一次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式是解题的关键.7.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD∠BC,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm【分析】过B作BM∠AC于M,过D作DN∠CE于N,由等腰三角形的性质得到AM=CM=3,CN=EN,根据全等三角形判定证得∠BCM∠∠CDN,得到BM=CN,在Rt∠BCM中,根据勾股定理求出BM=4,进而求出.【解答】解:由题意知,AB=BC=CD=DE=5cm,AC=6cm,过B作BM∠AC于M,过D作DN∠CE于N,则∠BMC=∠CND=90°,AM=CM=AC=×6=3,CN=EN,∠CD∠BC,∠∠BCD=90°,∠∠BCM+∠CBM=∠BCM+∠DCN=90°,∠∠CBM=∠DCN,在∠BCM和∠CDN中,,∠∠BCM∠∠CDN(AAS),∠BM=CN,在Rt∠BCM中,∠BM=5,CM=3,∠BM===4,∠CN=4,∠CE=2CN=2×4=8,故选:D.【点评】本题主要考查了等腰三角形的性质和判定,等腰三角形的性质,勾股定理,正确作出辅助线,证得∠BCM∠∠CDN是解决问题的关键.8.(3分)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于﹣6D.当x>1时,y的值随x值的增大而增大【分析】设出二次函数的解析式,根据表中数据求出函数解析式即可判断.【解答】解:设二次函数的解析式为y=ax2+bx+c,由题知,解得,∠二次函数的解析式为y=x2﹣3x﹣4=(x﹣4)(x+1)=(x﹣)2﹣,∠(1)函数图象开口向上,(2)与x轴的交点为(4,0)和(﹣1,0),(3)当x=时,函数有最小值为﹣,(4)函数对称轴为直线x=,根据图象可知当当x>时,y的值随x值的增大而增大,故选:C.【点评】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)分解因式x3+6x2+9x=x(x+3)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=x(9+6x+x2)=x(x+3)2.故答案为x(x+3)2【点评】本题考查了因式分解,利用了提公因式法、十字相乘法分解因式,注意分解要彻底.10.(3分)正九边形一个内角的度数为140°.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.11.(3分)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+1=0+a﹣4,解得:a=﹣2.故答案为:﹣2.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(3分)若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1<y2.(填“>”、“=”或“<”)【分析】反比例函数的系数为﹣2<0,在每一个象限内,y随x的增大而增大.【解答】解:∠2m﹣1<0(m<),∠图象位于二、四象限,在每一个象限内,y随x的增大而增大,又∠0<1<3,∠y1<y2,故答案为:<.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.13.(3分)如图,正方形ABCD的边长为4,∠O的半径为1.若∠O在正方形ABCD内平移(∠O可以与该正方形的边相切),则点A到∠O上的点的距离的最大值为3+1.【分析】当∠O与CB、CD相切时,点A到∠O上的点Q的距离最大,如图,过O点作OE∠BC于E,OF∠CD 于F,根据切线的性质得到OE=OF=1,利用正方形的性质得到点O在AC上,然后计算出AQ的长即可.【解答】解:当∠O与CB、CD相切时,点A到∠O上的点Q的距离最大,如图,过O点作OE∠BC于E,OF∠CD于F,∠OE=OF=1,∠OC平分∠BCD,∠四边形ABCD为正方形,∠点O在AC上,∠AC=BC=4,OC=OE=,∠AQ=OA+OQ=4﹣+1=3+1,即点A到∠O上的点的距离的最大值为3+1,故答案为3+1.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了正方形的性质.三、解答题(共13小题,计18分。

西安中考数学考试试卷真题

西安中考数学考试试卷真题

西安中考数学考试试卷真题一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 3.1415926B. πC. 0.33333...D. √22. 如果一个角是直角的两倍,那么这个角的度数是多少?A. 30°B. 60°C. 90°D. 120°3. 一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π4. 以下哪个选项是正确的不等式?A. 3 > 5B. 2x < x + 3C. 4y ≥ 4yD. 5z ≤ 5z + 15. 一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 4D. 26. 一个长方体的长、宽、高分别是2米、3米、4米,它的体积是多少立方米?A. 8B. 12C. 24D. 367. 以下哪个选项是完全平方数?A. 15B. 16C. 17D. 198. 一个班级有40名学生,其中30名学生喜欢数学,那么不喜欢数学的学生占总人数的百分比是多少?A. 25%B. 30%C. 75%D. 50%9. 如果一个三角形的三个边长分别为3厘米、4厘米和5厘米,那么这个三角形是直角三角形吗?A. 是B. 不是10. 一个数的倒数是1/2,那么这个数是多少?A. 2B. 1/2C. 1D. 1/4二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的立方根是2,那么这个数是________。

12. 一个直角三角形的两条直角边分别为3厘米和4厘米,那么斜边的长度是________厘米。

13. 一个数的绝对值是5,那么这个数可以是________或________。

14. 如果a和b互为相反数,那么a+b的值是________。

15. 一个正方体的表面积是150平方厘米,那么它的边长是________厘米。

三、解答题(本题共3小题,每小题10分,共30分)16. 解释什么是勾股定理,并给出一个直角三角形的边长,证明勾股定理。

2024年陕西省西安市新城区中考模拟数学试题(解析版)

2024年陕西省西安市新城区中考模拟数学试题(解析版)

2024年陕西省西安市新城区中考数学模拟试卷一.选择题1. 下列各数中,最小的数是( )A. B. C. 0 D. 【答案】A【解析】【分析】本题主要考查了实数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大,其值越小进行求解即可.【详解】解:∵,∴∴四个数中,最小的数是,故选:A .2. 如图,直线,含有角的三角板的直角顶点O 在直线m 上,点A 在直线n 上,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查平行线的性质,过B 作,推出,由平行线的性质得到,,求出,即可得到.【详解】解:过B 作,∵,∴,∴,,∵,∴,5-3-5533-=>-=530-<-<<5-m n ∥45︒120∠=︒2∠15︒25︒35︒45︒BK m ∥BK n ∥120OBK ∠=∠=︒2ABK ∠=∠25ABK ABO OBK ∠=∠-∠=︒225∠=︒BK m ∥m n ∥BK n ∥120OBK ∠=∠=︒2ABK ∠=∠45ABO ∠=︒452025ABK ABO OBK ∠=∠-∠=︒-︒=︒∴.故选:B .3. 下列计算正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查积的乘方,合并同类项,同底数幂的乘法.利用积的乘方的法则,合并同类项的法则,同底数幂的乘法的法则对各项进行运算即可.【详解】解:A 、与不属于同类项,不能合并,故A 不符合题意;B 、,故B 符合题意;C 、,故C 不符合题意;D 、,故D 不符合题意;故选:B .4. 在平面直角坐标系中,点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据点A 横纵坐标符号判定即可.【详解】解:∵A (-2,3),-2<0,3>0,∴点A (-2,3)在第二象限,故选:B .【点睛】本题考查点所在象限,熟练掌握平面直角坐标系各象限内事业的坐标符号:第一象限(+,+),第二225ABK ∠=∠=︒235x x x +=2222x x x -=236()x x x⋅-=3251128x x ⎛⎫= ⎪⎝⎭2x 3x 2222x x x -=235()x x x ⋅-=-3261128x x ⎛⎫= ⎪⎝⎭()2,3A -象限(-,+),第三象限(-,-),第四象限(+,-)是解题的关键.5. 下列平面直角坐标系内的曲线中,既是中心对称图形,也是轴对称图形的是( )A. 三叶玫瑰线B. 四叶玫瑰线C. 心形线D. 笛卡尔叶形线【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意;故选B.【点睛】本题主要考查了轴对称图形和中心对称图形的识别,熟知二者的定义是解题的关键.6. 如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 经过两点有且只有一条直线D. 两点之间,线段最短【答案】C【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:因为“两点确定一条直线”,所以他在衣架两端各用一个钉子进行固定.故选:C .【点睛】本题考查是直线的性质,即两点确定一条直线.7. 茅洲河的治理,实现了水清、岸绿、景美.某工程队承担茅洲河某段3000米河道的清淤任务,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,,结果提前30天完成这一任务.设原计划每天完成x 米的清淤任务,则所列方程正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了分式方程的应用,找出等量关系是解答本题的关键.根据提前30天完成这一任务列方程即可.【详解】解:由题意,得.故选D .8. 如图,内接于,,的长为( )A. B. C. D. 【答案】B【解析】【分析】作的直径,连接,利用圆内接四边形的性质求得,得到,在中,求得半径,再根据弧长公式可得结论.的25%()3000300030125%x x +=+()3000300030125%x x +=-()3000300030125%x x =+-()3000300030125%x x =++()3000300030125%x x =++ABC O 120ABC ∠=︒AC =AC 43π83πO AD DC OC 、60D ∠=︒120AOC ∠=︒Rt ACD △【详解】解:作的直径,连接,如图,∵是的直径,∴.∵四边形内接于,,∴,∴,,∴,则,∵∴,∴,∴,∴劣弧的长为,故选:B .【点睛】此题主要考查了圆弧长公式,圆内接四边形、圆周角定理等知识,求出圆的半径是解答此题的关键.9. 已知点,在函数的图象上,当且时,都有,则的取值范围为( )A. B. C. D. 【答案】A【解析】【分析】先画出图像,根据图像可知当、时, ,则要想、则必有,求解即可.O AD DC OC 、AD O =90ACD ∠︒DABC O 120ABC ∠=︒18060D ABC ∠=︒-∠=︒30A ∠=︒120AOC ∠=︒2AD CD =222AD CD AC =+AC =(22212AD AD ⎛⎫=+ ⎪⎝⎭4=AD 122OA OC AD ===AC 120241803ππ⨯=()11M x y ,()22N x y ,|2|y x b =+123x x +>12x x <12y y <b 3b >-30b -<≤3b <03b ≤<1222x x b +=-12x x <12y y =12x x <12y y <1222x x b +>-【详解】当时,当时,当在左侧时,画出图象如上图由题意可知当、时, 要想、则必有∵∴∴当在右侧时,函数为增函数满足即可∵且∴即∴故选A .【点睛】本题考查了一次函数的图象及绝对值等知识点,熟练掌握上述知识点是解答本题的关键.10. 如图,菱形中,点E 是边的中点,垂直交的延长线于点F ,若,则菱形的边长是( )20x b +>2y x b=+20x b +<2y x b=--()11M x y ,2b x =-1222x x b +=-12x x <12y y =12x x <12y y <1222x x b +>-123x x +>322b-<3b >-()11M x y ,2b x =-12b x -<123x x +>12x x <132x ≥322b-<3b >-ABCD CD EF AB AB :1:2,BF CE EF ==ABCDA. 3B. 4C. 5D. 【答案】B【解析】【分析】过C 作CM ⊥AB 延长线于M ,根据设,由菱形的性质表示出BC =4x ,BM =3x ,根据勾股定理列方程计算即可.【详解】过C 作CM ⊥AB 延长线于M ,∵∴设∵点E 是边的中点∴∵菱形∴,CE ∥AB∵⊥,CM ⊥AB∴四边形EFMC 是矩形∴,∴BM =3x在Rt △BCM 中,∴,解得或(舍去)∴故选:B.:1:2BF CE =,2BF x CE x ==:1:2BF CE =,2BF x CE x==CD 24CD CE x==ABCD4CD BC x ==EFAB CM EF ==2MF CE x==222BM CM BC +=222(3)(4)x x +=1x ==1x -44CD x ==【点睛】本题考查了菱形的性质、矩形的判定与性质、勾股定理,关键在于熟悉各个知识点在本题的灵活运用.属于拔高题.11. 如图,扇形的圆心角是直角,半径为,C 为边上一点,将沿边折叠,圆心O 恰好落在弧上,则阴影部分面积为( )A. B. C. D. 【答案】A【解析】【分析】根据题意和折叠的性质,可以得到OA =AD ,∠OAC =∠DAC ,然后根据OA =OD ,即可得到∠OAC 和∠DAC 的度数,再根据扇形AOB 的圆心角是直角,半径为OC 的长,结合图形,可知阴影部分的面积就是扇形AOB 的面积减△AOC 和△ADC 的面积.【详解】解:连接OD ,∵△AOC 沿AC 边折叠得到△ADC ,∴OA =AD ,∠OAC =∠DAC ,又∵OA =OD ,∴OA =AD =OD ,∴△OAD 是等边三角形,∴∠OAC =∠DAC =30°,∵扇形AOB 圆心角是直角,半径为,∴OC =2,的AOB OB AOC AC AB 3π-3π-34π-2π∴阴影部分的面积.故选:A .【点睛】本题考查扇形面积的计算,解答本题的关键是明确扇形面积的计算公式,推出△OAD 是等边三角形,利用数形结合的思想解答.12. 如图,在中,,,是的中点,连接,过点作,分别交于点,与过点且垂直于的直线相交于点,连接.以下四个结论:;点是的中点;;,其中正确的结论序号是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,证明即可判断;设,则,由勾股定理得到,由得到,证明,得到,进而得到,即可判断;由得到,结合即可判断;过点作于,由得到,进而可得,即可判断;掌握相似三角形的判定和性质是解题的关键.【详解】解:∵,,∴,,23π⎫-=-⎪⎪⎭Rt ABC △90ABC ∠=︒BA BC =D AB CD B BG CD ⊥CD CA 、E F 、A AB G DF ①AG FG AB FB =②F GE ③AF AB =④5ABC BDF S S =△△①④①③①②③②③④AFG CFB ∽①2AB BC x ==AD BD AG x ===BG DC ==AFG CFB ∽FG =CDB BDE ∽BE x =FE x =②AFG CFB ∽13AF AC =AC =③F MF AB ⊥M FM CB ∥13AF FM AC BC ==16BDF ABC S S = ④90ABC ∠=︒BG CD ⊥90ABG CBG ∠+∠=︒90BCD CBG ∠+∠=︒∴,在和中,,∴,∴,∵点是的中点,∴,∴在中,,∴,∵,∴,∴, ∴,∵,∴,故正确;设,∵点是的中点,∴,在中, ,∴,∵,∴,∴ ∵,,ABG BCD ∠=∠ABC BCD △90ABGBCD AB BCBAG CBD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()ASA ABG BCD ≌AG BD =D AB 12BD AB =12AG BC =Rt ABC △90ABC ∠=︒AB BC ⊥AG AB ⊥AG BC ∥AFG CFB ∽AG FG CB FB=BA BC =AG FG AB FB =①2AB BC x ==D AB AD BD AG x ===Rt DBC △DC ==BG DC ==AFG CFB ∽12GF AG BF BC ==1123FG FB BG x ===90DBE DCB BDC ∠=∠=︒-∠BED CBD ∠=∠∴,∴,∴,∴,∴,故错误;∵,∴,∴,∵,∴,故正确;过点作于,如图,∵,∴,∴,∵,∴,即,故错误;CDB BDE ∽CD CB BD BE=·BD CB BE x CD ==FE BG GF BE x =--=FG FE ≠②AFG CFB ∽12AF AG CF AC ==13AF AC =AC =AF AB =③F MF AB ⊥M BC AB ⊥FM CB ∥13AF FM AC BC ==12BD BA =1·11121236·2BDF ABC BD FM S BD FM S AB BC AB BC ==⨯=⨯= 6ABC BDF S S = ④∴正确的结论是,故选:.二、填空题13.的平方根是______.【答案】【解析】【分析】根据求一个数的平方根的计算方法即可求解.【详解】解:的平方根表示为,故答案:.【点睛】本题主要考查平方根的计算方法,掌握求一个数的平方根的运算是解题的关键.14. 若点P 在线段的延长线上,,,则的长为______.【答案】5【解析】【分析】本题主要考查了线段的和差计算,根据线段的和差关系进行求解即可.【详解】解:∵点P 在线段的延长线上,,,∴,故答案为:5.15. 如图,在中,,是的内切圆,M ,N ,K 是切点,连接,.交于E ,D 两点.点F 是上的一点,连接,,则的度数是______.【答案】##62.5度【解析】【分析】本题主要考查了圆周角定理,三角形内心性质,三角形内角和定理,先根据三角形内心的性质为的①③B 9432±9432=±32±AB 8AP =3BP =AB AB 8AP =3BP =5AB AP BP =-=ABC 70B ∠=︒O ABC OA OC O MNDF EF EFD ∠62.5︒得,,进而求出,即可求出,然后根据圆周角定理得出答案.【详解】∵是的内切圆,∴,是的角平分线,∴,.∵,∴,∴,∴,∴.故答案:.16. 我们定义:如果一个函数图象上存在纵坐标是横坐标6倍的点,则把该函数称为“行知函数”,该点称为“行知点”,例如:“行知函数”,其“行知点”为.(1)直接写出函数图象上的“行知点”是__________;(2)若二次函数的图象上只有一个“行知点”,则的值为__________.【答案】①. 或 ②. 【解析】【分析】本题考查二次函数的综合应用,理解新定义,将新定义与所学二次函数,一元二次方程的知识相结合,熟练掌握跟与系数关系是解题关键.(1)根据题目所给“行知点”的定义,列出方程求解即可;(2)根据题目所给“行知点”的定义,列出方程,根据只有一个“行知点”得出该方程只有一个实数根,再根据一元二次方程根的判别式,即可解答.【详解】解:(1)根据题意可得:,整理得:,为12OAC BAC ∠=∠12OCA BCA ∠=∠∠+∠OAC OCA AOC ∠O ABC OA OC ABC 12OAC BAC ∠=∠12OCA BCA ∠=∠70B ∠=︒110BAC BCA ∠+∠=︒1()552OAC OCA BAC BCA ∠+∠=∠+∠=︒18055125AOC ∠=︒-︒=︒162.52EFD EOD ∠=∠=︒62.5︒20y x =+()424,24y x=()()21332y a x a x a =-+++a ()212,()212--,3-246x x=24x =解得:,经检验,是原分式方程的解;∴函数图象上的“行知点”是或;故答案为:或.(2)∵二次函数的图象上只有一个“行知点”,∴方程有两个相等的实数根,且,整理得:,∴,解得:,综上:a 的值为.故答案为:.17. 如图,折叠边长为4cm 的正方形纸片,折痕是,点落在点处,分别延长、交于点、,若点是边的中点,则______cm .【答案】##【解析】【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明,利用相似三角形对应边成比例可求出FG .【详解】解:连接如图,122,2x x ==-122,2x x ==-24y x=()212,()212--,()212,()212--,()()21332y a x a x a=-+++()()216332x a x a x a=-+++30a -≠()()213302a x a x a -+-+=()()2134302a a a --⨯⨯-=123,3x x ==-3-3-ABCD DM C E ME DE AB F G M BC FG =53213FEG FBM ∆∆ ,DF∵四边形ABCD 是正方形,∴∵点M 为BC 的中点,∴由折叠得,∠∴∠,设则有∴又在中,,∵∴∴在中,∴解得,(舍去)∴∴∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=114222BM CM BC ===⨯=2,4,ME CM DE DC ====90,DEM C ︒=∠=90DEF ︒=90,FEG ∠=︒,FE x =222DF DE EF =+2224DF x =+Rt FMB ∆2,2FM x BM =+=222FM FB BM =+FB ==4AF AB FB =-=-Rt DAF ∆222,DA AF DF +=2222444,x ⎛+=+ ⎝124,83x x ==-4,3FE =410233FM FE ME =+=+=83FB ==∵∠∴∠∴∠又∠∴△∴即∴故答案为:【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.三、解答题18. 解不等式:【答案】【解析】【分析】本题主要考查解一元一次不等式,根据去分母,移项,合并同类项,求出不等式的解集即可【详解】解:,去分母得,,移项得,,合并得,19. 如图,在由边长为1个单位的小正方形组成的网格中,点、、均为格点(网格线的交点),、、.90DEM ︒=90FEG ︒=,FEG B =∠.GFE MFB =∠FEG FBM∆ ,FG FE FM FB=4310833FG =5,3FG =53322x +>1x >322x +>34x +>43x >-1x >A B C ()23A ,()32B ,()10C ,(1)将向下平移3个单位,再向左平移4个单位,得到,请画出;(2)将绕点逆时针旋转,得到,请画出.(3)在(2)的旋转过程中,点经过的路径长为【答案】(1)答案见解析(2)答案见解析(3【解析】【分析】本题主要考查三角形的平移以及旋转作图,弧长公式,掌握作图方法是解题的关键.(1)先画出三角形各顶点平移后的位置,再用线段依次连接各顶点,得到平移后的三角形;(2)先画出三角形各顶点绕着点逆时针旋转后的位置,再用线段依次连接各顶点,得到旋转后的三角形;(3)根据弧长计算公式进行计算,求得旋转过程中点所经过的路径长.【小问1详解】解:如图所示, 【小问2详解】解:如图所示ABC 111A B C △111A B C △111A B C △O 90︒222A B C △222A B C △1C O 90︒1C【小问3详解】解:旋转过程中,点所经过的路径长为以为半径,为圆心角的弧长,,.20. 将字母“”,“”按照如图所示的规律摆放,其中第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;……根据此规律解答下面的问题:(1)第个图形中有______个字母,有______个字母;(2)第个图形中有______个字母,有______个字母(用含的式子表示);(3)第个图形中有______个字母,有______个字母.【答案】(1);(2);(3);【解析】【分析】根据图中信息找规律即可:(1)根据规律作答即可;(2)根据规律找到个数与的关系即可;(3)代入(2)中的关系式计算即可.【小问1详解】1C 1OC 90︒ 1290180C C π∴=⨯=C H 11C 4H 22C 6H 33C 8H 4C H n C H n 2024C H 410n 22n +20244050n第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;第个图形中有个字母,有个字母,依此类推,第个图形中有个字母,有个字母【小问2详解】观察规律:第个图形中有个字母,第个图形中有个字母,第个图形中有个字母……因为字母的数量等于所以第个图形中有个字母同理观察规律:第个图形中有个字母,第个图形中有个字母;第个图形中有个字母……因为字母的个数是字母的个数的2倍多2,字母的数量等于则字母的个数是即第个图形中有个字母【小问3详解】根据第(2)问,将数字代入即可因为字母的数量等于所以第个图形中有个字母因为字母的个数是所以第个图形中有个字母【点睛】本题考查了图形类的规律,解题的关键在于找到规律.21. 如图,四边形是一个零件的截面图,,,,,,求这个零件截面的面积.(精确到,,,,)【答案】这个零件的截面面积约为【解析】【分析】本题考查了矩形的判定与性质,解直角三角形,正确作出辅助线是解答本题的关键.作于E ,于F ,则四边形为矩形,在中,求出、的值,在11C 4H 22C 6H 33C 8H 44C 10H11C 22C 33C C nn n C14H 26H 38H H C C nH 22n +n 22n +HC n20242024CH 22n +20244050HABCD (2AB =+4cm CD =AB BC ⊥74BAD ∠=︒60BCD ∠=︒21cm 1.41≈1.73≈sin 740.96︒≈cos 740.28︒≈tan 74 3.49︒≈235cm DE AB ⊥DF BC ⊥DEBF Rt CDF △DF FC Rt ADE △中,求出的值,进而可求出这个零件截面的面积.【详解】解:作于E ,于F ,连接,则四边形为矩形,∴,,在中, ,,∴,,.在中,,,∴,四边形的面积的面积的面积答:这个零件的截面面积约为.22. 如图,在中,,D 为边上的点,以为直径作,连接并延长交于点E ,连接,.(1)求证:是的切线.(2)若,求的长.【答案】(1)证明见解析(2).【解析】【分析】本题考查的是切线的判定、等腰三角形的性质、勾股定理.DE DE AB ⊥DF BC ⊥BD DEBF DE FB =DF EB =Rt CDF △4cm CD =60BCD ∠=︒sin 60BE DF DC ==⨯︒=cos 602(cm)FC DC ⨯︒==22(cm)AE AB BE ∴=-=+-=Rt ADE △2AE =74DAE ∠=︒tan 742 3.49 6.98(cm)DE AE =⨯︒=⨯=∴ABCD ABD =△BCD +△1122AB DE BC DF =⨯+⨯11(2 6.98(6.982)22=⨯+⨯+⨯+⨯215.96 1.73 6.9835(cm )≈⨯+≈235cm Rt ABC △90ACB ∠=︒AC AD O BD O CE CE BC =CE O 24CD BC ==,AC 8AC =(1)连接,根据等腰三角形的性质得到,由得到,得,于是得到结论;(2)设的半径为r ,则,由得到关于r 的方程,即可求出半径,进而求出的长.【小问1详解】证明:如图所示,连接,∵,∴.∵,∴.∵,∴.又∵,∴,∴,即,∴.∵是的半径,∴是的切线.【小问2详解】解:在中,,由题意得,,设的半径为r ,则,在中,,∴,OE 1234∠=∠∠=∠,1590∠+∠=︒2390∠+∠=︒90OEC ∠=︒O 2OD OE r OC r ===+,222OE CE OC +=AC OE 90ACB ∠=︒1590∠+∠=︒CE BC =12∠=∠OE OD =34∠∠=45∠=∠35∠=∠2390∠+∠=︒90OEC ∠=︒OE CE ⊥OE O CE O Rt BCD 9024DCB CD BC ∠=︒==,,4BC CE ==O 2OD OE r OC r ===+,Rt OEC △90OEC ∠=︒222OE CE OC +=∴,解得,∴,∴.23. A 、B 、C 三个电冰箱厂家在广告中都声称,他们的电冰箱在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,,,;乙厂:6,6,8,8,8,9,,,,15;丙厂:4,4,4,6,7,9,,,,;根据以上数据,绘制了下面不完整的表格:平均数众数中位数甲厂856乙厂a 丙厂4b根据以上信息解答下列问题:(1)表格中______,______;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数?(3)如果这三个家电厂家的电子产品的售价相同,则顾客购买哪一家的电子产品更合适,并说明理由.【答案】(1)8,8;(2)见详解;(3)选乙厂的电子产品更合适;【解析】【分析】本题考查了求众数,中位数,平均数及根据众数,中位数,平均数做决策:(1)根据出现次数最多的是众数,最中间的数是中位数直接求解即可得到答案;(2)根据表格及(1)直接判断即可得到答案;(3)根据三个数据大小比较直接判断即可得到答案;【小问1详解】解:由题意可得,∵乙中8出现次数最多,∴,丙中第5,6个数是7,9,()22242r r +=+3r =26AD r ==8AC AD CD =+=121315101214131516169.68.59.4=a b =8a =∴,故答案为:8,8;【小问2详解】解:由(1)及表格得,甲平均数是8,乙众数是8,丙中位数是8,∴甲厂的销售广告利用了平均数8表示集中趋势的特征数;乙厂的销售广告利用了众数8表示集中趋势的特征数;丙厂的销售广告利用了中位数8表示集中趋势的特征数;【小问3详解】解:由题意可得,平均数:乙大于丙大于甲,众数:乙大于甲大于丙,中位数:乙大于丙大于甲,∴应选乙厂的电子产品更合适.24. 如图,在四边形是正方形,点E 为边的中点,对角线与交于点F ,连接,,且与交于点G ,连接.(1)求证:;(2)求的值;(3)求证:.【答案】(1)证明见详解;(2); (3)证明见详解;【解析】7982b +==ABCD CD BD AE BE CF BE CF DG BE CF ⊥FG EG2DG CG BG =⋅43【分析】本题考查正方形的性质,全等三角形判定与性质,相似三角形的判定与性质:(1)根据正方形的性质得到,,,根据中点得到,即可得到与即可得到证明;(2)设正方形边长为a ,根据表示出、,设,表示出,在根据勾股定理求解得到即可得到答案;(3)过G 作,根据等积法求出,在根据勾股定理求出即可得到答案;【小问1详解】证明:∵四边形是正方形,∴,,,∵点E 为边的中点,∴,在与中,∵,∴,∴,在与中,∵,∴,∴,∴,∵,∴,∴;【小问2详解】解:设正方形边长为a ,由(1)得,,,,45C D B A D B ∠=∠=︒90ADE BCD ∠=∠=︒AD DC BC ==DE CE =ADE BCD △≌△ADF CDF △≌△CEG CBG BEC ∽∽CG EG EF x =FE Rt FEG △FG GH BC ⊥GH BG ABCD 45C D B A D B ∠=∠=︒90ADE BCD ∠=∠=︒AD DC BC ==CD DE CE =ADE V BCE AD BC ADE BCE DE CE =⎧⎪∠=∠⎨⎪=⎩()SAS ADE BCE ≌DAE CBE ∠=∠ADF △CDF AD CD ADB CDB DF DF =⎧⎪∠=∠⎨⎪=⎩(SAS)ADF CDF ≌DAE FCD ∠=∠FCD CBE ∠=∠90FCD FCB ∠+∠=︒90CBE FCB BGF ∠+∠=∠=︒BE CF ⊥FCD CBE ∠=∠90BGC BCE EGC ∠=∠=∠=︒AE BE ===∴,∴,,∴,,设,∴,∴,在中,,解得:,∴,∴;【小问3详解】证明:过G 作,,CEG CBG BEC ∽∽EC EG CG BE EC BC==2EG CG a a ==CG =EG =EF x =CF AF a x ==-GF x x =-=-Rt FEG △222x x ⎫⎫-+=⎪⎪⎪⎪⎭⎭x a =GF a ==43FG EG ==GH BC ⊥∵,∴,∴,∴,∴,∴,,∴.25. 如图,二次函数,与时的函数值相等,其图象与x 轴交于A 、B 两点,与y轴正半轴交于C 点.(1)求二次函数的解析式.(2)在第一象限的抛物线上求点P ,使得最大.(3)点Q 是抛物线上x 轴上方一点,若,求Q 点坐标.【答案】(1) (2) (3)【解析】【分析】(1)把与代入,求出t 的值,即可;1122CE GH GE GC ⨯⨯=⨯⨯15GE GC GH a CE ⨯===25CHa ==2355DHa a a =-=DG a ==2222)5DG a ==22)5C a BG G ⨯==⋅2DG CG BG =⋅()()()21121y t x t x t -++=+≠0x =3x =PBC S 45CAQ ∠=︒213222y x x =-++()2,31013,39⎛⎫ ⎪⎝⎭0x =3x =()()()21121y t x t x t -++=+≠(2)过点P 作轴,交于点D .先求出直线的解析式为,设点,则点D 的坐标为,可得,再由,得到S 关于a 的函数关系式,即可求解;(3)将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,求出直线的解析式,即可求解.【小问1详解】解:∵与时的函数值相等,∴,解方程,得,把代入二次函数,∴二次函数的解析式为:.【小问2详解】解:如图,过点P 作轴,交于点D .把代入,得:,解得,∴点A ,∴,当时,,PD y ∥BC BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2221a PD a -=+12PBC S PD OB =⋅△AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH 0x =3x =()()()()221010213132t t t t =++-⨯+⨯+-⨯+⨯+12t =12t =()()()21121y t x t x t -++=+≠213222y x x =-++PD y ∥BC 0y =213222y x x =-++2132022x x -++=121,4x x =-=()()1,0,4,0B -4OB =0x =2y =∴,设直线的解析式为,把点,代入得:,解得:,∴直线的解析式为,设点,则点D 的坐标为,∴,∴,当时,有最大值,最大值为4,所以点P 的坐标;【小问3详解】解:如图,将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,设直线的解析式为,把代入得:()0,2C BC y kx b =+()4,0B ()0,2C 240b k b =⎧⎨+=⎩122k b ⎧=-⎪⎨⎪=⎩BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2211312222222a a PD a a a ⎛⎫-+=+ ⎭=-++-⎝-⎪()22211244241222PBC PD OB a S a a a a ⎛⎫⋅=+⨯=-+=--- ⎪⎝=+⎭ 2a =PBC S ()2,3AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH ()1110y k x b k =+≠()21,02,11,A H -⎛⎫ ⎪⎝⎭,解得:,∴直线的解析式为,联立得,解得或,∴.【点睛】本题主要考查了二次函数的综合题,涉及了二次函数的图象和性质,求一次函数解析式,利用数形结合思想解答是解题的关键.26. 在中,.将绕点A 顺时针旋转得到,旋转角小于,点B 的对应点为点D ,点C 的对应点为点E ,交于点O ,延长交于点P .(1)如图1,求证:;(2)当时,①如图2,若,求线段的长;②如图3,连接,延长交于点F ,判断F 是否为线段的中点,并说明理由.【答案】(1)见解析(2)①;②F 是线段的中点.理由见解析【解析】【分析】(1)由旋转的性质得到,,,根据证明,即可证明;(2)①连接,由勾股定理求得,利用全等三角形的性质和平行线的性质求得,推出,据此求解即可;②连接,延长和交于点G ,证明,求得,得到,再证明,据此即可证明F 是线段的中点.111101122k b k b -+=⎧⎪⎨+=⎪⎩111313k b ⎧=⎪⎪⎨⎪=⎪⎩AH 1133y x =+2113313222y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩10x y =-⎧⎨=⎩103139x y ⎧=⎪⎪⎨⎪=⎪⎩1013,39Q ⎛⎫ ⎪⎝⎭Rt ABC △90C ∠=︒ABC ADE V CAB ∠DE AB DE BC PC PE =AD BC ∥68CA CB ==,BP BD CE ,CE BD BD 6BP =BD AC AE =90C AEP ∠=∠=︒HL Rt Rt APE APC ≌△△PC PE =AP 10AB =DAP APD ∠=∠10DP AD ==AP AD CE Rt Rt ACP GAC ∽△△18AG =8GD BC ==GDF CBF ≌△△BD【小问1详解】证明:连接,由旋转的性质知,,,∵,∴,∴;【小问2详解】解:①连接,∵,,∴,由旋转的性质知,,, 由(1)知,∴,,∵,∴,∴,∴,∴,∴;②F 是线段的中点.理由如下,连接,延长和交于点G,如图,AP AC AE =90AED C AEP ∠=∠=∠=︒AP AP =()Rt Rt HL APE APC ≌PC PE =AP 90C ∠=︒68CA CB ==,10AB ==10AD AB ==8DE BC ==Rt Rt APE APC ≌△△PC PE =APE APC ∠=∠AD BC ∥DAP APC ∠=∠DAP APD ∠=∠10DP AD ==1082PC PE ==-=826BP BC PC =-=-=BD AP AD CE由(1)知,,∴是的垂直平分线,∴,∵,∴,∴, ∵,,∴,∴,∵,∴,,∴,∴,即F 是线段的中点.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,旋转的性质,勾股定理,正确引出辅助线解决问题是解题的关键.AE AC =PE PC =PA CE PA CG ⊥90PAC ACG G ∠=︒-∠=∠Rt Rt ACP GAC ∽△△AC AG PC AC=2PC =6CA =18AG =18108GD BC =-==AD BC ∥G BCF ∠=∠GDF CBF ∠=∠GDF CBF ≌△△DF BF =BD。

2021年陕西西安中考数学真题及答案

2021年陕西西安中考数学真题及答案

2021年陕西西安中考数学真题及答案一、选择题(共8小题,每小题3分,计24分。

每小题只有一个选项是符合题意的)1.计算:3×(﹣2)=()A.1 B.﹣1 C.6 D.﹣62.下列图形中,是轴对称图形的是()A.B.C.D.3.计算:(a3b)﹣2=()A.B.a6b2C.D.﹣2a3b4.如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠C=50°,则∠1的大小为()A.60°B.70°C.75°D.85°5.在菱形ABCD中,∠ABC=60°,连接AC、BD,则()A.B.C.D.6.在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象()A.﹣5 B.5 C.﹣6 D.67.如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm8.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2 0 1 3 …y… 6 ﹣4 ﹣6 ﹣4 …下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于﹣6D.当x>1时,y的值随x值的增大而增大二、填空题(共5小题,每小题3分,计15分)9.分解因式x3+6x2+9x=.10.正九边形一个内角的度数为.11.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,则图中a的值为.12.若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1y2.(填“>”、“=”或“<”)13.如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切).三、解答题(共13小题,计18分。

2019-2020西安市数学中考试卷带答案

2019-2020西安市数学中考试卷带答案

2019-2020西安市数学中考试卷带答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70° 2.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°3.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .3C .3米D .10031)米4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==5.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣16.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 7.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)8.下面的几何体中,主视图为圆的是( )A .B .C .D .9.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C 24D 0.310.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x=+ C .1201508x x=- D .1201508x x =+ 12.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8%B .9%C .10%D .11%二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.15.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为___.16.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm17.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)18.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.19.已知M、N两点关于y轴对称,且点M在双曲线12yx上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数 随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.23.已知:如图,在ABC 中,AB AC =,AD BC ⊥,AN 为ABC 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明24.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理3.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD223200100∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.4.A解析:A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.7.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

2023陕西中考数学试卷

2023陕西中考数学试卷

2023年陕西省西安市中考数学一模试卷一、选择题(每题3分,共24分)1.(3分)若盈余1万元记作+1万元,则﹣1万元表示()A.盈余1万元B.亏损1万元C.亏损﹣1万元D.不盈余也不亏损2.(3分)如图,是由完全相同的6个小正方体搭成的几何体,若在小正方体①的正上方再摆放一个相同的小正方体()A.主视图和左视图B.主视图和俯视图C.俯视图和左视图D.均没有发生变化3.(3分)下列计算正确的是()A.(﹣2x3y)3=﹣6x6y3B.2a2+3a3=5a5C.6x3y2÷3x=2x2y2D.(x﹣y)(﹣x﹣y)=x2﹣y24.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣45.(3分)将直尺和一个含45°角的直角三角板按如图所示的位置放置.若∠1=60°,则∠2的度数为()A.150°B.145°C.135°D.120°6.(3分)某风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图所示的风筝,点E,F,G,H分别是四边形ABCD各边的中点.其中阴影部分用甲布料(裁剪两种布料时,均不计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料()A.15匹B.20匹C.60匹D.30匹7.(3分)如图,四边形ABCD为⊙O的内接四边形.弦AB与DC的延长线相交于点G,AO⊥CD,连接BD,∠GBC=48°()A.84°B.72°C.66°D.48°8.(3分)在平面直角坐标系中,将抛物线y=x2+(k+1)x+k绕点(1,0)旋转180°,当x>4时,y随x的增大而减小()A.k<3B.k>3C.k≤3D.k≥3二、填空题(每题3分,共15分)9.(3分)请写出一个绝对值大于3的负无理数:.10.(3分)一个正多边形的中心角是45°,则过它的一个顶点有条对角线.11.(3分)如图,在△ABC中,∠C=90°,AC=6,若点P为直线BC上一点,则符合条件的点P有个.12.(3分)如图,A是双曲线上的一点,过点C作y轴的垂线,垂足为D,则△ABD的面积是.13.(3分)如图,正方形ABCD的边长为2,E为平面内一点,P为AD的中点,若∠APE =45°.三、解答题(共81分)14.(5分)计算:|2﹣1|+(1﹣π)0﹣.15.(5分)解不等式组:.16.(5分)先化简,再求值,其中a=3tan30°+1.17.(5分)如图,已知正方形ABCD,点E是AB边上的一点,使得∠BEF+∠BCF=180°(不写作法,保留作图痕迹).18.(5分)如图,在矩形ABCD中,E是BC的中点,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.19.(5分)我国古代数学著作《九章算术》中记载:“今有醇酒一斗,直钱五十;行酒一斗,得酒二斗.问醇、行酒各得几何?”其大意为:今有醇酒1斗,价值50钱,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?请解答上述问题.20.(5分)如图,在直角坐标系中,△ABC的各顶点坐标分别为A(a,1),B(3,3),C (4,﹣1),其各顶点坐标分别为A′(﹣5,﹣3),B′(﹣3,b)(﹣2,﹣5).(1)观察各对应点坐标的变化并填空:a的值为,b的值为;(2)画出△ABC及将△ABC绕点B顺时针旋转90°得到△DBE,点C的对应点为点E,写出点E的坐标.21.(5分)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员(1)“随机抽取1人,甲恰好被抽中”是事件;A.不可能B.必然C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.22.(5分)在解放军的某次台海演练中,红军无人机执行侦察任务时,在A点正上方的B 点处发现俯角为28°的下方山坡上有蓝军指挥部所在的山洞P,同时,位于点C的蓝军防空雷达也发现了潜入的无人机B位于点C仰角53°方向,P点距离地面300m,AC=2600m(A,B,C,若蓝军关闭防爆大门需要11s,则指挥部会被推毁吗?(结果保留一位小数.参考数据:sin53°≈0.80,tan53°≈1.33,cos53°≈0.60,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,音速为340m/s)23.(5分)某校九年级有1500名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个不完整的统计图.请根据相关信息(1)本次参加跳绳测试的学生人数为,图1中m的值为;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?24.(6分)如图,这是一个“函数求值机”的示意图,其中y是x的函数.下面表格中输入x…﹣6﹣4﹣202…输出y…﹣6﹣22616…根据以上信息,解答下列问题:(1)当输入的x值为3时,输出的y值为.(2)当x<1时,求该函数的表达式.(3)当输出的y值为﹣4时,求输入的x值.25.(7分)如图为某游乐场摩天轮简化示意图,摩天轮最低端与地面的距离忽略不计,即可看作摩天轮与地面相切,小明坐在透明座舱旋转到点B时用激光笔照射在摩天轮的点C和最低点A处,激光线BC交地面于点F,交圆于点D,交水平地面AF于点E且BD ⊥AC于点G.(1)求证:∠FAC=2∠ABE;(2)若AC=72米,求BE的长.26.(8分)2022年,在全球疫情蔓延的情况下,北京成功举办冬奥会,滑雪运动备受人们青睐.下面是某滑雪训练场滑雪运动中的一张截图,某滑雪人员在空中留下了一道完美的曲线(与水平地面平行)2m高的P处腾空滑出,在距P点水平距离为4m的地方到达最高处为x轴,过点P作x轴的垂线为y轴建立平面直角坐标系.完成以下问题:(1)求该抛物线的解析式;(2)当滑雪人员距滑雪台高度为2m,则他继续滑行的水平距离为多少米时,可以使他距滑雪台的高度为0m.27.(10分)综合与实践:在综合与实践课上,老师让同学们以“矩形纸片的折叠”为主题开展数学活动.在矩形ABCD中,E为AB边上一点,F为AD边上一点,分别将△BCE和△CDF沿CE、CF翻折,点D、B的对应点分别为点G、H(1)如图1,若F为AD边的中点,AB=BC=6,则∠ECF=°,BE=;(2)如图2,若F为AD的中点,CG平分∠ECF,,求∠ECF的度数及BE 的长.(3)AB=5,AD=3,若F为AD的三等分点参考答案一、选择题(每题3分,共24分)1.(3分)若盈余1万元记作+1万元,则﹣1万元表示()A.盈余1万元B.亏损1万元C.亏损﹣1万元D.不盈余也不亏损【解答】解:因为盈余1万元记作+1万元,所以亏损3万元记作﹣1万元,故选:B.2.(3分)如图,是由完全相同的6个小正方体搭成的几何体,若在小正方体①的正上方再摆放一个相同的小正方体()A.主视图和左视图B.主视图和俯视图C.俯视图和左视图D.均没有发生变化【解答】解:若在正方体①的正上方放上一个同样的正方体,则主视图发生变化,上层由原来的一个小正方形变为两个小正方形;左视图与原来相同,都是两层,上层是1个正方形;俯视图与原来相同,都是三列、2、8;所以所得的新几何体的三视图与原几何体对比没有发生变化的是俯视图和左视图.故选:C.3.(3分)下列计算正确的是()A.(﹣2x3y)3=﹣6x6y3B.2a2+3a3=5a5C.6x3y2÷3x=2x2y2D.(x﹣y)(﹣x﹣y)=x2﹣y2【解答】解:∵(﹣2x3y)4=﹣8x9y7,∴选项A不符合题意;∵2a2+3a3≠5a6,∴选项B不符合题意;∵6x3y7÷3x=2x8y2,∴选项C符合题意;∵(x﹣y)(﹣x﹣y)=y2﹣x3,∴选项D不符合题意.故选:C.4.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣4,故选:B.5.(3分)将直尺和一个含45°角的直角三角板按如图所示的位置放置.若∠1=60°,则∠2的度数为()A.150°B.145°C.135°D.120°【解答】解:如图所示,过C作CD∥AB,∵AB∥EF,∴CD∥EF,∴AB∥CD∥EF,∴∠3=∠1=60°,∠8=∠5,∵∠3+∠2=90°,∴∠4=30°,∴∠5=30°,∴∠4=180°﹣∠5=150°,故选:A.6.(3分)某风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图所示的风筝,点E,F,G,H分别是四边形ABCD各边的中点.其中阴影部分用甲布料(裁剪两种布料时,均不计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料()A.15匹B.20匹C.60匹D.30匹【解答】解:连接AC、BD,∵点E、F分别是AB,∴EF∥AC,EF=,∴△BEF∽△BAC,=S△BAC,∴S△BEF=S△DAC,同理,S△DHG+S△DHG=S△BAC+S△DAC=S四边形ABCD,则S△BEF+S△CFG=S四边形ABCD,同理S△AEH∴阴影部分面积等于如图所示的风筝面积的一半,即阴影部分面积与其余部分面积相等,生产这批风筝需要甲布料30匹,那么需要乙布料也是30匹,故选:D.7.(3分)如图,四边形ABCD为⊙O的内接四边形.弦AB与DC的延长线相交于点G,AO⊥CD,连接BD,∠GBC=48°()A.84°B.72°C.66°D.48°【解答】解:连接AC,∵四边形ABCD为⊙O的内接四边形,∴∠ADC=∠GBC=48°,∵AO⊥CD,∴DE=CE,∠DAE=42°,∴AC=AD,∴∠CAD=2∠DAE=84°,由圆周角定理得,∠DBC=∠CAD=84°,故选:A.8.(3分)在平面直角坐标系中,将抛物线y=x2+(k+1)x+k绕点(1,0)旋转180°,当x>4时,y随x的增大而减小()A.k<3B.k>3C.k≤3D.k≥3【解答】解:∵1>0,∴原抛物线开口向上,对称轴为直线,∵将抛物线绕点(1,2)旋转180°,∴旋转后的对称轴为直线,开口向下,∵当x>4时,y随x的增大而减小,∴≤4,∴k≤3.故选:C.二、填空题(每题3分,共15分)9.(3分)请写出一个绝对值大于3的负无理数:﹣.【解答】解:绝对值大于3的负无理数可以为:﹣(答案不唯一).故答案为:﹣(答案不唯一).10.(3分)一个正多边形的中心角是45°,则过它的一个顶点有5条对角线.【解答】解:∵设正多边形的边数为n,且正多边形的中心角是45°,∴45°n=360°,∴n=8,∴过n边形的一个顶点有(n﹣3)条对角线,即4﹣3=5(条),故答案为:4.11.(3分)如图,在△ABC中,∠C=90°,AC=6,若点P为直线BC上一点,则符合条件的点P有4个.【解答】解:如图所示,分别以A,AB的长为半径画弧1,P2,P4即为所求;作AB的垂直平分线4即为所求.∴符合条件的点P有4个.故答案为:8.12.(3分)如图,A是双曲线上的一点,过点C作y轴的垂线,垂足为D,则△ABD的面积是2.【解答】解:∵点C是OA的中点,=S△OCD,S△ACB=S△OCB,∴S△ACD+S△ACB=S△OCD+S△OCB,∴S△ACD=S△OBD,∴S△ABD∵点B在双曲线y=(x>0)上,=×4=4,∴S△OBD=2,∴S△ABD故答案为:2.13.(3分)如图,正方形ABCD的边长为2,E为平面内一点,P为AD的中点,若∠APE =45°或.【解答】解:以AB为直径作⊙O,过点P1则OE=OA=OB=1,∵∠APE=45°∴,∴,,故答案为:或.三、解答题(共81分)14.(5分)计算:|2﹣1|+(1﹣π)0﹣.【解答】解:原式=+8﹣3=﹣.15.(5分)解不等式组:.【解答】解:,解不等式①,得x≥0,解不等式②,得x<10,所以不等式组的解集是8≤x<10.16.(5分)先化简,再求值,其中a=3tan30°+1.【解答】解:=•+3﹣a=+==,∵a=4tan30°+1=3×+1=+1,∴原式====5﹣.17.(5分)如图,已知正方形ABCD,点E是AB边上的一点,使得∠BEF+∠BCF=180°(不写作法,保留作图痕迹).【解答】解:如下图:点D即为所求.18.(5分)如图,在矩形ABCD中,E是BC的中点,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△ABE∽△DFA;(2)∵E是BC的中点,BC=4,∴BE=2,∵AB=2,∴AE=,∵四边形ABCD是矩形,∴AD=BC=4,∵△ABE∽△DFA,∴,∴.19.(5分)我国古代数学著作《九章算术》中记载:“今有醇酒一斗,直钱五十;行酒一斗,得酒二斗.问醇、行酒各得几何?”其大意为:今有醇酒1斗,价值50钱,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?请解答上述问题.【解答】解:设醇酒能买x斗,行酒能买y斗,依题意,得:.解得.答:醇酒能买斗,行酒能买斗.20.(5分)如图,在直角坐标系中,△ABC的各顶点坐标分别为A(a,1),B(3,3),C (4,﹣1),其各顶点坐标分别为A′(﹣5,﹣3),B′(﹣3,b)(﹣2,﹣5).(1)观察各对应点坐标的变化并填空:a的值为1,b的值为﹣1;(2)画出△ABC及将△ABC绕点B顺时针旋转90°得到△DBE,点C的对应点为点E,写出点E的坐标.【解答】解:(1)由题意,a﹣6=﹣5,∴a=5,b=﹣1,故答案为:1,﹣6;(2)如图,△DBE即为所求.21.(5分)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员(1)“随机抽取1人,甲恰好被抽中”是C事件;A.不可能B.必然C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.【解答】解:(1)随机抽取1人,甲恰好被抽中”是随机事件;故答案为:C;(2)设甲是共青团员用T表示,其余3人均是共产党员用G表示,所有可能出现的结果共有12种它们出现的可能性相同,所有的结果中,则P(A)==,22.(5分)在解放军的某次台海演练中,红军无人机执行侦察任务时,在A点正上方的B 点处发现俯角为28°的下方山坡上有蓝军指挥部所在的山洞P,同时,位于点C的蓝军防空雷达也发现了潜入的无人机B位于点C仰角53°方向,P点距离地面300m,AC=2600m(A,B,C,若蓝军关闭防爆大门需要11s,则指挥部会被推毁吗?(结果保留一位小数.参考数据:sin53°≈0.80,tan53°≈1.33,cos53°≈0.60,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,音速为340m/s)【解答】解:指挥部会被推毁,理由:过点P作PD⊥AB,垂足为D,垂足为E,由题意得:PE=AD=300m,在Rt△ABC中,∠BCA=53°,∴AB=AC•tan53°≈2600×1.33=3458(m),∴BD=AB﹣AD=3158(m),在Rt△BPD中,∠BPD=28°,∴BP=≈≈6719.15(m),∴空对地导弹到达点P处需要的时间=≈9.9(s),∵4.9<11,∴指挥部会被推毁.23.(5分)某校九年级有1500名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个不完整的统计图.请根据相关信息(1)本次参加跳绳测试的学生人数为500,图1中m的值为10;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?【解答】解:(1)本次参加跳绳测试的学生人数为100÷20%=500(人),m%=×100%=10%;故答案为:500,10;(2)3分的人数有500﹣100﹣250﹣100=50人,∵4分出现的次数最多,出现了250次,∴众数是:4;把这些数从小到大排列,则中位数是:4;(3)该校九年级跳绳测试中得3分的学生约有:1500×10%=150(人).24.(6分)如图,这是一个“函数求值机”的示意图,其中y是x的函数.下面表格中输入x…﹣6﹣4﹣202…输出y…﹣6﹣22616…根据以上信息,解答下列问题:(1)当输入的x值为3时,输出的y值为24.(2)当x<1时,求该函数的表达式.(3)当输出的y值为﹣4时,求输入的x值.【解答】解:(1)当输入的x值为3时,输出的y值为y=8x=7×3=24,故答案为:24;(2)将(﹣2,8)(0,得,解得,∴当x<1时,该函数的表达式为y=2x+4;(3)把y=﹣4代入y=2x+6,得2x+6=﹣4,解得x=﹣5,把y=﹣4代入y=4x,得8x=﹣4,解得x=﹣8.5<1(不合题意舍去),∴输出的y值为﹣8时,输入的x值为﹣5.25.(7分)如图为某游乐场摩天轮简化示意图,摩天轮最低端与地面的距离忽略不计,即可看作摩天轮与地面相切,小明坐在透明座舱旋转到点B时用激光笔照射在摩天轮的点C和最低点A处,激光线BC交地面于点F,交圆于点D,交水平地面AF于点E且BD ⊥AC于点G.(1)求证:∠FAC=2∠ABE;(2)若AC=72米,求BE的长.【解答】(1)证明:∵AF是⊙O的切线,∴∠OAE=90°,∴∠OAG+∠CAF=90°,∵BD⊥AC于点G,BD过圆心O,∴∠AOD+∠OAG=90°,∵∠FAC=∠AOE,∴∠FAC=2∠ABE;(2)解:∵AC=72米,圆的直径约为120米,∴AG=36米,OA=60米,∴OG===48(米),∴tan∠AOE=,∴,∴AE=45,∵AE2=ED•EB,∴452=ED(ED+120),∴ED=15(米)(负数舍去),∴BE=BD+ED=120+15=135(米).故BE的长为135米.26.(8分)2022年,在全球疫情蔓延的情况下,北京成功举办冬奥会,滑雪运动备受人们青睐.下面是某滑雪训练场滑雪运动中的一张截图,某滑雪人员在空中留下了一道完美的曲线(与水平地面平行)2m高的P处腾空滑出,在距P点水平距离为4m的地方到达最高处为x轴,过点P作x轴的垂线为y轴建立平面直角坐标系.完成以下问题:(1)求该抛物线的解析式;(2)当滑雪人员距滑雪台高度为2m,则他继续滑行的水平距离为多少米时,可以使他距滑雪台的高度为0m.【解答】解:(1)抛物线的解析式为y=a(x﹣4)2+2,把P(0,2)代入解析式得:2=a(0﹣4)6+6,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣5)2+6;(2)由(1)知,抛物线的对称轴为直线x=8,∴当y=2时,x=8;令y=3,则﹣5+6=0,解得x=4+2或x=4﹣2,∵4+2﹣7=2,∴他继续滑行的水平距离为(8﹣4)米时.27.(10分)综合与实践:在综合与实践课上,老师让同学们以“矩形纸片的折叠”为主题开展数学活动.在矩形ABCD中,E为AB边上一点,F为AD边上一点,分别将△BCE和△CDF沿CE、CF翻折,点D、B的对应点分别为点G、H(1)如图1,若F为AD边的中点,AB=BC=6,则∠ECF=45°,BE=2;(2)如图2,若F为AD的中点,CG平分∠ECF,,求∠ECF的度数及BE 的长.(3)AB=5,AD=3,若F为AD的三等分点【解答】.解:(1)∵AB=BC,四边形ABCD是矩形,∴四边形ABCD是正方形,∴AD=AB=6,∠BCD=90°,∵F为AD的中点,∴DF=AF=3,∵将△BCE和△CDF沿CE、CF翻折、B的对应点分别为点G、H,∴BE=EG,DF=FG=6,设BE=x,则AE=6﹣x,∴EF=3+x,∵EF4=AE2+AF2,∴(5+x)2=(6﹣x)8+32,∴x=2,∴BE=2.∵将△BCE和△CDF沿CE、CF翻折、B的对应点分别为点G、H,∴∠BCE=∠GCE,∠DCF=∠GCF,∵∠BCD=90°,∴∠ECF=∠BCD=.故答案为:45;8;(2)如图2,延长CG,∵CG平分∠ECF,∴∠2=∠6.由折叠的性质可知,∠1=∠2.∴∠7=∠2=∠3=∠4=∠BCD=22.3°,∴∠ECF=45°.∵CD∥AB,∠EMH=∠DCM=45°,∴△CBM和△EHM均为等腰直角三角形,∴BM=BC=2,EM=,∴BE+EM=6,即BE+BE=2,解得BE=7﹣2.(3)8或.分两种情况:①当AF=6DF时,如图3,过点E作EP∥GH,连接EF,GH=EP,由折叠的性质可知,CD=CG=5,∴HG=CG﹣CH=2,∵AF=2DF,∴AF=2,∴AF=EP,在Rt△EFP和Rt△FEA中,,∴Rt△EFP≌Rt△FEA(HL),∴AE=FP,设BE=EH=a,FP=a+7,∴a+1=5﹣a,解得a=3,∴BE=2.②当DF=2AF时,如图5,过点E作EP∥GH,连接EF,GH=EP,由折叠的性质可知,CD=CG=5,∴EP=HG=CG﹣CH=2,∵DF=5AF,∴AF=1.设BE=EH=a,FP=a+2,∵EF8=AF2+AE2=EP8+FP2,∴15+(5﹣a)2=72+(a+2)6,解得a=,∴BE=.综上可知,BE的长为2或.。

2023年陕西省中考数学试卷(A卷)及其答案

2023年陕西省中考数学试卷(A卷)及其答案

2023年陕西省中考数学试卷(A卷)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)计算:3﹣5=()A.2B.﹣2C.8D.﹣82.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为()A.36°B.46°C.72°D.82°4.(3分)计算:=()A.3x4y5B.﹣3x4y5C.3x3y6D.﹣3x3y65.(3分)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是()A.B.C.D.6.(3分)如图,DE是△ABC的中位线,点F在DB上,DF=2BF.连接EF并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A.B.7C.D.87.(3分)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm8.(3分)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在数轴上,点A表示,点B与点A位于原点的两侧,且与原点的距离相等.则点B表示的数是.10.(3分)如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为.11.(3分)点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为.12.(3分)如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是.13.(3分)如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M、N分别是边AB、BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC的长为.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解不等式:x.15.(5分)计算:.16.(5分)化简:().17.(5分)如图.已知角△ABC,∠B=48°,请用尺规作图法,在△ABC内部求作一点P.使PB=PC.且∠PBC=24°.(保留作图痕迹,不写作法)18.(5分)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.20.(5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4m;当小明站在爸爸影子的顶端F处时,测得点A的仰角α为26.6°.已知爸爸的身高CD=1.8m,小明眼睛到地面的距离EF=1.6m,点F、D、B在同一条直线上,EF⊥FB,CD⊥FB,AB⊥FB.求该景观灯的高AB.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高y(m)是其胸径x(m)的一次函数.已知这种树的胸径为0.2m时,树高为20m;这种铜的胸径为0.28m时,树高为22m.(1)求y与x之间的函数表达式;(2)当这种树的胸径为0.3m时,其树高是多少?23.(7分)某校数学兴趣小组的同学们从“校园农场“中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:分组频数组内小西红柿的总个数25≤x<3512835≤x<45n15445≤x<55945255≤x<656366根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是;(2)求这20个数据的平均数;(3)“校园农场“中共有300棵这种西红柿植株,请估计这300樱西红枝植株上小西缸柿的总个数.24.(8分)如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.(1)求证:BD=BC;(2)若⊙O的半径r=3,BE=6,求线段BF的长.25.(8分)某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.26.(10分)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若⊙O的半径为4,点P 在⊙O上,点M在AB上,连接PM,求线段PM的最小值;(2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道⊙O;过圆心O,作OM⊥AB,垂足为M,与⊙O交于点N.连接BN,点P在⊙O上,连接EP.其中,线段BN、EP及MN是要修的三条道路,要在所修迅路BN、EP之和最短的情况下,使所修道路MN最短,试求此时环道⊙O的圆心O到AB的距离OM的长.2023年陕西省中考数学试卷(A卷)参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)计算:3﹣5=()A.2B.﹣2C.8D.﹣8【解答】解:3﹣5=﹣2.故选:B.2.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.3.(3分)如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为()A.36°B.46°C.72°D.82°【解答】解:如图,∵∠1=108°,∴∠3=∠1=108°,∵l∥AB,∴∠3+∠A=180°,∠2=∠B,∴∠A=180°﹣∠3=72°,∵∠A=2∠B,∴∠B=36°,∴∠2=36°.故选:A.4.(3分)计算:=()A.3x4y5B.﹣3x4y5C.3x3y6D.﹣3x3y6【解答】解:=6×(﹣)x1+3y2+3=﹣3x4y5.故选:B.5.(3分)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是()A.B.C.D.【解答】解:∵a<0,∴函数y=ax是经过原点的直线,经过第二、四象限,函数y=x+a是经过第一、三、四象限的直线,故选:D.6.(3分)如图,DE是△ABC的中位线,点F在DB上,DF=2BF.连接EF并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A.B.7C.D.8【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC=×6=3,∴△DEF∽BMF,∴===2,∴BM=,CM=BC+BM=.故选:C.7.(3分)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm【解答】解:∵是⊙O的一部分,D是的中点,AB=24cm,∴OD⊥AB,AC=BC=AB=12cm.设⊙O的半径OA为Rcm,则OC=OD﹣CD=(R﹣8)cm.在Rt△OAC中,∵∠OCA=90°,∴OA2=AC2+OC2,∴R2=122+(R﹣8)2,∴R=13,即⊙O的半径OA为13cm.故选:A.8.(3分)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【解答】解:由题意可得:6=m2﹣m,解得:m1=3,m2=﹣2,∵二次函数y=x2+mx+m2﹣m,对称轴在y轴左侧,∴m>0,∴m=3,∴y=x2+3x+6,∴二次函数有最小值为:==.故选:D.二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在数轴上,点A表示,点B与点A位于原点的两侧,且与原点的距离相等.则点B表示的数是﹣.【解答】解:由题意得:点B表示的数是﹣.故答案为:.10.(3分)如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为2+2.【解答】解:如图,过点F作FG⊥AB于G,由题意可知,四边形CEGF是矩形,△ACE、△BFG是等腰直角三角形,AC=CF=FB=EG=2,在Rt△ACE中,AC=2,AE=CE,∴AE=CE=AC=,同理BG=,∴AB=AE+EG+BG=2+2,故答案为:2+2.11.(3分)点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为62°.【解答】解:如图,连接BE,∵点E是菱形ABCD的对称中心,∠ABC=56°,∴点E是菱形ABCD的两对角线的交点,∴AE⊥BE,∠ABE=∠ABC=28°,∴∠BAE=90°﹣∠ABE=62°.故答案为:62°.12.(3分)如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是y=.【解答】解:∵四边形OABC是矩形,∴OC=AB=3,∵四边形CDEF是正方形,∴CD=CF=EF,∵BC=2CD,∴设CD=m,BC=2m,∴B(3,2m),E(3+m,m),设反比例函数的表达式为y=,∴3×2m=(3+m)•m,解得m=3或m=0(不合题意舍去),∴B(3,6),∴k=3×6=18,∴这个反比例函数的表达式是y=,故答案为:y=.13.(3分)如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M、N分别是边AB、BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC的长为2.【解答】解:∵DE=AB=CD=3,∴△CDE是等腰直角三角形,作点N关于EC的对称点N',则N'在直线CD上,连接PN',如图:∵PM+PN=4.∴PM+PN'=4=BC,即MN'=4,此时M、P、N'三点共线且MN'∥AD,点P在MN'的中点处,∴PM=PN'=2,∴PC=2.故答案为:2.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解不等式:x.【解答】解:x,去分母,得3x﹣5>4x,移项,得3x﹣4x>5,合并同类项,得﹣x>5,不等式的两边都除以﹣1,得x<﹣5.15.(5分)计算:.【解答】解:原式=﹣5﹣7+|﹣8|==﹣5+1.16.(5分)化简:().【解答】解:()====.17.(5分)如图.已知角△ABC,∠B=48°,请用尺规作图法,在△ABC内部求作一点P.使PB=PC.且∠PBC=24°.(保留作图痕迹,不写作法)【解答】解:如图,点P即为所求.18.(5分)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.【解答】证明:在△ABC中,∠B=50°,∠C=20°,∴∠CAB=180°﹣∠B﹣∠C=110°.∵AE⊥BC.∴∠AEC=90°.∴∠DAF=∠AEC+∠C=110°,∴∠DAF=∠CAB.在△DAF和△CAB中,,∴△DAF≌△CAB(SAS).∴DF=CB.19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.【解答】解:(1)由题意可得,从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为=,故答案为:;(2)树状图如下:由上可得,一共有16种等可能性,其中两数之积是偶数的可能性有7种,∴摸出的这两个小球上标有的数字之积是偶数的概率.20.(5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.【解答】解:设该文具店中这种大笔记本的单价是x元,则小笔记本的单价是(x﹣3)元,∵买了一种大笔记本4个和一种小笔记本6个,共用了62元,∴4x+6(x﹣3)=62,解得:x=8;答:该文具店中这种大笔记本的单价为8元.21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4m;当小明站在爸爸影子的顶端F处时,测得点A的仰角α为26.6°.已知爸爸的身高CD=1.8m,小明眼睛到地面的距离EF=1.6m,点F、D、B在同一条直线上,EF⊥FB,CD⊥FB,AB⊥FB.求该景观灯的高AB.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)【解答】解:过点E作EH⊥AB,垂足为H,由题意得:EH=FB,EF=BH=1.6m,设EH=FB=xm,在Rt△AEH中,∠AEH=26.6°,∴AH=EH•tan26.6°≈0.5x(m),∴AB=AH+BH=(0.5x+1.6)m,∵CD⊥FB,AB⊥FB,∴∠CDF=∠ABF=90°,∵∠CFD=∠AFB,∴△CDF∽△ABF,∴=,∴=,∴AB=x,∴x=0.5x+1.6,解得:x=6.4,∴AB=x=4.8(m),∴该景观灯的高AB约为4.8m.22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高y(m)是其胸径x(m)的一次函数.已知这种树的胸径为0.2m时,树高为20m;这种铜的胸径为0.28m时,树高为22m.(1)求y与x之间的函数表达式;(2)当这种树的胸径为0.3m时,其树高是多少?【解答】解:(1)设y=kx+b(k≠0),根据题意,得,解之,得,∴y=25x+15;(2)当x=0.3m时,y=25×0.3+15=22.5(m).∴当这种树的胸径为0.3m时,其树高为22.5m.23.(7分)某校数学兴趣小组的同学们从“校园农场“中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:分组频数组内小西红柿的总个数25≤x<3512835≤x<45n15445≤x<55945255≤x<656366根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是54;(2)求这20个数据的平均数;(3)“校园农场“中共有300棵这种西红柿植株,请估计这300樱西红枝植株上小西缸柿的总个数.【解答】解:(1)由题意得,n=20﹣1﹣9﹣6=4,补全频数分布直方图如下这20个数据中,54出现的次数最多,故众数为54.故答案为:54;(2).∴这20个数据的平均数是50;(3)所求总个数:50×300=15000(个).∴估计这300棵西红柿植株上小西红柿的总个数是15000个.24.(8分)如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.(1)求证:BD=BC;(2)若⊙O的半径r=3,BE=6,求线段BF的长.【解答】(1)证明:如图,连接DC,则∠BDC=∠BAC=45°,∵BD⊥BC,∴∠BCD=90°﹣∠BDC=45°,∴∠BCD=∠BDC.∴BD=BC;(2)解:如图,∵∠DBC=90°,∴CD为⊙O的直径,∴CD=2r=6.∴BC=CD•sin=3,∴EC===3,∵BF⊥AC,∴∠BMC=∠EBC=90°,∠BCM=∠BCM,∴△BCM∽△ECB.∴,∴BM===2,CM=,连接CF,则∠F=∠BDC=45°,∠MCF=45°,∴MF=MC=,∴BF=BM+MF=2+.25.(8分)某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.【解答】解:(1)由题意知,方案一中抛物线的顶点P(6,4),设抛物线的函数表达式为y=a(x﹣6)2+4,把O(0,0)代入得:0=a(0﹣6)2+4,解得:a=﹣,∴y=﹣(x﹣6)2+4=﹣x2+x;∴方案一中抛物线的函数表达式为y=﹣x2+x;(2)在y=﹣x2+x中,令y=3得:3=﹣x2+x;解得x=3或x=9,∴BC=9﹣3=6(m),∴S1=AB•BC=3×6=18(m2);∵18>12,∴S1>S2.26.(10分)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若⊙O的半径为4,点P 在⊙O上,点M在AB上,连接PM,求线段PM的最小值;(2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道⊙O;过圆心O,作OM⊥AB,垂足为M,与⊙O交于点N.连接BN,点P在⊙O上,连接EP.其中,线段BN、EP及MN是要修的三条道路,要在所修迅路BN、EP之和最短的情况下,使所修道路MN最短,试求此时环道⊙O的圆心O到AB的距离OM的长.【解答】解:(1)如图①,连接OP,OM,过点O作OM'⊥AB,垂足为M',则OP+PM≥OM.∵⊙O半径为4,∴PM≥OM﹣4≥OM'﹣4,∵OA=OB.∠AOB=120°,∴∠A=30°,∴OM'=AM'•tan30°=12tan30°=4,∴PM≥OM'﹣4=4﹣4,∴线段PM的最小值为4﹣4;(2)如图②,分别在BC,AE上作BB'=AA'=r=30(m),连接A'B',B'O、OP、OE、B′E.∵OM⊥AB,BB'⊥AB,ON=BB',∴四边形BB'ON是平行四边形.∴BN=B′O.∵B'O+OP+PE≥B'O+OE≥B'E,∴BN+PE≥B'E﹣r,∴当点O在B'E上时,BN+PE取得最小值.作⊙O',使圆心O'在B'E上,半径r=30(m),作O'M'⊥AB,垂足为M',并与A'B'交于点H.∴O'H∥A'E,∴△B'O'H∽△B'EA',∴,∵⊙O'在矩形AFDE区域内(含边界),∴当⊙O'与FD相切时,B′H最短,即B′H=10000﹣6000+30=4030(m).此时,O′H也最短.∵M'N'=O'H,∴M'N'也最短.∴O'H==4017.91(m),∴O'M'=O'H+30=4047.91(m),∴此时环道⊙O的圆心O到AB的距离OM的长为4047.91m.。

2024年陕西省中考数学试卷A卷(附答案)

2024年陕西省中考数学试卷A卷(附答案)

2024年陕西省中考数学试卷A卷(附答案)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)﹣3的倒数是()A.﹣B.C.﹣3D.3【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.2.(3分)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A.B.C.D.【分析】根据面动成体,图形绕直线旋转是球.【解答】解:如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是球.故选:C.【点评】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.3.(3分)如图,AB∥DC,BC∥DE,∠B=145°,则∠D的度数为()A.25°B.35°C.45°D.55°【分析】由平行线的性质推出∠B+∠C=180°,∠C=∠D,得到∠B+∠D=180°,即可求出∠D=35°.【解答】解:∵AB∥DC,∴∠B+∠C=180°,∵BC∥DE,∴∠C=∠D,∴∠B+∠D=180°,∵∠B=145°,∴∠D=35°.故选:B.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠B+∠C=180°,∠C=∠D.4.(3分)不等式2(x﹣1)≥6的解集是()A.x≤2B.x≥2C.x≤4D.x≥4【分析】去括号,然后移项、合并同类项,把x的系数化为1,即可得到不等式的解集.【解答】解:去括号得,2x﹣2≥6,移项得,2x≥6+2,合并同类项得,2x≥8,系数化为1得,x≥4.故选:D.【点评】本题考查了解一元一次不等式:有分母,先去分母、去括号,再移项,把含未知数的项移到不等式左边,接着合并同类项,然后把未知数的系数化为1即得到不等式组的解集.5.(3分)如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC的中点,连接AE,则图中的直角三角形共有()A.2个B.3个C.4个D.5个【分析】根据直角三角形的定义,找出图中的直角三角形即可解决问题.【解答】解:因为∠BAC=90°,所以△ABC是直角三角形.因为AD是BC边上的高,所以∠ADB=∠ADC=90°,所以△ABD、△AED、△ACD都是直角三角形,所以图中的直角三角形共有4个.故选:C.【点评】本题主要考查了直角三角形的性质,能根据所给条件找出图中的所有直角三角形是解题的关键.6.(3分)一个正比例函数的图象经过点A(2,m)和点B(n,﹣6).若点A与点B关于原点对称,则这个正比例函数的表达式为()A.y=3x B.y=﹣3x C.y=x D.y=﹣x【分析】由点A,B关于原点对称,可求出m的值,进而可得出点A的坐标,再利用一次函数图象上点的坐标特征,即可求出正比例函数的表达式.【解答】解:∵点A(2,m)和点B(n,﹣6)关于原点对称,∴m=6,∴点A的坐标为(2,6).设正比例函数的表达式为y=kx(k≠0),∵点A(2,6)在正比例函数y=kx的图象上,∴6=2k,解得:k=3,∴正比例函数的表达式为y=3x.故选:A.【点评】本题考查了待定系数法求正比例函数解析式以及关于原点对称的点的坐标,由点A,B关于原点对称,求出点A的坐标是解题的关键.7.(3分)如图,正方形CEFG的顶点G在正方形ABCD的边CD上,AF与DC交于点H,若AB=6,CE=2,则DH的长为()A.2B.3C.D.【分析】由正方形CEFG和正方形ABCD,AB=6,CE=2,得AD∥GF,得△ADH∽△FGH,得DH:HG=AD:GF=6:2=3:1,由DG=6﹣2=4,即可得DH=4÷(1+3)×3=3.【解答】解:由正方形CEFG和正方形ABCD,AB=6,CE=2,得AD∥GF,得△ADH∽△FGH,得DH:HG=AD:GF=6:2=3:1,由DG=6﹣2=4,得DH=4÷(1+3)×3=3.故选:B.【点评】本题主要考查了正方形的性质,相似三角形的判定与性质,解题关键是相似三角形的性质的应用.8.(3分)已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表:x…﹣4﹣2035…y…﹣24﹣80﹣3﹣15…则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当x>0时,y的值随x值的增大而减小C.图象经过第二、三、四象限D.图象的对称轴是直线x=1【分析】根据表格中所给数据,可求出抛物线的解析式,再对所给选项依次进行判断即可解决问题.【解答】解:由题知,,解得,所以二次函数的解析式为y=﹣x2+2x.因为a=﹣1<0,所以抛物线的开口向下.故A选项不符合题意.因为y=﹣x2+2x=﹣(x﹣1)2+1,所以当x>1时,y随x的增大而减小.故B选项不符合题意.令y=0得,﹣x2+2x=0,解得x1=0,x2=2,所以抛物线与x轴的交点坐标为(0,0)和(2,0).又因为抛物线的顶点坐标为(1,1),所以抛物线经过第一、三、四象限.故C选项不符合题意.因为二次函数解析式为y=﹣(x﹣1)2+1,所以抛物线的对称轴为直线x=1.故D选项符合题意.故选:D.【点评】本题主要考查了二次函数的性质及二次函数图象上点的坐标特征,能用待定系数法求出二次函数解析式及熟知二次函数的性质是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)分解因式:a2﹣ab=.【分析】直接把公因式a提出来即可.【解答】解:a2﹣ab=a(a﹣b).【点评】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.10.(3分)小华探究“幻方”时,提出了一个问题:如图,将0,﹣2,﹣1,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是.(写出一个符合题意的数即可)【分析】根据题意,填写数字即可.【解答】解:解法一:由题意,填写如下:1+0+(﹣1)=0,2+0+(﹣2)=0,满足题意,故答案为:0.解法二:由题意,填写如下:1+(﹣2)+0=﹣1,2+(﹣2)+(﹣1)=﹣1,满足题意,故答案为:﹣2.【点评】本题考查了有理数的运算,根据横向三个数之和与纵向三个数之和相等,进行填写即可得出结果.11.(3分)如图,BC是⊙O的弦,连接OB,OC,∠A是所对的圆周角,则∠A与∠OBC的和的度数是.【分析】根据同弧所对圆周角与圆心角的关系,再结合三角形的内角和定理即可解决问题.【解答】解:∵∠A是所对的圆周角,∴∠A=.∵OB=OC,∴∠OBC=∠OCB.又∵∠O+∠OBC+∠OCB=180°,∴∠O+2∠OBC=180°,∴,即∠A+∠OBC=90°.故答案为:90°.【点评】本题主要考查了圆周角定理,熟知圆周角定理是解题的关键.12.(3分)已知点A(﹣2,y1)和点B(m,y2)均在反比例函数y=﹣的图象上.若0<m<1,则y1+y2________ 0.(填“>”“=”或“<”)【分析】根据反比例函数图象上点的坐标特征得y1=,y2=﹣,再根据0<m<1,得y2<﹣5,即可得出y1+y2<﹣5=﹣<0.【解答】解:∵点A(﹣2,y1)和点B(m,y2)均在反比例函数y=﹣的图象上,∴y1=,y2=﹣,∵0<m<1,∴y2<﹣5,∴y1+y2<﹣5=﹣<0,故答案为:<.【点评】本题考查了反比例函数图象上点的坐标特征和不等式的性质,解题的关键在于熟练掌握反比例函数图象上点的坐标特征与性质.13.(3分)如图,在△ABC中,AB=AC,E是边AB上一点,连接CE,在BC的右侧作BF∥AC,且BF =AE,连接CF.若AC=13,BC=10,则四边形EBFC的面积为.+S△CBE,然后进行求解.【分析】将四边形EBFC的面积转化为S△CBF【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵BF∥AC,∴∠ACB=∠CBF,∴∠ABC=∠CBF,∴BC平分∠ABF,过点C作CM⊥AB,CN⊥BF,则:CM=CN,∵,,且BF=AE,=S△ACE,∴S△CBF+S△CBE=S△ACE+S△CBE=S△CBA,∴四边形EBFC的面积=S△CBF∵AC=13,∴AB=13,设AM=x,则BM=13﹣x,由勾股定理,得:CM2=AC2﹣AM2=BC2﹣BM2,∴132﹣x2=102﹣(13﹣x)2,解得:,∴,∴,∴四边形EBFC的面积为60,故答案为:60.【点评】本题考查了勾股定理,等腰三角形的性质,掌握勾股定理是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)计算:﹣(﹣7)0+(﹣2)×3.【分析】先化简二次根式,计算零指数幂和乘法,然后计算加减即可.【解答】解:原式=5﹣1﹣6=﹣2.【点评】本题考查了实数的运算和零指数幂,熟练掌握二次根式的性质和零指数幂是解决问题的关键.15.(5分)先化简,再求值:(x+y)2+x(x﹣2y),其中x=1,y=﹣2.【分析】先利用完全平方公式,单项式乘多项式将题目中的式子展开,然后合并同类项,再将x、y的值代入化简后的式子计算即可.【解答】解:原式=x2+2xy+y2+x2﹣2xy=2x2+y2,当x=1,y=﹣2时,原式=2×12+(﹣2)2=6.【点评】此题考查整式的混合运算—化简求值,熟练掌握运算法则是解答本题的关键.16.(5分)解方程:+=1.【分析】方程两边都乘(x+1)(x﹣1),得出2+x(x+1)=(x+1)(x﹣1),求出方程的解,再进行检验即可.【解答】解:方程两边都乘(x+1)(x﹣1),得2+x(x+1)=(x+1)(x﹣1),解得x=﹣3,检验:当x=﹣3时,(x+1)(x﹣1)≠0,所以分式方程的解是x=﹣3.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.17.(5分)如图,已知直线l和l外一点A,请用尺规作图法,求作一个等腰直角△ABC,使得顶点B和顶点C都在直线l上.(作出符合题意的一个等腰直角三角形即可,保留作图痕迹,不写作法)【分析】以A为圆心画弧交l于M、N,分别以M、N为圆心大于MN长为半径画弧交于D,作射线AD,交l于C,以C为圆心AC长为半径画弧交l于B,连接AB,△ABC即为所求作的三角形.【解答】解:如图△ABC即为所求作的三角形.【点评】本题考查作图﹣复杂作图,关键是掌握过直线外一点作已知直线垂线的方法.18.(5分)如图,四边形ABCD是矩形,点E和点F在边BC上,且BE=CF,求证:AF=DE.【分析】利用矩形的性质证得△ABF≌△DCE(SAS),从而证得结论.【解答】证明:∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵BE=CF,∴BE+EF=CF+EF.即:BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴AF=DE.【点评】本题考查了矩形的性质及全等三角形的判定与性质,解题的关键是了解矩形的对边相等,四个角都是直角,难度不大.19.(5分)一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球.这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球,记下颜色后放回,记作随机摸球1次.(1)随机摸球10次,其中摸出黄球3次,则这10次摸球中,摸出黄球的频率是0.3;(2)随机摸球2次,用画树状图或列表的方法,求这两次摸出的小球都是红球的概率.【分析】(1)根据频率等于频数除以总数即可求解.(2)列表可得出所有等可能的结果数以及这两次摸出的小球都是红球的结果数,再利用概率公式可得出答案.【解答】解:(1)由题意得,摸出黄球的频率是3÷10=0.3.故答案为:0.3.(2)列表如下:红红红白黄红(红,红)(红,红)(红,红)(红,白)(红,黄)红(红,红)(红,红)(红,红)(红,白)(红,黄)红(红,红)(红,红)(红,红)(红,白)(红,黄)白(白,红)(白,红)(白,红)(白,白)(白,黄)黄(黄,红)(黄,红)(黄,红)(黄,白)(黄,黄)共有25种等可能的结果,其中这两次摸出的小球都是红球的结果有9种,∴这两次摸出的小球都是红球的概率为.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.20.(5分)星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需4h;若爸爸单独完成,需2h.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成了剩余的打扫任务,小峰和爸爸这次一共打扫了3h,求这次小峰打扫了多长时间.【分析】设这次小峰打扫了x h,则爸爸打扫了(3﹣x)h,利用小峰完成的工作量+爸爸完成的工作量=总工作量,可列出关于x的一元一次方程,解之即可得出结论.【解答】解:设这次小峰打扫了x h,则爸爸打扫了(3﹣x)h,根据题意得:+=1,解得:x=2.答:这次小峰打扫了2h.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(6分)如图所示,一座小山顶的水平观景台的海拔高度为1600m,小明想利用这个观景台测量对面山顶C点处的海拔高度.他在该观景台上选定了一点A,在点A处测得C点的仰角∠CAE=42°,再在AE上选一点B,在点B处测得C点的仰角α=45°,AB=10m.求山顶C点处的海拔高度.(小明身高忽略不计,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)【分析】过点C作CD⊥AE,交AE的延长线于点D,设BD=x m,则AD=(x+10)m,然后分别在Rt△BCD和Rt△ACD中,利用锐角三角函数的定义求出CD的长,从而列出关于x的方程,进行计算即可解答.【解答】解:过点C作CD⊥AE,交AE的延长线于点D,设BD=x m,∵AB=10m,∴AD=AB+BD=(x+10)m,在Rt△BCD中,∠CBD=45°,∴CD=BD•tan45°=x(m),在Rt△ACD中,∠A=42°,∴CD=AD•tan42°≈0.9(x+10)m,∴x=0.9(x+10),解得:x=90,∴CD=90m,∵小山顶的水平观景台的海拔高度为1600m,∴山顶C点处的海拔高度约=1600+90=1690(m),∴山顶C点处的海拔高度约为1690m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.(7分)我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A市前往B 市.他驾车从A市一高速公路入口驶入时,该车的剩余电量是80kW•h,行驶了240km后,从B市一高速公路出口驶出.已知该车在高速公路上行驶的过程中,剩余电量y(kW•h)与行驶路程x(km)之间的关系如图所示.(1)求y与x之间的关系式;(2)已知这辆车的“满电量”为100kW•h,求王师傅驾车从B市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少.【分析】(1)设y=kx+b(0≤x≤240),代入(0,80),(150,50),可得k、b的值,即得y与x之间的关系式;(2)令x=240,可得王师傅驾车从B市这一高速公路出口驶出时该车的剩余电量,已知这辆车的“满电量”为100kW•h,可得该车的剩余电量占“满电量”的百分之多少.【解答】解:(1)设y=kx+b(0≤x≤240),代入(0,80),(150,50),得,,解得:k=﹣,b=80,∴y=﹣x+80;(2)令x=240,则y=32,×100%=32%,答:该车的剩余电量占“满电量”的32%.【点评】本题考查了一次函数的应用,设一次函数表达式代入两点求得一次函数表达式是本题的关键.23.(7分)水资源问题是全球关注的热点,节约用水已成为全民共识.某校课外兴趣小组想了解居民家庭用水情况,他们从一小区随机抽取了30户家庭,收集了这30户家庭去年7月份的用水量,并对这30个数据进行整理,绘制了如下统计图表:组别用水量x/m3组内平均数/m3A2≤x<6 5.3B6≤x<108.0C10≤x<1412.5D14≤x<1815.5根据以上信息,解答下列问题:(1)这30个数据的中位数落在B组(填组别);(2)求这30户家庭去年7月份的总用水量;(3)该小区有1000户家庭,若每户家庭今年7月份的用水量都比去年7月份各自家庭的用水量节约10%,请估计这1000户家庭今年7月份的总用水量比去年7月份的总用水量节约多少m3【分析】(1)根据统计图以及中位数的定义解答即可;(2)根据题意列式求解即可;(3)求出这30户家庭去年7月份的平均用水量,再求出1000户家庭去年和今年7月份的总用水量,即可求解.【解答】解:(1)根据这30户家庭去年7月份的用水量可得数据,再将其数据从小到大排列,排在中间的两个数落在B组,故答案为:B;(2)这30户家庭去年7月份的总用水量为5.3×10+8.0×12+12.5×6+15.5×2=255(m3);(3)这30户家庭去年7月份的平均用水量为255÷30=8.5,∵这1000户家庭去年7月份的总用水量.8.5×1000=8500(m3),1000户家庭今年7月份的总用水量比去年节约了8500×10%=850(m3),答:这1000户家庭今年7月份的总用水量比去年7月份的总用水量节约850m3.【点评】本题考查的是频数分布直方图,中位数,用样本估计总体等知识,能够从不同的统计图或统计表中获取有用信息是解题的关键.24.(8分)如图,直线l与⊙O相切于点A,AB是⊙O的直径,点C,D在l上,且位于点A两侧,连接BC,BD,分别与⊙O交于点E,F,连接EF,AF.(1)求证:∠BAF=∠CDB;(2)若⊙O的半径r=6,AD=9,AC=12,求EF的长.【分析】(1)先根据切线的性质得到∠BAC=∠BAD=90°,再根据圆周角定理得到∠AFB=90°,然后根据等角的余角相等得到∠BAF=∠CDB;(2)先利用勾股定理计算出BD=15,BC=12,再证明△BAF∽△BDA,利用相似比求出BF=,接着证明△BEF∽△BDC,然后利用相似比求出EF的长.【解答】(1)证明:∵直线l与⊙O相切于点A,AB是⊙O的直径,∴AB⊥CD,∴∠BAC=∠BAD=90°,∵AB是⊙O的直径,∴∠AFB=90°,∵∠BAF+∠ABD=90°,∠CDB+∠ABD=90°,∴∠BAF=∠CDB;(2)解:在Rt△ABD中,∵AB=2r=12,AD=9,∴BD==15,在Rt△ABC中,∵AB=12,AC=12,∴BC==12,∵∠ABF=∠DBA,∠AFB=∠BAD,∴△BAF∽△BDA,∴BF:BA=BA:BD,即BF:12=12:15,解得BF=,∵∠BEF=∠BAF,∠BAF=∠CDB,∴∠BEF=∠CDB,∵∠EBF=∠DBC,∴△BEF∽△BDC,∴EF:CD=BF:BC,即EF:21=:12,解得EF=,即EF的长为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和相似三角形的判定与性质.25.(8分)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L1与缆索L2均呈抛物线型,桥塔AO与桥塔BC均垂直于桥面,如图所示,以O为原点,以直线FF′为x轴,以桥塔AO所在直线为y轴,建立平而直角坐标系.已知:缆索L1所在抛物线与缆索L2所在抛物线关于y轴对称,桥塔AO与桥塔BC之间的距离OC=100m,AO=BC=17m,缆索L1的最低点P到FF′的距离PD=2m.(桥塔的粗细忽略不计)(1)求缆索L1所在抛物线的函数表达式;(2)点E在缆索L2上,EF⊥FF′,且EF=2.6m,FO<OD,求FO的长.【分析】(1)依据题意,由AO=17m,从而A(0,17),又OC=100m,缆索L1的最低点P到FF′的距离PD=2m,可得抛物线的顶点P为(50,2),故可设抛物线为y=a(x﹣50)2+2.,又将A代入抛物线可求得a的值,进而可以得解;(2)依据题意,由缆索L1所在抛物线与缆索L2所在抛物线关于y轴对称,又缆索L1所在抛物线为y =(x﹣50)2+2,从而可得缆索L2所在抛物线为y=(x+50)2+2,又令y=2.6,可得2.6=(x+50)2+2,求出x=﹣40或x=﹣60,进而计算可以判断得解.【解答】解:(1)由题意,∵AO=17m,∴A(0,17).又OC=100m,缆索L1的最低点P到FF′的距离PD=2m,∴抛物线的顶点P为(50,2).故可设抛物线为y=a(x﹣50)2+2.又将A代入抛物线可得,∴2500a+2=17.∴a=.∴缆索L1所在抛物线为y=(x﹣50)2+2.(2)由题意,∵缆索L1所在抛物线与缆索L2所在抛物线关于y轴对称,又缆索L1所在抛物线为y=(x﹣50)2+2,∴缆索L2所在抛物线为y=(x+50)2+2.又令y=2.6,∴2.6=(x+50)2+2.∴x=﹣40或x=﹣60.又FO<OD=50m,∴x=﹣40.∴FO的长为40m.【点评】本题主要考查了二次函数的应用,解题时要熟练掌握并能灵活运用二次函数的性质是关键.26.(10分)问题提出(1)如图①,在△ABC中,AB=15,∠C=30°,作△ABC的外接圆⊙O,则的长为25π;(结果保留π)问题解决(2)如图②所示,道路AB的一侧是湿地.某生态研究所在湿地上建有观测点D,E,C,线段AD,AC和BC为观测步道,其中点A和点B为观测步道出入口.已知点E在AC上,且AE=EC,∠DAB =60°,∠ABC=120°,AB=1200m,AD=BC=900m,现要在湿地上修建一个新观测点P,使∠DPC =60°.再在线段AB上选一个新的步道出入口点F,并修道三条新步道PF,PD,PC,使新步道PF 经过观测点E,并将五边形ABCPD的面积平分.请问:是否存在满足要求的点P和点F?若存在,求此时PF的长;若不存在,请说明理由.(点A,B,C,P,D在同一平面内,道路AB与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)【分析】(1)连接OA、OB,如图1,首先证明△OAB等边三角形,进而得到OA=OB=15,的长为=25π;(2)首先推导出点P在以O为圆心,CD为弦,圆心角为120°的圆上,得到ME是△CAD的中位线,四边形AFMD是平行四边形,FM=900m,作CN⊥PF于点N,解得CN=CM•sin60°=300m,推导同△PMC∽△DPC,求得PC2=720000,在Rt△PCN中,求得PN=300(m),进而得到PF=(300+1200)m.【解答】解:(1)连接OA、OB,如图1,∵∠C=30°,∴∠AOB=60°,∵OA=OB,∴△OAB等边三角形,∵AB=15,∴OA=OB=15,∴的长为=25π,故答案为:25π;(2)存在满足要求的点P和点F,此时PF的长为(300+1200)m.理由如下:∵∠DAB=60°,∠ABC=120°,∴∠DAB+∠ABC=180°,∴AD∥BC,∵AD=BC=900m,∴四边形ABCD是平行四边形,∵要在湿地上修建一个新观测点P,使∠DPC=60°,∴点P在以O为圆心,CD为弦,圆心角为120°的圆上,如图2,∵AE=EC,∴经过点E的直线都平分四边形ABCD的面积,∵新步道PF经过观测点E,并将五边形ABCPD的面积平分,∴直线PF必经过CD的中点M,∴ME是△CAD的中位线,∴ME∥AD,∵MF∥AD,DM∥AF,∴四边形AFMD是平行四边形,∴FM=AD=900m,作CN⊥PF于点N,如图3,∴∠PMC=∠DMF=∠DAB=60°,∵CM=CD=AB=600m,∴MN=CM•cos60°=300m,∴CN=CM•sin60°=300m,∵∠PMC=∠DPC=60°,∴△PMC∽△DPC,∴=,即=,∴PC2=720000,在Rt△PCN中,PN===300(m),∴PF=300+300+900=(300+1200)m,∴存在满足要求的点P和点F,此时PF的长为(300+1200)m.。

2024年陕西省中考数学试卷正式版含答案解析

2024年陕西省中考数学试卷正式版含答案解析

绝密★启用前2024年陕西省中考数学试卷(A卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−3的倒数为().A. −13B. 13C. 3D. −32.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A.B.C.D.3.如图,AB//DC,BC//DE,∠B=145°,则∠D的度数为( )A. 25°B. 35°C. 45°D. 55°4.不等式2(x−1)≥6的解集是( )A. x≤2B. x≥2C. x≤4D. x≥45.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是DC的中点,连接AE,则图中的直角三角形共有( )A. 2个B. 3个C. 4个D. 5个6.一个正比例函数的图象经过点A(2,m)和点B(n,−6).若点A与点B关于原点对称,则这个正比例函数的表达式为( )A. y=3xB. y=−3xC. y=13x D. y=−13x7.如图,正方形CEFG的顶点G在正方形ABCD的边CD上,AF与DC交于点H,若AB=6,CE=2,则DH的长为( )A. 2B. 3C. 52D. 838.已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表:则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当x>0时,y的值随x值的增大而减小C. 图象经过第二、三、四象限D. 图象的对称轴是直线x=1第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。

陕西省西安市2024届中考数学模拟精编试卷含解析

陕西省西安市2024届中考数学模拟精编试卷含解析

陕西省西安市2024届中考数学模拟精编试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列各式:①33+3=63;②177=1;③2+6=8=22;④243=22;其中错误的有().A.3个B.2个C.1个D.0个2.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C.23D.323.12的倒数是()A.﹣12B.2 C.﹣2 D.124.下列计算正确的是()A.B.C.D.5.如图,若数轴上的点A,B分别与实数﹣1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A.2 B.3 C.4 D.56.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.7.如图,直线AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于()A .30°B .40°C .60°D .70°8.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A .∠ABC =∠ADC ,∠BAD =∠BCDB .AB =BC C .AB =CD ,AD =BC D .∠DAB +∠BCD =180°9.下列二次函数的图象,不能通过函数y =3x 2的图象平移得到的是( )A .y =3x 2+2B .y =3(x ﹣1)2C .y =3(x ﹣1)2+2D .y =2x 210.已知下列命题:①对顶角相等;②若a >b >0,则1a <1b;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x 2﹣2x 与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( ) A .15 B .25 C .35 D .45 二、填空题(共7小题,每小题3分,满分21分)11.如图,AB ∥CD ,点E 是CD 上一点,∠AEC =40°,EF 平分∠AED 交AB 于点F ,则∠AFE =___度.12.如图,在Rt ABC ∆中,90ABC ∠=,3AB =,4BC = ,Rt MPN ∆,90MPN ∠=,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP =________.13.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.14.小青在八年级上学期的数学成绩如下表所示.平时测验期中考试期末考试成绩86 90 81如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_____分.15.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是2.其中正确的是________.(把你认为正确结论的序号都填上)16.如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为_____ m.17.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_____cm.三、解答题(共7小题,满分69分)18.(10分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区1800 1600B地区1600 1200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.19.(5分)已知:如图,抛物线y=34x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.20.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E 不与点A 、B 重合),DE 的延长线交⊙O 于点G ,DF ⊥DG ,且交BC 于点F .(1)求证:AE =BF ;(2)连接GB ,EF ,求证:GB ∥EF ;(3)若AE =1,EB =2,求DG 的长.21.(10分)已知a ,b ,c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判定△ABC 的形状.22.(10分)如图,在△ABC 中,∠B =90°,AB =4,BC =1.在BC 上求作一点P ,使PA+PB =BC ;(尺规作图,不写作法,保留作图痕迹)求BP 的长.23.(12分)在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF=BE ,连接AF ,BF .(1)求证:四边形DEBF 是矩形;(2)若AF 平分∠DAB ,AE=3,BF=4,求▱ABCD 的面积.24.(14分)先化简,再求值:22x 3x 311x 1x 2x 1x 1--⎛⎫÷-+ ⎪-++-⎝⎭,再从0x 4<<的范围内选取一个你最喜欢的值代入,求值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】 33+3=63,错误,无法计算;②17 7=1,错误;③2+6=8=22,错误,不能计算;④243=22,正确.故选A.2、A【解题分析】分析:由S △ABC =9、S △A′EF =1且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DEABD S A D AD S ''=(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =1,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DE ABD S A D AD S ''=(),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.3、B【解题分析】根据乘积是1的两个数叫做互为倒数解答.【题目详解】解:∵12×1=1∴12的倒数是1.故选B.【题目点拨】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.4、D【解题分析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确.故选D.5、B【解题分析】由数轴上的点A、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数.【题目详解】∵数轴上的点A,B 分别与实数﹣1,1 对应,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴与点C 对应的实数是:1+2=3.故选B.【题目点拨】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.6、C【解题分析】试题分析:观察可得,只有选项C 的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.7、A【解题分析】∵AB ∥CD ,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E ,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A .8、D【解题分析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形ABCD 为菱形.所以根据菱形的性质进行判断.【题目详解】解:四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,//AB CD ∴,//AD BC ,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC ,CD 边上的高为AE ,AF .则AE AF =(两纸条相同,纸条宽度相同); 平行四边形ABCD 中,ABC ACD S S ∆∆=,即⨯=⨯BC AE CD AF ,BC CD ∴=,即AB BC =.故B 正确;∴平行四边形ABCD为菱形(邻边相等的平行四边形是菱形).ABC ADC∠=∠∴,BAD BCD∠=∠(菱形的对角相等),故A正确;AB CD=,AD BC=(平行四边形的对边相等),故C正确;如果四边形ABCD是矩形时,该等式成立.故D不一定正确.故选:D.【题目点拨】本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.9、D【解题分析】分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;D、y=3x2的图象平移不能得到y=2x2,故本选项正确.故选D.10、B【解题分析】∵①对顶角相等,故此选项正确;②若a>b>0,则1a<1b,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;∴从中任选一个命题是真命题的概率为:25.故选:B.二、填空题(共7小题,每小题3分,满分21分)11、70°.【解题分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数. 【题目详解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴1702DEF AED∠=∠=︒,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案为:70【题目点拨】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.12、1【解题分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出PQPR=PEPF=2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题.【题目详解】如图,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴PQPR=PEPF=2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=35,∴AP=5x=1.故答案为:1.【题目点拨】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.13、4【解题分析】∵AB=2cm ,AB=AB 1,∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE ,∴∠ABE=∠AB 1E=90°∵AE=CE∴AB 1=B 1C∴AC=4cm .14、84.2【解题分析】小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2. 15、②③④【解题分析】①可用特殊值法证明,当P 为BD 的中点时,0MC =,可见MF MC ≠.②可连接PC ,交EF 于点O ,先根据SAS 证明ADP CDP ≅,得到DAP DCP ∠=∠,根据矩形的性质可得DCP CFE ∠=∠,故DAP CFE ∠=∠,又因为90DAP AMD ∠+∠=︒,故90CFE AMD ∠+∠=︒,故AH EF ⊥. ③先证明CPM HPC ,得到PC PM HP PC=,再根据ADP CDP ≅,得到AP PC =,代换可得. ④根据EF PC AP ==,可知当AP 取最小值时,EF 也取最小值,根据点到直线的距离也就是垂线段最短可得,当AP BD ⊥时,EF 取最小值,再通过计算可得.【题目详解】解:①错误.当P 为BD 的中点时,0MC =,可见MF MC ≠;②正确.如图,连接PC ,交EF 于点O ,45AD CDADP CDPDP DP=⎧⎪∠=∠=︒⎨⎪=⎩∴()ADP CDP SAS≅∴DAP DCP∠=∠,PF CD⊥,PE BC⊥,90BCD∠=︒,∴四边形PECF为矩形,∴OF OC=,∴DCP CFE∠=∠,∴DAP CFE∠=∠,90DAP AMD∠+∠=︒,∴90CFE AMD∠+∠=︒,∴90FGM∠=︒,∴AH EF⊥.③正确.//AD BH,∴H DAP∠=∠,ADP CDP≅,∴DAP DCP∠=∠,∴H DCP∠=∠,又CPH MPC∠=∠,∴CPM HPC,∴PC PMHP PC=,AP PC=,∴AP PMHP AP=,∴2AP PM PH=.④正确.()ADP CDP SAS≅且四边形PECF为矩形,∴EF PC AP==,∴当AP BD⊥时,EF取最小值,此时2sin45222AP AB=︒=⨯=,故EF的最小值为2.故答案为:②③④.【题目点拨】本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.16、7.5【解题分析】试题解析:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴BC AB EC EF=,∵AE=5m,∴4310EF=,解得:EF=7.5m.故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.17、1.【解题分析】根据在△ABC中,∠A:∠B:∠C=1:2:3,三角形内角和等于180°可得∠A,∠B,∠C的度数,它的最小边的长是2cm,从而可以求得最大边的长.【题目详解】∵在△ABC中,∠A:∠B:∠C=1:2:3,∴∵最小边的长是2cm,∴a=2.∴c=2a=1cm.故答案为:1.【题目点拨】考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.三、解答题(共7小题,满分69分)18、(1)y=200x+74000(10≤x≤30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.【解题分析】(1)根据题意和表格中的数据可以得到y关于x的函数关系式;(2)根据题意可以得到相应的不等式,从而可以解答本题;(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.【题目详解】解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A 地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B 地区;方案二:派往A 地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B 地区;方案三:派往A 地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B 地区;(3)派往A 地区30台乙型联合收割机,20台甲型联合收割机全部派往B 地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y 随x 的增大而增大,∴当x=30时,y 取得最大值,此时y=80000,∴派往A 地区30台乙型联合收割机,20台甲型联合收割机全部派往B 地区,使该公司50台收割机每天获得租金最高.【题目点拨】本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.19、(1)239344y x x =--;(2)272;(3)P 1(3,-3),P 2,3),P 3(32,3). 【解题分析】(1)将,A C 的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据,B C 的坐标,易求得直线BC 的解析式.由于AB OC 、都是定值,则ABC 的面积不变,若四边形ABCD 面积最大,则BDC 的面积最大;过点D 作DM y 轴交BC 于M ,则3,34M x x ⎛⎫- ⎪⎝⎭, 可得到当BDC 面积有最大值时,四边形ABCD 的面积最大值;(3)本题应分情况讨论:①过C 作x 轴的平行线,与抛物线的交点符合P 点的要求,此时,P C 的纵坐标相同,代入抛物线的解析式中即可求出P 点坐标;②将BC 平移,令C 点落在x 轴(即E 点)、B 点落在抛物线(即P 点)上;可根据平行四边形的性质,得出P 点纵坐标(,P C 纵坐标的绝对值相等),代入抛物线的解析式中即可求得P 点坐标.【题目详解】 解:(1)把()(10)03A C --,,,代入234y x bx c =++, 可以求得934b c =-=-, ∴239 3.44y x x =--(2)过点D 作DM y 轴分别交线段BC 和x 轴于点M N 、, 在239 3.44y x x =--中,令0y =,得124 1.x x ,==- ()40.B ∴,设直线BC 的解析式为,y kx b =+可求得直线BC 的解析式为:3 3.4y x =- ∵S 四边形ABCD ()111553402.222ABC ADC SS DM DM =+=⨯⨯+⨯-⨯=+ 设239,3,44D x x x ⎛⎫-- ⎪⎝⎭ 3,3.4M x x ⎛⎫- ⎪⎝⎭223393333.4444DM x x x x x ⎛⎫=----=-+ ⎪⎝⎭当2x =时,DM 有最大值3.此时四边形ABCD 面积有最大值27.2(3)如图所示,如图:①过点C 作CP 1∥x 轴交抛物线于点P 1,过点P 1作P 1E 1∥BC 交x 轴于点E 1,此时四边形BP 1CE 1为平行四边形,∵C (0,-3)∴设P 1(x ,-3)∴34x2-94x-3=-3,解得x1=0,x2=3,∴P1(3,-3);②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,∵C(0,-3)∴设P(x,3),∴34x2-94x-3=3,x2-3x-8=0解得x=3+412或x=3412-,此时存在点P2(3+412,3)和P3(3412-,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(3+412,3),P3(3412-,3).【题目点拨】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.20、(1)详见解析;(2)详见解析;(3).【解题分析】(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=,∵EF=,∴DE=×,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴,即GE•ED=AE•EB,∴•GE=2,即GE=,则GD=GE+ED=.21、等腰直角三角形【解题分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【题目详解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.考点:勾股定理的逆定理.22、(1)见解析;(2)2.【解题分析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.【题目详解】(1)如图所示,点P即为所求.(2)设BP=x,则CP=1﹣x,由(1)中作图知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【题目点拨】考核知识点:勾股定理和线段垂直平分线.23、(1)证明见解析(2)3【解题分析】试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.试题解析:(1)∵四边形ABCD是平行四边形,∴DC∥AB,即DF∥EB.又∵DF=BE,∴四边形DEBF是平行四边形.∵DE⊥AB,∴∠EDB=90°.∴四边形DEBF是矩形.(2)∵四边形DEBF是矩形,∴DE=BF=4,BD=DF.∵DE⊥AB,∴AD =1.∵DC ∥AB ,∴∠DFA =∠FAB .∵AF 平分∠DAB ,∴∠DAF =∠FAB .∴∠DAF =∠DFA .∴DF =AD =1.∴BE =1.∴AB =AE +BE =3+1=2.∴S □ABCD =AB ·BF =2×4=3.24、原式=11x -,把x=2代入的原式=1. 【解题分析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式=()()()21311·1131x x x x x x x +-+--+--- =11x - 当x=2时,原式=1。

陕西省中考数学试卷(含答案解析版)

陕西省中考数学试卷(含答案解析版)

2021年陕西省中考数学试卷一、选择题〔共10小题,每题3分,计30分。

每题只有一个选项是符合题意的〕1.〔3.00分〕〔2021•陕西〕﹣的倒数是〔〕A.B.C.D.2.〔3.00分〕〔2021•陕西〕如图,是一个几何体的外表展开图,那么该几何体是〔〕A.正方体B.长方体C.三棱柱D.四棱锥3.〔3.00分〕〔2021•陕西〕如图,假设l1∥l2,l3∥l4,那么图中与∠1互补的角有〔〕A.1个 B.2个 C.3个 D.4个4.〔3.00分〕〔2021•陕西〕如图,在矩形AOBC中,A〔﹣2,0〕,B〔0,1〕.假设正比例函数y=kx的图象经过点C,那么k的值为〔〕A.B.C.﹣2 D.25.〔3.00分〕〔2021•陕西〕以下计算正确的选项是〔〕A.a2•a2=2a4B.〔﹣a2〕3=﹣a6C.3a2﹣6a2=3a2D.〔a﹣2〕2=a2﹣4 6.〔3.00分〕〔2021•陕西〕如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD ⊥BC,垂足为D,∠ABC的平分线交AD于点E,那么AE的长为〔〕A.B.2C.D.37.〔3.00分〕〔2021•陕西〕假设直线l1经过点〔0,4〕,l2经过点〔3,2〕,且l1与l2关于x轴对称,那么l1与l2的交点坐标为〔〕A.〔﹣2,0〕B.〔2,0〕 C.〔﹣6,0〕D.〔6,0〕8.〔3.00分〕〔2021•陕西〕如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.假设EH=2EF,那么以下结论正确的选项是〔〕A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.〔3.00分〕〔2021•陕西〕如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,那么∠DBC的大小为〔〕A.15°B.35°C.25°D.45°10.〔3.00分〕〔2021•陕西〕对于抛物线y=ax2+〔2a﹣1〕x+a﹣3,当x=1时,y >0,那么这条抛物线的顶点一定在〔〕A.第一象限B.第二象限C.第三象限D.第四象限二、填空题〔共4小题,每题3分,计12分〕11.〔3.00分〕〔2021•陕西〕比拟大小:3〔填“>〞、“<〞或“=〞〕.12.〔3.00分〕〔2021•陕西〕如图,在正五边形ABCDE中,AC与BE相交于点F,那么∠AFE的度数为.13.〔3.00分〕〔2021•陕西〕假设一个反比例函数的图象经过点A〔m,m〕和B 〔2m,﹣1〕,那么这个反比例函数的表达式为.14.〔3.00分〕〔2021•陕西〕如图,点O是▱ABCD的对称中心,AD>AB,E、F 是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,假设S1,S2分别表示△EOF和△GOH的面积,那么S1与S2之间的等量关系是.三、解答题〔共11小题,计78分。

2024年陕西中考数学试卷

2024年陕西中考数学试卷

选择题下列数中,哪个是无理数?A. 3/4B. √2 (正确答案)C. -1D. 0点A(2,3)关于x轴对称的点的坐标是?A. (-2,3)B. (2,-3) (正确答案)C. (-2,-3)D. (3,2)函数y = 2x + 1与y = 2x - 3的图象的关系是?A. 关于x轴对称B. 关于y轴对称C. 平行(正确答案)D. 重合若a2 + b2 = 0,则a和b的值分别为?A. a = 1, b = 1B. a = 0, b = 1C. a = -1, b = 1D. a = 0, b = 0 (正确答案)已知△ABC △ △DEF,且AB/DE = 2/3,则S△ABC/S△DEF等于?A. 2/3B. 3/2C. 4/9 (正确答案)D. 9/4下列不等式中,解集为x > 2的是?A. 2x > 3B. x + 2 > 5 (正确答案)C. 3x - 1 > 8D. 4x - 2 < 10在直角坐标系中,直线y = -2x + 4与x轴的交点坐标是?A. (2,0) (正确答案)B. (0,2)C. (-2,0)D. (0,-2)若a < b < 0,则下列不等式中成立的是?A. a2 < b2B. 1/a < 1/b (正确答案)C. ab > a2D. |a| < |b|下列四边形中,不一定有对角线相等性质的是?A. 矩形B. 等腰梯形C. 菱形(正确答案)D. 正方形。

陕西省西安市未央区2024届中考数学模试卷含解析

陕西省西安市未央区2024届中考数学模试卷含解析

陕西省西安市未央区2024届中考数学模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc >1.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③2.在数轴上表示不等式组10240xx+≥⎧⎨-<⎩的解集,正确的是()A.B.C.D.3.关于x的不等式组24351xx-<⎧⎨-<⎩的所有整数解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,2 4.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A 5B25C.12D.257+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()A.B.C.D.7.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.98.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A.24π cm2B.48π cm2C.60π cm2D.80π cm2 9.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()A.B.C.D.10.如图是用八块相同的小正方体搭建的几何体,它的左视图是()A.B.C .D .11.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯12.图为一根圆柱形的空心钢管,它的主视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.14.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.15.把多项式x 3﹣25x 分解因式的结果是_____16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.17.如图,BD 是矩形ABCD 的一条对角线,点E ,F 分别是BD ,DC 的中点.若AB =4,BC =3,则AE +EF 的长为_____.18.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为______分.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.20.(6分)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB=2,PC=1.(1)求证:PC 是⊙O 的切线.(2)求tan ∠CAB 的值.21.(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;22.(8分)先化简,再求值:22111()211x x x x x --÷-+-,其中x=﹣1. 23.(8分)如图,矩形ABCD 中,E 是AD 的中点,延长CE ,BA 交于点F ,连接AC ,DF .求证:四边形ACDF 是平行四边形;当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.24.(10分)在平面直角坐标系中,关于x 的一次函数的图象经过点(47)M ,,且平行于直线2y x =. (1)求该一次函数表达式;(2)若点Q (x ,y )是该一次函数图象上的点,且点Q 在直线32y x =+的下方,求x 的取值范围.25.(10分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt △ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1;(2)若点B 的坐标为(-3,5),试在图中画出直角坐标系,并标出A 、C 两点的坐标;(3)根据(2)中的坐标系作出与△ABC 关于原点对称的图形△A 2B 2C 2,并标出B 2、C 2两点的坐标.26.(12分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)27.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD 于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.2、C【解题分析】解不等式组,再将解集在数轴上正确表示出来即可【题目详解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集为﹣1≤x<2,故选C.【题目点拨】本题主要考查了一元一次不等式组的求解,求出题中不等式组的解集是解题的关键.3、B【解题分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.【题目详解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,则不等式组的解集为﹣2<x<2,所以不等式组的整数解为﹣1、0、1,故选:B.【题目点拨】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、A【解题分析】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cos B=25525BDAB==.故选A.5、B【解题分析】分析:直接利用27<3,进而得出答案.详解:∵27<3,∴37+1<4,故选B.的取值范围是解题关键.6、C【解题分析】根据左视图是从物体的左面看得到的视图解答即可.【题目详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选C .【题目点拨】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.7、B【解题分析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案.【题目详解】∵一组数据1,7,x ,9,5的平均数是2x ,∴679525x x ++++=⨯,解得:3x =,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.故选B .【题目点拨】此题主要考查了中位数以及平均数,正确得出x 的值是解题关键.8、A【解题分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.【题目详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm ,底面半径为8÷1=4cm , 故侧面积=πrl=π×6×4=14πcm 1.故选:A .【题目点拨】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.9、B【解题分析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【题目详解】从左边看上下各一个小正方形,如图故选B.10、B【解题分析】根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.【题目详解】左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,故选B.【题目点拨】本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.11、C【解题分析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.考点:用科学计数法计数12、B【解题分析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解题分析】首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【题目详解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是.故答案为:.【题目点拨】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.14、1 6【解题分析】试题解析:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21=126,故答案为16.15、x(x+5)(x﹣5).【解题分析】分析:首先提取公因式x ,再利用平方差公式分解因式即可.详解:x 3-25x=x (x 2-25)=x (x+5)(x-5).故答案为x (x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.16、3【解题分析】根据圆周角定理可求出∠AOB 的度数,设扇形半径为x ,从而列出关于x 的方程,求出答案.【题目详解】由题意可知:∠AOB =2∠ACB =2×40°=80°,设扇形半径为x ,故阴影部分的面积为πx 2×80360=29×πx 2=2π, 故解得:x 1=3,x 2=-3(不合题意,舍去),故答案为3.【题目点拨】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案. 17、1【解题分析】先根据三角形中位线定理得到EF 的长,再根据直角三角形斜边上中线的性质,即可得到AE 的长,进而得出计算结果.【题目详解】解:∵点E ,F 分别是BD DC ,的中点,∴FE 是△BCD 的中位线,1 1.5290,3,45EF BC BAD AD BC AB BD ︒∴==∠====∴= . 又∵E 是BD 的中点,∴Rt △ABD 中,1 2.52AE BD ==, AE EF 2.5 1.54∴++==,故答案为1.【题目点拨】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.18、1【解题分析】∵13份试卷成绩,结果如下:3个140分,4个1分,2个130分,2个120分,1个100分,1个80分, ∴第7个数是1分,∴中位数为1分,故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、开口方向:向上;点坐标:(-1,-3);称轴:直线1x =-.【解题分析】将二次函数一般式化为顶点式,再根据a 的值即可确定该函数图像的开口方向、顶点坐标和对称轴.【题目详解】解:()2221y x x =+-, ()222121y x x =++--,()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-.【题目点拨】熟练掌握将一般式化为顶点式是解题关键.20、(1)见解析;(2).【解题分析】(1)连接OC 、BC ,根据题意可得OC 2+PC 2=OP 2,即可证得OC ⊥PC ,由此可得出结论.(2)先根据题意证明出△PBC ∽△PCA ,再根据相似三角形的性质得出边的比值,由此可得出结论.【题目详解】(1)如图,连接OC 、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【题目点拨】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.21、(1)1;(2)1 6【解题分析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为12和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【题目详解】解:(1)设口袋中黄球的个数为x个,根据题意得:21 212x= ++解得:x=1经检验:x=1是原分式方程的解∴口袋中黄球的个数为1个(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况∴两次摸出都是红球的概率为:21 126=.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.22、-2.【解题分析】根据分式的运算法化解即可求出答案.【题目详解】解:原式=2111 ()?(1)1x xxx x x++--=-,当x=﹣1时,原式=2(1)121-+=--.【题目点拨】熟练运用分式的运算法则.23、(1)证明见解析;(2)BC=2CD,理由见解析. 【解题分析】分析:(1)利用矩形的性质,即可判定△FAE ≌△CDE ,即可得到CD=FA ,再根据CD ∥AF ,即可得出四边形ACDF 是平行四边形;(2)先判定△CDE 是等腰直角三角形,可得CD=DE ,再根据E 是AD 的中点,可得AD=2CD ,依据AD=BC ,即可得到BC=2CD .详解:(1)∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠FAE=∠CDE ,∵E 是AD 的中点,∴AE=DE ,又∵∠FEA=∠CED ,∴△FAE ≌△CDE ,∴CD=FA ,又∵CD ∥AF ,∴四边形ACDF 是平行四边形;(2)BC=2CD .证明:∵CF 平分∠BCD ,∴∠DCE=45°,∵∠CDE=90°,∴△CDE 是等腰直角三角形,∴CD=DE ,∵E 是AD 的中点,∴AD=2CD ,∵AD=BC ,∴BC=2CD .点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.24、(1)2-1y x =;(2)3x >-.【解题分析】(1)由题意可设该一次函数的解析式为:2y x b =+,将点M (4,7)代入所设解析式求出b 的值即可得到一次函数的解析式;(2)根据直线上的点Q (x ,y )在直线32y x =+的下方可得2x -1<3x +2,解不等式即得结果.【题目详解】解:(1)∵一次函数平行于直线2y x =,∴可设该一次函数的解析式为:2y x b =+,∵直线2y x b =+过点M (4,7),∴8+b =7,解得b =-1,∴一次函数的解析式为:y =2x -1;(2)∵点Q (x ,y )是该一次函数图象上的点,∴y =2x -1,又∵点Q 在直线32y x =+的下方,如图,∴2x -1<3x +2,解得x >-3.【题目点拨】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.25、(1)作图见解析;(2)如图所示,点A 的坐标为(0,1),点C 的坐标为(-3,1);(3)如图所示,点B 2的坐标为(3,-5),点C 2的坐标为(3,-1).【解题分析】(1)分别作出点B 个点C 旋转后的点,然后顺次连接可以得到;(2)根据点B 的坐标画出平面直角坐标系;(3)分别作出点A 、点B 、点C 关于原点对称的点,然后顺次连接可以得到.【题目详解】(1)△A 11B C 如图所示;(2)如图所示,A (0,1),C (﹣3,1);(3)△222A B C 如图所示,2B (3,﹣5),(3,﹣1).26、(5005003)+ 【解题分析】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作AD ⊥BC 于点D ,∵∠MBC=60°,∴∠ABC=30°,∵AB ⊥AN ,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt △ADB 中,AB=1000,则AD=500,BD=5003,在Rt △ADC 中,AD=500,CD=500, 则BC=5005003+.答:观察点B 到花坛C 的距离为(5005003)+米.考点:解直角三角形27、(1)证明见解析(2)90°(3)AP=CE【解题分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP 和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【题目详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明。

2019-2020西安市数学中考试卷附答案

2019-2020西安市数学中考试卷附答案
25.问题:探究函数 y=x+ 的图象和性质.
小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完 整: (1)函数的自变量 x 的取值范围是:____; (2)如表是 y 与 x 的几组对应值,请将表格补充完整:
x … ﹣3
﹣2 ﹣
﹣1
1
2
3

y … ﹣3
﹣3
﹣3 ﹣4
4
3
12.已知实数 a,b,若 a>b,则下列结论错误的是
A.a-7>b-7
B.6+a>b+6
C. a >b 55
D.-3a>-3b
二、填空题
13.如图,∠MON=30°,点 A1,A2,A3,…在射线 ON 上,点 B1,B2,B3,…在射线 OM 上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若 OA1=1,则△AnBnAn+1 的边
17.已知扇形 AOB 的半径为 4cm,圆心角∠AOB 的度数为 90°,若将此扇形围成一个圆锥的 侧面,则围成的圆锥的底面半径为________cm 18.关于 x 的一元二次方程(a+1)x2-2x+3=0 有实数根,则整数 a 的最大值是_____.
19.如图,在平面直角坐标系 xOy 中,函数 y= k (k>0,x>0)的图象经过菱形 OACD x
的顶点 D 和边 AC 的中点 E,若菱形 OACD 的边长为 3,则 k 的值为_____.
20.若式子 x 3 在实数范围内有意义,则 x 的取值范围是_____.
三、解答题
21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市 民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其 他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图 和扇形统计图,请结合统计图回答下列问题:

往年陕西省西安市中考数学真题及答案

往年陕西省西安市中考数学真题及答案

往年年陕西省西安市中考数学真题及答案一、选择题(共10小题,每小题3分,共30分)1.(3分)(往年年陕西省)4的算术平方根是()A.﹣2 B. 2 C.±2 D.162.(3分)(往年年陕西省)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()A.B.C.D.3.(3分)(往年年陕西省)若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1 D.﹣14.(3分)(往年年陕西省)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A. B.C.D.5.(3分)(往年年陕西省)把不等式组的解集表示在数轴上,正确的是() A. BC.D.6.(3分)(往年年陕西省)某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数 3 4 2 1分数80 85 90 95那么这10名学生所得分数的平均数和众数分别是()A.85和82.5 B.85.5和85 C.85和85 D.85.5和807.(3分)(往年年陕西省)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°8.(3分)(往年年陕西省)若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣49.(3分)(往年年陕西省)如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A. 4 B. C. D. 510.(3分)(往年年陕西省)二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b二、填空题(共2小题,每小题3分,共18分)11.(3分)(往年年陕西省)计算:= .12.(3分)(往年年陕西省)因式分解:m(x﹣y)+n(x﹣y)= .请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.13.(3分)(往年年陕西省)一个正五边形的对称轴共有条.14.(往年年陕西省)用科学计算器计算:+3tan56°≈(结果精确到0.01)15.(3分)(往年年陕西省)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为.16.(3分)(往年年陕西省)已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且=+,则这个反比例函数的表达式为.17.(3分)(往年年陕西省)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.四、解答题(共9小题,计72分)18.(5分)(往年年陕西省)先化简,再求值:﹣,其中x=﹣.19.(6分)(往年年陕西省)如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.求证:AB=BF.20.(7分)(往年年陕西省)根据《2013年陕西省国民经济和社会发展统计公报》提供的大气污染物(A﹣二氧化硫,B﹣氢氧化物,C﹣化学需氧量,D﹣氨氮)排放量的相关数据,我们将这些数据用条形统计图和扇形统计图统计如下:根据以上统计图提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)国务院总理李克强在十二届全国人大二次会议的政府工作报告中强调,建设美好家园,加大节能减排力度,今年二氧化硫、化学需氧量的排放量在去年基础上都要减少2%,按此指示精神,求出陕西省往年年二氧化硫、化学需氧量的排放量供需减少约多少万吨?(结果精确到0.1)21.(8分)(往年年陕西省)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测的小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?22.(8分)(往年年陕西省)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是多少元?23.(8分)(往年年陕西省)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出求的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?24.(8分)(往年年陕西省)如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6,过点B 作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.25.(10分)(往年年陕西省)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?26.(12分)(往年年陕西省)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M 安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.参考答案:一、选择题(共10小题,每小题3分,共30分)1.(3分)考点:算术平方根.分析:根据算术平方根的定义进行解答即可.解答:解:∵22=4,∴4的算术平方根是2.故选B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.2.(3分)考点:简单几何体的三视图;截一个几何体.分析:根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,得到结果.解答:解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,故选:A.点评:本题考查空间图形的三视图,本题是一个基础题,正确把握三视图观察角度是解题关键.3.(3分)考点:一次函数图象上点的坐标特征.分析:利用待定系数法代入正比例函数y=﹣x可得m的值.解答:解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.点评:此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.4.(3分)考点:概率公式.分析:由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,∴小军能一次打开该旅行箱的概率是:.故选A.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得,故选:D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)考点:众数;中位数.分析:根据众数及平均数的定义,即可得出答案.解答:解:这组数据中85出现的次数最多,故众数是85;平均数=(80×3+085×4+90×2+95×1)=85.故选B.点评:本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.7.(3分)考点:平行线的性质.分析:首先根据两直线平行,内错角相等可得∠ABC=∠C=28°,再根据三角形内角与外角的性质可得∠AEC=∠A+∠ABC.解答:解:∵AB∥CD,∴∠ABC=∠C=28°,∵∠A=45°,∴∠AEC=∠A+∠ABC=28°+45°=73°,故选:D.点评:此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角之和.8.(3分)考点:一元二次方程的解.分析:将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.解答:解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴4+5a+a2=0,∴(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4,故选B.点评:本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可.9.(3分)考点:菱形的性质.分析:连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.解答:解:连接BD,∵四边形ABCD是菱形,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.点评:此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.10.(3分)考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a >0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;由于抛物线过点(﹣2,0)、(4,0),根据抛物线的对称性得到抛物线对称轴为直线x=﹣=1,则2a+b=0;由于当x=﹣3时,y<0,所以9a﹣3b+c>0,即9a+c>3b.解答:解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;∵抛物线过点(﹣2,0)、(4,0),∴抛物线对称轴为直线x=﹣=1,∴2a+b=0;∵当x=﹣3时,y<0,∴9a﹣3b+c>0,即9a+c>3b.故选D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题(共2小题,每小题3分,共18分)11.(3分)考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式===9.故答案为:9.点评:本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.12.(3分)考点:因式分解-提公因式法.分析:直接提取公因式(x﹣y),进而得出答案.解答:解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).故答案为:(x﹣y)(m+n).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.13.(3分)考点:轴对称的性质.分析:过正五边形的五个顶点作对边的垂线,可得对称轴.解答:解:如图,正五边形的对称轴共有5条.故答案为:5.点评:本题考查了轴对称的性质,熟记正五边形的对称性是解题的关键.14.考点:计算器—三角函数;计算器—数的开方.分析:先用计算器求出′、tan56°的值,再计算加减运算.解答:解:≈5.5678,tan56°≈1.4826,则+3tan56°≈5.5678+3×1.4826≈10.02故答案是:10.02.点评:本题考查了计算器的使用,要注意此题是精确到0.01.15.(3分)考点:旋转的性质.分析:利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.解答:解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.点评:此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.16.(3分)考点:反比例函数图象上点的坐标特征.分析:设这个反比例函数的表达式为y=,将P1(x1,y1),P2(x2,y2)代入得x1•y1=x2•y2=k,所以=,=,由=+,得(x2﹣x1)=,将x2=x1+2代入,求出k=4,得出这个反比例函数的表达式为y=.解答:解:设这个反比例函数的表达式为y=,∵P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,∴x1•y1=x2•y2=k,∴=,=,∵=+,∴=+,∴(x2﹣x1)=,∵x2=x1+2,∴×2=,∴k=4,∴这个反比例函数的表达式为y=.故答案为y=.点评:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.同时考查了式子的变形.17.(3分)考点:垂径定理;圆周角定理.专题:计算题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.四、解答题(共9小题,计72分)18.(5分)考点:分式的化简求值.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=﹣==,当x=﹣时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)考点:全等三角形的判定与性质.专题:证明题.分析:根据EF⊥AC,得∠F+∠C=90°,再由已知得∠A=∠F,从而AAS证明△FBD≌△ABC,则AB=BF.解答:证明:∵EF⊥AC,∴∠F+∠C=90°,∵∠A+∠C=90°,∴∠A=∠F,在△FBD和△ABC中,,∴△FBD≌△ABC(AAS),∴AB=BF.点评:本题考查了全等三角形的判定和性质,是基础知识要熟练掌握.20.(7分)考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用A的排放量除以所占的百分比计算求出2013年总排放量,然后求出C的排放量,再根据各部分所占的百分比之和为1求出D的百分比,乘以总排放量求出D的排放量,然后补全统计图即可;(2)用A、C的排放量乘以减少的百分比计算即可得解.解答:解:(1)2013年总排放量为:80.6÷37.6%≈214.4万吨,C的排放量为:214.4×24.2%≈51.9万吨,D的百分比为1﹣37.6%﹣35.4%﹣24.2%=2.8%,排放量为214.4×2.8%≈6.0万吨;(2)由题意得,(80.6+51.9)×2%≈2.7万吨,答:陕西省往年年二氧化硫、化学需氧量的排放量供需减少约2.7万吨.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)考点:相似三角形的应用.分析:根据题意求出∠BAD=∠BCE,然后根据两组角对应相等,两三角形相似求出△BAD和△BCE相似,再根据相似三角形对应边成比例列式求解即可.解答:解:由题意得,∠BAD=∠BCE,∵∠ABD=∠CBE=90°,∴△BAD∽△BCE,∴=,即=,解得BD=13.6米.答:河宽BD是13.6米.点评:本题考查了相似三角形的应用,读懂题目信息得到两三角形相等的角并确定出相似三角形是解题的关键,也是本题的难点.22.(8分)考点:一次函数的应用.分析:(1)根据快递的费用=包装费+运费由分段函数就,当0<x≤1和x>1时,可以求出y与x的函数关系式;(2)由(1)的解析式可以得出x=2.5>1代入解析式就可以求出结论.解答:解:(1)由题意,得当0<x≤1时,y=22+6=28;当x>1时y=28+10(x﹣1)=10x+18;∴y=;(2)当x=2.5时,y=10×2.5+18=43.∴这次快寄的费用是43元.点评:本题考查了分段函数的运用,一次函数的解析式的运用,由自变量的值求函数值的运用,解答时求出函数的解析式是关键.23.(8分)考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小英和母亲随机各摸球一次,均摸出白球的情况,再利用概率公式即可求得答案;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:∵共有16种等可能的结果,小英和母亲随机各摸球一次,均摸出白球的只有1种情况,∴小英和母亲随机各摸球一次,均摸出白球的概率是:;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(8分)考点:切线的性质;相似三角形的判定与性质.分析:(1)首先连接OD,由BD是⊙O的切线,AC⊥BD,易证得OD∥AC,继而可证得AD平分∠BAC;(2)由OD∥AC,易证得△BOD∽△BAC,然后由相似三角形的对应边成比例,求得AC的长.解答:(1)证明:连接OD,∵BD是⊙O的切线,∴OD⊥BD,∵AC⊥BD,∴OD∥AC,∴∠2=∠3,∵OA=OD,∴∠1=∠3,∴∠1=∠2,即AD平分∠BAC;(2)解:∵OD∥AC,∴△BOD∽△BAC,∴,∴,解得:AC=.点评:此题考查了切线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.25.(10分)考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式;平行四边形的性质.分析:(1)直接把A(﹣3,0)和B(0,3)两点代入抛物线y=﹣x2+bx+c,求出b,c的值即可;(2)根据(1)中抛物线的解析式可得出其顶点坐标;(3)根据平行四边形的定义,可知有四种情形符合条件,如解答图所示.需要分类讨论.解答:解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,∴,解得,故此抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵由(1)知抛物线的解析式为:y=﹣x2﹣2x+3,∴当x=﹣=﹣=﹣1时,y=4,∴M(﹣1,4).(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′.∴MN•NN′=16,∴NN′=4.i)当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii)当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.点评:本题考查了抛物线的平移变换、平行四边形的性质、待定系数法及二次函数的图象与性质等知识点.第(3)问需要分类讨论,避免漏解.26.(12分)考点:圆的综合题;全等三角形的判定与性质;等边三角形的性质;勾股定理;三角形中位线定理;矩形的性质;正方形的判定与性质;直线与圆的位置关系;特殊角的三角函数值.专题:压轴题;存在型.分析:(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(2)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(3)要满足∠AMB=60°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.解答:解:(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=4,∴BP=CP=2.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,.则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=3,BC=4,∴DC=3,DP′=4.∴CP′==.∴BP′=4﹣.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=2;若DP=DA,则BP=4﹣;若AP=AD,则BP=.(2)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=BC.∵BC=12,∴EF=6.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=6,∴EF与BC之间的距离为3.∴OQ=3∴OQ=OE=3.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=3,EG=OQ=3.∵∠B=60°,∠EGB=90°,EG=3,∴BG=.∴BQ=GQ+BG=3+.∴当∠EQF=90°时,BQ的长为3+.(3)在线段CD上存在点M,使∠AMB=60°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=AB.∵AB=270,∴AP=135.∵ED=285,∴OH=285﹣135=150.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=30°.∴OP=AP•tan30°=135×=45.∴OA=2OP=90.∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.∴∠AMB=∠AGB=60°,OM=OA=90..∵OH⊥CD,OH=150,OM=90,∴HM===30.∵AE=400,OP=45,∴DH=400﹣45.若点M在点H的左边,则DM=DH+HM=400﹣45+30.∵400﹣45+30>340,∴DM>CD.∴点M不在线段CD上,应舍去.若点M在点H的右边,则DM=DH﹣HM=400﹣45﹣30.∵400﹣45﹣30<340,∴DM<CD.∴点M在线段CD上.综上所述:在线段CD上存在唯一的点M,使∠AMB=60°, 此时DM的长为(400﹣45﹣30)米.点评:本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.。

2023年西安市中考数学试题及答案

2023年西安市中考数学试题及答案

2023年西安市中考数学试题及答案一、选择题1. 某个数的加8倍再加5的结果是32,则这个数是多少?- A. 4- B. 5- C. 6- D. 7答案:C2. ⌜5÷(-3)⌝的值是多少?- A. -1- B. 1- C. -2- D. 2答案:C3. 球形游泳池的水深是3.2米,其中的一只小鸭子下潜0.5米后,再上浮0.7米,这只小鸭子此时离池水表面的距离是多少米?- A. 2- B. 2.4- C. 2.9- D. 3.4答案:D4. 已知一个数减去15再除以3的商是5,这个数是多少?- A. 60- B. 45- C. 30- D. 15答案:C5. 若某个数是16的一半减去4的结果,这个数是多少?- A. 1- B. 2- C. 3- D. 4答案:B二、填空题6. 用小数表示:$\frac{9}{20}$答案:0.457. 用整数表示:$\frac{35}{5}$答案:78. 以2为单位表示:72毫米= _______ 厘米答案:7.29. 将120°用弧度表示答案:$\frac{2}{3}\pi$10. 将30%用小数表示答案:0.3三、解答题11. 假设小明的年龄为$x$岁,小红的年龄比小明大4岁。

若小红的年龄是小明的5倍,求小明的年龄。

解答:根据题意,设小明的年龄为$x$,则小红的年龄为$x+4$。

根据题目中的条件,可以列出方程:$x+4=5x$。

解方程得到$x=1$,所以小明的年龄为1岁。

12. 小明花了320元买了一条裤子和一双鞋,裤子的价格是鞋子价格的$\frac{3}{5}$倍。

问裤子和鞋子各多少钱?解答:设鞋子的价格为$x$元,则裤子的价格为$\frac{3}{5}x$元。

根据题目中的条件,可以列出方程:$x+\frac{3}{5}x=320$。

解方程得到$x=200$,所以裤子的价格为$\frac{3}{5} \times 200 = 120$元,鞋子的价格为200元。

2024年陕西省西安市第二十三中学中考数学一模试题(含答案)

2024年陕西省西安市第二十三中学中考数学一模试题(含答案)

2024年陕西省初中学业水平考试数学试卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷共6页,总分120分.考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号.3.请在答题卡上各题的指定区域内作答,否则作答无效.4.作图时,先用铅笔作图,再用规定签字笔描黑.5.考试结束,本试卷和答题卡一并交回.第一部分 选择题(共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.如图,数的绝对值是( )A .B .C.D .22.健康骑行越来越受到老百姓的喜欢,自行车的示意图如图,其中.若,则的度数为( )A .B .C .D .3.长方形的长为,宽为,则它的面积为( )A .B .C .D .4.如图,已知,增加下列条件可以使四边形成为平行四边形的是( )a 2-12-12,AB CD AE BD ∥∥60,80CDB ACD ∠=︒∠=︒EAC ∠60︒40︒20︒50︒26x y 3xy 329x y 3218x y 218x y 26xy AB CD ∥ABCDA .B .C .D .5.函数的图象如图所示,下列说法正确的是()A .当时,B .C .若的图象与坐标轴围成的三角形面积为2,则D .若点和点在直线上,则6.如图,在中,是边的三等分点,是边的三等分点.连接并延长与的延长线相交于点.若,则线段的长为( )A .5B .7C .6D .87.如图,是的直径,点是弧的中点,弦与交于点.若,则等于( )A .B .C .D .8.已知二次函数的图象顶点为,将二次函数沿轴向下平移后的抛物线与轴交于点,与轴交于点.若面积为.则等于( )12∠=∠AD BC =OA OC =AD AB=y kx b =+2x =-1y =0k <y kx b =+2b =()1,m -()1,n m n>ABC △,D M AB ,N E AC ND CB P 4DE =CP BD O C BD AC BD P 62ADB ∠=︒CPD∠124︒107︒122︒102︒22(0)y ax ax a =->D 22y ax ax =-y y C x ,A B OCD △32a ABA .2B .3C .4D .5第二部分 非选择题(共96分)二、填空题(共5小题,每小题3分,计15分)9.华为公司研制的麒麟手机芯片采用先进制程,其晶体管大小为0.0000000051米,这个数用科学记数法表示为________.10.若,且为两个连续的正整数,则________.11.七巧板是我国古代劳动智慧的结晶,有“东方魔板”之称.在“七巧板”综合实践课上,小熙同学用一个边长为的正方形纸片制作了七巧板如图1,并以“兔子”为主题进行创意拼图,所拼作品如图2所示,则图2中阴影部分的面积为________.12.如图,反比例函数的图象与一次函数的图象交于点,一次函数交轴于点,交轴于点.若.则的值为________.13.如图,在矩形中,是弧上的一个动点,弧的圆心角为,连接,则的最小值是________.三、解答题(共13小题,计81分,解答应写出过程)a b <<,a b a b -=8cm (0)k y x x=<24y x =--A 24y x =--y B x C :2:1AC BC =kABCD 4.AB AD P ==CD CD 120︒AP AP14.(5.15.(5分)解不等式组:.16.(5分)计算:.17.(5分)如图,在四边形中,,在上作一点,使得(要求:尺规作图,不写作法,保留作图痕迹).18.(5分)如图,点在一条直线上,交于点.求证:.19.(5分)如图,在直角坐标平面内,三个顶点的坐标分别为,(正方形网格中每个小正方形的边长是1个单位长度).(1)是绕点________逆时针旋转________度得到的,的坐标是________;()01232--++-⨯∣123437132x x x -≤⎧⎪+-⎨>-⎪⎩212111x x x x -⎛⎫-÷ ⎪++⎝⎭ABCD ,AB BC AD DC =>AD P ABP CBP S S =△△B F C E 、、、,,,OA OD AC FD BF CE AD ==∥BE O AB DE ∥ABC ()()1,2,2,1A B --()1,1C 11A B C △ABC △1B(2)求出线段旋转过程中所扫过的面积(结果保留).20.(5分)人工智能是数字经济高质量发展的引擎,也是新一轮科技革命和产业变革的重要驱动.人工智能市场分为决策类人工智能,人工智能机器人,语音类人工智能,视觉类人工智能四大类型,将四个类型的图标依次制成四张卡片(卡片背面完全相同),将四张卡片背面朝上洗匀放置在桌面上.A .决策类人工智能B .人工智能机器人C .语音类人工智能D .视觉类人工智能(1)随机抽取一张,抽到决策类人工智能的卡片的概率为________;(2)从中随机抽取一张,记录卡片的内容后放回洗匀,再随机抽取一张,请用列表或画树状图的方法求抽取到的两张卡片内容一致的概率.21.(6分)如图是某品牌篮球架及其示意图,立柱垂直地面,支架与交于点,支架交于点,支架平行地面,篮筐与支架在同一直线上,米,米,.某工人准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由(参考数据:)22.(7分)某校为落实“双减”工作,丰富课后服务活动内容,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A .音乐;B .体育;C .美术;D .阅读;E .人工智能,为了解学生对以上活动的参与情况,该校随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了________名学生;②补全条形统计图:③扇形统计图中圆心角________度;AC π,,,A B C D OA OB CD OA A CG CD ⊥OA G DE OB EF DE 2.7OA =0.8AD =32AGC ∠=︒sin 320.53,cos320.85,tan 320.62︒≈︒≈︒≈α=(2)若该校有2800名学生,估计该校参加组(阅读)的学生人数.23.(7分)西西和安安沿图1中的风景区游览,约好在东门见面.西西驾驶电动汽车从酒店出发,安安也于同一时间骑电动自行车从大雁塔出发.图2中的图象分别表示两人离酒店的路程与时间的函数关系,试结合图中信息回答:(1)东门与酒店相距________,西西出发时与酒店的距离________;(2)若西西出发后速度变为安安的2倍,则西西追上安安时,他们是否已经过了钟楼?24.(8分)如图,的外接圆的切线与边上中线的延长线交于点.(1)求证:;(2)若,求的长.25.(8分)抛物线与轴交于两点,与轴交于点.(1)求抛物线的解析式;(2)点在抛物线上,点在轴上,如果以点为顶点的四边形是平行四边形,求出点的坐标.26.(10分)问题提出:(1)如图,在中,半径为1,点是上的动点.则到的最小值为________;D ()km y ()h x km 0.2h b =km 0.2h ABC △,,O AB AC O = DC BC D 2BCD BAD ∠=∠14,sin 2AB DAC =∠=AD 2y ax bx c =++x ()()1,0,4,0A B -y ()0,4C -M N x ,,,B C N M N ABO △4,120,OA OB AOB O ==∠=︒ P O P AB问题探究:(2)如图,在正方形中,找出所有的点,使得;(3)问题解决:如图,有一个矩形水池,已知.设计者想把水池分为四部分,分别是三角形,三角形,三角形,三角形.满足,点在上,为上的任意一点.若三角形区域养鱼,其他区域养虾.已知养鱼每平方米1000元,养虾每平方米800元.请问花费的最少费用是多少?2024年陕西省初中学业水平考试数学试卷参考答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.D 2.B 3.B 4.C 5.C 6.D 7.B 8.C二、填空题(共5小题,每小题3分,计15分)9. 10. 11. 12. 13.三、解答题(共13小题,计81分,解答应写出过程)14ABCD P 60BPC ∠=︒ABCD 30m,20m BC AB ==AED CED BEC AEB ,2BF AG BF EF ⊥=E AG G BC CED 95.110-⨯1-216cm 48-4-()0232--++-⨯3216=-+-()()3126=++--48=-.15.解:解不等式,得:,解不等式,得:,原不等式组的解集为.16.(1)解:原式.17.解:如图,点即为所求.18.证明:,,在与中;,,,在与中,,,.19.解:(1)由图可知,是绕点逆时针旋转90度得到的,的坐标是,故答案为:;(2),4=-123x -≤1x ≥-437132x x +->-5x <∴15x -≤<()1111122x x x x x x +-+=⋅=+--P AC FD ∥CAO FDO ∴∠=∠ACO △DFO △CAO FDO OA ODAOC DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ACO DFO ∴△≌△OF OC ∴=BF CE = BO EO ∴=ABO△DEO △BOEO AOB DOE OA OD =⎧⎪∠=∠⎨⎪=⎩()SAS ABO DEO ∴△≌△B E ∴∠=∠AB DE ∴∥11A B C △ABC △C 1B ()1,2-(),90,1,2C -AC ==线段旋转过程中所扫过的面积.20.解:(1)共有4张卡片,从中随机抽取一张,抽到决策类人工智能的卡片的概率为;故答案为:;(2)解:根据题意画树状图如下:共有16种等可能的结果数,其中抽取到的两张卡片内容一致的结果数为4,所以抽取到的两张卡片内容一致的概率为.21.解:他不能挂上篮网,理由如下:如图,延长交于点,,,,,,,,,在中,米,(米),(米),3.124米>3米,∴AC 54S π== ∴141441164=,OA ED M OA OB ⊥ 90AOB ∴∠=︒DE OB ∥90DMA AOB ∴∠=∠=︒32AGC ∠=︒ 58GAC ∴∠=︒58DAM GAC ∴∠=∠=︒9032ADM DAM ∴∠=︒-∠=︒Rt ADM △0.8AD = sin 320.80.530.424AM AD ∴=⋅︒≈⨯=2.70.424 3.124OM OA AM ∴=+=+=他不能挂上篮网.22.解:(1)①调查人数:(名),故答案为:400;②组的人数:(名).组的人数:(名),补全条形统计图如下:③扇形统计图中圆心角,故答案为:54;(2)(名),估计该校参加组(阅读)的学生人数为980名.23.(7分)解:(1)由图可知两个图象的终点纵坐标为30,东门与酒店相距;西西出发时路程为,时与酒店的距离为.故答案为:30;3;(2)如图,安安的速度为,直线的解析式为,西西的速度是安安的2倍,为,直线的解析式为.联立得:,解得:,点,∴10025%400÷=A 40015%60⨯=C 400601001404060----=6036054400α=︒⨯=︒1402800980400⨯=∴D ∴30km 0.1h 1.5km 0.2h ∴3km 301010km /h 2-=AB 11010y x =+10220km /h ⨯=CD 2201y x =-1010201y x y x =+⎧⎨=-⎩ 1.121x y =⎧⎨=⎩∴()1.1,21E安安到从酒店到钟楼的距离为,他们没有过钟楼.24.(1)证明:是的切线,连接,如图所示为中线于;(2)解:在中,在中,10152521+=>∴CD O OC 90OCD ∴∠=︒,AB AC AD = AD BC ∴⊥E90DEC ∴∠=︒DCE OCE OCE COE∠+∠=∠+∠ BCD COE∴∠=∠OA OC= 2EOC OAC∴∠=∠2BAC OAC∠=∠ 2BAC EOC BCD BAD ∴∠=∠=∠=∠ Rt AEC △1sin 2DAC ∠=24AC EC ∴==2,EC AE ∴==Rt OEC △222OE CE OC +=OC ∴=OE ∴=OEC CED△∽△OE ECCE ED∴=DE ∴=AD AE ED ∴=+=25.解:(1)将代入抛物线解析式解得:抛物线的解析式为;(2)拋物线的解析式为抛物线的对称轴是直线如图,当是平行四边形的一边时,为平行四边形当是平行四边形的一边时,为平行四边形点纵坐标与点纵坐标互为相反数将代入当是平行四边形的对角线时,为平行四边形点在抛物线上,点在轴上()()()1,0,4,0,0,4A B C --1,3,4a b c ==-=-∴234y x x =-- 234y x x =--∴32x =BC 31CBN M 3131,BN CM BN CM = ∥()13,4M ∴-()37,0N ∴BC 22BCN M 2222,BC M N BC M N = ∥C ∴2M 4y =234y x x =--x ∴=24,N N ⎫⎫⎪⎪⎭⎭BC 11CM BN 1M 1N x 113CM N B ∴==点的坐标为;综上,点的坐标为或或或.26.解:(1)如图,过点作于点,交圆于点即到的距离就是到的最小值,圆半径为1故答案为:1;(2)如图,以为边在边的上方作等边三角形,作该等边三角形的外接圆,则该外接圆位于正方形内的所有点都为点,均符合题意;(3)养鱼每平方米1000元,养虾每平方米800元三角形面积最小时,花费的费用最少为定值,如图,作的外接圆,圆心为∴1N ()1,0N ()7,0⎫⎪⎭⎫⎪⎭()1,0O OM AB ⊥M O P 'P 'AB P AB ,120OA OB AOB =∠=︒60,30AOM OAM ∴∠=︒∠=︒4OA = O 2,1OM P M '∴==BC BC ABCD P ∴CED ,2BF AG BF EF⊥= BEF ∴∠tan 2BEF ∠=AEB △O为等腰三角形作由图可得,即最短在中,最短为设三角形面积为,则:最少费用:的最小值:最少费用:OAB ∴△2AOB BEF∴∠=∠MOB BEF∴∠=∠OH CD⊥OE E H OH OEEH +≥='+''EH E H ≤''EH ∴Rt OMB △110,tan tan 22BM AB MOB BEF ∴==∠=∠=5,OM OB ∴==35EH OH OE ∴=-=-EH ∴35-CED S ()10008002030480000200S S S+⨯-=+S (110352CD EH ⋅⋅=-(480000200480000200035S +=+-。

2022年陕西西安中考数学真题及答案

2022年陕西西安中考数学真题及答案
A. B. C. D.
【答案】C
4. 在下列条件中,能够判定 为矩形的是( )
A. B. C. D.
【答案】D
5. 如图, 是 高,若 , ,则边 的长为( )
A. B. C. D.
【答案】D
6. 在同一平面直角坐标系中,直线 与 相交于点 ,则关于x,y的方程组 的解为( )
A. B. C. D.
(1)这100名学生 “劳动时间”的中位数落在__________组;
(2)求这100名学生的平均“劳动时间”;
(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.
【答案】(1)C(2)112分钟
(3)912人
24. 如图, 是⊙ 的直径, 是⊙ 的切线, 、 是⊙ 的弦,且 ,垂足为E,连接 并延长,交 于点P.
三、解答题(共13小题,解答应写出过程)
14. 计算: .
【答案】
15. 解不等式组:
【答案】
16. 化简: .
【答案】
17. 如图,已知 是 的一个外角.请用尺规作图法,求作射线 ,使 .(保留作图痕迹,不写作法)
【答案】见解析
【详解】解:如图,射线 即为所求作.
18. 如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.
4.作图时,先用铅笔作图,再用规定签字笔搭黑.
5.考试结束,本试卷和答题卡一并交回.
第一部分(选择题)
一、选择题共8小题,每小题只有一个选项是符合题意的)
1. 的相反数是( )
A. B. 37C. D.
【答案】B
2. 如图, .若 ,则 的大小为( )
A. B. C. D.

1999年陕西省西安市中考数学试卷

1999年陕西省西安市中考数学试卷

1999年陕西省西安市中考数学试卷一、选择题(共16小题,满分56分)1.(3分)计算:cos60°sin45°=()A.B.C.D.2.(3分)下列命题中,不正确的是()A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行3.(3分)小华买了60分与80分的邮票共10枚,花了7元2角,那么,60分和80分的邮票各买了()A.60分邮票买了6枚,80分邮票买了4枚B.60分邮票买了8枚,80分邮票买了2枚C.60分邮票买了5枚,80分邮票买了5枚D.60分邮票买了4枚,80分邮票买了6枚4.(3分)一天有8.64×104秒,一年如果按365天计算,一年有多少秒,用科学记数法表示为()A.3.1536×107B.3.1536×106C.3.1536×103D.31536×104 5.(3分)已知A(0,0),B(3,2)两点,经过A、B两点的图象的解析式为()A.y=3x B.y x C.y x D.y x+16.(3分)化简(x≤0)()A.x B.﹣x C.x(x+y)D.﹣x(x+y)7.(3分)如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,那么∠A的度数为()A.100°B.50°C.80°D.30°8.(3分)在一次数学测验中,20名学生的得分如下:70,80,100,60,80,70,90,50,80,70,90,80,90,80,70,90,60,80,70,80.则这次数学测验中学生得分的众数和中位数分别是()A.70,80B.80,75C.80,70D.80,809.(4分)已知两圆的半径满足方程x2﹣2x+2=0,圆心距为2,则两圆位置关系是()A.相交B.外切C.内切D.外离10.(4分)把x4﹣3x3﹣28x2因式分解,结果为()A.x2(x﹣4)(x+7)B.x2(x+4)(x﹣7)C.x2(x﹣4)(x﹣7)D.x2(x+4)(x+7)11.(4分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°12.(4分)已知一个函数关系满足下表(x为自变量),则其函数关系式为()A.y B.y C.y D.y13.(4分)下图是西安市99年某天的气温随时间变化的图象:那么这天()A.最高气温10℃,最低气温2℃B.最高气温10℃,最低气温﹣2℃C.最高气温6℃,最低气温﹣2℃D.最高气温6℃,最低气温2℃14.(4分)如图,请观察正六边形,下列结论正确的是()A.是中心对称图形,又是轴对称图形,有3条对称轴B.不是中心对称图形,是轴对称图形,有3条对称轴C.是中心对称图形,又是轴对称图形,有6条对称轴D.不是中心对称图形,是轴对称图形,有6条对称轴15.(4分)一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.16.(4分)已知M是平行四边形ABCD的BC边的中点,DM与AC交于E,则图中阴影部分面积与平行四边形ABCD面积之比为()A.B.C.D.二、填空题(共5小题,每小题4分,满分20分)17.(4分)已知一个一次函数当自变量x=3时,函数值y=5,当x=﹣4时,y=﹣9.那么,这个一次函数的解析式为.18.(4分)在分解二次三项式ax2+bx+c(a≠0,且b2﹣4ac≥0)的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x﹣x1)(x﹣x2)那么,由此可以推出x1+x2=,x1•x2=(用字母a,b,c表示).19.(4分)如图,在△ABC中,∠ABC=60°,∠ACB=80°,点O是内心,则∠BOC的度数为度.20.(4分)用长为100cm的金属丝制成一个矩形框子,框子的面积是625cm2,则这个框子的长为cm,宽为cm.21.(4分)在一种联合收割机上,拨禾轮的侧面是正五边(如图).测得这个正五边形的边长是48cm,则它的半径R=cm.(参考数据:sin36°=0.5878,精确到0.1cm)三、解答题(共9小题,满分74分)22.(4分)如图,已知:AD与BE交于点C,CD=CA,CB=CE,求证:AB=DE.23.(8分)已知x1,求代数式的值.24.(8分)为了解某地初中三年级男生的身高情况,从该地的一所中学选取容量为60的样本(60名学生的身高.单位:厘米),分组情况如下:(1)求出表中a、m的值;(2)画出频率分布直方图.25.(8分)已知抛物线y=3x2+3x.(1)通过配方,将抛物线的表达式写成y=a(x+h)2+k的形式(要求写出配方过程);(2)求出抛物线的对称轴和顶点坐标.26.(8分)如图,海上有一座灯塔P,在它周围3海里内有暗礁,一艘客轮以9海里每小时的速度由西向东航行,行到A处测得灯塔P在它的北偏东60°.继续行驶10分钟后,到达B处,又测得灯塔P在它的北偏东45°.问客轮不改变方向,继续前进有无触礁的危险?27.(8分)如图,在矩形ABCD中,E是CD的中点,BE⊥AC交AC于F,过F作FG∥AB交AE于G.求证:AG2=AF•FC.28.(8分)红星中学某班前年暑假将勤工俭学挣得的班费2000元按一年定期存入银行.去年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待今年毕业后全部捐给母校.若今年到期后取得人民币(本息和)1155,问银行一年定期存款的年利率(假定利率不变)是多少?29.(10分)A是⊙O的直径EF上的一点,半径OB⊥EF,BA的延长线与⊙O相交于另一点C,若.(1)求∠B的度数;(2)过C作⊙O的切线CD和OA的延长线交于点D.求证:AC=CD=AD.30.(12分)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.(1)求⊙C的圆心坐标;(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.1999年陕西省西安市中考数学试卷参考答案与试题解析一、选择题(共16小题,满分56分)1.(3分)计算:cos60°sin45°=()A.B.C.D.【解答】解:原式1.故选:B.2.(3分)下列命题中,不正确的是()A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行【解答】解:A、如果两条直线都和第三条直线平行,那么这两条直线也互相平行,符合平行线的判定,选项正确;B、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,符合平行线的判定,选项正确;C、两条直线被第三条直线所截,位置不确定,不能准确判定这两条直线平行,选项错误;D、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,符合平行线的判定,选项正确.故选:C.3.(3分)小华买了60分与80分的邮票共10枚,花了7元2角,那么,60分和80分的邮票各买了()A.60分邮票买了6枚,80分邮票买了4枚B.60分邮票买了8枚,80分邮票买了2枚C.60分邮票买了5枚,80分邮票买了5枚D.60分邮票买了4枚,80分邮票买了6枚【解答】解:设60分和80分的邮票各买了x枚和y枚,则,解得,即60分邮票买了4枚,80分邮票买了6枚.故选:D.4.(3分)一天有8.64×104秒,一年如果按365天计算,一年有多少秒,用科学记数法表示为()A.3.1536×107B.3.1536×106C.3.1536×103D.31536×104【解答】解:依题意有8.64×104×365=3 153.6×104=3.1536×107秒.故选:A.5.(3分)已知A(0,0),B(3,2)两点,经过A、B两点的图象的解析式为()A.y=3x B.y x C.y x D.y x+1【解答】解:因为经过A、B两点的图象过原点(0,0),所以设该直线解析式为y=kx,∵该直线过点B(3,2)∴2=3k∴k即经过A、B两点的图象的解析式为y x.故选:C.6.(3分)化简(x≤0)()A.x B.﹣x C.x(x+y)D.﹣x(x+y)【解答】解:∵x≤0∴x.故选:B.7.(3分)如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,那么∠A的度数为()A.100°B.50°C.80°D.30°【解答】解:∵∠BOD、∠A是同弧所对的圆心角和圆周角,∴∠A∠BOD=50°,故选B.8.(3分)在一次数学测验中,20名学生的得分如下:70,80,100,60,80,70,90,50,80,70,90,80,90,80,70,90,60,80,70,80.则这次数学测验中学生得分的众数和中位数分别是()A.70,80B.80,75C.80,70D.80,80【解答】解:数据80出现7次,次数最多,所以众数是80;数据按从小到大排列:50,60,60,70,70,70,70,70,80,80,80,80,80,80,80,90,90,90,90,100,∴中位数是(80+80)÷2=80.故选:D.9.(4分)已知两圆的半径满足方程x2﹣2x+2=0,圆心距为2,则两圆位置关系是()A.相交B.外切C.内切D.外离【解答】解:解方程x2﹣2x+2=0,得x1=x2,∴x1﹣x2=0<2,x1+x2=2>2,∴两圆位置关系是相交.故选:A.10.(4分)把x4﹣3x3﹣28x2因式分解,结果为()A.x2(x﹣4)(x+7)B.x2(x+4)(x﹣7)C.x2(x﹣4)(x﹣7)D.x2(x+4)(x+7)【解答】解:x4﹣3x3﹣28x2,=x2(x2﹣3x﹣28),=x2(x+4)(x﹣7).故选:B.11.(4分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.40°C.45°D.36°【解答】解:∵BD=AD∴∠A=∠ABD∵BD=BC∴∠BDC=∠C又∵∠BDC=∠A+∠ABD=2∠A∴∠C=∠BDC=2∠A∵AB=AC∴∠ABC=∠C又∵∠A+∠ABC+∠C=180°∴∠A+2∠C=180°把∠C=2∠A代入等式,得∠A+2•2∠A=180°解得∠A=36°故选:D.12.(4分)已知一个函数关系满足下表(x为自变量),则其函数关系式为()A.y B.y C.y D.y【解答】解:设此函数的解析式为y(k≠0),把x=﹣3,y=1,代入得k=﹣3,故x,y之间用关系式表示为y.故选:C.13.(4分)下图是西安市99年某天的气温随时间变化的图象:那么这天()A.最高气温10℃,最低气温2℃B.最高气温10℃,最低气温﹣2℃C.最高气温6℃,最低气温﹣2℃D.最高气温6℃,最低气温2℃【解答】解:由图象得,最高气温是10℃,最低气温是﹣2℃.故选:B.14.(4分)如图,请观察正六边形,下列结论正确的是()A.是中心对称图形,又是轴对称图形,有3条对称轴B.不是中心对称图形,是轴对称图形,有3条对称轴C.是中心对称图形,又是轴对称图形,有6条对称轴D.不是中心对称图形,是轴对称图形,有6条对称轴【解答】解:在同一平面内,把这个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,这个图形就是中心对称图形,一个图形沿着一条直线对折后两部分完全重合,这就是轴对称图形.该图形沿着它本身相对的三组顶点有三条对称轴,三组对应变的中点的三条直线也是它的对称轴,故有6条,该图形既是中心对称图形又是轴对称图形,因为是正六边形,所以有6条对称轴.故选:C.15.(4分)一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D,更不可能是A、C.故选:B.16.(4分)已知M是平行四边形ABCD的BC边的中点,DM与AC交于E,则图中阴影部分面积与平行四边形ABCD面积之比为()A.B.C.D.【解答】解:设平行四边形的边AD=2a,AD边上的高为3b;过点E作EF⊥AD交AD 于F,延长FE交BC于G∴平行四边形的面积是6ab∴FG=3b∵AD∥BC∴△AED∽△CEM∵M是BC边的中点,∴2∴EF=2b,EG=b∴△CDE的面积=△ACD的面积﹣△AED的面积•2a•3b•2a•2b=ab∵△AEM的面积=△CDE的面积=ab∴阴影部分面积是2ab∴阴影部分面积与平行四边形ABCD面积之比为故选:A.二、填空题(共5小题,每小题4分,满分20分)17.(4分)已知一个一次函数当自变量x=3时,函数值y=5,当x=﹣4时,y=﹣9.那么,这个一次函数的解析式为y=2x﹣1.【解答】解:设一次函数解析式为y=kx+b,根据题意,得,解得,所以一次函数解析式为y=2x﹣1.18.(4分)在分解二次三项式ax2+bx+c(a≠0,且b2﹣4ac≥0)的因式时,可先用公式求出方程ax2+bx+c=0的两个根x1,x2,然后写成ax2+bx+c=a(x﹣x1)(x﹣x2)那么,由此可以推出x1+x2=,x1•x2=(用字母a,b,c表示).【解答】解:根据根与系数的关系,知:x1+x2,x1x2.19.(4分)如图,在△ABC中,∠ABC=60°,∠ACB=80°,点O是内心,则∠BOC的度数为110度.【解答】解:连接OC;∵BC、BA都与△ABC的内切圆相切,∴∠ABO=∠OBC∠ABC,∠OCB=∠OCA∠ACB;∴∠OBC=30°,∠ACB=40°;∴∠BOC=180°﹣∠OBC﹣∠OCB=110°.20.(4分)用长为100cm的金属丝制成一个矩形框子,框子的面积是625cm2,则这个框子的长为25cm,宽为25cm.【解答】解:设这个框子的长为xcm,宽为(50﹣x)cm,则x(50﹣x)=625x2﹣50x+625=0解得x1=x2=25答:这个框子的长为25cm,宽为25cm.21.(4分)在一种联合收割机上,拨禾轮的侧面是正五边(如图).测得这个正五边形的边长是48cm,则它的半径R=40.08cm.(参考数据:sin36°=0.5878,精确到0.1cm)【解答】解:连接OB,过O作OF⊥AB于F;∵五边形ABCDE是正五边形,∴∠AOB72°,∵OA=OB,∴∠AOF36°,∵OA=OB,AB=48cm,∴AF AB48=24cm,∴OA40.08cm.三、解答题(共9小题,满分74分)22.(4分)如图,已知:AD与BE交于点C,CD=CA,CB=CE,求证:AB=DE.【解答】证明:在△ACB和△DCE中,∵CA=CD(已知),∠1=∠2(对顶角相等),CB=CE(已知),∴△ACB≌△DCE(SAS).∴AB=DE(全等三角形的对应边相等).23.(8分)已知x1,求代数式的值.【解答】解:原式(4分)=1.(8分)24.(8分)为了解某地初中三年级男生的身高情况,从该地的一所中学选取容量为60的样本(60名学生的身高.单位:厘米),分组情况如下:(1)求出表中a、m的值;(2)画出频率分布直方图.【解答】解:(1)a=27÷60=0.45,m=60×0.1=6人;(2)如图所示:25.(8分)已知抛物线y=3x2+3x.(1)通过配方,将抛物线的表达式写成y=a(x+h)2+k的形式(要求写出配方过程);(2)求出抛物线的对称轴和顶点坐标.【解答】解:(1)y=3x2+2x=3(x2x)﹣33(x)2;(2)对称轴是x,顶点坐标(,).26.(8分)如图,海上有一座灯塔P,在它周围3海里内有暗礁,一艘客轮以9海里每小时的速度由西向东航行,行到A处测得灯塔P在它的北偏东60°.继续行驶10分钟后,到达B处,又测得灯塔P在它的北偏东45°.问客轮不改变方向,继续前进有无触礁的危险?【解答】解:设PC=x,根据题意,得AB9(海里)(2分)BC=PC=xRt△PCA中,AC,∠P AC=30°∴tan30°(5分)解得:x<(7分)答:客轮沿原方向行驶有触礁的危险.27.(8分)如图,在矩形ABCD中,E是CD的中点,BE⊥AC交AC于F,过F作FG∥AB交AE于G.求证:AG2=AF•FC.【解答】证明:∵E是CD中点,∴DE=CE;在△DEA和△CEB中,∴△DEA≌△CEB(SAS),即AE=BE;∵GF∥AB,∴,即,∵AE=BE,则AG=BF;在Rt△ABC中,BF⊥AC,则△ABF∽△BCF,∴BF2=AF•FC,即AG2=AF•FC.28.(8分)红星中学某班前年暑假将勤工俭学挣得的班费2000元按一年定期存入银行.去年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待今年毕业后全部捐给母校.若今年到期后取得人民币(本息和)1155,问银行一年定期存款的年利率(假定利率不变)是多少?【解答】解:设一年定期存款的年利率为x%,依题意列方程,得[2000(1+x%)﹣1000](1+x%)=1155(1000+2000x%)(1+x%)=11551000+20x+10x+0.2x2=11550.2x2+30x﹣155=0x2+150x﹣775=0(x﹣5)(x+155)=0x1=5,x2=﹣155(舍去)答:一年定期存款的年利率为5%.29.(10分)A是⊙O的直径EF上的一点,半径OB⊥EF,BA的延长线与⊙O相交于另一点C,若.(1)求∠B的度数;(2)过C作⊙O的切线CD和OA的延长线交于点D.求证:AC=CD=AD.【解答】(1)解:连接CO,∵,是半圆,∴∴∠EOC=3O°.∵OB=OC,∴∠B=∠BCO.∴∠B(90°﹣∠EOC)(90°﹣30°)=30°.(4分)(2)证明:∵∠DAC=∠BAO=90°﹣∠B=60°,∠DCA=90°﹣∠OCA,∠OBA=∠OCA=30°,∴∠DAC=∠DCA=60°.于是∠CDA=60°.(8分)∴△ACD是等边三角形.即AC=CD=AD.(10分)30.(12分)如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.(1)求⊙C的圆心坐标;(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.【解答】解:(1)∵OA⊥OB,OA:OB=4:3,⊙D的半径为2∴⊙C过原点,OC=4,AB=8A点坐标为(,0)B点坐标为(0,)∴⊙C的圆心C的坐标为(,)(3分)(2)由EF是⊙D的切线,∴OC⊥EF∵CO=CA=CB∴∠COA=∠CAO,∠COB=∠CBO∴Rt△AOB∽Rt△OCE∽Rt△FCO∴,∴OE=5,OF∴E点坐标为(5,0),F点坐标(0,)∴切线EF的解析式为y x;(7分)(3)①当抛物线开口向下时,由题意,得抛物线顶点坐标为(,4),可得:,,c∴a,b=1,c,∴y x2+x;(10分)②当抛物线开口向上时,顶点坐标为(,4),可得:,,c,∴y x2﹣4x;综上所述,抛物线解析式为:y x2+x或y x2﹣4x.(12分)注:其他解法参照以上评分标准评分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西省西安市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2019七下·路北期末) 下列各数中是无理数的是()
A .
B .
C .
D . 3.14
2. (2分) (2020九上·秀屿期末) 下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是中心对称图形,但不是轴对称图形的是
A .
B .
C .
D .
3. (2分)(2020·浙江模拟) 截止北京时间5月28日,全球新冠肺炎确诊病例逾565万例,将数565万用科学记数法表示为()
A . 565×104
B . 56.5×105
C . 0.565×107
D . 5.65×106
4. (2分)(2017·衡阳模拟) 由5个相同的正方体搭成的几何体如图所示,则它的左视图是()
A .
B .
C .
D .
5. (2分)(2016·重庆A) 如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()
A . 120°
B . 110°
C . 100°
D . 80°
6. (2分)用计算器求2014的算术平方根时,下列四个键中,必须按的键是()
A .
B .
C .
D .
7. (2分)(2016·盐田模拟) 如图,经过点A1(1,0)作x轴的垂线与直线l:y= x相交于点B1 ,以O为圆心,OB1为半径画弧与x轴相交于点A2;经过点A2作x轴的垂线与直线l相交于点B2 ,以O为圆心、OB2
为半径画弧与x轴相交于点A3;…依此类推,点A5的坐标是()
A . (8,0)
B . (12,0)
C . (16,0)
D . (32,0)
8. (2分)某同学对甲、乙、丙、丁四个蔬菜市场去年12月份每天的白菜价格进行调查,计算后发现这个月份四个市场的价格平均值相同,方差分别为S甲2=8.5,
S乙2=2.5,S丙2=10.1,S丁2=7.4,则去年12月份白菜价格最稳定的市场是()
A . 甲
B . 乙
C . 丙
D . 丁
9. (2分)如图,圆锥形烟囱帽的底面直径为80,母线长为50,则烟囱帽的侧面积是
A . 4 000π
B . 3 600π
C . 2 000π
D . 1 000π
10. (2分)设x1、x2是一元二次方程3x2﹣8x+5=0的两个根,则x1+x2的值是()
A .
B . -
C . -
D .
11. (2分)(2017·景泰模拟) 已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b+2a=0;②abc>0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()个.
A . 1个
B . 2个
C . 3个
D . 4个
12. (2分)(2018·惠山模拟) 如图,在△ABC中,D为AB边上一点,E为CD中点,AC= ,∠ABC=30°,∠A=∠BED=45°,则BD的长为()
A .
B . +1﹣
C . ﹣
D . ﹣1
二、填空题 (共6题;共6分)
13. (1分) (2019八下·朝阳期中) 计算: ________.
14. (1分)sin21°+sin22°…+sin288°+sin289°=________.
15. (1分) (2020七下·仪征期末) 用不等式表示“x 与 5 的差不大于1”:________.
16. (1分)如图,△ABO与△A′B′O′是位似图形,且顶点都在格点上,则位似中心的坐标是 ________ .
17. (1分) (2015八下·泰兴期中) 已知与y=x﹣6相交于点P(a,b),则的值为________.
18. (1分)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴
影部分的面积为________.
三、解答题 (共7题;共76分)
19. (5分) (2020九上·香坊月考) 先化简再求代数式的值:,其中x= +1。

20. (6分)(2018·青羊模拟) 某校举办“汉字听写”大赛,现要从A、B两位男生和C、D两位女生中,选派学生代表本班参加大赛.
(1)如果随机选派一位学生参赛,那么四人中选派到男生B的概率是________;
(2)如果随机选派两位学生参赛,求四人中恰好选派一男一女两位同学参赛的概率.
21. (10分) (2016九上·淅川期中) 某商店销售甲、乙两种商品,现有如下信息:
请结合以上信息,解答下列问题:
(1)求甲、乙两种商品的进货单价;
(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价)
22. (20分)(2017·新疆) 一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:
(1)甲乙两地相距多远?
(2)求快车和慢车的速度分别是多少?
(3)求出两车相遇后y与x之间的函数关系式;
(4)何时两车相距300千米.
23. (10分)(2020·哈尔滨模拟) 如图1,正方形中,点是边延长线上一点,连接,过点作,垂足为点与相交于点.
(1)求证:;
(2)如图2,连接,若求的长.
24. (10分) (2019九上·瑞安期末) 如图,中,,以OA为半径的交BO 于点C,交BO延长线于点在上取一点E,且,延长DE与BA交于点F.
(1)求证:是直角三角形;
(2)连接AC,,,求AF的长.
25. (15分)(2019·花都模拟) 在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).
(1)求抛物线的表达式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P 的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC =90°,直接写出实数m的取值范围.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共6分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共7题;共76分)
19-1、20-1、
20-2、21-1、
21-2、22-1、
22-2、22-3、22-4、
23-1、23-2、
24-1、
24-2、25-1、
25-2、
25-3、。

相关文档
最新文档