磁场和安培力

合集下载

磁场力安培力

磁场力安培力

磁场力安培力学过初中物理的同学都知道,磁场是电流的一个源泉。

你们可曾想到,磁场也会有力呢?它的名字叫“安培力”。

那么什么是安培力呢?下面我给大家介绍一下。

一、安培力定义:安培力就是指电流在磁场里受到的一种作用力。

其实,我们生活中随处可见“安培力”,例如我们走路时脚与地面产生的摩擦力;桌椅、门、窗与地面等之间的摩擦力;风扇转动时产生的阻力……这些都是安培力在起作用。

二、安培力特点:(一)大小变化:安培力的大小与导体在磁场中的有效长度成正比。

(二)方向变化:安培力的方向是随着电流方向而变化的。

(三)随时间变化:不管电流怎样变化,安培力的方向始终不变。

三、安培力的大小与方向判断方法:将大拇指指向和磁感线垂直的方向,四指所指的方向为安培力的方向。

若安培力方向不变则是静磁场。

若安培力方向与电流方向一致,则是变化磁场。

(变化磁场中可能存在着匀速直线运动的物体,应该是匀速圆周运动或变速直线运动)1。

对于通电直导线在磁场中所受安培力,大小为安培力常量A=6.63×10-11N( N为磁感应强度)。

2。

安培力的方向:安培力总是使导线围绕磁场以螺旋线的方式向右(顺时针)偏转。

3。

安培力的作用点在磁场中央(从电流的角度看),垂直纸面向外。

4。

安培力的大小由导线在磁场中所受安培力大小与导线的电流大小有关。

5。

安培力的作用效果跟导线在磁场中的有效长度L和导线电流I有关。

( L越长, I越大,安培力越大;反之亦然) 6。

同名磁极互相排斥,异名磁极互相吸引。

7。

安培力的方向与导体棒中电流的方向垂直。

8。

两根平行金属导体之间的安培力不做功,不消耗电能。

二、安培力方向(a)。

垂直于磁感线b。

垂直于地面c。

垂直于磁场d。

切割磁感线。

三、磁场对电流的作用力的两种情况。

第一种情况:电流的方向与磁感线方向垂直,方向为沿着电流方向向左。

第二种情况:电流的方向与磁感线方向平行,方向为沿着电流方向向右。

因此磁场对电流的作用力为安培力或洛伦兹力,并且其方向与电流方向垂直。

磁场- 磁场 安培力

磁场-  磁场  安培力

磁场第一单元磁场安培力第1课时磁场及其描述要点一磁场、磁感即学即用1.如图所示,放在通电螺线管内部中间处的小磁针,静止时N极指向右,试判断电源的正负极.答案c端为正极,d端为负极要点二描述磁场的物理量即学即用2.关于磁感应强度B,下列说法中正确的是()A.磁场中某点B的大小,跟放在该点的试探电流元的情况有关B.磁场中某点B的方向,跟放在该点的试探电流元所受磁场力方向一致C.在磁场中某点的试探电流元不受磁场力作用时,该点B值大小为零D.在磁场中磁感线越密集的地方,磁感应强度越大答案D题型1 用安培定则确定磁场方向或小磁针的转动方向【例1】如图所示,直导线AB、螺线管C、电磁铁D三者相距较远,它们的磁场互不影响,当开关S闭合稳定后,则图中小磁针的北极N(黑色的一端)指示出磁场方向正确的是()A.aB.bC.cD.d答案BD题型2 磁感应强度的矢量性【例2】如图所示,同一平面内有两根互相平行的长直导线1和2,通有大小相等、方向相反的电流,a、b两点与两导线共面,a点在两导线的中间与两导线的距离均为r,b点在导线2右侧,与导线2的距离也为r .现测得a 点磁感应强度的大小为B ,则去掉导线1后,b 点的磁感应强度大小为 , 方向 .答案 2B 垂直纸面向外 题型3 类比迁移思想【例3】磁铁有N 、S 两极,跟正负电荷有很大的相似性,人们假定在一根磁棒的两极上有一种叫做“磁荷”的东西, N 极上的叫做正磁荷,S 极上的叫做负磁荷,同号磁荷相斥,异号磁荷相吸.当磁极本身的几何线度远比它们之间的距离小得多时,将其上的磁荷叫做点磁荷.磁的库仑定律是:两个点磁荷之间的相互作用力F 沿着它们之间的连线,与它们之间的距离r 的平方成反比,与它们磁荷的数量(或称磁极强度)q m 1、q m 2成正比,用公式表示为:F =221r q kq m m . (1)上式中的比例系数k =10-7 Wb /(A ·m ),则磁极强度q m 的国际单位(用基本单位表示)是 .(2)同一根磁铁上的两个点磁荷的磁极强度可视为相等,磁荷的位置可等效地放在图(a )中的c 、d 两点,其原因是 .(3)用两根相同的质量为M 的圆柱形永久磁铁可以测出磁极强度q m ,如图(b ),将一根磁棒固定在光滑的斜面上,另一根与之平行放置的磁棒可以自由上下移动.调节斜面的角度为θ时,活动磁铁刚好静止不动.由此可知磁极强度q m 为多大?答案 (1)A ·m(2)通过实验可以描绘出外部磁感线,所有磁感线延长后会交于这两点.磁棒的外部磁感线相当于由c 点发出后又聚集到d 点.(3))cos 1(2sin 222d L d k mg +-αθ1.(2009·承德质检)取两个完全相同的长导线,用其中一根绕成如图(a )所示的螺线管,当在该螺线管中通以电流强度为I 的电流时,测得螺线管内中部的磁感应强度大小为B ,若将另一根长导线对折后绕成如图(b)所示的螺线管,并通以电流强度也为I的电流时,则在螺线管内中部的磁感应强度大小为()A.0B.0.5BC.BD.2B答案A2.如图所示,磁带录音机可用作录音,也可用作放音,其主要部件为可匀速行进的磁带a和绕有线圈的磁头b.下面对于它们在录音、放音过程中主要工作原理的描述,正确的是()A.放音的主要原理是电磁感应,录音的主要原理是电流的磁效应B.录音的主要原理是电磁感应,放音的主要原理是电流的磁效应C.放音和录音的主要原理都是磁场对电流的作用D.放音和录音的主要原理都是电磁感应答案A3.实验室里可以用图甲所示的小罗盘估测条形磁铁磁场的磁感应强度.方法如图乙所示,调整罗盘,使小磁针静止时N极指向罗盘上的零刻度(即正北方向),将条形磁铁放在罗盘附近,使罗盘所在处条形磁铁的方向处于东西方向上,此时罗盘上的小磁针将转过一定角度.若已知地磁场的水平分量B x,为计算罗盘所在处条形磁铁磁场的磁感应强度B,则只需知道,磁感应强度的表达式为B= .答案罗盘上指针的偏转角B x tanθ4.如图所示,在a、b、c三处垂直纸面放置三根长直通电导线,a、b、c是等边三角形的三个顶点,电流大小相等,a处电流在三角形中心O点的磁感应强度大小为B,求O处磁感应强度.答案 2B 方向平行ab连线向右。

磁场知识点总结-磁场-安培力

磁场知识点总结-磁场-安培力

磁场知识点总结1.磁场(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场. (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用.(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.2.磁感线(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.(3)几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A·m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近.(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5★.安培力(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.(2)安培力的方向由左手定则判定.(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.★洛伦兹力(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功. (3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.(4)在磁场中静止的电荷不受洛伦兹力作用.7.★★★带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB ②周期公式: T=2πm/qB8.带电粒子在复合场中运动(1)带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.(2)带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高” “至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.。

磁场安培力公式

磁场安培力公式

磁场安培力公式
安培力公式:f=ilbsinα,其中α为(i、b),是电流方向与磁场方向间的夹角。

电流为i、长为l的直导线。

安培力的方向由左手定则判定。

对于任意形状的电流受非匀强磁场的作用力,可把电流分解为许多段电流元iδl,每段电流元处的磁场b可看成匀强磁场,受的安培力为δf=iδl·bsinα。

应该注意,当电流方向与磁场方向相同或相反时,即α=0或π时,电流不受磁场力作用。

当电流方向与磁场方向垂直时,电流受的安培力最大为f=bil。

b是磁感应强度,i 是电流强度,l是导线垂直于磁感线的长度。

安培力的实质,构成电流的定向移动的电荷所受到洛伦兹力的合力。

磁场对运动电荷有力的促进作用,这从实验中获得的结论。

同样,当电荷的运动方向与磁场平行时不受到洛伦兹力促进作用,也从实验观测中获知。

当电流方向与磁场平行时,电荷的定向移动方向也与磁场方向平行,所受洛伦兹力为零,其合力安培力也为零。

洛伦兹力不作功是因为力的方向与粒子的运动方向横向,根据功的公式w=fscosθ,θ=90°时,w=0。

而安培力就是与导线中的电流方向横向,与导线的运动方向并不一定横向,通常碰到的情况大多就是在同一直线上的,所以安培力作功不为零。

磁场对通电导线的作用安培力

磁场对通电导线的作用安培力

方固定一根长直导线,导线与磁铁垂直,给导线
转 通以垂直纸面对里旳电流,用N表达磁铁对桌面旳
换 研 究
压力,用f表达桌面对磁铁旳摩擦力,则导线通电
后与通电前相比( )C
F
A.N减小,f=0 B.N减小,f≠0

对 C.N增大,f=0
象 D.N增大, f≠0

F
SN
× B
SN
F
F
变形:假如把导线移至
S极上方,则又怎样?
F
B I
文档仅供参考,如有不当之处,请联系改正。
【经典例题】
例题1:画出图中通电导线所受安培力旳方向。
注意:使用哪只手来判断呢?
F
F
F
文档仅供参考,如有不当之处,请联系改正。
例题2:画出图中第三个物理量旳方向。
F
××××
I
×I× × ×
× ×
× ×
××F
× ×
把下列立体图演变成平面图 文档仅供参考,如有不当之处,请联系改正。
思索:请你应用左手定则分析两平行直导 文档仅供参考,如有不当之处,请联系改正。 线间旳作用力方向。
B ××
·×·×D
··
×· B ····D×·
×× ·×·× ··
×· ···· ×·
×× ·×·× ··
×· ···· ×·
×× ·×·× ··
×· ···· ×·
×× A
·×·×C
··
×· A ····C×·
文档仅供参考,如有不当之处,请联系改正。
只变化电流方向
受力方向
变化
只互换磁极位置
受力方向
变化
同步变化电流和磁场方向

磁场安培力

磁场安培力

磁场基本性质一、磁场1、磁场的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.二、磁感线为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.1.疏密表示磁场的强弱.2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。

4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·*熟记常用的几种磁场的磁感线:三、磁感应强度1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。

2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度.①表示磁场强弱的物理量.是矢量.②大小:B=F/Il(电流方向与磁感线垂直时的公式).③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.⑥匀强磁场的磁感应强度处处相等.⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.四、磁通量与磁通密度1.磁通量Φ:穿过某一面积磁力线条数,是标量.2.磁通密度B:垂直磁场方向穿过单位面积磁力线条数,即磁感应强度,是矢量.3.二者关系:B=Φ/S(当B与面垂直时),Φ=BScosθ,Scosθ为面积垂直于B方向上的投影,θ是B与S法线的夹角.磁场对电流的作用一、安培力1.安培力:通电导线在磁场中受到的作用力叫做安培力.说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力.2.安培力的计算公式:F =BILsin θ(θ是I 与B 的夹角);通电导线与磁场方向垂直时,即θ=900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F=0N;00<B <900时,安培力F 介于0和最大值之间.3.安培力公式的适用条件:①公式F =BIL 一般适用于匀强磁场中I ⊥B 的情况,对于非匀强磁场只是近似适用(如对电流元),但对某些特殊情况仍适用. 如图所示,电流I 1//I 2,如I 1在I 2处磁场的磁感应强度为B ,则I 1对I 2的安培力F =BI 2L ,方向向左,同理I 2对I 1,安培力向右,即同向电流相吸,异向电流相斥.②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.两根通电导线间的磁场力也遵循牛顿第三定律.二、左手定则1.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.2.安培力F 的方向既与磁场方向垂直,又与通电导线垂直,即F 跟BI 所在的面垂直.但B 与I 的方向不一定垂直.3.安培力F 、磁感应强度B 、电流1三者的关系①已知I,B 的方向,可惟一确定F 的方向;②已知F 、B 的方向,且导线的位置确定时,可惟一确定I 的方向;③已知F,1的方向时,磁感应强度B 的方向不能惟一确定.4.由于B,I,F 的方向关系常是在三维的立体空间,所以求解本部分问题时,应具有较好的空间想象力,要善于把立体图画变成易于分析的平面图,即画成俯视图,剖视图,侧视图等.。

磁场力和安培力

磁场力和安培力

磁场力和安培力
磁场力和安培力是物理学中的基本概念,它们在电磁学中扮演着非常重要的角色。

磁场力是指磁场对带电粒子所施加的力,也就是洛伦兹力。

当带电粒子在磁场中运动时,磁场的方向和带电粒子的速度方向垂直,这时就会发生磁场力。

磁场力的大小与带电粒子的电量、速度和磁场强度有关。

安培力是指电流在磁场中所受到的力,也就是洛伦兹力。

当电流通过导线时,会产生磁场,而磁场又会对电流所在的导线施加力,这就是安培力。

安培力的大小与电流的大小、磁场的强度和导线的长度等因素有关。

磁场力和安培力是电磁学中非常重要的概念,它们不仅在基础物理学中有广泛应用,而且在工业、医学等领域也有着重要的应用。

例如,MRI(核磁共振成像)技术就是利用了磁场力和安培力的原理,通过对人体组织中的水分子进行磁共振来获取影像信息,用于诊断疾病。

- 1 -。

磁场基本概念、安培力

磁场基本概念、安培力

磁场基本概念、安培力磁场基本概念安培力一、基本概念1.磁场的产生: ⑴磁极周围有磁场。

⑵电流周围有磁场(奥斯特)。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

(但这并不等于说所有磁场都是由运动电荷产生的,因为麦克斯韦发现变化的电场也能产生磁场。

)⑶变化的电场在周围空间产生磁场。

2.磁场的基本性质:磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

这一点应该跟电场的基本性质相比较。

3.磁场力的方向的判定:磁极和电流之间的相互作用力(包括磁极与磁极、电流与电流、磁极与电流),都是运动电荷之间通过磁场发生的相互作用。

因此在分析磁极和电流间的各种相互作用力的方向时,不要再沿用初中学过的“同名磁极互相排斥,异名磁极互相吸引”的结论(该结论只有在一个磁体在另一个磁体外部时才正确),而应该用更加普遍适用的:“同向电流互相吸引,反向电流互相排斥”,或用左手定则判定。

4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。

磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N 极的指向。

磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。

⑶要熟记常见的几种磁场的磁感线:⑷安培定则(右手螺旋定则):对直导线,通电直导线周围磁场 通电环行导线周围磁场四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。

5.磁感应强度IL FB (条件是匀强磁场中,或ΔL 很小,并且L ⊥B )。

磁感应强度是矢量。

单位是特斯拉,符号为T ,1T=1N/(A ∙m )=1kg/(A ∙s 2)6.磁通量:可以认为穿过某个面的磁感线条数就是磁通量。

二、安培力 (磁场对电流的作用力)1.安培力方向的判定:左手定则例 1.磁场对电流的作用力大小为F =BIL (注意:L 为有效长度,电流与磁场方向应 ).F 的方向可用 定则来判定.试判断下列通电导线的受力方向.× × × × . . . . × × × × . . . . × × × × . . . . × × × × . . . . × B试分别判断下列导线的电流方向或磁场方向或受力方向.例2.如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?例 3. 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会___(增大、减小还是不变?)。

通电导线在磁场中受到的力

通电导线在磁场中受到的力

通电导线在磁场中受到的力一、安培力的方向1.安培力:通电导线在磁场中受的力。

2.左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。

3.安培力方向与磁场方向、电流方向的关系:F ⊥B ,F ⊥I ,即F 垂直于B 和I 所决定的平面。

二、安培力的大小1.垂直于磁场B 放置、长为L 的通电导线,当通过的电流为I 时,所受安培力为F =ILB 。

2.当磁感应强度B 的方向与导线方向成θ角时,公式F =ILB sin_θ。

1.安培力方向的特点(1)当电流方向跟磁场方向垂直时,安培力的方向、磁场方向和电流方向两两相互垂直。

应用左手定则判断时,磁感线从掌心垂直进入,拇指、其余四指和磁感线三者两两垂直。

(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直于电流方向,也垂直于磁场方向。

应用左手定则判断时,拇指与四指、拇指与磁感线均垂直,但磁感线与四指不垂直。

1.(多选)如图所示,F 是磁场对通电直导线的作用力,其中正确的示意图是( )2、在赤道上空,水平放置一根通以由西向东的电流的直导线,则此导线( )A .受到竖直向上的安培力B .受到竖直向下的安培力C1.同一通电导线,按不同方式放在同一磁场中,受力情况不同,如图3-4-4所示。

图3-4-4(1)如图甲,通电导线与磁场方向垂直,此时安培力最大,F =ILB 。

(2)如图乙,通电导线与磁场方向平行,此时安培力最小,F =0。

(3)如图丙,通电导线与磁场方向成θ角,此时可以分解磁感应强度,如图丁所示,于是有安培力大小为F =ILB sin θ,这是一般情况下安培力的表达式。

2.对安培力的说明(1)F =ILB sin θ适用于匀强磁场中的通电直导线,求弯曲导线在匀强磁场中所受安培力时,L 为有效长度,即导线两端点所连直线的长度,相应的电流方向沿L 由始端流向末端,如图3-4-5所示。

安培力专题 复习

安培力专题 复习

(2)磁场和电流平行时:F= 0 2.安培力的方向 (1)左手定则判定:伸开左手,使拇指与其余四指垂直,并 且都与手掌在同一个平面内.让磁感线垂直穿掌心,并 使四指指向电流 的方向,拇指所指方向就是通电导线在磁 安培力 的方向. (确定了B、I、F三者的方向关系) 场中所受 (2)安培力的方向特点:F⊥B,F⊥I,即F垂直于 B和I 决 定的平面. 3. 安培力做功
一、安培力的大小和方向 1、安培力的大小 (1)磁场和电流垂直时:F=BIL 注意:(1)L为有效长度 (2)B并非一定为匀强磁场,是L所在处的磁感应强度. (2)磁场和电流平行时:F=0 2、安培力的方向 (1)方法:左手定则 (2)特点:F⊥B,F⊥I,即F垂直于B和 I 决定的平面. 二、求解通电导体在磁场中的力学问题的方法 (1)选定研究对象; (2)变立体图为平面图,画出平面受力分析图,其中安培力的方向要用 左手定则来判断,注意F安⊥B、F安⊥I; (3)根据力的平衡条件、牛顿第二定律、闭合电路欧姆定律列方程式进行求解
× × × × × × × × × × × × × ×
收缩趋势
拓展延伸:闭合通电线圈在匀强磁场中所受安培力为多少? 零
方法总结:安培力的大小:F=BIL(L指有效长度)
× ×
例2、两个相同的轻质铝环能在一个光滑的绝缘圆柱体上自 由移动,设大小不同的电流按如图所示的方向通入两铝环, 则两环的运动情况是 ( B )
A.都绕圆柱体转动 B.彼此相向运动,且具有大小相等的加速度 C.彼此相向运动,电流大的加速度大 D.彼此背向运动,电流大的加速度大 方法总结: 同向电流相吸,异向电流相斥
针对练习1、如图所示,两根平行放置的长直导线a和b载有大小 相同方向相反的电流,a受到的磁场力大小为F1,当加入一与导 线所在平面垂直的匀强磁场后,a受到的磁场力大小变为F2,则 此时b受到的磁场力大小变为 ( A ) A. F2 C. F1 F2 B. F1 F2 D. 2 F1 F2

安培力和磁场方向一定垂直吗

安培力和磁场方向一定垂直吗

安培力和磁场方向一定垂直吗
在物理学中,安培力和磁场之间的关系一直是研究的重要课题。

安培力是指当导体中的电流受到磁场影响时所表现出来的力。

根据安培力的定义,它的方向与磁场的方向和电流方向有着密切的关系。

但是,安培力和磁场方向一定垂直吗?
安培力的基本原理
安培力的方向由安培右手定则来确定。

根据安培右手定则,将大拇指指向电流的方向,四指指向磁场的方向,那么手心方向就是安培力的方向。

这个定则确保了安培力与磁场和电流方向之间的关系。

在一个导体中通过电流时,电子会受到磁场的作用而受到力的影响,这也是安培力产生的原因。

这个力的大小与电流强度、导体长度和磁场强度都有关系。

磁场与安培力的方向是否垂直
根据安培右手定则,我们得知安培力的方向与磁场和电流方向有关。

如果电流方向与磁场方向垂直,那么安培力和磁场方向也将会垂直。

然而,如果电流和磁场的方向不垂直,那么安培力和磁场方向不一定垂直。

在这种情况下,安培力和磁场方向将会根据安培右手定则来确定,可能会呈现一定的角度关系。

总结
安培力和磁场方向并不一定垂直,它们之间的关系取决于电流方向和磁场方向的关系。

在特定的情况下,安培力和磁场的方向可能会垂直,但并不是一定如此。

通过安培右手定则来确定安培力和磁场的关系是物理学中的基本方法之一。

物理学家通过对安培力和磁场关系的研究,不断拓展我们对物质世界的认识,帮助我们更好地理解自然界中的现象和规律。

安培力和磁场之间的关系值得我们进一步深入研究和探索。

专题57 磁场的叠加、安培力大小和安培力作用下的平衡动力学问题(解析版)

专题57 磁场的叠加、安培力大小和安培力作用下的平衡动力学问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题57 磁场的叠加、安培力大小和安培力作用下的平衡动力学问题特训目标 特训内容目标1 安培定则和磁场的叠加(1T —4T )目标2 安培力的大小(5T —8T ) 目标3 安培力作用下的平衡问题(9T —12T ) 目标4安培力作用下的动力学问题(13T —16T )一、安培定则和磁场的叠加1.如图所示,在空间三维直角坐标系中过x 轴上12x a x a ==-、两点,沿平行于y 轴方向放置两根长直导线,导线中均通有相等的沿y 轴负方向的恒定电流I 。

已知通电长直导线周围某点磁场的磁感应强度B 与电流I 成正比,与该点到导线的距离r 成反比,即IB k r=⋅。

则下列描述坐标轴上各点磁场磁感应强度的图像中一定错误的是( )A .B .C .D .【答案】C【详解】根据安培定则以及磁场的叠加可知,O 点的磁感应强度一定为零,图像C 一定错误; 在x 方向,在x <-a 范围内磁场方向沿-z 方向,在-a <x<0范围磁场方向沿+z 方向,在0<x <a 范围磁场方向沿-z 方向,在x >a 范围磁场方向沿+z 方向,若选择+z 方向为正方向,则图像可能为A ;若选择-z 方向为正方向,则图像可能为B ;沿z 轴方向,由叠加原理可知,O 点的磁场为零,无穷远处磁场也为零,则从O 点沿z 轴正向和负向,磁场应该先增强后减弱,则图D 正确。

此题选择错误的选项,故选C 。

2.两完全相同的通电圆线圈1、2平行放置,两圆线圈的圆心O 1、O 2的连线与圆面垂直,O 为O 1、O 2的连线的中点,如图所示。

当两圆线圈中通以方向、大小均相同的恒定电流时,O 1点的磁感应强度的大小为B 1;若保持线圈1中的电流以及线圈2中的电流大小不变,仅将线圈2中电流方向反向,O 1点的磁感应强度的大小为B 2。

则线圈1中的电流在O 2点和O 点产生的磁场的磁感应强度大小B 3、B 4一定有( )A .B 3=122B B +,B 4=122B B - B .B 3=122B B +,B 4<122B B - C .B 3=122B B -,B 4<122B B - D .B 3=122B B -,B 4<122B B + 【答案】D【详解】当两圆环中电流方向相同时(设俯视逆时针方向的电流),则设两圆环在O 1点产生的磁场方向相同均向上,设大小分别为B 11和B 21,则O 1点的磁感应强度的大小为11121B B B =+①仅将线圈2中电流方向反向,O 1点的磁感应强度的大小为21121B B B =-②,①②两式相减解得12212B B B -=而线圈1中的电流在O 2点产生的磁场的磁感应强度大小123212B B B B -==由①②两式相加可得12112B B B +=因线圈1中的电流在O 1点的磁感应强度B 11一定大于在O 点的磁感应强度B 4,则111242B B B B +=>故选D 。

磁场与安培力

磁场与安培力

安培力作用下运动趋势的判断
1、微元法:
将通电导线分成无数小段,分析每段的受力特征, 合成得到合力的特征从而确定运动趋势。
2、特殊位置法: 根据导体的运动趋势,将其运动至特殊位置进而 分析其受力特征
3、等效法: 可将环形电流与小磁针;通电螺线管与条形磁铁 进行相互等效。
4、结论法: 利用磁体与磁体相互作用的规律;电流与电流相互 作用的规律直接判断运动趋势。与等效法结合使用。
2、特殊位置法: 根据导体的运动趋势,将其运动至特殊位置进而 分析其受力特征
安培力作用下运动趋势的判断
一个具有弹性的通电线圈通以恒定的电流,电流方向如图所 示(从右看逆时针)。并用绝缘细线悬挂在天花板上可自由 摆动。在通电线圈的轴线上左侧放置一个条形磁铁,N极正 对着线圈,分析线圈的运动趋势:
1、会靠近磁铁还是远离磁铁? 2、线圈自身会扩张还是收缩?
5、转换研究对象法: 利用作用力与反作用力的关系,先分析导线受力进 而分析磁体受力
三个相同的通电直导线abc,通以相同的电流并平行放置,且 间距相等,分别分析其各自连线的中点ABC,及其中心O点的 磁感应强度的方向。
a
×
Ba A
×
b
Bc
BaBb O
Bc Ba
B Bc Bb
Ba
BcBb
C Bb
×c
磁场的叠加
四个相同的通电直导线ABCD,通以相同的电流I并相互垂直
放置,两两间距为d,abc三点距相近各导线的距离都相等,
1、磁感应强度的方向:
可自由转动的小磁针在磁场中静止时N极的指向 就是磁场的方向。
2、磁感应强度的大小:
探究通电导线在磁场中的受力
FI FL
F kIL

高三物理磁场的描述及安培定则、安培力 知识精讲 通用版

高三物理磁场的描述及安培定则、安培力 知识精讲 通用版

高三物理磁场的描述及安培定则、安培力知识精讲通用版【本讲主要内容】磁场的描述及安培定则、安培力磁场、磁感线、安培定则、磁感应强度、磁场对电流的作用——安培力【知识掌握】【知识点精析】1. 磁场:是存在于磁体、电流(运动电荷)周围的特殊物质,其基本性质是对放入其中的磁极和运动电荷(电流)有力的作用。

磁场的方向规定为:在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点的磁场方向。

例1. 磁场中任意一点的磁场方向为小磁针在该点()A. 北极受磁场力的方向B. 南极受磁场力的方向C. 静止时小磁针北极的指向D. 受磁场力的方向解析:磁场的方向是人为规定的,我们必须尊重这一规定;还要注意,受磁场力的方向和小磁针北极指向的不同,静止以后的指向才和受力方向一致。

故AC选项正确。

2. 磁感线:磁感线是为了直观形象的描述磁场而人为地画出的一族有方向的曲线(在磁场中并不真的存在)。

磁感线上任一点的切线方向都跟该点的磁场方向相同;磁感线的疏密表示磁场的强弱,磁感线越密的地方磁场越强,反之越弱。

此外,磁感线还有以下两个性质:(1)磁感线是闭合曲线,不中断。

(2)任何两条磁感线都不相交,不相切。

例2. 关于磁感线的叙述正确的是()A. 磁感线始于磁铁N极,终止于S极B. 磁感线是由铁屑规则地排列而成的曲线C. 磁感线上某点切线方向即该点磁场方向D. 磁感线是为描述磁场引入的假想的线,实际上并不存在于磁场中答案:CD3. 电流的磁场、安培定则(1)磁现象的电本质:磁铁和电流的磁场一样,都是由电荷的运动产生的。

(2)安培定则:电流的方向跟它的磁感线方向之间的关系可以用安培定则(也叫右手螺旋定则)来判定:①直线电流:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

②环形电流:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向是环形导线中心轴线上磁感线的方向。

3安培力磁介质中的磁场解读

3安培力磁介质中的磁场解读

所以电子在做轨道运动的同时又绕外磁场做
进动,这称 作拉摩进动。拉摩进动产生一附 加磁矩 Pm ,与外磁场 B0 方向相反。
3、顺、抗磁质的磁化
•顺磁质分子是有矩分子,其具有固有磁矩
Pm
外加磁场时:
Pm Pm
分子的固有磁矩是产生顺磁效应的主要因素。
r1
•抗磁质分子是无矩分子 Pm 0
外加磁场时: 由于分子中各电子的拉摩进动,使每
1. 分子电流 分子磁矩 磁偶极子
分的子矢 中量所 和有 称电 为子分的子轨的道磁磁矩矩,和用自Pm旋表磁示矩。
pm
与 Pm 对应的等效圆电流称为分子电流。
2、电子的拉摩进动
以电子的轨道运动为例
n n
轨道运动磁矩:
Pm
ISn
e 2
r
2
n
1 Pm 2 evrn
轨道运动角动量:
L rmvn rmvn
L
L
例1 在均匀磁场中放置一半径为R的半圆形导线,电流强 度为I,导线两端连线与磁感强度方向夹角=30°,求此 段圆弧电流受的磁力。
解:在电流上任取 电流元 Idl
(b)
F Idl B
场均匀
(a)
(b)
Idl
I
a
ab 2R
b
B
=30°
I dl B Iab B
(a)
F I ab B sin IBR 方向 F
v0 V
2.磁化强度与磁化电流的关系
以长直螺线管内的各向同性磁介质磁化为例
可以证明
j M n^ I M dl
L
I j
类比电介质
p
n^
q P ds
n
S

磁场对通电导线的作用—安培力

磁场对通电导线的作用—安培力
图3-2-6给出一个直流电动机的工作模型,它由磁场(磁体)、转 动线圈、滑环、电刷及电源组成。其中,滑环分成两个半圆环A与B, 当电流由A流入B时,则从B流出;当电流由B流入时,则从A流出。因 此,滑环在其中起到了一个换向器的作用。当线圈通电后,由于受到 安培力的作用,线圈在磁场中旋转起来。这就是电动机的工作原理。
B B
B
I F
I
I
B
B
F
I
α
α
B F
I
BI
30 F °
B
F
I α
7.当电流与磁场方向夹角为θ时, F = ILBsinθ
B1
B2
8、安培力的大小
(1)在匀强磁场中,在通电直导线与磁场方向垂直的情况 下,导线所受安培力F等于磁感应强度B、电流I和导线的长 度L三者的乘积。
即: F=ILB
(2)平行时: F=0
4.磁电式电流表的特点
(1)表盘的刻度均匀,θ∝I。 (2)灵敏度高,但过载能力差。 (3)满偏电流Ig,内阻Rg反映了电流表的最主要特性。
例3.长度为20cm的通电直导线放在匀强磁场中,电 流的强度为1A,受到磁场作用力的大小为2N,则
磁感应强度B:( B )
A、B=10T C、B≤10T
B、B≥10T D、不能确定
N f
θ
X
F
θ
θ
G
精确实验表明:通电导线与磁场方向垂直时,磁场对通 电导线作用力的大小与导线长度和电流大小都成正比,即
F IL 比例系数与导线所在位置的磁场强弱有关,用符
号B表示(关于它的意义,下节将进一步介绍)则磁场对通
电导线作用力的公式为:
F ILB
4.公式:

高中物理知识点安培力

高中物理知识点安培力

高中物理知识点——安培力在学习物理的过程中,我们会接触到许多重要的概念和定律。

其中,安培力是一个非常重要的概念,它被广泛应用于电磁学和电路中。

本文将带您深入了解高中物理中的安培力,包括定义、公式及其应用。

一、安培力的定义:安培力是由电荷在磁场中受到的力,它是由法国科学家安培发现的,被命名为安培力。

安培力的方向垂直于电荷的速度和磁场的方向。

二、安培力的公式:安培力的表达式由以下公式给出:F = q * v * B * sinθ其中,F表示安培力,q是电荷的大小,v是电荷的速度,B是磁场的大小,θ是电荷速度与磁场之间的夹角。

三、安培力的应用:1. 电磁感应:根据法拉第电磁感应定律,当一个导体在磁场中运动时,会感受到安培力的作用。

这个现象在发电机和电动机中得到广泛应用。

2. 电子运动:在电子运动过程中,如果电子在磁场中运动,会受到安培力的作用,这被称为霍尔效应。

霍尔效应可以用于测量磁场的强度和方向。

3. 轨道运动:当一个带电粒子在磁场中做轨道运动时,安培力可以改变粒子的轨道半径,这就是电子在磁场中的轨道运动。

它被应用于电子加速器和质谱仪等领域。

4. 电子束偏转:在电视和显示器中,电子通过被聚焦和偏转来形成图像。

安培力被用来控制电子束的偏转,以实现图像的显示。

5. 磁浮列车:磁浮列车是一种利用磁悬浮技术运行的交通工具。

在磁浮列车中,由于磁场的作用力,车厢将悬浮在轨道上,减小了与轨道的摩擦力,使得列车能够以较高的速度运行。

总结:安培力是在电荷运动中受到的力,它在物理学的许多领域中得到了广泛应用。

了解安培力的定义、公式和应用可以帮助我们更好地理解电磁学和电路的原理,并能够应用于实际问题的计算和解决。

它为我们探索电子运动、电磁感应等现象提供了基础。

更深入地研究和理解安培力的原理将使我们在物理学和电子学的学习和实践中更加熟练和灵活。

电磁场中安培力方向

电磁场中安培力方向

电磁场中安培力方向1.引言1.1 概述电磁场是物理学中一个重要的概念,它描述了电荷和电流所产生的影响和相互作用。

在电磁场中,电荷和电流会产生电场和磁场,而安培力则是指电流在磁场中所受到的力的方向。

概括来说,安培力是一种与电流和磁场相互作用而产生的力,它可以影响电流的运动方向和速度。

安培力的方向由电流的方向和磁场的方向共同决定,根据安培定律可以得知,安培力的方向垂直于电流方向和磁场方向的平面,符合右手定则。

了解安培力的方向对于理解电磁场的相互作用和实际应用具有重要意义。

在理论研究和实验实践中,我们需要确定安培力的方向,以便正确地设计和操作电路或电磁设备。

电磁铁、电动机和发电机等设备的正常运行都依赖于安培力的方向和大小。

在本文中,我们将通过介绍电磁场的基本概念和安培力的定义和作用,详细探讨安培力的方向与电流方向的关系。

同时,我们还将以实际应用为例,分析安培力在电路和电磁设备中的具体方向,探讨其在工程实践中的重要性。

通过对安培力方向的深入研究,我们可以更好地理解电磁场的本质和电流与磁场的相互作用。

这将有助于电磁学领域的研究和电磁设备的设计与应用,为我们更好地利用和控制电磁力量提供重要的理论和实践指导。

文章结构部分内容:文章的结构是为了更好地组织和呈现文章内容,使读者能够清晰地理解和掌握文章的主要观点和信息。

本文将按照以下结构展开:1. 引言1.1 概述在这一部分,我们将对电磁场中的安培力方向进行探究。

安培力是描述电流在电磁场中所受力的力学概念,对于理解电流在电磁场中的行为具有重要意义。

1.2 文章结构在本文中,我们将首先介绍电磁场的基本概念,包括电荷、磁场和电流的相关知识。

接着,我们将详细阐述安培力的定义和作用,以及它在电磁场中的重要性。

最后,我们将讨论安培力的方向与电流方向的关系,并探讨实际应用中的安培力方向问题。

1.3 目的本文的目的是通过对电磁场中安培力方向的研究,增进读者对电磁场及安培力的理解,并为读者提供在实际应用中如何确定安培力方向的指导。

第八章 稳恒磁场03-安培力、磁力矩

第八章 稳恒磁场03-安培力、磁力矩

o
P
L
x
Fy = ∫ dFy = BI ∫ dx = BIL
0
L
r r r F = Fy j = BIL j
例3 长为 L 载有电流 I 2 的导线与电流为 I 1 的长直导线 放在同 一平面内(如图), ),求 的载流导线上的磁场力。 一平面内(如图),求作用在长为 L 的载流导线上的磁场力。 解:
F = ∫ dFy = ∫ dF sin θ
= ∫ BIdl sin θ
因 dl = rdθ
r dF
r Idl
y
C
r B
Irθdθ源自F = BIr ∫ sin θ d θ
0
π
B
o
A
x
= BI 2 r
r r r F = BI 2 r j = BI AB j
例2 求如图不规则的平面载流导线 在均匀磁场中所受的力。 在均匀磁场中所受的力。
2

P
z
r r r r r 2 2 M = m × B = I π R Bk × i = I π R Bj
选讲
三、磁电式电流计原理
实验测定: 成正比。 实验测定:游丝的反抗力矩与线圈转过的角度 θ 成正比。 测定
N
S 磁铁
M ′ = aθ
BNIS = a θ
a I= θ = Kθ NBS
选讲
四、霍耳效应
r 已知 B 和 I 。
y
v dF θ
I
r B
r Idl
r 解: 取一段电流元 Idl
r r r dF = Idl × B
dF = IBdl
dFx = dF sin θ = BIdl sin θ = BIdy
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场和安培力一、课程说明1、年级科目:高二物理2、授课课期:2020年秋季班3、授课教师:____老师4、教学时间:2小时5、授课班型:一对一6、授课课型:复习课二、本堂课教学目标及重难点1.知道安培力的定义,会用F=ILB计算B与I垂直情况下的安培力.(重点)2.会用左手定则判断安培力的方向.(重点)3.知道电动机的工作原理.4.体会控制变量法在科学研究中的作用.5.了解人类对磁现象的认识与应用.6.了解磁场是客观存在的物质,知道磁感线及其物理意义.7.会用安培定则判断直线电流、环形电流和通电螺线管周围的磁场方向.三、考点分布(考点一):安培力对应【例题123】一,对安培力的理解1.安培力是磁场对电流的作用力,是一种性质力,其作用点可等效在导体的几何中心.2.安培力的方向在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的关键,在判定安培力的方向时要注意以下三点:(1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场和电流所决定的平面.因此,在判断时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向.(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心.(3)注意区别安培力的方向和电场力的方向与场的方向的关系.安培力的方向与磁场的方向垂直,而注意:若已知B 、I 方向,则由左手定则得F 安的方向被唯一确定;但若已知B (或I )、F 安的方向,由于B 只要穿过手心即可,则I (或B )的方向不唯一. 3.安培力的大小(1)计算公式:F BILsin =θ(2)对公式的理解:公式F BILsin =θ可理解为F (Bsin )IL =θ,此时Bsin θ为B 沿垂直I 方向上的分量,也可理解为F BI(Lsin )=θ,此时Lsin θ为L 沿垂直B 的方向上的投影长度,也叫“有效长度”,公式中的θ是B 和I 方向间的夹角.注意:①若导线是弯曲的,此时公式F BILsin =θ中的L 并不是导线的总长度,而应是弯曲导线的“有效长度”.它等于连接导线两端点直线的长度(如图所示),相应的电流方向沿两端点连线由始端流向末端.②安培力公式一般用于匀强磁场.在非匀强磁场中很短的导体也可使用,此时B 的大小和方向与导体所在处的B 的大小和方向相同.若在非匀强磁场中,导体较长,可将导体分成若干小段,求出各段受到的磁场力,然后求合力.二,安培力作用下导体的运动 电流元法 把整段导线分为多段直电流元,先用左手定则判断每段电流元受力的方向,然后判断整段导线所受合力的方向,从而确定导线运动方向等效法 环形电流可等效成小磁铁,通电螺线管可以等效成条形磁铁或多个环形电流,反过来等效也成立特殊位置法 通过转动通电导线到某个便于分析的特殊位置,然后判断其所受安培力的方向,从而确定其运动方向结论法 两平行直线电流在相互作用过程中,无转动趋势,同向电流互相吸引,反向电流互相排斥;两不平行的直线电流相互作用时,有转到平行且电流方向相同的趋势 转换研究对象法定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的反作用力,从而确定磁体所受合力及运动方向三,安培力作用下导体的平衡 1.解题步骤 (1)明确研究对象;(2)先把立体图改画成平面图,并将题中的角度、电流的方向、磁场的方向标注在图上; (3)正确受力分析(包括安培力),然后根据平衡条件:F 合=0列方程求解. 2.分析求解安培力时需要注意的问题(1)首先画出通电导体所在处的磁感线的方向,再根据左手定则判断安培力方向; (2)安培力大小与导体放置的角度有关,但一般情况下只要求导体与磁场垂直的情况.(考点二):磁现象。

对应【例题456】一、磁现象1.我国古代对磁现象的认识及应用(1)春秋战国时期最早发现并记载了天然磁石具有吸引铁的现象和指示南北方向的特征.(2)北宋时期发明了指南针,并很快用于航海.(3)磁石治疗疾病,《史记》、《本草纲目》中均有记载.2.电与磁相互联系现象的发现及第二次产业革命(1)奥斯特发现了电流磁效应.(2)法拉第发现了电磁感应现象,打开了电气化技术时代的大门,导致了人类历史上的第二次产业革命.3.信息技术中的磁现象(1)原理:某些磁性物质能够把磁场对它的作用记录下来,长久保存且能在一定条件下复现.(2)应用:制成磁存储部件或设备,如磁带、磁盘、磁鼓、磁卡等.4.生物体中的磁现象(1)鸽子识归巢、候鸟辨迁途、海龟找“故乡”均可能与这些动物对地球磁场的敏感有关.(2)人体器官也存在磁性.(3)医院里使用的核磁共振断层成像装置等.二、磁场1.磁体和电流周围都存在着磁场,一切磁相互作用都是通过磁场来实现的.2.磁感线(1)定义:磁感线是一些假想的有方向的曲线,曲线上每一点的切线方向为该点的磁场方向,曲线的疏密表示磁场的强弱,曲线疏的地方磁场弱,曲线密的地方磁场强.(2)物理意义:形象地描述磁场的强弱和方向.(3)磁场的方向:在磁场中某一点小磁针N极所受磁力的方向,就是该点磁场的方向.3.几种常见的磁场(1)磁体周围的磁场(如图1)图1(2)电流周围的磁场磁感线的方向由安培定则判定①通电直导线(或直线电流)周围的磁场用右手握住导线,让伸直的拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向,如图2所示.图2②环形电流或通电螺线管周围的磁场让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁感线的方向或通电螺线管的N极,如图3所示.图3三、磁场和磁感线1.磁场是存在于磁体周围或电流周围的一种客观存在的特殊物质.磁体与磁体之间、磁体与通电导体之间、通电导体与通电导体之间的相互作用都是通过磁场发生的.2.磁场的基本性质是对放入其中的磁体或电流有力的作用.3.磁感线的特点(1)为形象描述磁场而引入的假想曲线,实际并不存在.(2)磁感线的疏密表示磁场的强弱,密集的地方磁场强,稀疏的地方磁场弱.(3)磁感线的方向:磁体外部从N极指向S极,磁体内部从S极指向N极.(4)磁感线闭合而不相交,不相切,也不中断.四、电流的磁场安培定则常见电流的磁场安培定则立体图横截面图纵截面图直线电流以导线上任意点为圆心垂直于导线的多组同心圆,越向外越稀疏,磁场越弱环形电流内部磁场比环外强,磁感线越向外越稀疏通电螺线管内部为匀强磁场且比外部强,方向由S极指向N极,外部类似条形磁铁,由N极指向S极四、典型例题及过手训练(考点一)安培力【例1】如图所示,把一重力不计的通电直导线AB水平放在蹄形磁铁磁极的正上方(虚线过AB的中点),导线可以在空间自由运动,当导线通以图示方向电流I时,导线的运动情况是(从上往下看)()A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升【过手训练1】如图所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直纸面向外运动,可以()A.将a、c端接在电源正极,b、d端接在电源负极B.将b、d端接在电源正极,a、c端接在电源负极C.将a、d端接在电源正极,b、c端接在电源负极D.将a、c端接在同一交流电源的一端,b、d端接在交流电源的另一端【过手训练2】如图所示,两根绝缘细线吊着一根铜棒,空间存在垂直纸面向里的磁场,棒中通有向右的电流时两线上拉力大小均为F1,若棒中电流大小不变方向相反,两线上的拉力大小均为F2,且F2>F1,则铜棒所受安培力大小为()A.F1+F2B.F2-F1C.2F1+2F2D.2F1-F2【过手训练3】直导线AB与圆线圈的平面垂直且隔有一小段距离,直导线固定,线圈可以自由运动.当通过如图所示的电流时(同时通电),从左向右看,线圈将()A.顺时针转动,同时靠近直导线ABB.顺时针转动,同时离开直导线ABC.逆时针转动,同时靠近直导线ABD.不动【例3】如图所示,一重为G1的通电圆环置于水平桌面上,圆环中电流方向为顺时针方向(从上往下看),在圆环的正上方用轻绳悬挂一条形磁铁,磁铁的中心轴线通过圆环中心,磁铁的上端为N极,下端为S极,磁铁自身的重力为G2.则关于圆环对桌面的压力F和磁铁对轻绳的拉力F′的大小,下列关系中正确的是()A.F>G1,F′>G2B.F<G1,F′>G2C.F<G1,F′<G2D.F>G1,F′<G2【过手训练4】(多选)质量为m的金属细杆置于倾角为θ的导轨上,导轨的宽度为d,杆与导轨间的动摩擦因数为μ,有电流通过杆,杆恰好静止于导轨上,在如图所示的A、B、C、D四个选项中,杆与导轨的摩擦力一定不为零的是()【过手训练5】(多选)如图所示,一根通电的直导体棒放在倾斜的粗糙斜面上,置于图示方向的磁场中,处于静止状态.现增大电流,导体棒仍静止,则在增大电流过程中,导体棒受到的摩擦力的大小变化情况可能是()A.一直增大B.先减小后增大C.先增大后减小D.始终为零【例4】如图7是条形磁铁的部分磁感线分布示意图,关于图中a、b两点磁场的描述,正确的是()图7A.a点的磁场方向为图中B a指向B.b点的磁场方向为图中B b指向C.a点的磁场比b点的磁场强D.a点的磁场比b点的磁场弱【过手训练6】如图所示为电流产生磁场的分布图,其中正确的是()【例5】磁铁的磁性变弱,需要充磁.充磁的方式有两种,图2甲是将条形磁铁穿在通电螺线管中,图乙是将条形磁铁夹在电磁铁之间,a、b和c、d接直流电源,下列接线正确的是(充磁时应使外力磁场与磁铁的磁场方向相同)()图2A.a接电源正极,b接电源负极,c接电源正极,d接电源负极B.a接电源正极,b接电源负极,c接电源负极,d接电源正极C.a接电源负极,b接电源正极,c接电源正极,d接电源负极D.a接电源负极,b接电源正极,c接电源负极,d接电源正极【过手训练7】如图4所示为磁场、磁场作用力演示仪中的赫姆霍兹线圈,在线圈中心处挂上一个小磁针,且与线圈在同一平面内,则当赫姆霍兹线圈中通以如图所示方向的电流时()图4A.小磁针N极向里转B.小磁针N极向外转C.小磁针在纸面内向左摆动D.小磁针在纸面内向右摆动【例6】通电螺线管内有一在磁场力作用下静止的小磁针,磁针指向如图8所示,则()图8A.螺线管的P端为N极,a接电源的正极B.螺线管的P端为N极,a接电源的负极C.螺线管的P端为S极,a接电源的正极D.螺线管的P端为S极,a接电源的负极【过手训练8】当导线中分别通以图示方向的电流,小磁针静止时北极指向读者的是()五、课堂及课后练习(考点一)安培力1.把一小段通电直导线放入磁场中,导线受到安培力的作用,关于安培力的方向,下列说法中正确的是() A.安培力的方向一定跟磁场的方向相同B.安培力的方向一定跟磁场的方向垂直,但不一定跟电流方向垂直C.安培力的方向一定跟电流方向垂直,但不一定跟磁场方向垂直D.安培力的方向既跟磁场方向垂直,又跟电流方向垂直2.如图,在xOy平面中有一通电直导线与Ox、Oy轴相交,导线中电流方向如图所示.该区域有磁场,通电直导线所受磁场力的方向与Oz轴的正方向相同.该磁场的方向可能是()A.沿z轴正方向B.沿z轴负方向C.沿x轴正方向D.沿y轴负方向3.如图所示,把一根通电的硬直导线ab用轻绳悬挂在通电螺线管正上方,直导线中的电流方向由a向b.闭合开关S瞬间,导线a端所受安培力的方向是()A.向上B.向下C.垂直纸面向外D.垂直纸面向里4.在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示.则过c点的导线所受安培力的方向为()A.与ab边平行,竖直向上B.与ab边垂直,指向左边C.与ab边平行,竖直向下D.与ab边垂直,指向右边5.如图所示,通电导线MN中的电流保持不变,当它在纸面内从a位置绕其一端M转至b位置时,通电导线所受安培力的大小变化情况是()A.变小B.不变C.变大D.不能确定6.在如图所示的电路中,电池均相同,当开关S分别置于a、b两处时,导线MM′与NN′之间的安培力的大小为F a、F b,判断这两段导线()A.相互吸引,F a>F b B.相互排斥,F a>F bC.相互吸引,F a<F b D.相互排斥,F a<F b7.如图所示,把轻质导线圈用绝缘细线悬挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心且垂直线圈平面.当线圈内通以图示方向的电流(从右向左看沿逆时针方向)后,线圈的运动情况是()A.线圈向左运动B.线圈向右运动C.从上往下看顺时针转动D.从上往下看逆时针转动8.如图所示,两条导线相互垂直,但相隔一段距离.其中AB固定,CD能自由活动,当电流按图示方向通入两条导线时,导线CD将(从纸外向纸里看)()A.顺时针方向转动同时靠近导线ABB.逆时针方向转动同时离开导线ABC.顺时针方向转动同时离开导线ABD.逆时针方向转动同时靠近导线AB9.如图所示,两平行导轨与水平面成θ角倾斜放置,电源、电阻、金属细杆及导轨组成闭合回路.细杆与导轨间的摩擦不计,整个装置分别处在如图所示的磁场中,其中可能使金属细杆处于静止状态的是()10.(多选)如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,现在磁铁上方中心偏左位置固定一导体棒,当导体棒中通以如图所示的电流后,以下说法正确的是()A.弹簧长度将变长B.弹簧长度将变短C.台秤读数变小D.台秤读数变大(考点二)磁场1.(多选)关于磁场和磁感线的描述,正确的说法有()A.磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种物质B.磁感线可以形象地表示磁场的强弱与方向C.磁感线总是从磁铁的北极出发,到南极终止D.磁感线就是细铁屑在磁铁周围排列出的曲线,没有细铁屑的地方就没有磁感线2.关于磁感线与静电场中电场线的描述,下列说法正确的是()A.电场线起止于电荷,磁感线起止于磁极B.电场线一定是不闭合的,磁感线一定是闭合的C.磁感线是自由小磁针在磁场力作用下的运动轨迹D.电场线和磁感线实际上均存在,只是肉眼看不到3.如图所示,小磁针正上方的直导线与小磁针平行,当导线中有电流时,小磁针会发生偏转.首先观察到这个实验现象的物理学家和观察到的现象是()A.物理学家伽利略,小磁针的N极垂直转向纸内B.天文学家开普勒,小磁针的S极垂直转向纸内C.物理学家牛顿,但小磁针静止不动D.物理学家奥斯特,小磁针的N极垂直转向纸内4.做奥斯特实验时,要观察到小磁针明显的偏转现象,下列方法可行的是()A.将导线沿东西方向放置,磁针放在导线的延长线上B.将导线沿东西方向放置,磁针放在导线的下方C.将导线沿南北方向放置,磁针放在导线的延长线上D.将导线沿南北方向放置,磁针放在导线的下方5.如图3所示,O处有一通电直导线,其中的电流方向垂直于纸面向里,图形abcd为以O点为同心圆的两段圆弧a和c与两个半径b和d构成的扇形,则以下说法中正确的是()图3A.该通电直导线所产生的磁场方向如图中的b或d所示,且离O点越远,磁场越强B.该通电直导线所产生的磁场方向如图中的b或d所示,且离O点越远,磁场越弱C.该通电直导线所产生的磁场方向如图中的a或c所示,且离O点越远,磁场越强D.该通电直导线所产生的磁场方向如图中的a或c所示,且离O点越远,磁场越弱6.如图5所示,直导线AB、螺线管C、电磁铁D三者相距较远,认为它们的磁场互不影响,当开关S闭合后,小磁针N极(黑色一端)的指向正确的是()图5A.a B.b C.c D.d7.如图6所示,若一束电子沿y轴正方向移动,则在z轴上某点A的磁场方向应该()图6 A.沿x轴的正方向B.沿x轴的负方向C.沿z轴的正方向D.沿z轴的负方向。

相关文档
最新文档