自控原理二阶系统阶跃响应及性能分析实验报告

合集下载

实验2二阶系统的阶跃响应及稳定性分析实验

实验2二阶系统的阶跃响应及稳定性分析实验

实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。

2.研究二阶系统分别工作在等几种状态下的阶跃响应。

3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。

二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。

2.双踪低频慢扫示波器。

四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。

其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。

改变元件参数Rx大小,可研究不同参数特征下的时域响应。

当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。

五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。

此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。

(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。

(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。

(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。

(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。

实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。

在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。

实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。

2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。

3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。

实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。

2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。

3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。

结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。

通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。

二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。

特征根的实部决定了系统的稳定性,实部小于零时系统稳定。

2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。

三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。

2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。

四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。

根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。

2.连接模拟输入信号。

在搭建的二阶系统的输入端接入一个阶跃信号发生器。

3.连接模拟输出信号。

在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。

4.调整增益和特征根。

通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。

记录实际调整参数的数值。

5.使用MATLAB进行仿真绘制。

根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。

6.对比分析实际曲线与仿真曲线。

通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。

五、实验结果与分析1.实际曲线的绘制结果。

根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。

2.仿真曲线的绘制结果。

利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。

3.实际曲线与仿真曲线的对比分析。

通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。

六、实验讨论与结论1.实验过程中遇到的问题。

二阶系统阶跃响应实验报告

二阶系统阶跃响应实验报告

实验一 二阶系统阶跃响应一、 实验目的(1)研究二阶系统的两个重要参数:阻尼比ξ和无阻尼自振角频率ωn 对系统动 态性能的影响。

(2)学会根据模拟电路,确定系统传递函数。

二、实验内容二阶系统模拟电路图如图2-1 所示。

系统特征方程为T 2s 2+KTs+1=0,其中T=RC ,K=R0/R1。

根据二阶系统的标准 形式可知,ξ=K/2,通过调整K 可使ξ获得期望值。

三、 预习要求(1) 分别计算出T=0.5,ξ= 0.25,0.5,0.75 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。

)1(p 2e ζζπσ--=, ζT3t s ≈代入公式得:T=0.5,ξ= 0.25,σp =44.43% , t s =6s ; T=0.5,ξ= 0.5,σp =16.3% , t s =3s ; T=0.5,ξ= 0.75,σp =2.84% , t s =2s ;(2) 分别计算出ξ= 0.25,T=0.2,0.5,1.0 时,系统阶跃响应的超调量σP 和过渡过程时间tS 。

ξ= 0.25,T=0.2,σp =44.43% , t s =2.4s ; ξ= 0.25,T=0.5,σp =44.43% , t s =6s ; ξ= 0.25,T=1.0,σp =44.43% , t s =12s ;四、 实验步骤(1) 通过改变K ,使ξ获得0,0.25,0.5,0.75,1.0 等值,在输入端加同样幅值的阶跃信号,观察过渡过程曲线,记下超调量σP 和过渡过程时间tS,将实验值和理论值进行比较。

(2)当ξ=0.25 时,令T=0.2 秒,0.5 秒,1.0 秒(T=RC,改变两个C),分别测出超调量σP 和过渡过程tS,比较三条阶跃响应曲线的异同。

五、实验数据记录与处理:阶跃响应曲线图见后面附图。

原始数据记录:(2)ξ=0.25,改变C的大小改变T值理论值与实际值比较:对误差比较大,比如T=0.5,ξ=0.75时,超调量的相对误差为30%左右。

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告实验名称:二阶系统的阶跃响应实验报告实验目的:1. 了解二阶系统的阶跃响应特性,掌握二阶系统的调节方法。

2. 学习使用计算机实验仿真软件,分析控制系统的特性和设计计算机系统的参数。

3. 进一步了解数字控制的基本原理和实现方法。

实验原理:二阶系统指的是包含两个振动元件的控制系统,例如质量弹簧阻尼系统、旋转系统等。

通过向系统输入一个单位阶跃信号,可以使系统达到稳态。

在达到稳态后,可以观察到系统的响应特性,例如响应时间、超调量等。

二阶系统的阶跃响应有三种情况,分别为欠阻尼、临界阻尼和过阻尼。

欠阻尼的二阶系统的响应曲线会出现振荡,超调量较大;临界阻尼的二阶系统响应曲线的超调量最小,但响应时间较长;过阻尼的二阶系统响应曲线是退化的,没有振荡。

在实验中,我们使用计算机模拟二阶系统,并通过输入一个单位阶跃信号,观察系统的响应特性。

具体操作步骤如下:1. 在仿真软件中建立一个二阶系统,可以让仿真软件自动生成一个简单的二阶系统。

2. 将系统设置为单位阶跃信号输入,运行仿真,观察系统的响应特性。

3. 记录系统的超调量、响应时间以及稳态误差等参数。

4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化。

实验器材:1. 计算机2. 仿真软件实验步骤:1. 打开计算机,并运行仿真软件。

2. 在仿真软件中建立一个二阶系统,并设置其为单位阶跃信号输入。

3. 运行仿真,并记录系统的响应特性,包括超调量、响应时间以及稳态误差等参数。

4. 在仿真软件中改变系统的参数,例如增加阻尼系数,观察系统的响应变化,并记录变化后的参数。

5. 分析实验结果,并总结出二阶系统的阶跃响应特性。

实验结果:在实验中,我们使用了仿真软件模拟了一个简单的二阶系统,并进行了阶跃响应实验。

通过实验,我们观察到了系统的响应特性,并记录了系统的超调量、响应时间以及稳态误差等参数。

我们对比了欠阻尼、临界阻尼和过阻尼三种情况下的响应特性,发现欠阻尼时会出现较大的超调量,临界阻尼时超调量最小,但响应时间较长,过阻尼时响应曲线是退化的,没有振荡。

2. 实验二 二阶系统阶跃响应

2. 实验二 二阶系统阶跃响应

实验二二阶系统阶跃响应一、实验目的1. 研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响,定量分析ζ和ωn与最大超调量σp和调节时间ts之间的关系。

2. 进一步学习实验系统的使用。

3. 学会根据系统的阶跃响应曲线确定传递函数。

4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。

二、实验原理典型二阶闭环系统的单位阶跃响应分为四种情况:1)欠阻尼二阶系统如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振荡角频率为阻尼振荡角频率,其值由阻尼比ζ和自然振荡角频率ωn决定。

(1)性能指标:: 单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的调节时间tS最小时间。

超调量σ% ;单位阶跃响应中最大超出量与稳态值之比。

单位阶跃响应C(t)超过稳态值达到第一个峰值所需要的时间。

峰值时间tP :结构参数ξ:直接影响单位阶跃响应性能。

(2)平稳性:阻尼比ξ越小,平稳性越差长,ξ过大时,系统响应迟钝,(3)快速性:ξ过小时因振荡强烈,衰减缓慢,调节时间tS调节时间t也长,快速性差。

ξ=0.7调节时间最短,快速性最好。

ξ=0.7时超调量σ%<5%, S平稳性也好,故称ξ=0.7为最佳阻尼比。

2)临界阻尼二阶系统(即ξ=1)系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的,不存在稳态误差。

3)无阻尼二阶系统(ξ=0时) 此时系统有两个纯虚根。

4)过阻尼二阶系统(ξ>1)时此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误差,上升速度由小加大有一拐点。

三、 实验内容1. 搭建模拟电路典型二阶系统的闭环传递函数为:其中,ζ 和ωn 对系统的动态品质有决定的影响。

搭建典型二阶系统的模拟电路,并测量其阶跃响应:二阶系统模拟电路图其结构图为:系统闭环传递函数为:式中, T=RC ,K=R2/R1。

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。

二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。

2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。

3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。

根据系统的阶数不同,其响应形式也不同。

实验仪器:电动力控制实验台,控制箱,计算机等。

三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。

2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。

4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。

5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。

四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。

根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。

2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。

根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。

五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。

通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。

自控实验报告实验总结

自控实验报告实验总结

一、实验背景随着现代工业和科技的飞速发展,自动控制技术在各个领域得到了广泛应用。

为了使学生更好地理解和掌握自动控制原理及其应用,我们进行了为期两周的自控实验。

本次实验旨在通过实际操作,加深对自动控制原理的理解,提高动手实践能力。

二、实验目的1. 熟悉自动控制实验的基本原理和方法;2. 掌握控制系统时域性能指标的测量方法;3. 学会运用实验仪器进行实验操作和数据分析;4. 提高团队合作意识和解决问题的能力。

三、实验内容1. 典型环节及其阶跃响应实验本实验通过模拟电路,研究了典型环节(比例环节、积分环节、微分环节)的阶跃响应。

通过改变电路参数,分析了参数对系统性能的影响。

2. 二阶系统阶跃响应实验本实验研究了二阶系统的阶跃响应,通过改变系统的阻尼比和自然频率,分析了系统性能的变化。

3. 连续系统串联校正实验本实验研究了连续系统串联校正方法,通过调整校正装置的参数,使系统达到期望的性能指标。

4. 直流电机转速控制实验本实验利用LabVIEW图形化编程方法,编写电机转速控制系统程序,熟悉PID参数对系统性能的影响,通过调节PID参数掌握PID控制原理。

四、实验结果与分析1. 典型环节及其阶跃响应实验通过实验,我们观察到不同环节的阶跃响应曲线。

在比例环节中,随着比例系数的增加,系统的超调量减小,但调整时间增加。

在积分环节中,随着积分时间常数增大,系统的稳态误差减小,但调整时间增加。

在微分环节中,随着微分时间常数增大,系统的超调量减小,但调整时间增加。

2. 二阶系统阶跃响应实验通过实验,我们分析了二阶系统的性能。

在阻尼比小于1时,系统为过阻尼状态,响应速度慢;在阻尼比等于1时,系统为临界阻尼状态,响应速度适中;在阻尼比大于1时,系统为欠阻尼状态,响应速度快。

3. 连续系统串联校正实验通过实验,我们掌握了串联校正方法。

通过调整校正装置的参数,可以使系统达到期望的性能指标。

4. 直流电机转速控制实验通过实验,我们学会了利用LabVIEW图形化编程方法,编写电机转速控制系统程序。

自控原理二阶系统阶跃响应及性能分析实验报告

自控原理二阶系统阶跃响应及性能分析实验报告

广州大学学生实验报告开课学院及实验室:工程北531 2014年 11 月 30日学院机械与电气工程学院年级、专业、班电气123 姓名陈海兵学号1207300045实验课程名称自动控制原理实验成绩实验项目名称实验二二阶系统阶跃响应及性能分析指导老师姚菁一、实验目的1、掌握控制系统时域响应曲线的绘制方法;2、研究二阶系统特征参数对系统动态性能的影响,系统开环增益与时间常数对稳定性的影响。

3、能够计算阶跃响应的瞬态性能指标,对系统性能进行分析。

二、实验内容实验1、典型二阶系统闭环传递函数(1) 试编写程序,绘制出当ωn=6, ζ分别为0、1,0、4,0、7,1,1、3 时的单位阶跃响应;(2)试编写程序,绘制出当ζ=0、7, ωn 分别为2,4,6,8,10 时的单位阶跃响应;(3) 对上述各种单位阶跃响应情况加以讨论、实验2、设单位反馈系统的开环传递函数为若要求系统的阶跃响应的瞬态性能指标为σp=10%,t s (5%) = 2s、试确定参数K 与a 的值, 并画出阶跃响应曲线,在曲线上标出σp、t s(5%)的数值。

实验3、设控制系统如图2-1所示。

其中(a)为无速度反馈系统,(b)为带速度反馈系统,试(1)确定系统阻尼比为0、5 时的K1值;(2) 计算并比较系统(a)与(b)的阶跃响应的瞬态性能指标;(3)画出系统(a)与(b)阶跃响应曲线,在曲线上标出σp、t s(5%)的数值,以验证计算结果。

图2-1三、使用仪器、材料计算机、MATLAB 软件四、实验过程原始记录(程序、数据、图表、计算等) 1、运行Matlab 软件;2、在其命令窗口中输入有关函数命令或程序。

涉及的主要命令有:step()实验1:为便于比较,可用hold on 指令将多条曲线放在一个图中。

进一步,为清楚起见,用legend 指令在图中加注释。

部分结果如图2-2所示。

图2-2实验2:首先与二阶系统闭环传递函数的标准形式比较,求出参数K1、a与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能指标要求,求出参数K1、a,再用step()画出即可。

二阶系统阶跃响应实验报告.doc

二阶系统阶跃响应实验报告.doc

二阶系统阶跃响应实验报告.doc
本文基于实验箱网络实现了二阶系统阶跃响应的实验。

实验的研究内容主要包括:系
统的各参数的测量、阶跃响应的时间特性的观察以及二阶系统的特性研究等。

实验步骤与
结果如下:
1. 参数测量:首先测量了二阶系统的各参数,包括系统的系数K和T,以及阶跃函数
的时间常数T0,测量后得出了以下测量值:K=3.99196,T=0.09203,T0=0.092612。

2. 阶跃响应观察:接着,观察了系统在各不同输入阶跃函数下的单位阶跃响应,实验结果表明其反应满足二阶系统单位步跃响应特性,该系统的时间常数为T0,超调比为K/T。

3. 特性研究:最后,对该二阶系统的性能进行了实验试验,以确定它的超调比K/T及其对应的频率范围,实验结果表明该二阶系统的超调比K/T为0.432,其对应的频率范围
在0.368-0.478Hz之间,实验效果令人满意。

综上,通过实验成功研究了一个二阶系统的阶跃响应特性,确定了有关系统参数和特性,实验结果符合理论预期,实验效果令人满意。

自控实验报告实验二

自控实验报告实验二

自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。

通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。

二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。

三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。

一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。

二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。

通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。

四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。

设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。

使用示波器观察并记录系统的输出响应。

2、二阶系统的阶跃响应实验同样按照电路图连接好设备。

改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。

用示波器记录输出响应。

五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。

随着时间的推移,输出逐渐稳定在一个固定值。

当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。

2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。

当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。

通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告

实验二 二阶系统的阶跃响应实验报告1.实验的目的和要求1)掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术;2)定量分析二阶控制系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响;3)加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质;4)了解与学习二阶控制系统及其阶跃响应的MATLAB 仿真。

2.实验内容1)分析典型二阶系统2222)(n n n s s s G ωξωω++=的ξ(ξ取值为0、0.25、0.5、1、1.2……)和n ω(n ω取值10、100……)变化时,对系统阶跃响应的影响。

2)典型二阶系统,若0.707ξ=,110n s ω-=,确定系统单位阶跃响应的特征量%σ、r t 和s t 。

3.需用的仪器计算机、Matlab6.5编程软件4.实验步骤1)利用MA TLAB 分析n ω=10时ξ变化对系统单位阶跃响应的影响。

观察并记录响应曲线,根据实验结果分析ξ变化对系统单位阶跃响应的影响。

2)利用MA TLAB 分析ξ=0时n ω变化对系统单位阶跃响应的影响。

观察并记录响应曲线,根据实验结果分析n ω变化对系统单位阶跃响应的影响。

3)利用MA TLAB 计算特征量%σ、r t 和s t 。

5.教案方式讲授与指导相结合6.考核要求以实验报告和实际操作能力为依据7.实验记录及分析1)程序:》t=[0:0.01:10]。

y1=step([100],[1 0 100],t)。

y2=step([100],[1 5 100],t)。

y3=step([100],[1 10 100],t)。

y4=step([100],[1 20 100],t)。

y5=step([100],[1 80 100],t)。

subplot(3,2,1)。

plot(t,y1,'-')。

gridxlabel('time t')。

ylabel('y1')。

实验一一,二阶系统阶跃响应

实验一一,二阶系统阶跃响应

综合性实验:二阶系统的单位阶跃响应综合实验一、实验目的:1.在给定系统的内部结构、系统的阶跃响应性能指标,掌握系统的电路模拟方法。

2.掌握系统校正PID算法的实现和参数计算方法。

3.观察最优二阶系统的单位阶跃响应曲线,了解高阶系统的最优阶跃响应动、静态性能。

二、实验说明:1.本实验包括自控原理的线性定常系统分析的大部分内容,帮助学生复习、巩固书中的内容,提高学生的实验应用能力。

2.给定二阶系统的阶跃性能指标:o%=20% , t s=2s,设计一个电路模拟系统,计算电路的系统参数。

3.设计一个PID调节器,使系统具有二阶阶跃响应最优性能指标。

4.在实验平台上观察模拟系统的单位阶跃响应,观察系统校正前、后的输出响应。

说明最优二阶系统的动静态性能指标。

5.对模拟系统进行频域分析,计算其幅频和相频特性,在实验中观察系统的频率响应,对比计算和实验结果。

三、实验要求:按照实验过程作好实验前的准备工作<包括安排布置软件、硬件设备,编写实验步骤,需要观察记录的数据准备);记录好实验中的调试过程、数据变化,进行实验后的报告总结。

实验二二阶系统的阶跃响应实验二二阶系统的阶跃响应、实验目的1学习二阶系统阶跃响应曲线的实验测试方法2•研究二阶系统中无阻尼自然频率和阻尼比对阶跃瞬态响应指标的影响、实验设备1.XMN—2 型机;2.LZ3系列函数纪录仪或 CAE983.DT— 830数字万用表三、实验内容1对单一自然频率和阻尼比测量响应曲线2•保持阻尼比不变,改变自然频率记录响应曲线3•保持自然频率不变,改变阻尼比记录响应曲线四、实验步骤[步1]调整Rf和Ri使阻尼比为0.2,选择R,C使自然频率为1/0.47,假如幅度为1V的阶跃函数X(t>,观察并记录响应曲线。

以下标称中电阻单位为千欧姆,电容为微法拉。

[步2]调整Rf和Ri使阻尼比为0.2,选择R,C使自然频率为1/1.47,假如幅度为1V的阶跃函数X(t>,观察并记录响应曲线。

自动控制实验报告二-二阶系统阶跃响应

自动控制实验报告二-二阶系统阶跃响应

实验二二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。

定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。

2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。

二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2) 检查USB线是否连接好,在实验项目下拉框中选中实验,点击按钮,出现参数设置对话框设置好参数,按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。

电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。

检查无误后接通电源。

4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。

5)鼠标单击按钮,弹出实验课题参数设置对话框。

在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。

自动控制实验报告二-二阶系统阶跃响应

自动控制实验报告二-二阶系统阶跃响应

自动控制实验报告二-二阶系统阶跃响应
本实验以三角波输入作为扰动源,考察了二阶系统的阶跃响应。

本实验共分为准备和实验两部分,具体过程如下:
1. 准备:
(1)准备理论分析
根据二阶系统的理论分析,比例的系统的输出响应可以用“先过斜坡,后弹跳”的曲线来描述。

当输入为阶跃信号时,最终的输出也应随之发生阶跃。

(2)安装系统设备
系统的设备由负反馈比例控制器与多功能电路板组成,本实验采用比例控制实现,用一个三角波发生器后装置来产生三角波控制信号。

2. 实验:
(1)稳态响应
调整三角波周期参数,使系统实现稳态响应,测量得出输出与输入的闭环增益值,满足系统的稳态要求;
(2)阶跃响应
设定参数使得系统实现阶跃响应,测量得出系统的时间常数值以及输出响应与输入阶跃幅度之比,画图分析出输出在某一个阶跃时刻趋近系统的稳态响应值时所需的时间。

以上就是本次实验的概况。

本实验将三角波应用于二阶系统,进行阶跃响应实验,尝试测量、分析系统阶跃响应的指标,可见本实验对对比例系统的指标的测量及系统性能的分析有很大的意义。

阶跃反应实验报告

阶跃反应实验报告

一、实验目的1. 研究二阶系统的特征参数(阻尼比和无阻尼自然频率)对系统动态性能的影响。

2. 定量分析最大超调量(Mp)和调节时间(t)之间的关系。

3. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。

4. 加深对线性系统稳定性的理解,即稳定性只与其结构和参数有关,而与外作用无关。

5. 学习利用MATLAB仿真分析二阶控制系统的阶跃响应。

二、实验原理二阶系统是控制系统中常见的一种类型,其动态性能主要取决于阻尼比(ζ)和无阻尼自然频率(ωn)。

阶跃响应是指系统在输入端突然施加一个阶跃信号时,系统输出信号随时间变化的规律。

通过分析阶跃响应,可以评估系统的动态性能,如超调量、调节时间等。

三、实验设备1. 自动控制系统实验箱一台2. 计算机一台3. Matlab 6.5编程软件四、实验步骤1. 搭建实验电路:根据实验要求,搭建一个二阶系统的模拟电路,并连接好实验设备。

2. 设置参数:利用Matlab软件设置二阶系统的阻尼比和无阻尼自然频率,并观察阶跃响应曲线。

3. 分析动态性能指标:根据阶跃响应曲线,计算最大超调量(Mp)和调节时间(t)。

4. 改变参数,观察影响:逐步改变阻尼比和无阻尼自然频率,观察系统动态性能的变化,并记录实验数据。

五、实验结果与分析1. 阻尼比对动态性能的影响:当阻尼比ζ=0时,系统处于过冲状态,超调量较大;随着阻尼比的增大,超调量逐渐减小,系统趋于稳定。

当ζ=1时,系统处于临界稳定状态,超调量为0。

当ζ>1时,系统处于欠阻尼状态,超调量减小,但调节时间增加。

2. 无阻尼自然频率对动态性能的影响:当无阻尼自然频率ωn增大时,系统的响应速度加快,超调量减小,调节时间缩短。

3. 最大超调量与调节时间的关系:随着阻尼比的增大,最大超调量逐渐减小,调节时间逐渐增加。

两者之间存在一定的平衡关系。

六、结论通过本次实验,我们掌握了二阶系统的阶跃响应特性,以及阻尼比和无阻尼自然频率对系统动态性能的影响。

阶跃响应实验报告

阶跃响应实验报告

阶跃响应实验报告阶跃响应实验报告引言:阶跃响应实验是一种常见的控制系统实验,通过对系统施加一个阶跃输入信号,观察系统的输出响应,以了解系统的动态特性和稳定性。

本实验旨在通过对一个二阶惯性系统的阶跃响应进行分析,探讨系统的阶跃响应特性。

实验原理:阶跃响应是指系统在输入信号发生突变时,输出信号的响应情况。

在本实验中,我们将通过施加一个单位阶跃信号作为输入,观察系统的输出响应。

实验装置:本实验采用了一个二阶惯性系统,系统由一个质量为m的物体和一个弹簧-阻尼器系统组成。

输入信号通过一个电子信号发生器施加给系统,输出信号经过一个传感器进行测量,并通过示波器进行显示。

实验步骤:1. 将实验装置搭建好并连接好电源。

2. 调节电子信号发生器的参数,使其输出一个单位阶跃信号。

3. 将传感器连接到系统的输出端,并将示波器与传感器连接。

4. 开始记录示波器上的波形,并观察系统的响应情况。

5. 根据实验结果,分析系统的阶跃响应特性。

实验结果:在实验过程中,我们观察到系统的输出信号在单位阶跃信号施加后瞬间发生变化,并逐渐趋于稳定。

通过示波器上的波形图,我们可以看到系统的阶跃响应曲线呈现出一定的延迟和超调现象。

延迟是指系统响应的时间滞后于输入信号的变化,而超调则是指系统响应的幅度超过了输入信号的幅度。

实验分析:根据实验结果,我们可以得出以下结论:1. 系统的延迟时间是系统响应时间和输入信号变化时间之间的差值。

延迟时间的大小与系统的惯性和动态特性有关。

在本实验中,由于系统是一个二阶惯性系统,所以延迟时间相对较小。

2. 系统的超调量是系统响应的最大幅度与输入信号幅度之间的差值。

超调量的大小取决于系统的阻尼比和共振频率。

在本实验中,由于系统的阻尼比较小,所以超调现象较为明显。

3. 系统的稳定性是指系统在输入信号发生变化后,输出信号是否能够趋于稳定。

通过观察实验结果,我们可以得出系统是稳定的,因为输出信号在一段时间后趋于稳定。

实验总结:通过本次阶跃响应实验,我们对控制系统的动态特性和稳定性有了一定的了解。

实验三——二阶系统的时域响应及性能分析

实验三——二阶系统的时域响应及性能分析

实验三——二阶系统的时域响应及性能分析实验三主要研究了二阶系统的时域响应及其性能分析,通过实验得到不同二阶系统的单位阶跃响应和单位脉冲响应,并对其进行分析和性能评估。

首先,实验中使用的二阶系统是由两个一阶系统串联而成,可以通过两个一阶系统的参数来确定二阶系统的性能。

实验中设置了不同的参数组合来得到不同的二阶系统,并测量了这些系统的单位阶跃响应和单位脉冲响应。

实验中,单位阶跃响应是通过给系统输入一个单位阶跃信号,观察系统的输出得到的。

单位脉冲响应是通过给系统输入一个单位脉冲信号,观察系统的输出得到的。

通过测量这两个响应,可以了解二阶系统在时域的性能。

对于单位阶跃响应,实验中测量了系统的超调量、调整时间和稳态误差。

超调量是指单位阶跃响应中最高峰值与稳态值之差与稳态值的比值,可用来评估系统的动态性能。

调整时间是指从单位阶跃信号开始输入到响应达到其稳态值所需要的时间,反映了系统调整过程的快慢。

稳态误差是指系统最终的输出值与期望值之差,用来评估系统的稳态准确性。

对于单位脉冲响应,实验中测量了系统的峰值和时间常数,用来评估系统的动态特性。

峰值是指单位脉冲响应中的最高值,与系统的阻尼比有关。

时间常数是指单位脉冲响应中曲线从0到达其最大值所需要的时间,与系统的阻尼比和自然频率有关。

通过实验数据的测量和分析,可以得到不同参数组合下的二阶系统的性能指标,进而对系统进行评估。

如果超调量小、调整时间短、稳态误差小,表示系统的动态特性优秀,能够快速、准确地响应输入信号;如果峰值小、时间常数短,表示系统的动态特性好,有较快的响应速度和较小的振荡现象。

综上所述,实验三通过对二阶系统的时域响应进行测量和分析,并对性能指标进行评估,可以得到不同二阶系统的动态特性和稳态准确性信息。

这些信息对于系统设计和参数调整具有重要的参考价值。

通过实验的学习,可以更深入地理解掌握二阶系统的性能分析方法,为系统控制和优化提供理论和实践基础。

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应

实验二 二阶系统的阶跃响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。

二、实验设备1. THBDC-1型控制理论·计算机控制技术实验平台;2. PC 机一台(含上位机软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;三、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. ζ为一定时,观测系统在不同n ω时的响应曲线。

四、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(n n n S S S R S C ωζωω++= (2-1) 开环传递函数2()(2)n n G s S S ωξω=+ (2-2)闭环特征方程:0222=++nn S ωζω 其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况:1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。

它的数学表达式为:()1()n t d C t Sin t ζωωβ-=+ 式中21ζωω-=n d ,ζζβ211-=-tg 。

2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。

3)1>ζ(过阻尼),122,1-±-=ζωζωn n S ,此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。

(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。

二阶系统阶跃响应实验报告

二阶系统阶跃响应实验报告

二阶系统阶跃响应实验报告实验报告:二阶系统阶跃响应一、实验目的1.了解二阶系统的阶跃响应特点;2.掌握二阶系统阶跃响应的测量方法;3.理解参数对二阶系统阶跃响应的影响。

二、实验原理二阶系统是指一个包含两个能量存储元件(电容、电感)的系统。

其传递函数可以表示为:Ts(s)G(s)=--------------(s^2 + 2ζωns + ωn^2)其中,Ts(s)为控制信号输入,G(s)为系统传递函数,ζ为阻尼比,ωn为自然频率。

当输入为单位阶跃信号时,输出的响应称为系统的阶跃响应,其数学表达式为:y(t)=-----------τ^2[1-e^(-t/τ)-t/τ*e^(-t/τ)]其中,τ为系统的时间常数,τ=1/ωn式中ωn为自然频率。

实验步骤1.搭建二阶电路系统,并接入信号发生器和示波器。

2.调节信号发生器产生单位阶跃信号,并将信号接入二阶电路系统中。

3.调节示波器进行观测,并记录输出信号的波形。

4.根据记录的波形数据,计算系统的时间常数τ、阻尼比ζ和自然频率ωn。

5.改变二阶电路系统中的参数(如电感或电容值),重新进行实验并记录数据。

6.分析不同参数对二阶系统阶跃响应的影响。

四、实验结果实验数据如下表所示:电感值(L),电容值(C),时间常数τ,斜率(t/τ),阻尼比ζ,自然频率ωn------,-------,------,-------,-----,-------L1,C1,τ1,t1/τ1,ζ1,ωn1L2,C2,τ2,t2/τ2,ζ2,ωn2L3,C3,τ3,t3/τ3,ζ3,ωn3(插入阶跃响应图像)五、实验分析根据实验结果的波形数据,计算得到不同参数下的时间常数τ、阻尼比ζ和自然频率ωn,并填入上表。

通过对比不同参数下阶跃响应的图像,可以得出以下结论:1.时间常数τ:时间常数τ代表系统响应到达稳态所需的时间。

一般来说,时间常数越小,系统的响应速度越快。

根据实验数据的对比可以发现,当电感或电容值增加时,时间常数τ也相应增大,表示系统的响应速度减慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广州大学学生实验报告开课学院及实验室:工程北531 2014年 11 月 30日学院机械与电气工程学院年级、专业、班电气123姓名陈海兵学号45实验课程名称自动控制原理实验成绩实验项目名称实验二二阶系统阶跃响应及性能分析指导老师姚菁一、实验目的1. 掌握控制系统时域响应曲线的绘制方法;2. 研究二阶系统特征参数对系统动态性能的影响,系统开环增益和时间常数对稳定性的影响。

3. 能够计算阶跃响应的瞬态性能指标,对系统性能进行分析。

二、实验内容实验1.典型二阶系统闭环传递函数(1) 试编写程序,绘制出当ωn=6, ζ分别为,,,1, 时的单位阶跃响应;(2)试编写程序,绘制出当ζ=, ωn 分别为2,4,6,8,10 时的单位阶跃响应;(3) 对上述各种单位阶跃响应情况加以讨论.实验2. 设单位反馈系统的开环传递函数为若要求系统的阶跃响应的瞬态性能指标为σp=10%,t s (5%) = 2s .试确定参数K 和a 的值, 并画出阶跃响应曲线,在曲线上标出σp、t s(5%)的数值。

实验3. 设控制系统如图2-1 所示。

其中(a)为无速度反馈系统,(b)为带速度反馈系统,试(1)确定系统阻尼比为时的K1值;(2) 计算并比较系统(a)和(b)的阶跃响应的瞬态性能指标;(3)画出系统(a)和(b)阶跃响应曲线,在曲线上标出σp、t s(5%)的数值,以验证计算结果。

图2-1三、使用仪器、材料计算机、MATLAB 软件四、实验过程原始记录(程序、数据、图表、计算等)1、运行Matlab 软件;2、在其命令窗口中输入有关函数命令或程序。

涉及的主要命令有:step()实验1:为便于比较,可用hold on 指令将多条曲线放在一个图中。

进一步,为清楚起见,用legend 指令在图中加注释。

部分结果如图2-2所示。

图2-2实验2:首先与二阶系统闭环传递函数的标准形式比较,求出参数K1、a与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能指标要求,求出参数K1、a,再用step()画出即可。

实验3:首先与二阶系统闭环传递函数的标准形式比较,求出阻尼系数、自然频率,再求出瞬态性能指标。

1、观察并记录、总结。

五、实验结果及分析实验1.典型二阶系统闭环传递函数(1) =;b=[36];c=[1?12*a?36];?sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?hold?on?a=;b=[36];c=[1?12*a?36];?s=0::15;?step(sys,s);grid?hold?on?a=;b=[36];c=[1?12*a?36];? sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?hold?on?a=;b=[36];c=[1?12*a?36];? sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?hold?on?a=1;b=[36];c=[1?12*a?36];?sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?hold?on?a=;b=[36];c=[1?12*a?36];?sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?xlabel('s')?ylabel('y(s)')?title('单位阶跃响应')?legend('a=','a=','a=','a=1','a=')?(2) ζ=, ωn分别为2,4,6,8,10 a=;b=[4];c=[1?4*a?4];?sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?hold?on?a=;b=[16];c=[1?8*a?16];?sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?hold?on?a=;b=[36];c=[1?12*a?36];?sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?hold?on?a=;b=[64];c=[1?16*a?64];?sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?hold?on?a=;b=[100];c=[1?20*a?100];?sys=tf(b,c);?p=roots(c);?s=0::15;?step(sys,s);grid?title('单位阶跃响应')?legend('b=2','b=4','b=6','b=8','b=10'实验2 首先与二阶系统闭环传递函数的标准形式比较,求出参数K1、a与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能指标要求,求出参数K1、a,再用step()画出即可。

>> a=[]; b=[1 ];sys=tf(a,b);t=0::10;step(sys,t);gridhold onplot,,'bo')xlabel('s')ylabel('y(s)')bbb{1}='\fontsize{12}\uparrow';bbb{2}='\fontsize{16}\fontname{隶书}超调量';bbb{3}='\fontsize{6}?';bbb{4}='\fontsize{14}\it\sigma_\rho%=10%';bbb{6}='\fontsize{12}\downarrow';text,,bbb,'color','b','HorizontalAlignment','Center')aaa{1}='\fontsize{12}\uparrow';aaa{2}='\fontsize{16}\fontname{宋体}调节时间';aaa{3}='\fontsize{14}\itt_{s}=2s';text,,aaa,'color','r','HorizontalAlignment','Center')实验3:首先与二阶系统闭环传递函数的标准形式比较,求出阻尼系数、自然频率,再求出瞬态性能指标(a)a=10;b=[1 1 10];?sys=tf(a,b);t=0::15;?step(sys,t);gridxlabel('s')?ylabel('y(s)')?hold?on?plot,,'bo')?bbb{1}='\fontsize{12}\uparrow';?bbb{2}='\fontsize{16}\fontname{宋体}超调量';?bbb{3}='\fontsize{6}?';?bbb{4}='\fontsize{14}\it\sigma_\rho%=%';?bbb{6}='\fontsize{12}\downarrow';?text,,bbb,'color','b','HorizontalAlignment','Center')?aaa{1}='\fontsize{12}\uparrow';?aaa{2}='\fontsize{16}\fontname{宋体}调节时间';????aaa{3}='\fontsize{14}\itt_{s}=7s';?text,,aaa,'color','r','HorizontalAlignment','Center')?(b)a=10;b=[1 10];?sys=tf(a,b);??t=0::5;?step(sys,t);grid????xlabel('s')????ylabel('y(s)')?hold?on?plot,,'bo')?bbb{1}='\fontsize{12}\uparrow';?bbb{2}='\fontsize{16}\fontname{宋体}超调量';???bbb{3}='\fontsize{6}?';?bbb{4}='\fontsize{14}\it\sigma_\rho%=%';?bbb{9}='\fontsize{12}\downarrow';?text,,bbb,'color','b','HorizontalAlignment','Center')????aaa{1}='\fontsize{12}\uparrow';?aaa{2}='\fontsize{16}\fontname{宋体}调节时间';????aaa{3}='\fontsize{14}\itt_{s}=';?text,,aaa,'color','r','HorizontalAlignment','Center')实验1结果分析:当ωn=6,?随着ζ增大,上升时间增大,超调量变大,调节时间变短,峰值时间变大。

?当ζ=,随着ωn增大,?随着自然频率变大,阻尼比变大。

?总结:这次实验很有难度,通过查找资料才做得出来。

通过这次实验,我们学到了如何利用MATLAB来求解二阶系统阶跃响应及进行性能的分析。

相关文档
最新文档