有理数的加法2课件
合集下载
第2课时有理数的加减混合运算(44张PPT)数学
(2)根据你选取的基准数,用正、负数填写下表.
解 27-25=2,24-25=-1,23-25=-2,28-25=3,21-25=-4,26-25=1,22-25=-3,27-25=2,填表如下:
解
原质量
27
24
23
28
21
26
22
27
与基准数的差距
原质量
27
24
23
28
21
26
22
解析 A.1-4+5-4=1-4-4+5,故此选项错误;B.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7,故此选项正确;C.1-2+3-4=-2+1-4+3,故此选项错误;
B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解
=1+(-1)=0.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解
解 原式=5.6+(-7.6)+8.3+(-5.3)+(-1)=(5.6+8.3)+(-7.6-5.3-1)=13.9+(-13.9)=0.
有理数的加减混合运算(第2课时)课件
新课讲授
–140 +290 + 400 + 600–220 + 300–190 + 480 =–140–220–190+29+400+600+ 300+480 =–550 +2070 = 1520 答:每吨汽油上升了1520元.
新课讲授
典例分析
例3.某汽车制造厂计划前半年内每月生产汽车20辆,由于另有任 务,每月上班人数有变化,1月至6月实际每月生产量和计划每月 生产量相比,变化情况如下(增加为正,减少为负,单位:辆): +3,-2,-1,+4,+2,-5.(1)生产量最多的一个月比生产 量最少的一个月多生产多少辆?
课堂小结
有理数加减法混合运算的步骤为: 方法一:减法转化成加法 1.减法变加法:a+b-c=a+b+(-c) 2.运用加法交换律使同号两数分别相加; 3.按有理数加法法则计算 方法二:省略括号法 1.省略括号; 2.同号放一起;3.进行加减运算.
= 16
(2) 12
5 6
8
7 10
= 12 5 8 7 6 10
= 12 8 5 7 6 10
= 20 1 2
还可以怎样计算?
= 39 2
新课讲授
有理数加减混合运算的步骤:
(1)将减法转化为加法运算. (2)省略加号和括号. (3)运用加法交换律和结合律,将同号两数相加. (4)按有理数加法法则计算.
当堂小练
1.计算 -1434 --1014 +12 的结果为( B )
A.-3
B.-4
C.-7
D.-8
当堂小练
2.若a= -2,b=3,c= -4 ,则a-(b-c)的值为 -9 .
2.1.1 有理数的加法 第2课时课件 (共16张PPT) 数学人教版七年级上册
典例精析
使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加。
归纳总结
例2 小明遥控一辆玩具赛车,让它从A地出发,先向东行驶15m,再向西行驶25m,然后又向东行驶20m,再向西行驶35m,问玩具赛车最后停在何处?一共行驶了多少米?
﹥
﹤
﹥
﹤
拓展探究
一、加法的运算律1、加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变.2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)二、使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加。
(1)[8+(-5)]+(-4)(2)8+[(-5)+(-4)](3)[(-7)+(-10)]+(-11)(4)(-7)+[(-10)+(-11)](5)[(-22)+(-27)]+(+27)(6)(-22)+[(-27)+(+27)]
= -1
= -1
= -28
= -28
= -22
= -22
计算并观察下列各式
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
(a+b)+c=a+(b+c)
一般地,任意若干个数相加,无论各数相加的先后次序如何,其和都不变。
例1 计算(1)15+(-13)+18(2)(-2.48)+4.33+(-7.52)+(-4.33)
使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加。
归纳总结
例2 小明遥控一辆玩具赛车,让它从A地出发,先向东行驶15m,再向西行驶25m,然后又向东行驶20m,再向西行驶35m,问玩具赛车最后停在何处?一共行驶了多少米?
﹥
﹤
﹥
﹤
拓展探究
一、加法的运算律1、加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变.2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)二、使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加。
(1)[8+(-5)]+(-4)(2)8+[(-5)+(-4)](3)[(-7)+(-10)]+(-11)(4)(-7)+[(-10)+(-11)](5)[(-22)+(-27)]+(+27)(6)(-22)+[(-27)+(+27)]
= -1
= -1
= -28
= -28
= -22
= -22
计算并观察下列各式
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
(a+b)+c=a+(b+c)
一般地,任意若干个数相加,无论各数相加的先后次序如何,其和都不变。
例1 计算(1)15+(-13)+18(2)(-2.48)+4.33+(-7.52)+(-4.33)
初中数学北师大版七年级上册《有理数的加减混合运算(二)》课件
+0.2 + (+0.81) + (-0.35) + (+0.03) + (+0.28) +(-0.36) + (-0.01) =0.60(米)
星期
一
二
三
水位变化(米) +0.20 +0.81 -0.35
四 五六
+0.03 +0.28 -0.36
日
-0.01
注:正号表示水位比前一天上升,负号表示水位比前一天降落. 3、 根据变化数据画折线图
-1008,1100,-976,1010,-827,946
1小时后他停下来休息,此时他在A地什么方向?据A地多远?小 明共跑了多少米?
4、某中学七(1)班学生的平均身高是160厘米 (1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表.
姓名 身高 身高与平均身高的差值
小明 小彬 小丽 小亮 小颖 小山
2.某村共有6块小麦实验田,每块实验田今年的收成与去年相 比情况如下(增产为正,减产为负,单位:kg):
55,-40,10,-16,27,-5
今年的小麦总量与去年相比情况如何?
3、某日小明再一条南北:方向的公路上跑步,他从A地出发,每 隔
10min记录下自己的跑步情况(向南为正方向,单位:m):
2.6
有理数的加减 混合运算二
第二课时
数学北师大版 七年级上
教学目标
能综合运用有理数及其加法、减法的有关知识,解 决简单的实际问题,体会数学与现实生活的联系。
2.计算:
1.有理数加减混合运算的步骤
(3.5) ( 4 ) ( 3 ) ( 7 ) 0.75 ( 7 )
3
4
2
3
星期
一
二
三
水位变化(米) +0.20 +0.81 -0.35
四 五六
+0.03 +0.28 -0.36
日
-0.01
注:正号表示水位比前一天上升,负号表示水位比前一天降落. 3、 根据变化数据画折线图
-1008,1100,-976,1010,-827,946
1小时后他停下来休息,此时他在A地什么方向?据A地多远?小 明共跑了多少米?
4、某中学七(1)班学生的平均身高是160厘米 (1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表.
姓名 身高 身高与平均身高的差值
小明 小彬 小丽 小亮 小颖 小山
2.某村共有6块小麦实验田,每块实验田今年的收成与去年相 比情况如下(增产为正,减产为负,单位:kg):
55,-40,10,-16,27,-5
今年的小麦总量与去年相比情况如何?
3、某日小明再一条南北:方向的公路上跑步,他从A地出发,每 隔
10min记录下自己的跑步情况(向南为正方向,单位:m):
2.6
有理数的加减 混合运算二
第二课时
数学北师大版 七年级上
教学目标
能综合运用有理数及其加法、减法的有关知识,解 决简单的实际问题,体会数学与现实生活的联系。
2.计算:
1.有理数加减混合运算的步骤
(3.5) ( 4 ) ( 3 ) ( 7 ) 0.75 ( 7 )
3
4
2
3
2.1.1 有理数的加法(第2课时 有理数的加法运算律)(课件)七年级数学上册(人教版2024)
=-25(km).
答:将最后一名老人送到目的地时,小王在出发点的西边,距离是25 km.
(2)若出租车耗油量为0.08 L/km,这天上午小王的出租车
共耗油多少升?
【解】|+15|+|-4|+|+13|+|-10|+|
-12|+|+3|+|-13|+|-17|=87(km),
0.08×87=6.96(L).
)
A. 5+(-3)=3+5
B. 8+(-5)+9=(-5)+8+9
C. [6+(-3)]+5=[6+(-5)]+3
D. +(-2)+
+
=
+
+
+(+2)
典例剖析
例1(新课本ห้องสมุดไป่ตู้2 )计算:
(1)8+(-6)+(-8);
(2)16+(-25)+24+(-35).
解:(1)8+(-6)+(-8)
人教版(2024)七年级数学上册 第二章 有理数的运算
2.1.1 有理数的加法
(第二课时) 有理数的加法运算律
目录/CONTENTS
学习目标
情景导入
新知探究
分层练习
课堂反馈
课堂小结
学习目标
1.能概括出有理数的加法交换律和结合律.
2.灵活熟练地运用加法交换律、结合律简化运算(重点、
难点)
情景导入
解: 原式=[(-2.125)+
=3+0=3.
+
]+[
+
+(-3.2)]
14. 出租车司机小张某天下午的营运全是在东西走向的大道上进行的,如果规
有理数的加法(第二课时)课件 2022-2023学年人教版七年级数学上册
6、(P25习题1.3 T2)(1)(2)(3)(4) 7、(选做)计算: 1+(-2)+(-3)+ 4 + 5 +(-6)+(-7)
+ 8 +…+ 2013 +(-2014)+(-2015)+ 2016
5、(领跑作业本P17T2)某公路养护小组乘车沿东西向公 路巡视维护.某天早晨从A地出发,最后收工时到达B地
反意义的量,再求总量
2、两种解法各有什么特点? 解法一:易懂,但计算量大 解法二:表述的要求高,但计算量小
学生自学,教师巡视(3分钟)
例3 每袋小麦的标准重量为90千克,10袋小麦称重记录 如图所示,与标准重量比较,10袋小麦总计超过多少千 克或不足多少千克?10袋小麦的总重量是多少?
91
91
91.5
91.3
88.7
88.8
89
91.2
91.8
91.1
解法1:先计算10袋小麦的总重量 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4
再计算总计超过多少千克 905.4-90×10=5.4 答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千 克.
解:
0.6+1.8+(-2.2)+0.4+(-1.4)+(-0.9)+0.3+1.4+0.9+(-0.8) =0.6+0.4+[(-2.2)+(-0.8)]+[(-1.4)+1.4]+[(-0.9)+0.9]+(1.8+0.3) =1.0+(-3)+0+0+2.1 =0.1(千克).
10×50+0.1=500.1(千克).答:10袋面粉共超重0.1千克 ,该面粉厂实际收到面粉500.1千克.
+ 8 +…+ 2013 +(-2014)+(-2015)+ 2016
5、(领跑作业本P17T2)某公路养护小组乘车沿东西向公 路巡视维护.某天早晨从A地出发,最后收工时到达B地
反意义的量,再求总量
2、两种解法各有什么特点? 解法一:易懂,但计算量大 解法二:表述的要求高,但计算量小
学生自学,教师巡视(3分钟)
例3 每袋小麦的标准重量为90千克,10袋小麦称重记录 如图所示,与标准重量比较,10袋小麦总计超过多少千 克或不足多少千克?10袋小麦的总重量是多少?
91
91
91.5
91.3
88.7
88.8
89
91.2
91.8
91.1
解法1:先计算10袋小麦的总重量 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4
再计算总计超过多少千克 905.4-90×10=5.4 答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千 克.
解:
0.6+1.8+(-2.2)+0.4+(-1.4)+(-0.9)+0.3+1.4+0.9+(-0.8) =0.6+0.4+[(-2.2)+(-0.8)]+[(-1.4)+1.4]+[(-0.9)+0.9]+(1.8+0.3) =1.0+(-3)+0+0+2.1 =0.1(千克).
10×50+0.1=500.1(千克).答:10袋面粉共超重0.1千克 ,该面粉厂实际收到面粉500.1千克.
人教版数学七年级上册1.3.1有理数的加法(第2课时加法运算律及应用)课件
(− )+
(4)- +
+
+ +(− )
(− )
练一练
(1).23+(─17)+6+(─22)
解: 23+(─17)+6+(─22)
=(23+6)+[(─17)+(─22)]
=29+[─(17+22)]
=29+(─39)
=─(39─29)
=─10
同号结合法 符号相同的两个数先相加.
=─12
(─25)+13
=─(25─13)
=─12
(3) . ─12+18,18+(─12)
解: ─12+18
= +(18─12)
=6
18+(─12)
= +(18─12)
=6
从上述计算中,你能得出什么结论?
两个数相加,交换加数的位置,和不变.
归纳
加法交换律
有理数的加法中,两个数相加,交换加数的位置,和不变.
=5.4
90×10+5.4=905.4
答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克.
练一练
某水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,
“-”表示出库):
-50+(+45)+(-33)+(-48)+(+49)+(+36)
(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少
=19+0+0+0+(─3)
(4)- +
+
+ +(− )
(− )
练一练
(1).23+(─17)+6+(─22)
解: 23+(─17)+6+(─22)
=(23+6)+[(─17)+(─22)]
=29+[─(17+22)]
=29+(─39)
=─(39─29)
=─10
同号结合法 符号相同的两个数先相加.
=─12
(─25)+13
=─(25─13)
=─12
(3) . ─12+18,18+(─12)
解: ─12+18
= +(18─12)
=6
18+(─12)
= +(18─12)
=6
从上述计算中,你能得出什么结论?
两个数相加,交换加数的位置,和不变.
归纳
加法交换律
有理数的加法中,两个数相加,交换加数的位置,和不变.
=5.4
90×10+5.4=905.4
答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克.
练一练
某水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,
“-”表示出库):
-50+(+45)+(-33)+(-48)+(+49)+(+36)
(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少
=19+0+0+0+(─3)
《有理数的加法》有理数及其运算PPT课件(第2课时)教学课件
第2课时 有理数加法的运算律
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
7.下列算式中,运用加法交换律和加法结合律正确的是( D )
A.23+(
-1
)+
+
1 3
=
2 3
+
+
1 3
+1
B.14+(
-2
)+
-
3 4
=
1 4
+
3 4
+(
-2
)
C.( -6 )+2+9=[( -9 )+2]+6
D.( -5 )+7+( -8 )=[( -5 )+( -8 )]+7
8.计算
1 2
+
1 3
+
2 3
+
1 4
+
3 4
+
1 5
+
4 5
+
1 6
的结果为(
C
)
A.223
B.312
C.323
D.412
第二章
第2课时 有理数加法的运算律
知识要点基础练
综合能力提升练
拓展探究突破练
-7-
9.( 改编 )下列运算中正确的是( C )
A.11+[( -13 )+7]=17
B.( -2.5 )+[5+( -2.5 )]=5
解:解法一:这10箱蜜桔的总质量为 9.98+10.02+10.03+9.99+10.04+10.03+9.99+9.97+10.00+10.05=100.1 kg, 平均每箱蜜桔的质量为100.1÷10=10.01 kg. 解法二:把超过标准质量的千克数用正数表示,不足的用负数表示, 则这10箱蜜桔与标准质量的差值的和为( -0.02 )+0.02+0.03+( -0.01 )+0.04+0.03+( 0.01 )+( -0.03 )+0+0.05=0.1 kg. 这10箱蜜桔的总质量为10×10+0.1=100.1 kg. 所以这10箱蜜桔的平均质量为10.01 kg.
七年级数学上册 第一章 有理数 1.5 有理数的加法(第2课时)课件冀教级上册数学课件
解:(-3)+(+6)+(-2)=3-2=1(℃). 答:17时的气温是1℃.
12/7/2021
2 若三个有理数的和为0,则( D ) A.三个数可能同号 B.三个数一定为0 C.一定有两个数互为相反数 D.一定有一个数等于其余两个数的和的相反数
3 在一次数学竞赛中,全区参赛学生的平均分为 80分,若以80分为标准,超过的分数记为正数, 不足的分数记为负数,某校5名参赛学生的成绩 分别为:5分,-2分,8分,0分,-1分,则这 5名参赛学生数学竞赛的平均成绩是( B ) A.80分 B.82分 C.84分 D.85分
12/7/2021
解:(1)每天水位的变化量分别是:星期二为-0.2m, 星期三为+0.7 m,星期四为-0.8 m. (2)根据题意,得 110.3+(-0.2)+(+0.7)+(-0.8)
=[110.3+(+0.7)]+[(-0.2)+(-0.8)] =111+(-1) =110(m). 答:每天水位的变化量分别是:星期二为-0.2 m,
交换加数时,
加法运算 结合律:(a+b)+c=a+(b+c)
符号不变有理
律
数的
12/7/2021
12/7/2021
请问:小蚂蚁最后能回到出发点吗?
12/7/2021
知识点 1 有理数的加法运算律
1.计算:
(1)5+(-13)=
,(-13)+5=;Biblioteka (2)(-4)+(-8)=
,(-8)+(-4)= .
2.计算:
(1)[3+(-8)]+(-4)=
,
3+[(-8)+(-4)]=
;
(2)[(-6)+(-12)]+15=
12/7/2021
12/7/2021
2 若三个有理数的和为0,则( D ) A.三个数可能同号 B.三个数一定为0 C.一定有两个数互为相反数 D.一定有一个数等于其余两个数的和的相反数
3 在一次数学竞赛中,全区参赛学生的平均分为 80分,若以80分为标准,超过的分数记为正数, 不足的分数记为负数,某校5名参赛学生的成绩 分别为:5分,-2分,8分,0分,-1分,则这 5名参赛学生数学竞赛的平均成绩是( B ) A.80分 B.82分 C.84分 D.85分
12/7/2021
解:(1)每天水位的变化量分别是:星期二为-0.2m, 星期三为+0.7 m,星期四为-0.8 m. (2)根据题意,得 110.3+(-0.2)+(+0.7)+(-0.8)
=[110.3+(+0.7)]+[(-0.2)+(-0.8)] =111+(-1) =110(m). 答:每天水位的变化量分别是:星期二为-0.2 m,
交换加数时,
加法运算 结合律:(a+b)+c=a+(b+c)
符号不变有理
律
数的
12/7/2021
12/7/2021
请问:小蚂蚁最后能回到出发点吗?
12/7/2021
知识点 1 有理数的加法运算律
1.计算:
(1)5+(-13)=
,(-13)+5=;Biblioteka (2)(-4)+(-8)=
,(-8)+(-4)= .
2.计算:
(1)[3+(-8)]+(-4)=
,
3+[(-8)+(-4)]=
;
(2)[(-6)+(-12)]+15=
12/7/2021
人教版数学七年级上册1.3.1第1课时有理数的加法法则2-课件
解法1:先计算10袋小麦的总 重量 91+91+91.5+89+91.2+91.3+88.7+8 8.8+91.8+91.1+91.1=905.4 再计算总计超过多少千克: 905.4-90×10=5.4
解法2:每袋小麦超过标准重量的千克数记作 正数,不足的千克数记作负数。
10袋小麦对应的数为+1,+1,+1.5,-1,+1.2, +1.3,-1.3,-1.2,+1.8,+1.1。
=24+20+[(-12)+(-15)]
=44+(-27)
=17
这里使
用了哪些运 算律 ?
解:(-2.54)+3.56+(-7.46)+(-3.56)
=[(-2.54)+(-7.46)] +[(+3.56)+
(-3.56)]
=(-10)+0
=-10.
这里使
用了哪些运 算律 ?
有理的加法常用的三个规律:
4.若第一次向西走25米,第二次向东 走10米,那他现在在什么位置?
+10 -25 -30 -20 -10 0
10 20 30
-15
(-25) +(+10) = -15
5.若第一次向西走20米,第二次向 东走20米,那他现在在什么位置?
+20 -20 -50 -40 - 30 -20 -10 0
知识要点
加法的交换律
有理数的加法中,两个数的加法,交 换加数的位置,和不变.
即:a+b=b+a
1.式子中的字母分别表示任意的一个有理数。 (如:既可成表示整数,也可以表示分数;既可以表 示正数,也可以表示负数或0).
2.在同一个式子中,同一个字母表示同一个数.
解法2:每袋小麦超过标准重量的千克数记作 正数,不足的千克数记作负数。
10袋小麦对应的数为+1,+1,+1.5,-1,+1.2, +1.3,-1.3,-1.2,+1.8,+1.1。
=24+20+[(-12)+(-15)]
=44+(-27)
=17
这里使
用了哪些运 算律 ?
解:(-2.54)+3.56+(-7.46)+(-3.56)
=[(-2.54)+(-7.46)] +[(+3.56)+
(-3.56)]
=(-10)+0
=-10.
这里使
用了哪些运 算律 ?
有理的加法常用的三个规律:
4.若第一次向西走25米,第二次向东 走10米,那他现在在什么位置?
+10 -25 -30 -20 -10 0
10 20 30
-15
(-25) +(+10) = -15
5.若第一次向西走20米,第二次向 东走20米,那他现在在什么位置?
+20 -20 -50 -40 - 30 -20 -10 0
知识要点
加法的交换律
有理数的加法中,两个数的加法,交 换加数的位置,和不变.
即:a+b=b+a
1.式子中的字母分别表示任意的一个有理数。 (如:既可成表示整数,也可以表示分数;既可以表 示正数,也可以表示负数或0).
2.在同一个式子中,同一个字母表示同一个数.
【教学课件】《有理数的加法二》(数学北师大七上)
11
解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐 头与标准质量的差值表:
听号
1
2
3
与标准质量的ቤተ መጻሕፍቲ ባይዱ/g -10
+5
0
听号
6
7
8
与标准质量的差/g 0
-5
0
4
5
+5
0
9
10
+5
+10
这10听罐头与标准质量差值的和为: (-10)+5+0+5+0+0+(-5)+0+5+10=10 因此,这10听罐头的总质量为450 ×10+10=4550
第二章·课题四
有理数的加法
第2课时
1
教学目标
1.通过有理数加法运算法则,使学生掌握有理数加法的运算律, 并能用有理数加法进行简化运算。 2.培养学生观察能力、归纳能力,通过分类结合思想渗透,提 高学生运算能力,尤其是简便计算能力的提高。培养学生把实 际问题抽象成熟学问题的能力。
2
你还记得小学里学过的加法交换律和加法结合律的内容吗? 1.加法交换律:5+3=3+5; 2.加法结合律: (4+3)+7=4+(7).
听号 1 2
3
4
5
质量/g 444 459 454 459 454
听号 6 7
8
9
10
质量/g 454 449 454 459 464
这10听罐头的总质量是多少?
10
解法一: 这10听罐头的总质量为: 444+459+454+459+454+454+449+454+459+464=4550 (g)
解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐 头与标准质量的差值表:
听号
1
2
3
与标准质量的ቤተ መጻሕፍቲ ባይዱ/g -10
+5
0
听号
6
7
8
与标准质量的差/g 0
-5
0
4
5
+5
0
9
10
+5
+10
这10听罐头与标准质量差值的和为: (-10)+5+0+5+0+0+(-5)+0+5+10=10 因此,这10听罐头的总质量为450 ×10+10=4550
第二章·课题四
有理数的加法
第2课时
1
教学目标
1.通过有理数加法运算法则,使学生掌握有理数加法的运算律, 并能用有理数加法进行简化运算。 2.培养学生观察能力、归纳能力,通过分类结合思想渗透,提 高学生运算能力,尤其是简便计算能力的提高。培养学生把实 际问题抽象成熟学问题的能力。
2
你还记得小学里学过的加法交换律和加法结合律的内容吗? 1.加法交换律:5+3=3+5; 2.加法结合律: (4+3)+7=4+(7).
听号 1 2
3
4
5
质量/g 444 459 454 459 454
听号 6 7
8
9
10
质量/g 454 449 454 459 464
这10听罐头的总质量是多少?
10
解法一: 这10听罐头的总质量为: 444+459+454+459+454+454+449+454+459+464=4550 (g)
2022秋七年级数学上册 第2章 有理数的运算2.1 有理数的加法2有理数的加法运算律课件浙教版
(2)该中心大楼每层高3 m,电梯每向上或向下1 m需 要耗电0.2度,根据王先生现在所处位置,请你算 算,他办事时电梯需要耗电多少度? 解:总路程为3×(|+6|+|-3|+|+10|+|-8|+|+ 12|+|-7|+|-10|)=3×(6+3+10+8+12+7+ 10)=3×56=168(m). 168×0.2=33.6(度). 故他办事时电梯需要耗电33.6度.
解:[(-4)+(-3)+(-2)+(-1)+0+1+2+3+4]÷3 =0÷3=0, 第1行的第3个数是: 0-(-1)-4=-3, 第3行的第2个数是: 0-3-1=-4, 第2行的第2个数是:0- (-4)-4=0, 第2行的第1个数是:0-0-2=-2.
探究培优·拓展练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四下午10时42分12秒22:42:1222.3.3
13 阅读下题的计算方法. 计算:-623+-812+1634+-256. 解 : 原 式 = (-6)+-23 + [( - 8) + -12 ] + 16+34 + (-2)+-56
=[(-6)+(-8)+16+(-2)]+[-23+-12+34+-56]
=0+-54
=-54. 上面这种解题方法叫做拆项法,按此方法计算:
第2章
有理数的运算
2.1. 有理数的加法运算律 2
习题链接
温馨提示:点击 进入讲评
1D 2A 3D 4D
5B 6C 7C 8C
答案呈现
9 10 11 12
习题链接
温馨提示:点击 进入讲评
13 14
答案呈现
1 两个负数与一个正数相加,其和( D ) A.一定为负数 B.一定为正数 C.一定为0 D.可能为正数、负数或0
2.1.1有理数的加法 课件 (16张PPT)人教版(2024)七年级数学 上册
(+3)+(-4)= ?-1 -1
思考:从上面问题中,你能得出异号两数相加的方法吗?
结论:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的 绝对值。
问题4:如果星期三那天,水泥进货5吨,同时出货5吨,那么那天的 库存有没有变化?
(+5)+(-5)= 0
结论:互为相反数的两个数相加得零。
学以致用
3、在数轴上表示下列有理数的运算,并求出计算结果.
(1)2+3
(1) −5 (2) −7
(3)
−8 (4) −7
(2)(-5)+(-2) (3)(-8)+(+5) (4)(-6)+6
+2
+3
−4 −3 −2 −1 0 1 2 3 4 5 2+3=5
+5
-2
-5
(-5)+(-2)=-7
−6 −5 −4 -7−3 −2 −1 0
结论:同号两数相加,取与加数相同的符号,并把绝对值相加.
请尝试完成下列问题:
一建筑工地仓库记录星期一和星期二水泥的进货和出货数量如 图,其中进货为正,出货为负(单位:吨):
日期 星期一 星期二
进出货情况
+5
-2
+3
-4
库存变化
问题3:星期一该建筑工地仓库的水泥库存是增加了还是减少了? 星期二该建筑工地仓库的水泥库存是增加了还是减少了?
一建筑工地仓库记录星期一和星期二水泥的 进货和出货数量,如下表,其中进货为正,出货 为负,库存增加为正,库存减少为负(单位:吨).
星期一 星期二 合计
进出货数量
+5 -2
+3 -4
+8
-6
库存变化
+3 -1 +2
根据你的生活经验,填写表中的空格, 然后思考以下问题:
思考:从上面问题中,你能得出异号两数相加的方法吗?
结论:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的 绝对值。
问题4:如果星期三那天,水泥进货5吨,同时出货5吨,那么那天的 库存有没有变化?
(+5)+(-5)= 0
结论:互为相反数的两个数相加得零。
学以致用
3、在数轴上表示下列有理数的运算,并求出计算结果.
(1)2+3
(1) −5 (2) −7
(3)
−8 (4) −7
(2)(-5)+(-2) (3)(-8)+(+5) (4)(-6)+6
+2
+3
−4 −3 −2 −1 0 1 2 3 4 5 2+3=5
+5
-2
-5
(-5)+(-2)=-7
−6 −5 −4 -7−3 −2 −1 0
结论:同号两数相加,取与加数相同的符号,并把绝对值相加.
请尝试完成下列问题:
一建筑工地仓库记录星期一和星期二水泥的进货和出货数量如 图,其中进货为正,出货为负(单位:吨):
日期 星期一 星期二
进出货情况
+5
-2
+3
-4
库存变化
问题3:星期一该建筑工地仓库的水泥库存是增加了还是减少了? 星期二该建筑工地仓库的水泥库存是增加了还是减少了?
一建筑工地仓库记录星期一和星期二水泥的 进货和出货数量,如下表,其中进货为正,出货 为负,库存增加为正,库存减少为负(单位:吨).
星期一 星期二 合计
进出货数量
+5 -2
+3 -4
+8
-6
库存变化
+3 -1 +2
根据你的生活经验,填写表中的空格, 然后思考以下问题:
2.1.1 有理数的加法法则课件(第1课时)(19张PPT) 人教版(2024)数学七年级上册
(2) 3.7+(-8.4)=-(8.4-3.7)=-4.7.
(3) 3.22+1.78=+(3.22+1.78)=5.
(4) 7+(-3.3)=+(7-3.3)=3.7.
2. 如果两个数的和为正数,那么下列描述中,一定错误的是 ( )A. 两个数均为正数B. 两个数一个是正数,另一个是零C. 两数一正一负,正数比负数的绝对值大D. 两数一正一负,正数比负数的绝对值小
魏晋时期的数学家刘徽在其著作《九章算术注》中用不同颜色的算筹(小棍形状的记数工作)分别表示正数和负数(红色为正,黑色为负). 你能写出下列算筹表示的数和最终结果吗?
( ) + ( ) 何计算?
探究一 一个物体作左右方向的运动,我们规定向右为正,向左为负.向右运动 5m 记作 5m ,向左运动 5m 记作-5m.
(+15)+(-25)+(+20) =-(25-15)+(+20)
答:卡车最后停在 A 站东面 10 km 处.
=(-10)+20=10 (km).
同学们再见!
授课老师:
时间:2024年9月1日
符号不变
绝对值相加
例1 填表:
算式
结果符号
+3+(+8)
-6+(-4)
+2024+(+2025)
-1.3+(-9.9)
+
+
-
-
3. 如果物体先向左运动 3 m,再向右运动 5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?4. 如果物体先向右运动 3 m,再向左运动 5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?
1. 计算:(1) 180 + (-10); (2) (-10) + (-1);(3) 5 + (-5); (4) 0 + (-2).
(3) 3.22+1.78=+(3.22+1.78)=5.
(4) 7+(-3.3)=+(7-3.3)=3.7.
2. 如果两个数的和为正数,那么下列描述中,一定错误的是 ( )A. 两个数均为正数B. 两个数一个是正数,另一个是零C. 两数一正一负,正数比负数的绝对值大D. 两数一正一负,正数比负数的绝对值小
魏晋时期的数学家刘徽在其著作《九章算术注》中用不同颜色的算筹(小棍形状的记数工作)分别表示正数和负数(红色为正,黑色为负). 你能写出下列算筹表示的数和最终结果吗?
( ) + ( ) 何计算?
探究一 一个物体作左右方向的运动,我们规定向右为正,向左为负.向右运动 5m 记作 5m ,向左运动 5m 记作-5m.
(+15)+(-25)+(+20) =-(25-15)+(+20)
答:卡车最后停在 A 站东面 10 km 处.
=(-10)+20=10 (km).
同学们再见!
授课老师:
时间:2024年9月1日
符号不变
绝对值相加
例1 填表:
算式
结果符号
+3+(+8)
-6+(-4)
+2024+(+2025)
-1.3+(-9.9)
+
+
-
-
3. 如果物体先向左运动 3 m,再向右运动 5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?4. 如果物体先向右运动 3 m,再向左运动 5 m,那么两次运动后的最终结果是什么?可以用怎么样的算式表示?
1. 计算:(1) 180 + (-10); (2) (-10) + (-1);(3) 5 + (-5); (4) 0 + (-2).
新版人教版七年级数学上册《有理数的加法2》优质课课件
( 1)9 ( 1 3)9 ( 2 3)1(5 加法结合律 )
0(21)5 215
(1)把正数和负数分别结合在一起相加 (2)把互为相反数的结合,能凑整的结合
(3)把同分母的数结合相加
2.算一算:(看老师板书,注意步骤)
1 162524(35);(课本例题) 2 3.485.339.525.33(3.05) 3 2 3 3 1 3 2 23 1 1
一、复习有理数加法法则要点
(1)同号两数相加, 取 相同的符号, 并把绝对值相加 . (2)异号两数相加,取绝对值较大加数的符号,
并用较大的绝对值减去较小的绝对值,
(3)互为相反数的两数相加得零
(4)一个数同零相加仍得这个数
2、算一算
A (1)(-10)+(-8)= -18
(2)(-6)+(+6)= 0
+9(1-.13.,28)8+.71,.888+.81,.191=.58.,4 91.1 答如:1果0袋每小袋麦小一麦共以99005千.4克千为克,总计
标准,10袋小麦总计超过 超多过少5千.4千克克或.不足多少千克?
+1 ,+1 ,+1.5 ,-1 ,+1.2 ,+1.3 ,-1.3 ,
-1.2 ,1.8 ,+1.1 ,
( 2 ) 2 ( ) 3 1 ( 3 ) 2 ( 4 )=-3
(3)1(12)13(16)
2 3
(4)31(23)53(82)=-2
4 54 5
例题,10袋小麦称后记录 如图所示(单位:千克), 10袋小麦一共多少千克? 19+11,+19.15,+(91-1.5), +819.,2+911..32+, ( -1.3)
0(21)5 215
(1)把正数和负数分别结合在一起相加 (2)把互为相反数的结合,能凑整的结合
(3)把同分母的数结合相加
2.算一算:(看老师板书,注意步骤)
1 162524(35);(课本例题) 2 3.485.339.525.33(3.05) 3 2 3 3 1 3 2 23 1 1
一、复习有理数加法法则要点
(1)同号两数相加, 取 相同的符号, 并把绝对值相加 . (2)异号两数相加,取绝对值较大加数的符号,
并用较大的绝对值减去较小的绝对值,
(3)互为相反数的两数相加得零
(4)一个数同零相加仍得这个数
2、算一算
A (1)(-10)+(-8)= -18
(2)(-6)+(+6)= 0
+9(1-.13.,28)8+.71,.888+.81,.191=.58.,4 91.1 答如:1果0袋每小袋麦小一麦共以99005千.4克千为克,总计
标准,10袋小麦总计超过 超多过少5千.4千克克或.不足多少千克?
+1 ,+1 ,+1.5 ,-1 ,+1.2 ,+1.3 ,-1.3 ,
-1.2 ,1.8 ,+1.1 ,
( 2 ) 2 ( ) 3 1 ( 3 ) 2 ( 4 )=-3
(3)1(12)13(16)
2 3
(4)31(23)53(82)=-2
4 54 5
例题,10袋小麦称后记录 如图所示(单位:千克), 10袋小麦一共多少千克? 19+11,+19.15,+(91-1.5), +819.,2+911..32+, ( -1.3)
2024新人编版七年级数学上册《第二章2.1.1有理数的加法第2课时》教学课件
答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千克.
巩固练习
某一出租车一天下午以文化中心为出发地在东西方向营运, 向东走为正,向西走为负,行车里程(单位:km)依先后次 序记录如下:
+9, –3, –5, +4, –8, +6, –3, –6, –4, +10. (1)将最后一名乘客送到目的地时出租车离出发地多远?在 出发地的什么方向上? (2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
1. 使 用 交 换 律 交 换 加 数时,一定要连同它 的符号一起移动; 2. 加 法 交 换 律 适 应 于 两个及两个以上数的 相加; 3. 计 算 有 理 数 加 法 时 ,如果遇到一个加数 前有负号且不是该式 的的第一个加数时, 应加上括号.
巩固练习
11 (2) 4.1+(+ 2)+(– 4 )+(–10.1)+7
例1 计算:16 +(–25)+ 24 +(–35)
解: 16 +(–25)+ 24 +(–35)
=16 + 24 +[(–25)+ (–35)] =40 +(–60)= –20
把正数与负数分别相 加,从而据是什么?
这样做既运用了加法 交换律,又运用了加 法结合律.
探究新知
归纳总结
1. 一般地,总是先把正数或负数分别结合在一起相加. 2. 有相反数的可先把相反数相加,能凑整的可先凑整. 3. 有分母相同的,可先把分母相同的数结合相加. 4. 有小数相加时,把整数部分、纯小数部分分别结合相加.
探究新知
归纳总结
5. 含有带分数的加法运算方法如下, 化简:将带分数化简成整数和分数两个部分; 相加:先将整数部分和分数部分分别相加,并保留原带 分数的符号,再把两部分的结果相加.
巩固练习
某一出租车一天下午以文化中心为出发地在东西方向营运, 向东走为正,向西走为负,行车里程(单位:km)依先后次 序记录如下:
+9, –3, –5, +4, –8, +6, –3, –6, –4, +10. (1)将最后一名乘客送到目的地时出租车离出发地多远?在 出发地的什么方向上? (2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
1. 使 用 交 换 律 交 换 加 数时,一定要连同它 的符号一起移动; 2. 加 法 交 换 律 适 应 于 两个及两个以上数的 相加; 3. 计 算 有 理 数 加 法 时 ,如果遇到一个加数 前有负号且不是该式 的的第一个加数时, 应加上括号.
巩固练习
11 (2) 4.1+(+ 2)+(– 4 )+(–10.1)+7
例1 计算:16 +(–25)+ 24 +(–35)
解: 16 +(–25)+ 24 +(–35)
=16 + 24 +[(–25)+ (–35)] =40 +(–60)= –20
把正数与负数分别相 加,从而据是什么?
这样做既运用了加法 交换律,又运用了加 法结合律.
探究新知
归纳总结
1. 一般地,总是先把正数或负数分别结合在一起相加. 2. 有相反数的可先把相反数相加,能凑整的可先凑整. 3. 有分母相同的,可先把分母相同的数结合相加. 4. 有小数相加时,把整数部分、纯小数部分分别结合相加.
探究新知
归纳总结
5. 含有带分数的加法运算方法如下, 化简:将带分数化简成整数和分数两个部分; 相加:先将整数部分和分数部分分别相加,并保留原带 分数的符号,再把两部分的结果相加.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、计算(-12)+(+11)+(-8)+(-7)+(+39)+7
解:原式=(-1)+(-8)+(-7)+(+39)+7 =(-9)+(-7)+(+39)+7 =(-16)+(+39)+7 有没有简便的 方法,给大家 说一说吗?
=23+7
=30
谁简便?
解:原式=[(-12)+(-8)]+[(+11)+(+39)]+[(-7)+7]
(a+b)+c=a+(b+c)
a、b、c表示 有理数?
活动2:运算律的应用
例1 P19 例2 例2 计算:
合理运用运算 律简化计算, 有哪些方法?
1 1 2 1 3 ① (3 ) (2 ) (3 ) (5 ) (7 ) 3 2 3 2 4 1 2 3 2 ② ( ) ( ) ( ) (2.53) (1 ) (2.53) (1.6) 2 3 5 3 1 2 1 1 3 解:原式=[( 3 ) (3 )] [( 2 ) (5 )] (7 ) 3 3 2 2 4 解:原式= 同分母结合相加 1 2 2 3 ( ) [( ) (1 )] [( ) (1.6)] [( 2.53) (2.53)] 2 3 3 5 能“凑0”或“凑整”的结合相
使用运算律通常有下列情形:
(1)互为相反数的两个数可先相加;
(2)几个数相加得整数时,可先相加; (3)同分母的分数可以先相加;
(4)符号相同的数可以先相加;
(5)整数与整数相加,小数与小数相加。
探究
用“﹥”或“﹤”符号填空
﹥ (1)如果a>0,b>0,那么a+b____0;
(2) 如果a<0,b<0,那么a+b____0; ﹤
细心,动脑,方法!
有理数的加法(2)
活动1:做一做,想一想?
1、有理数的加法法则分哪几种情况?分别如 何运算? 2、计算①(-4)+(-5) ②(-6)+(-6) ③-12+0 ④(+9)+(-11) ⑤(-3.78)+(-0.22) ⑥(-6.1)+(+6.1)
3、如果两个加数的和是正数,那么( ) A.这两个加数都是正数;B.一个加数为正,另 一个加数为0;C.这两个加数一正一负,且正 数的绝对值较大;D.必属于上面三种情况之一.
练习1
1.用简便方法计算: (1)(+45.3)+(-9.5)+(+4.7) 5 1 1 (2)(+2.5)+(+3 — )+(+1—)+1— 6 2 6
练一练: 有一个农民家库存了10袋小麦,以每袋 100千克数记作负数,称重如下:+4,-3, +5,+1,+3,0,+3,+2,+1,-7,问这 10袋小麦的总重量是多少?
=(-20)+(50)+0
=30
两种解-8)+(-9),= (-9)+(-8) ②4+(-7),(-7)+4
加法交换律:两个数相加,交换加数的位置, 和不变. a+b=b+a ③[2+(-3)]+(-8), 2+[(-3)+(-8)] = ④[10+(-10)]+(-5), 10+[(-10)+(-5)] = 加法结合律:三个数相加,先把前两个数相加, 或者先把后两个数相加,和不变.
﹥ (3) 如果a>0,b<0,|a|>|b|,那么a+b____0;
(4) 如果a<0,b>0,|a|<|b|,那么a+b____0; ﹤
例1计算 (1)15+(-13)+18
解:原式=(15+18)+(-13) =33+(-13) =20
(2)(-2.48)+4.33+(-7.52)+(-4.33)
解:原式=[(-2.48)+(-7.52)]+[(+4.33)+(-4.33)] =(-10)+0 5 1 6 解:原式 ( )( ) ) [ ]( =-10 6 6 7 2 6 5 1 6 ( ) (3) ( ) ( ) 3 7 6 6 7 4 21