考研数学公式定理背诵手册(数学二):线性代数

合集下载

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版

线性代数公式必背完整归纳清晰版线性代数是数学的一个重要分支,研究向量空间及其上的线性映射的理论和方法。

在学习线性代数的过程中,掌握一些重要的公式是非常重要的。

下面是线性代数中一些常见且重要的公式,希望能够帮助到你。

1.向量的加法和数乘:(a1, a2, ..., an) + (b1, b2, ..., bn) = (a1 + b1, a2 +b2, ..., an + bn)k(a1, a2, ..., an) = (ka1, ka2, ..., kan)这是线性代数的基本操作,向量的加法是对应元素分别相加,向量的数乘是将向量中的每个元素与常数相乘。

2.内积:向量a = (a1, a2, ..., an) 和向量b = (b1, b2, ..., bn) 的内积定义为:a ·b = a1b1 + a2b2 + ... + anbn内积有许多重要的性质:a·b=b·a-->内积的交换律(ka) · b = a · (kb) --> 内积的数乘关系a·(b+c)=a·b+a·c-->内积的分配律内积可以用来计算向量的夹角和向量的长度,是线性代数中的一个重要概念。

3.范数:向量a的范数定义为:a, = sqrt(a1^2 + a2^2 + ... + an^2向量的范数满足以下性质:a,>=0,且当且仅当a=0时取等ka, = ,k,,a,对于任意的实数a+b,<=,a,+,b,三角不等范数是一个度量向量长度的函数,也是线性代数中常用的概念。

4.矩阵的乘法:对于矩阵A(m×n)和矩阵B(n×p),它们的乘积C=A×B是一个m×p的矩阵,其中C的第i行第j列的元素可以表示为:C(i,j)=a(i,1)*b(1,j)+a(i,2)*b(2,j)+...+a(i,n)*b(n,j)矩阵乘法是线性代数中的核心概念,它在很多应用中都有重要的作用。

2024考研数学常必背公式汇总

2024考研数学常必背公式汇总

2024考研数学常必背公式汇总在准备2024考研数学的过程中,掌握一些常用的公式是非常重要的。

这些公式不仅可以帮助我们更快地解题,还能提高我们的答题准确性。

下面是2024考研数学一、数学二、数学三需要背诵的常用公式的汇总:一、基本数学公式:1.平方差公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab+ b^22.二次方程的求根公式:若ax^2+bx+c=0(a≠0),则x = (-b ± √(b^2-4ac))/2a3.数列的通项公式:递推公式:a(n+1)=a(n)+d通项公式:a(n)=a(1)+(n-1)d二、高等数学公式:1.常用三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ2.常用反三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ3.常用指数函数公式:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^(-m)=1/a^m4.常用对数函数公式:log_a(m * n) = log_a(m) + log_a(n)log_a(m^n) = n * log_a(m)log_a(m/n) = log_a(m) - log_a(n)log_a(1) = 05.常用复数公式:i²=-1复数的共轭:若z = a + bi,则z的共轭为a - bi三、线性代数公式:1.行列式的加减法:A±B,=,A,±,B2.行列式的乘法:A*B,=,A,*,B3.矩阵的逆:若,A,≠0,则A存在逆矩阵A^(-1),且AA^(-1)=A^(-1)A=I4.特征值与特征向量:设A是n阶矩阵,若存在数λ和非零向量x,使得Ax=λx,则λ称为矩阵A的特征值,x称为λ对应的特征向量5.向量的内积:a ·b = ,a,,b,cosθ其中,a、b分别为向量,θ为a、b之间的夹角四、概率与统计公式:1.事件的概率公式:对于一个随机事件A,其概率满足0≤P(A)≤12.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)4.全概率公式:P(A)=P(An)P(A,An)+P(A2)P(A,A2)+...+P(Am)P(A,Am)其中,A1,A2,...,Am为一组互斥且全体之并为样本空间Ω的事件5.贝叶斯公式:P(A,B)=P(AnB)/P(B)=P(An)P(B,An)/[P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)]其中,A1,A2,...,An与前述全概率公式的条件相同。

考研数学线性代数常用公式

考研数学线性代数常用公式

考研数学线性代数常用公式数学考研考前必背常考公式集锦。

希望对考生在暑期的复习中有所帮助。

本文内容为线性代数的常考公式汇总。

1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。

考研线性代数公式必记

考研线性代数公式必记

1、 行列式考研牛人总结的线性代数公式:1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

考研数学线代定理公式总结

考研数学线代定理公式总结

考研数学线代定理公式总结2概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或○注:全体n 维实向量构成的集合nR 叫做n 维向量空间.()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注()()a b r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-3⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同()√ 关于12,,,ne e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量87p 教材;②12,,,ne e e ⋅⋅⋅线性无关;③12,,,1ne e e⋅⋅⋅=;④tr =E n ;⑤任意一个n 维向量都可以用12,,,ne e e ⋅⋅⋅线性表示.1212121112121222()1212()n nnn n j j j nj j nj j j j n n nna a a a a a Da a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和4等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a O a O ---*==-1 (即:所有取自不同行不同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵.记作:()ij m nA a ⨯=或m nA ⨯5()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ijA 为A 中各个元素的代数余子式.√ 逆矩阵的求法: ① 1A AA*-=○注:1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号②1()()A E EA -−−−−→初等行变换③1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:mn m nA A A += ()()m nmnAA =√ 设,,m nn s AB ⨯⨯A的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i iA c β= ,(,,)i s =1,2⇔iβ为iAx c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,sc c c 可由12,,,nααα⋅⋅⋅线性表示.即:C 的列向量能由A的列向量线性表示,B 为系数矩阵.6同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即:1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩√ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. √ 分块矩阵的转置矩阵:TTT T T A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A O A O CB B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122n n n A A A ⎛⎫=⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭*(1)(1)mn mn A A B BB A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)7A B EX −−−−→初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材.⑥ 向量组12,,,nααα⋅⋅⋅中任一向量iα(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,nααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示.向量组12,,,nααα⋅⋅⋅线性无关⇔向量组中每一个向量iα都不能由其余n -1个向量线性表示.⑧ m 维列向量组12,,,nααα⋅⋅⋅线性相关()r A n ⇔<;m 维列向量组12,,,nααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,nααα⋅⋅⋅线性无关,而12,,,,nαααβ⋅⋅⋅线性相关,则β可由12,,,nααα⋅⋅⋅线性表示,且表示法唯一.⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行8的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r.记作()r A r =向量组12,,,nααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)nr αααA 经过有限次初等变换化为B . 记作:A B =912,,,nααα⋅⋅⋅和12,,,nβββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n nαααβββ⋅⋅⋅=⋅⋅⋅⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)nnr r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)nnr αααβββ⋅⋅⋅⋅⋅⋅⇒矩阵A 与B 等价.⑬ 向量组12,,,sβββ⋅⋅⋅可由向量组12,,,nααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)nr ααα⋅⋅⋅.⑭ 向量组12,,,sβββ⋅⋅⋅可由向量组12,,,nααα⋅⋅⋅线性表示,且s n >,则12,,,sβββ⋅⋅⋅线性相关. 向量组12,,,sβββ⋅⋅⋅线性无关,且可由12,,,nααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,sβββ⋅⋅⋅可由向量组12,,,nααα⋅⋅⋅线性表示,且12(,,,)sr βββ⋅⋅⋅12(,,,)nr ααα=⋅⋅⋅,则两向量组等价;p教材94,例10⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;10若()r A n =,A 的列向量线性无关,即:12,,,nααα⋅⋅⋅线性无关.√ 矩阵的秩的性质: ①()A O r A ≠⇔若≥1()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n②()()()TTr A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0 ④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()rrEO E O r A r A A OO OO ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.11⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70⑩()()A O O A r r A r B OB B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭()()AC r r A r B OB ⎛⎫≠+⎪⎝⎭121212,,,0,,,()(),,,A n n A n Ax A n Ax Ax r A r A Ax A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒当为方阵时当为方阵时有无穷多解0 表示法不唯一线性相关有非零解 可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线127()(),,,()()()1()n Ax r A r A Ax r A r A r A r A οββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⎧⇔≠⎪⇔=⇔<⎨⎪⇔+=⎩教材72讲义8性无关只有零解 不可由线性表示无解○注:Ax Ax ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=121112111212222212,,n n m m mn n m a a a x b a a a x bA x a a a x b β⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12,,2,,j jj mj j nαααα⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭11212(,,,)n n x xx αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =⇒()()r A r A β=⇒Ax β=一定有解,当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限. √ 判断12,,,sηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,sηηη都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,sξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组Ax ο=与Bx ο=同解⇔()()A r r A r B B⎛⎫== ⎪⎝⎭. √ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解⇔()()A r r A rB B βγ⎛⎫== ⎪⎝⎭.√ 矩阵m nA ⨯与l nB ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B=(左乘可逆矩阵P );101p教材矩阵m nA ⨯与l nB ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)r r c c ηηηηηηηη=+当(I)与(II)都是非齐次线性方程组时,设是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)r r c ηηηηξηξ=+-③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。

浙江省考研数学复习资料线性代数重要定理及推论总结

浙江省考研数学复习资料线性代数重要定理及推论总结

浙江省考研数学复习资料线性代数重要定理及推论总结线性代数是考研数学中的重要内容之一,掌握线性代数的重要定理及推论对于提高数学水平和应对考试具有重要意义。

在浙江省考研数学复习中,以下是一些线性代数的重要定理和推论的总结。

一、向量与矩阵1. 零向量的性质零向量加上任意向量都等于该向量本身,即0+a=a,其中a为任意向量。

2. 向量的倍数对于任意向量a和标量a,有aa=aa=(aa)a,其中a为标量。

3. 矩阵的加减性质矩阵加法满足交换律和结合律,即a+a=a+a,(a+a)+a=a+(a+a)。

矩阵减法满足a−a=a+(−a)。

4. 矩阵的转置矩阵的转置满足以下性质:(a^a)^a=a(a+a)^a=a^a+a^a(aa)^a=aa^a,其中a和a为矩阵,a为标量。

二、矩阵运算1. 矩阵乘法若矩阵a的列数等于矩阵a的行数,则a和a可以相乘,得到的乘积矩阵a的行数等于a的行数,列数等于a的列数。

(aa)a=a(aa)a(aa)=(aa)a=a(aa),其中a、a和a为矩阵,a为标量。

2. 矩阵的逆若矩阵a非奇异(即可逆),则存在矩阵a的逆矩阵a^−1,满足下列条件:aa^−1=a^−1a=a,其中a为单位矩阵。

3. 矩阵的行列式矩阵的行列式a表示为|a|,满足以下性质:若矩阵a可逆,则|a|≠0。

若矩阵a和a同阶,则|aa|=|a||a|。

若矩阵a的某一行(列)元素全为零,则|a|=0。

若矩阵a的两行(列)互换位置,则|a|=−|a|。

三、特征值与特征向量1. 特征值与特征向量的定义对于矩阵a和标量a,如果存在非零向量a使得aa=aa,则称a为矩阵a的特征值,a为对应于特征值a的特征向量。

2. 特征值与特征向量的性质特征向量和特征值之间的关系满足以下性质:aa=aa,则对于任意正整数a,有a^aa=a^aa。

a阶实对称矩阵a的特征值为实数,a阶复数对称矩阵a的特征值为复数。

特征值的乘法与特征向量的加法满足交换律,即(aa)a=a(aa)。

数二考研线代公式

数二考研线代公式

第一章1.1 行列式展开式1.1.1 定义1.1.2 按行按列展开1.1.3 上下三角行列式1.1.4 副对角线1.1.5 拉普拉斯展开式设A 是m 阶矩阵,B 是n 阶矩阵1.1.6 特征值形式1n D [a (n 1)b](a b)n a b bb b a bb b b ab b b b a -==+--1.2 公式BA AB A A A AA B A A Ak kA AA B A n n n n T =⇒======∏=-相似的特征值,则为均为方阵,以下n 1i ii 1*A ,B λλ 第二章2.1 矩阵运算2.1.1 矩阵乘法运算2.1.1.1.OAO OA AEA AE klABlB kA BC AC C B A ACAB C B A CAB BC A =====++=++=+=)()()()()()( 2.1.1.2.22222222B 2)(B 2B BA ))((B)(A BA++=+++≠+++=++=+≠A A E A AB A AB A B A B A AB 但一般2.1.1.3.C B AC AB ,)(r A O A AC,AB OB =⇒==⨯+≠>≠===≠>=则由矩阵,为但若或n A n m CB O A O AB2.1.1.4. 一个成立另三个成立,1111,,B A ----====B A B A B A[]βαT n n b b a a A A r n =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⇒= 111)(阶矩阵 其中Tα为矩阵中的第一列,β为第一列的倍数2.1.2 矩阵逆的运算2.1.2.1. 二阶矩阵逆的运算公式⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-a c b bc ad d c b d 1a 12.1.2.2.2.1.3 矩阵转置的运算T T A A)(λλ=2.1.4 矩阵伴随的运算2.1.5 矩阵的秩 n B r A r s n n m B r BA r A B r A r ≤+=⨯⨯==≤+≤+=≠==)()(,O AB B A )()(r )AB ())(),(min(r(AB)r(B)r(A)B)r(A r(A)r(kA)0,k r(A)A)r(A )r(A r(A)T T 则则矩阵,是矩阵,是若可逆,则若当2.1.6 分块矩阵运算⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡----11***11***)1(B )1(A )1(A 00B 00B O O A B A O A B O O B A O B O O A B A B A B A mn mn mn 分块矩阵:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡sr T 1r T s1T 11T sr s11r 11A A A A A A A A T 2.1.6.1. 矩阵分块乘法A B(1)A =B (2)A =B ⨯列组数行组数第k 列组含的列数第k 行组含的行数(3)把子块看做矩阵元素,矩阵运算规则仍可用2.1.7 矩阵乘法转化为方程组2.1.8 r(B)}min{r(A),<=r(C),C 则0,B 0,A 即,B 、A ,C =AB 若因为线性无关线性无关≠≠2.1.9 矩阵的高次幂∑=--=====⇒≠≠==n i i i TT n n n b a l A A l r A 111T ,)tr (A A 00A 1)A (n βαβαβααβ,,其中,阶矩阵,当为EE b A A bE A b A A AE b A A A Ab bA k k k k k nk k =⇒===⇒=⎩⎨⎧=====⇒==⇒=+-424k 424k 212k 22212A -E A 44A )3(bE A )2(A A )1()若()(若)()(,若,若 n n n i n i i n n n ni n i i n n n n B C B A C n A A bE A C nb E E A bA A E A AB A AB A B A B A +++=+=+++=+++=+++≠+++=++=+----B A B A BA AB )(A b )b (,b 2)b (B 2B BA ))((B)(A 1n 122222222)时(当但个简单的矩阵矩阵高次幂可以拆成两⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ=⇒--n n 11n 11A AP P A n k n P P P λλλλ ,存在可逆矩阵可相似对角化若2.2 幂零矩阵的性质性质1:A 为幂零矩阵的充分必要条件是A 的特征值全为0。

数学二线代公式

数学二线代公式

数学二线代公式
以下是部分数学二线性代数公式:
行列式展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和。

克莱姆法则:线性方程组如果有唯一解,则该解可以通过系数行列式除以系数行列式的各元素与其对应的代数余子式的乘积之和得出。

矩阵的秩:矩阵的秩等于它的行向量组的秩和列向量组的秩,即矩阵的秩等于它的行(列)向量的极大无关组中的向量个数。

线性方程组解的结构:如果线性方程组有解,则其解向量可以通过系数矩阵的行(列)向量组和常数向量的线性组合得到。

特征值和特征向量:如果一个矩阵A有n个线性无关的特征向量,则A有n个特征值,这些特征值可以通过行列式公式求得。

二次型:二次型可以通过矩阵表示,其标准形式可以通过正交变换得到。

以上公式仅供参考,建议查阅数学书籍或咨询专业人士获取更多信息。

考研线性代数公式速记大全

考研线性代数公式速记大全

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合nR 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注 ()()a b r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量87p 教材; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO B O B BOAAA BB OB O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1 (即:所有取自不同行不同列的n 个元素的乘积的代数和)⑤范德蒙德行列式:()1222212111112ni j nj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m nA ⨯()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:① 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号②1()()A E E A -−−−−→ 初等行变换③1231111213a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:mnm nA A A+= ()()m n mn A A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪ ⎪⎝⎭ ⇔i i A c β= ,(,,)i s = 1,2⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅= ⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ √ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A OC B B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫=⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B B B A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II) A B E X −−−−→ 初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示.向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示.⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<;m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n ααα 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B . 记作:A B =12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑬ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例10⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关. √ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 ()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n②()()()T T r A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()rrE O E O r A r A A O O O O ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70 ⑩()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭121212,,,0,,,()(),,,A n n A n Ax A n Ax Ax r A r A Ax A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒ 当为方阵时当为方阵时有无穷多解0表示法不唯一线性相关有非零解可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线127()(),,,()()()1()n Ax r A r A Ax r A r A r A r A οββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⎧⇔≠⎪⇔=⇔<⎨⎪⇔+=⎩教材72讲义8性无关只有零解不可由线性表示无解 ○注:AxAx ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭11212(,,,)n n x x x αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k kk k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =⇒()()r A r A β= ⇒Ax β=一定有解,当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β 和的上限.√ 判断12,,,s ηηη 是Ax ο=的基础解系的条件: ① 12,,,s ηηη 线性无关; ② 12,,,s ηηη 都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.本帖为考研加油站 和考研论坛 网友songhonger 原创,原创帖子地址 /viewthread.php?tid=2097349&page=1&extra=page%3D1√ 一个齐次线性方程组的基础解系不唯一.√ 若η*是Ax β=的一个解,1,,,s ξξξ 是Ax ο=的一个解⇒1,,,,s ξξξη* 线性无关 √ Ax ο=与Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组Ax ο=与Bx ο=同解⇔()()A r r A r B B ⎛⎫==⎪⎝⎭. √ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解⇔()()A r r A r B B βγ⎛⎫==⎪⎝⎭. √ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)r r c c ηηηηηηηη=+当(I)与(II)都是非齐次线性方程组时,设11122c c ξηη++是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)r r c ηηηηξηξ=+-③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。

考研数学《线性代数》考点知识点总结

考研数学《线性代数》考点知识点总结

n
aki Akj
k 1
Dij
D, 0,
当i 当i
j, n
j;

k 1
aik
Ajk
Dij
D, 0,
当i 当i
j, j; 其中ij
1, 0,
当i j, 当i j.
1 1 1 1
范德蒙德 行列式:
x1 Dn x12
x2 x22
x3 x32
x n 1 1
x n 1 2
x n 1 3
xn xn2 = (xi x j ) .证明用数学归纳法.
A
0
A2
0
A11
,若
A
0 ,则 A1
As
0
A
1 2
0
A
1 s
性质: A A1 A2 As ,且 Ai 0 (i 1,2, , s) ,则 A 0 .
行向量:
α1T
A mn
α
T 2

α
T m
αiT (ai1, ai2, , ain )
列向量:
A (a1, a2 , , an )
线性方程组有解,称它相容;无解,就称 它不相容.
(iii)有无限多解的充分必要条件是 R( A) R( A, b) n .
线性方程组 Ax b 有解的充要条件是 R(A) R(A, b) .
n 元齐次线性方程组 Ax 0 有非零解的充要条件是 R(A) n .
矩阵方程 AX B 有解的充要条件是 R(A) R(A, B) .
定理 2: n 阶行列式可定义为 D (1)t a a p11 p2 2 apnn = (1)t a1p1 a2 p2 anpn .
1.D=DT,DT 为 D 转置行列式.(沿副对角线翻转,行列式同样不变)

考研数学二公式高数线代.技巧归纳

考研数学二公式高数线代.技巧归纳

高等数学公式一、常用的等价无穷小当x →0时x ~sin x ~tan x ~arcsin x ~arctan x ~ln (1+x ) ~ e x -1a x -1~x ln a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1-cos x ~21x 2增加x -sin x ~61x 3 对应 arcsin x –x ~ 61x 3 tan x –x ~ 31x 3 对应 x - arctan x ~ 31x 3二、利用泰勒公式e x = 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=cos x = 1 – +!22x o (2x ) ln (1+x )=x – +22x o (2x )导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x xctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

最新考研数学:线性代数必考公式与定理资料

最新考研数学:线性代数必考公式与定理资料

2017考研数学:线性代数必考公式与定理()12121211121,,...,2122212,,...,12 (1)..................n nnn i i i ni i ni i i i n n nna a a a a a a a a a a a τ=-∑基本性质性质一:如果一个行列式的某一行全为0,则行列式的值等于0.性质二:如果一个行列式的某两行元素对应成比例,则行列式的值等于0.性质三:将行列式的任意两行互换位置后,行列式改变符号。

性质四:将行列式的某一行乘以一个常数k 后,行列式的值变为原来的k 倍。

性质五:将行列式的一行的k 倍加到另一行上,行列式的值不变。

性质六:如果行列式某一行的所有元素都可以写成两个元素的和,则该行列式可以写成两个行列式的和,这两个行列式的这一行分别为对应两个加数,其余行与原行列式相等。

即111211112111121212222122221222112212121212..........................................................................................n n nn n n i i i i in ini i in i i n n nnn n nn a a a a a a a a a a a a a a a a a a a b a b a b a a a b b a a a a a a =++++12..................in n n nnb a a a性质七:将行列式的行和列互换后,行列式的值不变,也即111211121121222122221212..........................................n n nn n n nnnn nna a a a a a a a a a a a a a a a a a =。

线性代数重要公式定理大全

线性代数重要公式定理大全

线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。

在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。

在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。

下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。

一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。

2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。

(2)行列式相邻行(列)对换,行列式的值不变。

(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。

(4)互换行列式的两行(列),行列式的值不变。

(5)若行列式的行(列)的元素都是0,那么行列式的值为0。

(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。

3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。

(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。

(3)行列式的转置等于行列式的值不变。

二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。

考研数学常用公式整理与记忆方法

考研数学常用公式整理与记忆方法

考研数学常用公式整理与记忆方法考研数学是许多考生备战考研的一大难点,其中最重要的就是掌握数学公式。

本文将对考研数学常用公式进行整理,并分享记忆方法,帮助考生们更好地掌握这些公式。

一、线性代数1. 行列式公式:- 二阶行列式:$\begin{vmatrix}a&b\\c&d\end{vmatrix} = ad - bc$- 三阶行列式:$\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh$2. 矩阵公式:- 矩阵乘法:$AB = [a_{ij}]_{m×n} \cdot [b_{ij}]_{n×p} = [c_{ij}]_{m×p}$,其中$c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$3. 特征值与特征向量:- 矩阵特征方程:$|A - λI| = 0$,其中$A$为矩阵,$λ$为特征值,$I$为单位矩阵4. 向量与空间:- 内积:$\vec{a} · \vec{b} = |\vec{a}| |\vec{b}| \cosθ$,其中$\vec{a}$和$\vec{b}$为向量,$θ$为夹角- 外积:$\vec{a} ×\vec{b} = |\vec{a}| |\vec{b}| \sinθ \vec{n}$,其中$\vec{n}$为法向量二、高等数学1. 极限公式:- 常用极限:$\lim_{x→∞} (1 + \frac{1}{x})^x = e$,$\lim_{x→0} \frac{\sin x}{x} = 1$2. 导数与微分:- 导数定义:$f'(x) = \lim_{\Delta x→0} \frac{f(x+\Delta x) -f(x)}{\Delta x}$- 常见导数:$(x^n)' = nx^{n-1}$,$(e^x)' = e^x$,$(\ln x)' = \frac{1}{x}$3. 积分公式:- 不定积分:$\int f(x) dx = F(x) + C$,其中$F'(x) = f(x)$- 定积分:$\int_a^b f(x) dx = F(b) - F(a)$,其中$F'(x) = f(x)$4. 泰勒展开:- 函数$f(x)$在$x=a$处的$n$次泰勒展开式:$f(x) = f(a) +f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$三、概率统计1. 概率公式:- 事件发生的概率:$P(A) = \frac{n(A)}{n(S)}$,其中$A$为事件,$n(A)$为事件$A$发生的次数,$n(S)$为样本空间的大小 - 条件概率:$P(A|B) = \frac{P(A∩B)}{P(B)}$,其中$A$与$B$为两个事件,$P(A∩B)$为事件$A$与事件$B$同时发生的概率2. 随机变量:- 离散型随机变量期望:$E(X) = \sum_{i} x_i P(X=x_i)$,其中$X$为随机变量,$x_i$为取值,$P(X=x_i)$为对应取值的概率 - 连续型随机变量期望:$E(X) = \int_{-\infty}^{\infty} xf(x) dx$,其中$X$为随机变量,$f(x)$为概率密度函数3. 分布定律:- 二项分布:$P(X=k) = C_n^k p^k (1-p)^{n-k}$,其中$X$为二项分布随机变量,$n$为试验次数,$p$为每次试验成功的概率 - 正态分布:$P(a ≤ X ≤ b) = \int_{a}^{b}\frac{1}{\sqrt{2π}\sigma} e^{-\frac{(x-μ)^2}{2σ^2}} dx$,其中$X$为正态分布随机变量,$μ$为均值,$σ$为标准差四、数学分析1. 一元函数极值:- 极值判定条件:若$f'(x_0) = 0$,且$f''(x_0)≠0$,则$f(x)$在$x=x_0$处取极值- 极值判定定理:若$f'(x_0) = 0$,且$f''(x)$在$x=x_0$的某一领域内恒为正(负),则$f(x)$在$x=x_0$处取极小(大)值2. 多元函数极值:- 极值判定条件:若所有一阶偏导数为0,且海森矩阵$H(x_0)$正定(负定),则$f(x)$在$x=x_0$处取极小(大)值以上仅为一部分考研数学常用公式,考生还需对更多公式进行系统学习与记忆。

考研数学线代定理公式总结

考研数学线代定理公式总结

考研数学线代定理公式总结2概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或○注:全体n 维实向量构成的集合nR 叫做n 维向量空间.()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注()()a b r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-34等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO BO BBO A AA B B O B O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a O a O ---*==-K N N1 (即:所有取自不同行不同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1222212111112n i j nj i nn n n nx x x x x x x x x x x ≤<≤---=-∏L L L M M M L111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L称为m n ⨯矩阵.记作:()ij m nA a ⨯=或m nA ⨯5()1121112222*12n Tn ijn n nn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪⎪⎝⎭L L M M M L ,ijA 为A 中各个元素的代数余子式.√ 逆矩阵的求法: ① 1A AA*-= ○注:1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 L L 主换位副变号②1()()A E E A -−−−−→MM 初等行变换③1231111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:mn m nA A A += ()()m nmnAA =√ 设,,m nn s AB ⨯⨯A的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭L L L M M M L⇔i iA c β= ,(,,)i s =L 1,2⇔iβ为iAx c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=L ⇔12,,,sc c c L 可由12,,,nααα⋅⋅⋅线性表示.即:C 的列向量能由A的列向量线性表示,B 为系数矩阵.6同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即:1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M M M M L ⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L√ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. √ 分块矩阵的转置矩阵:TTT T T A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A O A O CB B CAB ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭ 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122n n n A A A ⎛⎫=⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭*(1)(1)mn mn A A B BB A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)7A B E X −−−−→MM 初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材.⑥ 向量组12,,,nααα⋅⋅⋅中任一向量iα(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,nααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示.向量组12,,,nααα⋅⋅⋅线性无关⇔向量组中每一个向量iα都不能由其余n -1个向量线性表示.⑧ m 维列向量组12,,,nααα⋅⋅⋅线性相关()r A n ⇔<;m 维列向量组12,,,nααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,nααα⋅⋅⋅线性无关,而12,,,,nαααβ⋅⋅⋅线性相关,则β可由12,,,nααα⋅⋅⋅线性表示,且表示法唯一.⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行8的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r.记作()r A r =向量组12,,,nαααL 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)nr αααLA 经过有限次初等变换化为B . 记作:A B =%912,,,nααα⋅⋅⋅和12,,,nβββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n nαααβββ⋅⋅⋅=⋅⋅⋅%⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)nnr r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)nnr αααβββ⋅⋅⋅⋅⋅⋅⇒矩阵A 与B 等价.⑬ 向量组12,,,sβββ⋅⋅⋅可由向量组12,,,nααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)nr ααα⋅⋅⋅.⑭ 向量组12,,,sβββ⋅⋅⋅可由向量组12,,,nααα⋅⋅⋅线性表示,且s n >,则12,,,sβββ⋅⋅⋅线性相关. 向量组12,,,sβββ⋅⋅⋅线性无关,且可由12,,,nααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,sβββ⋅⋅⋅可由向量组12,,,nααα⋅⋅⋅线性表示,且12(,,,)sr βββ⋅⋅⋅12(,,,)nr ααα=⋅⋅⋅,则两向量组等价;p教材94,例10⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;10若()r A n =,A 的列向量线性无关,即:12,,,nααα⋅⋅⋅线性无关.√ 矩阵的秩的性质: ①()A O r A ≠⇔若≥1()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n②()()()TTr A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0 ④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()rrEO E O r A r A A OO OO ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型.11⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70⑩()()A O O A r r A r B OB B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭()()AC r r A r B OB ⎛⎫≠+⎪⎝⎭121212,,,0,,,()(),,,A n n A n Ax A n Ax Ax r A r A Ax A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒L L M L 当为方阵时当为方阵时有无穷多解0 表示法不唯一线性相关有非零解 可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线127()(),,,()()()1()n Ax r A r A Ax r A r A r A r A οββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⎧⇔≠⎪⇔=⇔<⎨⎪⇔+=⎩M L M M 教材72讲义8性无关只有零解 不可由线性表示无解○注:Ax Ax ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=L121112111212222212,,n n m m mn n m a a a x b a a a x bA x a a a x b β⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M M M M L12,,2,,j jj mj j nαααα⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭L M 11212(,,,)n n x xx αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L M线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-=L L 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩L 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =⇒()()r A r A β=M⇒Ax β=一定有解, 当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A βM和的上限. √ 判断12,,,sηηηL 是Ax ο=的基础解系的条件:① 12,,,sηηηL 线性无关;② 12,,,sηηηL 都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一.√ 若η*是Ax β=的一个解,1,,,s ξξξL 是Ax ο=的一个解⇒1,,,,sξξξη*L 线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组Ax ο=与Bx ο=同解⇔()()A r r A r B B⎛⎫== ⎪⎝⎭. √ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解⇔()()A r r A rB B βγ⎛⎫== ⎪⎝⎭M M.√ 矩阵m nA ⨯与l nB ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B=(左乘可逆矩阵P );101p教材矩阵m nA ⨯与l nB ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)r r c c ηηηηηηηη=+M当(I)与(II)都是非齐次线性方程组时,设是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)r r c ηηηηξηξ=+-M③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。

2022年考研数学线性代数:必背公式大全

2022年考研数学线性代数:必背公式大全

考研数学线性代数是考研数学中的重要部分,掌握好线性代数可以是考研数学成绩大大提升。

1、行列式的性质
2、行列式常用公式
3、伴随矩阵的性质公式
4、逆矩阵的性质公式及解法
5、矩阵的秩定理
定理2
初等变换不改变A的秩。

行阶梯形矩阵的秩等于其非零行数。

注:若零行(若有的话)位于最低行,且每行左起第一个非零元素所在的列下方元素都是0的话,称这种句子为行阶梯矩阵。

任何矩阵都可以通过初等行变换化为行阶梯矩阵。

6、矩阵的秩性质
7、判定具体向量组相关与无关的定理与推论
8、抽象向量组证明无关的解法
9、特征值与特征向量的性质
10、相似矩阵的性质
11、矩阵相似对角化
12、正定定理
13、等价、相似与合同。

考研数学二公式大全pdf

考研数学二公式大全pdf

考研数学二公式大全pdf1. 介绍作为考研数学二的必修科目,数学考试的关键在于掌握公式。

公式是数学的基础,数学公式的掌握程度也是一个考生数学水平的重要体现。

本文将为考研数学二的考生提供一份全面的数学公式大全,旨在帮助考生打好数学基础,更好地备考数学考试。

2. 常用公式2.1 几何公式1. 三角形的面积公式:$$S=\frac{1}{2}ab\sin{C}$$2. 三角函数公式:$$\sin{A}=\frac{a}{c},\cos{A}=\frac{b}{c},\tan{A}=\frac{a }{b}$$3. 勾股定理:$$a^2+b^2=c^2$$4. 正弦定理:$$\frac{a}{\sin{A}}=\frac{b}{\sin{B}}=\frac{c}{\sin{C}}$$5. 余弦定理:$$c^2=a^2+b^2-2ab\cos{C}$$2.2 微积分公式1. 导数公式:$$\frac{d}{dx}[f(x)]'=\frac{d}{dx}f'(x)=f''(x)$$2. 积分公式:$$\int{f(x)}dx=F(x)+C$$3. 微积分基本公式:$$\frac{d}{dx}\int_{a}^{x}f(t)dt=f(x)$$2.3 线性代数公式1. 向量的数量积公式:$$\boldsymbol{a}\cdot \boldsymbol{b}=ab\cos{\theta}$$2. 向量的向量积公式:$$\boldsymbol{a}\times\boldsymbol{b}=\begin{vmatrix}i&j&k\\a_1&a_2&a_3\\b_1&b_2&b_3 \end{vmatrix}$$3. 矩阵的转置公式:$$\boldsymbol{A}^T=[a_{ij}]^T=[a_{ji}]$$4. 矩阵的行列式公式:$$\det{\boldsymbol{A}}=\begin{vmatrix}a_{11}&a_{12}&\cdot s&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{vmatrix}$$2.4 概率统计公式1. 期望的线性性质:$$E(X+Y)=E(X)+E(Y)$$2. 方差的性质:$$Var(aX+b)=a^2Var(X)$$3. 正态分布的公式:$$f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp[-\frac{(x-\mu)^2}{2\sigma^2}]$$4. 卡方分布的公式:$$f(x)=\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\fr ac{n}{2}-1}exp(-\frac{x}{2})$$3. 总结本文列举了常用的数学公式,包括几何公式、微积分公式、线性代数公式和概率统计公式,这些公式对于考研数学二的考生来说是必备的知识点。

数学考研必备公式速记方法

数学考研必备公式速记方法

数学考研必备公式速记方法考研数学是许多考生的难点,公式多、概念复杂,记不住是常见的问题。

在备战考研数学过程中,熟练掌握公式是非常重要的一部分。

本文将为大家介绍几种数学考研必备公式的速记方法,帮助大家更好地记忆并应用这些公式。

一、线性代数公式1. 矩阵转置:(A^T)ij = Aji2. 矩阵求逆:若矩阵A可逆,则AA^{-1} = I,其中I为单位矩阵。

快速记忆方法:矩阵转置可记为括号外的T,矩阵求逆可记为括号外的-1。

二、微积分公式1. 导数定义:f'(x) = lim(h->0) (f(x+h)-f(x))/h2. 常见导数表达式:- 幂函数:(x^n)' = nx^(n-1)- 指数函数:(a^x)' = a^x ln(a)- 对数函数:(ln(x))' = 1/x- 三角函数:(sin(x))' = cos(x), (cos(x))' = -sin(x)快速记忆方法:导数定义中的差分项可以记为分数形式,各类函数的导数公式尽量熟记为模板,通过做题巩固记忆。

三、概率论与数理统计公式1. 条件概率公式:P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A与事件B同时发生的概率。

2. 期望公式:E(X) = Σx·P(X=x),其中X为离散随机变量,x为X可能取到的值。

快速记忆方法:条件概率公式可记为等号两边各有一个P,期望公式可记为等号左边为E,右边为累加求和。

四、高等数学公式1. 泰勒展开公式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...2. 微分公式:(uv)' = u'v + uv',(u/v)' = (u'v - uv')/v^2快速记忆方法:泰勒展开公式与微分公式的系数需要熟记,可将其视为模板,在具体计算时代入对应的函数和变量。

甘肃省考研数学复习必备公式速查手册

甘肃省考研数学复习必备公式速查手册

甘肃省考研数学复习必备公式速查手册数学作为考研的重要科目之一,需要考生积累大量的公式和定理,并能熟练运用。

为了帮助甘肃省考研的数学考生更好地复习和备考,本文将提供一份数学复习必备的公式速查手册。

以下是各个数学分支的重要公式,供考生参考。

1. 高等数学1.1 极限与连续1.1.1 极限①常用极限:- $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$- $\lim_{x\to0}\frac{\sin x}{x}=1$- $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$- $\lim_{x\to a}\frac{\sin x-\sin a}{x-a}=\cos a$- $\lim_{x\to0}\frac{1-\cos x}{x^2}=\frac{1}{2}$②泰勒展开:- $e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$- $\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots$- $\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots$1.1.2 导数与微分①基本导数公式:- $(C)'=0$ (C为常数)- $(x^\mu)'=\mu x^{\mu-1}$ ($\mu$为常数)- $(e^x)'=e^x$- $(\ln x)'=\frac{1}{x}$②基本微分公式:- $d(e^x)=e^xdx$- $d(\ln x)=\frac{1}{x}dx$- $d(\sin x)=\cos xdx$- $d(\cos x)=-\sin xdx$1.2 微积分1.2.1 积分①基本积分表:- $\int x^\mu dx=\frac{x^{\mu+1}}{\mu+1}$ ($\mu\neq-1$)- $\int e^xdx=e^x$- $\int \frac{1}{x}dx=\ln|x|$- $\int \sin xdx=-\cos x$- $\int \cos xdx=\sin x$②定积分:- $\int_a^b f(x)dx=F(b)-F(a)$ (F为f的一个原函数)1.2.2 微分方程①常见的微分方程:- $dy=y'dx$ (分离变量法)- $y'=f(x,y)$ (一阶齐次方程)- $\frac{dy}{dx}+P(x)y=Q(x)$ (一阶线性非齐次方程)2. 线性代数2.1 行列式2.1.1 二阶行列式:- $D=\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$2.1.2 三阶行列式:$D=\begin{vmatrix}a_1&a_2&a_3\\b_1&b_2&b_3\\c_1&c_2&c_3\end {vmatrix}=a_1b_2c_3+a_2b_3c_1+a_3b_1c_2-a_3b_2c_1-a_1b_3c_2-a_2b_1c_3$2.2 矩阵2.2.1 矩阵运算:①矩阵加法:$A+B=C$②矩阵减法:$A-B=C$③矩阵数乘:$kA=C$④矩阵乘法:$AB=C$2.2.2 逆矩阵:若$AB=BA=E$,则称B是A的逆矩阵,记为$A^{-1}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

性质 3 行列式的某一行(列)中所有的元素都乘以同一数 k ,等于用数 k 乘此行列式.
推论 行列式中某一(列)的所有元素的公因子可以提到行列式符号的外面.
性质 4 行列式中如果有两行(列)元素成比例,则此行列式等于零.
性质 5 若行列式的某一列(行)的元素都是两数之和,如第 i 列的元素都是两数之和:
(2)若 A 可逆,则 A−1 亦可逆,且 ( A−1)−1 = A . (3)若 A 可逆,数 λ ≠ 0 ,则 λ A 可逆,且 (λ A)−1 = 1 A−1 .
λ (4)若 A, B 为同阶矩阵且均可逆,则 AB 亦可逆,且 ( AB)−1 = B−1A−1 .
(5)若 A 可逆,则 AΤ 亦可逆,且 ( AΤ )−1 = ( A−1)Τ .
A = O 或 B = O ;A2 = O
A=O;
109
AB = AC
B = C . 但 是 A, B 为 方 阵 , 则 有 | AB |=| BA |=| A || B | ;
| AB |= 0 ⇔| A |= 0 或| B |= 0 .
2.逆矩阵的性质
(1)若矩阵 A 是可逆的,则 A−1 是唯一的.
定理 设非齐次线性方程组 Ax = b ,其系数矩阵的秩 r( A) = r(r > 0) ,增广矩阵的秩
第二部分 线性代数
一、行 列 式
1. 行列式的重要定理及公式
定理 对换改变 n 元排列的奇偶性. 定理 任一 n 元排列与排列1 2 3 n 可以经过一系列对换互变,并且所作对换的次数 与这个 n 元排列有相同的奇偶性.
2.行列式的基本性质 性质 1 行列式与它的转置行列式相等. 性质 2 互换行列式的两行(列),行列式变号. 推论 如果行列式有两行(列)完全相同,则此行列式等于零.
112
(4.1)有解,而且当 r = n 时有唯一解,当 r < n 时有无穷多解。 4.齐次线性方程组 Ax = 0 解的判别别
齐次线性方程组一定有解(至少有零解)。
定理 齐次线性方程组 Ax = 0 有非零解 ⇔ r( A) < n ⇔ A 的列向量线性相关。
推论 1 当 m < n (即方程的个数<未知数的个数)时,齐次线性方程组 Ax = 0 必有非
=
D2 D
,
,
xn
=
Dn D

a11 Dj = a21
a1, j−1 b1 a1, j+1 a2, j−1 b2 a2, j+1
a1n a2n ,
an1
an, j−1 bn an, j+1
ann
即 Dj 是把 D 中第 j 列 x j 的系数换成常数项所得到的行列式。
3.初等行变换解线性方程组
给定 n 个未知数 m 个方程组(4.1),对它的增广矩阵 A 施行初等行变换,得到阶梯形
| AB |=| BA |=| A | ⋅ | B |=| B | ⋅ | A | .
(3)设 A 为 n 阶矩阵,则| kA |= k n | A | ,切记| kA |≠ k | A | .
3.行列式的重要公式与结论 (1)上(下)三角行列式等于其主对角线上元素的乘积,即
107
a11 a12 a22
(4)若 A ≠ O ,则 r( A) ≥ 1;
(5)若 A 可逆,则 r( AB) = r(B) ,若 B 可逆,则 r( AB) = r( A) ;
(6)若 A, B 为两个阶数相同的矩阵,则 r( A ± B) ≤ r( A) + r(B) ;
⎧n, 如果r( A) = n, (7) r( A∗) = ⎪⎨1, 如果r( A) = n −1,
3. 向量组与矩阵的秩的重要定理与公式 定理 设 β1, β2 , , βt 可由α1,α2 , ,αs 线性表出。若 r(α1,α2 , ,αs ) = r, r(β1, β2 , , βt ) = p ,则 p ≤ r 。
推论 如果向量组(I),(II)是两个等价的向量组,则 r(I ) = r(II ) ,即两个等价的向
矩阵
⎡c11 c12
c1r
c1n d1 ⎤
⎢ ⎢
c12
c2r
c2n
d2
⎥ ⎥⎢Biblioteka ⎥⎢A⎯初⎯等⎯行变⎯换 →
⎢ ⎢
0

crr 0
⎥ crn dr ⎥
0
d
r
+1
⎥ ⎥

0
0 0⎥




⎢⎣
0
0 0 ⎥⎦
如果 dr+1 ≠ 0(或r( A) ≠ ( A)) ,方程组(4.1)无解;如果 dr+1 = 0(或r( A) = r( A)) ,方程组
⎩⎪0, 如果r( A) < n −1
( n 为 n 阶方阵).
三、向 量
1.关于线性相关性的重要定理
定理 1 向量组 a1, a2 , , am 线性相关 ⇔ 向量组中至少有一个向量可由其余的 m −1 个
向量线性表出。
定理 2 若向量组 a1, a2 , , ar 线性无关;而向量组 a1, a2 , , ar ,β 线性相关,则 β 可
(ⅳ) ( AB)Τ = BΤ AΤ
(5)共轭矩阵满足下述运算规律:
(ⅰ) A + B = A + B ; (ⅱ) λ A = λ A ; (ⅲ) AB = AB .
以上 A, B 为复矩阵, λ 为复数,且运算都是可行的.
注 (1)不同型的零矩阵是没的.
(2)一般情况下 AB ≠ BA ;AB = O
零解。
推论 2 当 m = n 时,齐次线性方程组有非零解的充分必要条件是
a11 a12 | A |= a21 a22
a1n a2n = 0 。
am1 am2
amn
定理 设齐次线性方程组 Ax = 0 的系数矩阵的秩 r( A) = r < n ,则其基础解系由 n − r
个解向量构成。
5.非齐次线性方程组 Ax = b 解的判别
定理 6 n 个 n 维向量组线性无关 ⇔ 由向量组所构成的矩阵对应的行列式 ≠ 0 。
2.等价向量组的重要结论 注意:研究两个向量组是否等价,通常是通过研究它们的极大无关组是否等价入手。 定理 7 向量组的任意两个极大无关组等价。 定理 8 两个等价的线性无关组所含向量的个数相等。
定理 9 如果向量组α1,α2 , ,αs 线性无关,且它可由向量组 β1, β2 , , βt 线性表示, 则s≤t 。
(ⅲ)数与乘积的结合律 (kA)B = A(kB) = k( AB) .
(3)方阵幂满足下列运算规律:
Ak Al = Ak+l , ( Ak )l = Akl , k, m 为正整数.
(4)矩阵的转置满足下列运算规律:
(ⅰ) ( AΤ )Τ = A ; (ⅱ) ( A + B)Τ = AΤ + BΤ ; (ⅲ) (λ A)Τ = λ AΤ ;
量组有相同的秩。
定理 设 A 为矩阵。如果 r( A) = r ,则 A 中有 r 个线性无关的列向量,而其他列向量
都是这 r 个线性无关列向量的线性组合,也就是 r( A) = A 的列秩。
一般地, r( A) = A 的行秩 = A 的列秩。
4.施密特正交化方法
曲线性无关向量组α1,α2 , ,αs ,构造正交向量组 β1, β2 , , βs 的施密特正交化方法为
(6)| kA |= k n | A | ( A 为 n 阶方阵).
(7)设 A, B 为同阶方阵,则| AB |=| A || B | ,注意| A + B |≠| A | + | B | .
(8)设 A∗ 为 A 的伴随矩阵, Aij 为 aij 的代数余子式,
⎡ A11 A21
A∗
=
⎢ ⎢
A12
(xi − x j ) ,
n≥i> j≥1
x x n−1
n−1
1
2
xn−1 n
其中记号“ Π ”表示全体同类因子的乘积.
二、矩 阵
1.矩阵的运算规律 (1)矩阵的加法和数乘运算满足下列运算规律:
(ⅰ)交换律 A + B = B + A .
(ⅱ)结合律 ( A + B) + C = A + (B + C) , k(lA) = (kl) A .
A ∗ AO
=
=| A || B | ,
OB ∗B

AO =
A = (−1)mn | A || B | .
BO B ∗
(4)设 A 是 n 阶方阵, AT 为 A 的转置矩阵,用 | A | ,| AT | 表示对应 n 阶方阵的行列
式,则有
| A |=| AT | .
(5)设方阵 A 可逆,则| A−1 |= 1 . | A|
β1
=
α1, β2
=
α2

(α 2 β1 ) (β1, β1)
β1,
βi
= αi

(α i β1 ) (β1, β1)
β1


(αi βi−1) (βi−1, βi−1)
βi −1 (i
=
3,
4,
, s)
且这样构造的向量组 β1, β2 , , βs 与原向量组α1,α2 , ,αs 等价.
111
四、线性方程组
A22

⎢ ⎣
A1n
A2n
An1 ⎤
An
2
⎥ ⎥

Ann
⎥ ⎦
则 | A∗ |=| A |n−1 .
相关文档
最新文档