电磁场与电磁波习题答案8

合集下载

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套

电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套

2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。

解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。

利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。

那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。

2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。

3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。

试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。

解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。

解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。

那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。

由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E 试求球内外各点的电位。

电磁场与电磁波 答案

电磁场与电磁波  答案

23 谐振腔和波导管内的电磁场只能存在或者传播一定的频率的电磁波是由谐振腔和波
导管的边界决定的。
24 写出采用洛伦兹规范和在此规范下的电磁场方程: v v v 1 ∂2Α v 1 ∂ϕ 1 ∂ 2ϕ ρ 2 2 J , = − µ ∇⋅Α+ 2 = 0,∇ Α − 2 ∇ ϕ − =− 。 0 2 2 2 ε0 c ∂t c ∂t c ∂t 25 推迟势的本质是电磁作用具有一定的传播速度。
i 1 1 1v v 41 电磁场张量 Fµν按下列方式构成不变量。 Fµν Fµν = B 2 − 2 E 2 , ε µνλτ Fµν Fλτ = B ⋅ E c 2 8 c 42 静止µ子的寿命只有 2.197×10-6 秒,以接近光速运动时只能穿过 660 米。但实际上很
大部分µ子都能穿过大气层到达底部。在地面上的参考系把这种现象描述为运动µ子 寿命延长的效应。 但在固定于µ子上的参考系把这种现象描述为运动大气层厚度缩小 的效应。
二、填空题
1 电动力学的研究对象是电磁场的基本属性和运动规律,研究电磁场与带电粒子之间
的相互作用。
2 位移电流是由麦克斯韦首先引入的,其实质是电场的变化率。 3 麦克斯韦首先预言了电磁波的存在,并指出光波就是一种电磁波。 4 麦克斯韦方程和洛伦兹力公式正确描述了电磁场的运动规律以及它和带电物质的相
互作用规律。 v v v v 5 各向同性线性介质的极化强度 P 和外加电场 E 之间的关系是 P = χ e ε 0 E ,其中 χ e 是 介质的极化率, ε 0 是真空电容率。 v v ∂B 。 6 变化的磁场产生电场的微分方程为 ∇ × E = − ∂t
时空坐标相互变换。相应地,电磁场的三维矢势和一维标势构成一个统一体,不可 分割,当参考系改变时,矢势和标势相互变换。 (√) (×) 28 时间和空间是两个独立的物理量,不能统一为一个物理量。

电磁场与电磁波课后答案

电磁场与电磁波课后答案

第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。

解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。

电磁场和电磁波练习(有答案)

电磁场和电磁波练习(有答案)

电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。

电磁场与电磁波试题含答案

电磁场与电磁波试题含答案


作用下,完全脱离分子的内部束缚力时,我们把这种
二、简述题
(每小题 5 分,共 20 分)
11.简述恒定磁场的性质,并写出其两个基本方程。 12.试写出在理想导体表面电位所满足的边界条件。 13.试简述静电平衡状态下带电导体的性质。 14.什么是色散?色散将对信号产生什么影响?
三、计算题
(每小题 10 分,共 30 分)
2 3 z 15.标量场 x, y, z x y e ,在点 P1,1,0 处
7
(1)求出其梯度的大小 (2)求梯度的方向 16.矢量
ˆ x 2e ˆy Ae

ˆ x 3e ˆ z ,求 B , e
(1) A B (2) A B 17.矢量场 A 的表达式为
(1) 写出电场强度和磁场强度的复数表达式
1 S av E0 H 0 cos( e m ) 2 (2) 证明其坡印廷矢量的平均值为:
五、综合题 (10 分)
21.设沿 z 方向传播的均匀平面电磁波垂直入射到理想导体,如图 2 所示,该电磁波电场
ˆ x E0 e jz Ee 只有 x 分量即
4.在理想导体的表面, 的切向分量等于零。
A 5.矢量场 (r ) 穿过闭合曲面 S 的通量的表达式为:
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 8.如果两个不等于零的矢量的

等于零,则此两个矢量必然相互垂直。 关系。 函
区域 1 图2
区域 2
《电磁场与电磁波》试题(4)
一、填空题(每小题 1 分,共 10 分) ˆ ˆ ˆ A 1.矢量 e x e y e z 的大小为

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

《电磁场与电磁波》试题8及答案

《电磁场与电磁波》试题8及答案
5.位移电流的表达式为。
6.两相距很近的等值异性的点电荷称为。
7.恒定磁场是场,故磁感应强度沿任一闭合曲面的积分等于零。
8.如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互。
9.对平面电磁波而言,其电场、磁场和波的三者符合右手螺旋关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是连续的场,因此,它可用磁矢位函数的来表示。
(2)求出媒质1中电磁波的相速。

(1)媒质2电磁波的波阻抗
(2)媒质1中电磁波的相速
(2)矢量场 的在点 处的大小
解:
(1)
(2)矢量场 的在点 处的大小为:
(3分)
(2分)
四、应用题(每小题10分,共30分)
18.自由空间中一点电荷电量为2C,位于 处,设观察点位于 处,求
(1)观察点处的电位
(2)观察点处的电场强度。
解:
(1)任意点 处的电位
(3分)
将观察点代入
(2分)
(2)
源点位置矢量
设上极板的电荷密度为 ,则
(1分)
极板上的电荷密度与电场法向分量的关系为
(2分)
由于平行板间为均匀电场,故
(2分)
(2)由:
(3分)
将上面电场代入得:
(2分)
五、综合题(10分)
21.平面电磁波在 的媒质1中沿 方向传播,在 处垂直入射到 的媒质2中, 。极化为 方向,如图3所示。
(1)求出媒质2电磁波的波阻抗;
(1)电容器间电场强度;
(2)电容器极板间电压。
五、综合题(10分)
21.平面电磁波在 的媒质1中沿 方向传播,在 处垂直入射到 的媒质2中, 。
极化为 方向,如图3所示。

电磁场与电磁波第二版课后练习题含答案

电磁场与电磁波第二版课后练习题含答案

电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。

《电磁场与电磁波》第4版(谢处方_编)课后习题答案_高等教育出版社

《电磁场与电磁波》第4版(谢处方_编)课后习题答案_高等教育出版社

1 1 ( ) 2 d y dz ( ) 2 d y dz 2 2 1 2 1 2 1 2 1 2
1 1 2 x 2 ( ) 2 d x dz 2 x 2 ( ) 2 d x d z 2 2 1 2 1 2 1 2 1 2 1 1 1 24 x y ( )3 d x d y 24 x 2 y 2 ( )3 d x d y 2 2 24 1 2 1 2 1 2 1 2
1 r 42 32 5 、 tan (4 3) 53.1 、 2 3 120 故该点的球坐标为 (5,53.1 ,120 ) 1.9 用球坐标表示的场 E e 25 , r r2 (1)求在直角坐标中点 (3, 4, 5) 处的 E 和 E x ;
(2) 在球坐标系中
故 PP 为一直角三角形。 1 2P 3
1 1 1 R1 2 R 2 3 R 1 2 R 2 3 1 7 6 9 17.13 2 2 2 1.3 求 P(3,1, 4) 点到 P(2, 2,3) 点的距离矢量 R 及 R 的方向。 解 rP ex 3 e y ez 4 , rP ex 2 e y 2 ez 3 ,
(2)三角形的面积
S

RPP rP rP ex 5 e y 3 ez
且 RPP 与 x 、 y 、 z 轴的夹角分别为
1.4
ex RPP 5 ) cos 1 ( ) 32.31 RPP 35 e R 3 y cos 1 ( y P P ) cos 1 ( ) 120.47 RPP 35 e R 1 z cos 1 ( z PP ) cos 1 ( ) 99.73 RPP 35 给定两矢量 A ex 2 e y 3 ez 4 和 B ex 4 e y 5 ez 6 ,求它们之间的夹角和

《电磁场与电磁波》课后习题解答(第八章)

《电磁场与电磁波》课后习题解答(第八章)

《电磁场与电磁波》课后习题解答(第⼋章)第8章习题解答【8.1】已知:原⼦质量=107.9,密度=10.53×3310/kg m ,阿佛加德罗常数 =6.02×2610/kg 原⼦质量,电荷量q =1.6×C 1910- 电⼦质量m =9.11×kg 3110-,绝对介电系数(真空中)0ε=8.85×1210/F m - 银是单价元素,由于价电⼦被认为是⾃由电⼦,因⽽单位体积内的电⼦数⽬等于单位体积内的原⼦数⽬。

9.1071002.61053.10263)()(每⽴⽅⽶的原⼦数⽬=即每⽴⽅⽶的⾃由电⼦数⽬:281088.5?=N 可得 s Nq m 1421074.3/-?==στ(对于银)将上述σ、τ和0ε的值代⼊r k =+-)1(/1220τωεστ和l k =+ωτωεσ)1(2/220中可得 52251061.2)1/(1061.21?-=+?-=τωr k 71055.5?=l k则 7461242/122=??++-=lr r i k k k n故 72104.6-?==in c ωδ【8.4】解:良导体αβ== 场衰减因⼦ 2zxzeeeπαβλ---==当传播距离 z λ=时, 220.002zee πλαπλ---===⽤分贝表⽰即为 55dB 。

【8.2】已知:电导率σ=4.6m s /,原⼦质量=63.5,海⽔平均密度=1.025×3310/kg m ,阿佛加德罗常数 =6.02×2610/kg 原⼦质量,电荷量q =1.6×C 1910- ,m 2=δ,电⼦质量m =9.11×kg 3110-,绝对介电系数(真空中)0ε=8.85×1210/F m -解:(1)与8.1题⼀样,可以求出每⽴⽅⽶的⾃由电⼦数⽬:281034.3?=N s Nq m 2121089.4/-?==στ 910545.2-?=r k f k l 101014.4?=则 fk k k k n l lr r i 102/1221014.424?=≈??++-= ⽽δωcn i =所以: k H z f 8.13=(2)依题意,满⾜%0001.0)exp(2=-δz可以求出 m z 8.13=【8.3】解:当法向⼊射时,1cos ,0==i i θθ,012=-=ωεm Nq n r 所以,20221ωεπm Nq f c =,其中参数的解法与8.1、8.2题公式相同。

电磁场与电磁波第八章习题及参考答案

电磁场与电磁波第八章习题及参考答案

第八章 电磁辐射与天线8.1 由(8.1-3)式推导(8.1-4)及(8.1-5)式。

解)sin ˆcos ˆ(4θθθπμ-=-rrIdle A jkrρ (8.1-3) 代入A H ρρ⨯∇=μ1,在圆球坐标系ˆsin ˆˆsin 112θ∂ϕ∂∂θ∂∂∂ϕθθθμμrA A rr r rr A H r=⨯∇=ρρ)]cos ()sin ([4ˆ])([sin sin ˆ2r e e r r Idl A rA r r r jkr jkr r θθθπϕθθμθϕθ--∂∂--∂∂=∂∂-∂∂=可求出H ρ的3个分量为jkre kr kr j Idl k H -+=))(1(sin 422θπϕ (8.1-4) 0==θH H r将上式代入E j H ρρωε=⨯∇,可得到电场为H j E ρρ⨯∇=ωε1ϕθ∂ϕ∂∂θ∂∂∂ϕθθθωεH r rr r rr j sin 0ˆsin ˆˆsin 12=代入ϕH 得jkrr e kr kr j Idl k j E -+-=))(1)((cos 2323θπωε jkr e kr jkr kr j Idl k E --+=))()(1(sin 4323θπωεθ (8.1-5) 0=ϕE8.2 如果电流元yIl ˆ放在坐标原点,求远区辐射场。

解 解1 电流元yIl ˆ的矢量磁位为 jkr e rIl y A -=πμ4ˆρ 在圆球坐标系中jkry r e rIl A A -==πϕθμϕθ4sin sin sin sinjkry e rIl A A -==πϕθμϕθθ4sin cos sin cosjkry e rIl A A -==πϕμϕϕ4cos cos由A H ρρ⨯∇=μ1,对远区辐射场,结果仅取r1项,得jkre rIl jH -=λϕθ2cos jkre r Il j H --=λϕθϕ2sin cos根据辐射场的性质,E r ZH ρρ⨯=ˆ1得 jkre r Il jZ E --=λϕθθ2sin cosjkre r Il jZ E --=λϕϕ2cos解2 根据 jkR e RRl Id jH -⨯=λ2ˆρρ (8.1-13) RH Z E ˆ⨯=ρρ (8.1-14) ϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆˆ++==r y lr Rˆˆ≈ ϕθϕθϕcos ˆsin cos ˆˆˆ+-=⨯rl ϕϕϕθθcos ˆsin cos ˆˆ)ˆˆ(--=⨯⨯r rl jkRer Idl j H -=λ2ρ)cos ˆsin cos ˆ(ϕθϕθϕ+- jkR erIdl jZ H -=λ2ρ)cos ˆsin cos ˆ(ϕϕϕθθ--8.3 三副天线分别工作在30MHz,100MHz,300MHz,其产生的电磁场在多远距离之外主要是辐射场。

电磁场与电磁波习题及答案

电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂u v u u v u v ,BE t ∂∇⨯=-∂u v u v ,0B ∇=u v g ,D ρ∇=u vg2静电场的基本方程积分形式为:0CE dl =⎰u v u u v g Ñ S D ds ρ=⎰u v u u vg Ñ3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H rr r r r r r r r 4线性且各向同性媒质的本构关系方程是:4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=uv u v5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂r g6电位满足的泊松方程为2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界 。

12ϕϕ=1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。

8.电场强度E ϖ的单位是V/m ,电位移D ϖ的单位是C/m2 。

9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=g D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A u v,并令B A =∇⨯u v u v 的依据是( 0B ∇=u vg )2. “某处的电位0=ϕ,则该处的电场强度0=E ϖ”的说法是(错误的 )。

3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。

4. 点电荷产生的电场强度随距离变化的规律为(1/r2)。

5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。

6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。

《电磁场与电磁波》课后习题解答(全)

《电磁场与电磁波》课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c += 即只要满足3b+8c=1就可以使向量和向量垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=- 可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221a b +=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3) )()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r 的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a )所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223yz A x yze xy e =+ 而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y xe x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

电磁场与电磁波(第四版)课后答案_电科习题

电磁场与电磁波(第四版)课后答案_电科习题

3)
v C

evx
3y2 - 2x
+ evy x2 + evz 2z
问:1.哪些矢量可以由一个标量函数的梯度表示?哪些
矢量可以由一个矢量函数的旋度表示?
2.求出这些矢量的源分布。
1.28利用直角坐标,证明
v fA
vv f A Af
1.29: 矢量
在Av由 evρ=52, evzz验2=z0证和散z=度4围定成理的。圆柱形区域,
分量,根据边界条件可知,两种介质的
2
磁感应强度
uv B1
rr

uv B2

r B

er B
但磁场
强度 H1 H2
3.23一电荷量为 q 质量为 m 的小带电体,放置在无限长导体
平面下方,与平面距离h 。求 q 的值以使带电体上受到的
静电力恰好与重力相平衡(设 m 2103 kg, h 0.02m)。

第二章
2.1已知半径为a的导体球面上分布着电荷密度为 s s0 cos 的电荷,式中的 s0
为常数。试计算球面上的总电荷量。
2.6 一个平行板真空二极管内的电荷 体位密于度x=为0,阳 极94 板0U0位(d 于43 )xx23=,d,式极中间阴电极压板 为U0。如果U0 =40V,d=lcm,横截 面积s =10cm2。 求:

A
证散度定理
1.21 求矢量
v A

erx
x

ery
x2

erz
y
2
z
沿xy平面上的一个边长为2的正
形再回求路 的Av线对积此分回,路此所正包方围形的的表两面个积边分分,别验与证x斯轴托和克y轴斯相定重理合

《电磁场与电磁波》试题含答案

《电磁场与电磁波》试题含答案

ρ V ,电位
3.时变电磁场中,坡印廷矢量的数学表达式为 4.在理想导体的表面,电场强度的
5.表达式
� � � ( ) A r ⋅ d S ∫
S
� � A 称为矢量场 ( r ) 穿过闭合曲面 S 的
。 。 。 。 。 场,因此,它可用磁矢
6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 位函数的旋度来表示。
5.在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以 播出去,即电磁波。 6.随时间变化的电磁场称为 场。 。
的形式传
7.从场角度来讲,电流是电流密度矢量场的
8.一个微小电流环,设其半径为 a 、电流为 I ,则磁偶极矩矢量的大小为 9.电介质中的束缚电荷在外加

作用下,完全脱离分子的内部束缚力时,我们把这种
18.均匀带电导体球,半径为 a ,带电量为 Q 。试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面, (如图 1 所示) , (1)判断通过矩形回路中的磁感应强度的方向(在图中标出) ; (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
《电磁场与电磁波》试题 1
填空题(每小题 1 分,共 10 分)
1.在均匀各向同性线性媒质中,设媒质的导磁率为 µ ,则磁感应强度 B 和磁场 H 满足的 方程为: 。
2


2.设线性各向同性的均匀媒质中, ∇ φ = 0 称为

电磁场与电磁波习题及答案讲解学习

电磁场与电磁波习题及答案讲解学习

电磁场与电磁波习题及答案1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂,BE t∂∇⨯=-∂,0B ∇=,D ρ∇= 2静电场的基本方程积分形式为:CE dl =⎰SD ds ρ=⎰3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H4线性且各向同性媒质的本构关系方程是: 4.D E ε=,B H μ=,J E σ= 5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂ 6电位满足的泊松方程为2ρϕε∇=-;在两种完纯介质分界面上电位满足的边界 。

12ϕϕ=1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。

8.电场强度E的单位是V/m ,电位移D的单位是C/m2 。

9.静电场的两个基本方程的微分形式为0E ∇⨯= ρ∇=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A ,并令B A =∇⨯的依据是( 0B ∇= ) 2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是(错误的 )。

3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。

4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。

5. N 个导体组成的系统的能量∑==Ni i i q W 121φ,其中i φ是(除i 个导体外的其他导体)产生的电位。

6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。

8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。

8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。

电磁场与电磁波课后习题及答案

电磁场与电磁波课后习题及答案

电磁场与电磁波课后习题解答给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)2222314141412(3)A x y z+-===-++-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 6453x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 cos AB θ=1417238==⨯A B A B ,得 1cos AB θ-=(135.5238= (5)A 在B 上的分量 B A =A cos AB θ=17=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

电磁场与电磁波 第二版 (周克定 翻译 著) 课后习题答案 机械工业出版社

电磁场与电磁波 第二版 (周克定 翻译 著) 课后习题答案 机械工业出版社
0 l
s
E • ds = ρl / ε 0
∫ ∫ ( Eaρ ) •( ρ dφ dzaρ ) = ρ
0
/ ε0
18
∫ ∫
0

1
0
( Eaρ ) •( ρ dφ dzaρ ) = ρl / ε 0
E=
ρl ∴ E= aρ 2πε 0 ρ
选取点 A 作为电位参考点 (点 A 和点 P 的φ 和 z 坐标相同 ) ,点 A 的 ρ = a 。 自由空间中任意点 P 的电位为
11
exercise 2.35 Solution: 矩坐标系中:
F = Fx ax + Fy a y + Fz az ∂Fx ∂Fy ∂Fz ∇•F = + + ∂x ∂y ∂z F = − xyax + 3x 2 yza y + z 3 xaz
将 P 点坐标 ( x = 1 , y = -1 , z = 2 ) 代入上式即可
b
a

ρv = k / r
即电荷是球对称分布。 ∴ 空间中的电场强度可表示为
E = E ( r ) ar
高斯定律的积分形式,求空间各点的电场强度。

在以坐标原点为球心、半径为 r 的球面(如图中虚线所示)上可利用


空间被分为三个区域: r

<a , a≤r ≤b , r >b

在以坐标原点为球心的球面上的各点处电场强度大小相同。
2
exercise 2.11 Solution:
∵ A = 3ax + 2a y − az , B = 4ax − 8a y − 4az , C = 7ax − 6a y − 5az
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章8-1 导出非均匀的各向同性线性媒质中,正弦电磁场应该满足的波动方程及亥姆霍兹方程。

解 非均匀的各向同性线性媒质中,正弦电磁场应该满足的麦克斯韦方程如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇)(),()(0),()(),()(),(),()(),(),(r r E r r H r r H r r E r E r r J r H ρεμμεt t t t t t t t t , 分别对上面两式的两边再取旋度,利用矢量公式A A A 2)(∇-⋅∇∇=⨯∇⨯∇,得⎪⎪⎭⎫ ⎝⎛∇⋅-∇+∂∂+∂∂⨯∇=∂∂-∇)()(),(),(),()(),()(),()()(),(222r r r E r r J r r H r r E r r r E εερμμμεt t t t t t t t t⎪⎪⎭⎫ ⎝⎛∇⋅∇-∂∂⨯∇-⨯-∇=∂∂-∇μμεμε)(),(),()(),(),()()(),(222r r H r E r r J r H r r r H t t t t t t t则相应的亥姆霍兹方程为⎪⎪⎭⎫⎝⎛∇⋅-∇++⨯∇=+∇)()()()()()(j )()(j )()()()(22r r r E r r J r r H r r E r r r E εερωμμωμεω⎪⎪⎭⎫ ⎝⎛∇⋅∇-⨯∇-⨯-∇=+∇μμεωμεω)()()()(j )()()()()(22r r H r E r r J r H r r r H8-2 设真空中0=z 平面上分布的表面电流t J s x s sin 0ωe J =,试求空间电场强度、磁场强度及能流密度。

解 0=z 平面上分布的表面电流将产生向z +和z -方向传播的两个平面波,设z > 0区域中的电场和磁场分别为)(1z,t E ,)(1z,t H ,传播方向为z +;而z < 0区域中的场强为)(2z,t E 和)(2z,t H ,传播方向为z -。

显然,各个场分量均与0=z 边界平行。

由于表面电流的存在导致磁场强度在0=z 边界上不连续,但是电场强度仍然连续。

由此求得下列方程:[]s n t t J H H e =-⨯),0(),0(21),0(),0(21t t E E =式中z n e e -=。

考虑到[]z z,t Z z,t e H E ⨯=)()(101;[])()()(202z z,t Z z,t e H E -⨯=求得,[]0)0()0(210=⨯+z ,t ,t Z e H H ,获知)0()0(12,t ,t H H -=因此,t J t J ,t y z x z s ωωsin 21sin 2121)0(001e e e e J H =⨯-=⨯-=那么, ()kz t J z,t y -=ωsin 21)(01e H , z > 0同理可得 ()kz t J z,t y +-=ωsin 21)(02e H , z < 0因此,两边的电场强度分别为()kz t J Z z,t x -=ωsin 2)(001e E , z > 0 ()kz t J Zz,t x +=ωsin 2)(002e E , z < 0能流密度分别为()kz t J Z z,t z,t z,t z-=⨯=ω2200111sin 4)()()(e H E S ,z > 0 ()kz t J Z z,t z,t z,t z +-=⨯=ω2200222sin 4)()()(e H E S , z < 08-3 已知理想介质中均匀平面波的电场强度瞬时值为)31018sin() ,(6x t t x y ππ-⨯=e E (V/m)试求磁场强度瞬时值、平面波的频率、波长、相速及能流密度。

解 已知电场强度瞬时值为()⎪⎭⎫ ⎝⎛-⨯=x t t x y ππ311018sin ,6e E (V/m)可见这是向+x 方向传播的平面波。

因此,磁场强度的瞬时值为()⎪⎭⎫⎝⎛-⨯=x t t x zππ311018sin Z 1,6e H (A/m) 式中εμ=Z 为媒质的波阻抗。

根据题意,获知平面波的角频率61018⨯=πω,波数π31=k 。

由此求出频率:Hz 10926⨯==πωf ;波长:m 62==k πλ相速:61054⨯==λf v p (m/s) 能流密度:H E S ⨯=)m /W (311018sin Z 1262⎪⎭⎫ ⎝⎛-⨯=x t xππe 8-4 设真空中平面波的磁场强度瞬时值为)2106cos(4.2) ,(8y t t y z πππ+⨯=e H (A/m)试求该平面波的频率、波长、相位常数、相速、电场强度复矢量及能流密度。

解 根据题意,获知平面波的角频率6106⨯=πω,相位常数π2=k 。

由此求出频率:Hz 10328⨯==πωf ;波长:m 12==k πλ 相速:8103⨯==kv p ω(m/s)已知磁场强度瞬时值为()()y t t y z πππ2106cos 4.2,8+⨯=e H (A/m)可见这是向-y 方向传播的平面波。

因此,电场强度的瞬时值为()()y t Z t y x πππ2106cos 4.2,60+⨯=e E (V/m)式中00εμ=Z 为真空的波阻抗。

那么,电场强度的复矢量为 ()y xZ y ππ2j 0e 24.2e E =(V/m)能流密度矢量:())W/m (6.34524.22302ππy yZe e H E S -=-=⨯=8-5 当频率分别为10kHz 与10GHz 的平面波在海水中传播时,求此平面波在海水中的波长、传播常数、相速及特性阻抗。

解 当kHz 10=f 时,4102⨯=πω,11091080102364494>>⨯=⨯⨯⨯⨯=-ππωεσ, 故可视为良导体。

那么相位常数:40.0=='μσπf k ;衰减常数:40.0='=''k k波长:ππλ52='=k ;相速154m s 1014.340.0102-⨯=⨯='=πωk v p 波阻抗:()Ωe 14.0j 14j πσμπ=+=f Z c 当kHz 10=f 时,10102⨯=πω,109.010*********10<<=⨯⋅⨯⨯=-ππωεσ, 故可视为非理想的电介质,则相位常数:28.1873=='μεωk 衰减常数:3.842==''εμσk 波长:mm 354.32='=k πλ;相速:m/s 10354.37⨯==kv p ω 波阻抗:Ω15.42801200====πεμεμZ Z r r c 8-6 推导式(8-3-9)。

解 若媒质的电导率为σ,则无源区中的麦克斯韦方程为E E E H )j (j j ωσεωωεσ-=+=⨯∇令ωσεεj-=e ,代入下述齐次亥姆霍兹方程 ⎪⎩⎪⎨⎧=+∇=+∇02222H H E E e e μεωμεω 再令e c k μεω22=,显然c k 为复数。

设k j k k c ''-'=,将e ε代入c k 得)j (j 2222ωσεμω-='''-''-'k k k k该方程两端对应的实部和虚部应该相等,即⎩⎨⎧='''=''-'ωμσμεωk k k k 2222 求解上述联立方程即可求得式(8-3-9),即⎪⎪⎩⎪⎪⎨⎧-+=''++=']1)(1[2]1)(1[222ωεσμεωωεσμεωk k 8-7 试证一个线极化平面波可以分解为两个旋转方向相反的圆极化波。

证明 令一个x 方向的线极化平面波为)2121(E E E x x +==e e E那么可将上式改写为⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+==E E E E E E E y x y x x x 21j 2121j 21)2121(e e e e e e E显然上式右端两项均为圆极化平面波,而且旋转方向恰好相反。

这就证实一个线极化平面波可以分解为两个旋转方向相反的圆极化波。

8-8 试证一个椭圆极化平面波可以分解为两个旋转方向相反的圆极化平面波。

证明 由教材8-4节可见,通过坐标轴旋转,任一椭圆极化平面波均可表示为y y x x E E e e E j +=令21E E E x +=,21E E E y -=,即)(211y x E E E +=,)(212y x E E E -= 那么前式可展开为)(j )(2121E E E E y x -++=e e E此式又可改写为)j ()j (2211E E E E y x y x e e e e E -++=显然,上式代表两个旋转方向相反的圆极化波。

8-9 试证圆极化平面波的能流密度瞬时值与时间及空间无关。

证明 设圆极化波电场强度的瞬时值为()⎪⎭⎫ ⎝⎛+-+-=2sin sin ),(00πωωkz t E kz t E t z y x e e E上式可改写为()()kz t E kz t E t z y x -+-=ωωcos sin ),(00e e E相应的磁场强度为()()kz t Z Ekz t Z E t z x y---=ωωcos sin ),(0000e e H 那么,能流密度瞬时值为()()02020202020cos sin ),(),(),(Z E kz t Z E kz t Z E t z t z t z zz e e H E S =⎥⎦⎤⎢⎣⎡-+-=⨯=ωω 可见,圆极化波的能流密度瞬时值与时间及空间无关。

8-10 设真空中圆极化平面波的电场强度为x z y x π2j e )j (100)(-+=e e E (V/m)试求该平面波的频率、波长、极化旋转方向、磁场强度以及能流密度。

解 由电场强度的表示式可见,π2=k ,那么波长:m 12==k πλ;频率:Hz 1038⨯==λcf 因传播方向为+x 方向,z 分量又导前y 分量,因此该圆极化平面波是左旋的。

磁场强度为()x y z x Z ππ2j 0e j 651--=⨯=e e E e H (A/m ) 能流密度为08.5361000*x xe e H E S ≈=⨯=π(W/m 2) 8-11 当平面波自第一种理想介质向第二种理想介质垂直投射时,若媒质波阻抗12Z Z >,证明边界处为电场驻波最大点;若12Z Z <,则边界处为电场驻波最小点。

证明 设入射波的传播方向为+z 方向,z <0一侧媒质波阻抗为Z 1,z >0一侧媒质波阻抗为Z 2,那么,入射波和反射波可以分别表示为入射波:z k i i 1j 0e -=E E ;反射波:z k r r 1j 0e E E = 边界上的反射系数为1212Z Z Z Z R +-=由于两种介质均为理想介质,1Z 和2Z 为实数,且1≤R 。

相关文档
最新文档