分子遗传学课件- 第一章 遗传物质

合集下载

遗传学第一至四章课件

遗传学第一至四章课件

基因是遗传信息的基本单位,负责编码蛋白质或RNA分子。根据功能和结构特征,基因可分为编码蛋白质的基因和编码RNA的基因。
总结词
基因是DNA分子上具有遗传效应的片段,负责携带遗传信息,控制生物体的性状。基因通过转录和翻译过程,将遗传信息传递给蛋白质或RNA分子,从而影响生物体的功能。根据功能和结构特征,基因可分为编码蛋白质的基因和编码RNA的基因,如结构基因、调节基因、干扰基因等。
基因表达的启动调节
转录和翻译水平的调节涉及对mRNA的稳定性、翻译效率和蛋白质的修饰等方面的调节。
转录和翻译水平的调节
表观遗传学调节是指通过DNA甲基化、组蛋白修饰和非编码RNA等方式对基因表达的调节。
表观遗传学调节
基因表达的调控
THANKS
感谢您的观看。
详细描述
基因的概念与分类
总结词
基因的表达受到多种因素的调控,包括转录和翻译水平的调控。转录调控主要涉及启动子、增强子等调控元件的作用,而翻译调控则与mRNA的稳定性、蛋白质的修饰等有关。
详细描述
基因的表达过程受到多种因素的调控,包括转录和翻译水平的调控。在转录水平上,基因的表达受到启动子、增强子等调控元件的调节,它们可以影响转录的起始和效率。此外,转录因子、miRNA等也可以调控基因的表达。在翻译水平上,mRNA的稳定性、蛋白质的修饰等也可以影响基因的表达。这些调控机制对于细胞内不同组织、不同发育阶段以及应对不同环境刺激时的基因表达具有重要意义。
孟德尔遗传定律
染色体变异
染色体变异包括染色体结构变异和数目变异,对生物体的遗传特征产生影响。
染色体变异对生物体的影响
染色体变异可能导致生物体出现异常表型,甚至引起疾病。
连锁遗传
染色体上相邻基因一起遗传的现象称为连锁遗传。

细胞与分子遗传学

细胞与分子遗传学

细胞和分子遗传学第一章绪论1. 遗传:生物信息从上代往下代传递2. 遗传学:研究遗传规律的科学3. 基因组Genome : 一整套染色体上的所有遗传物质4. 基因组学Genomics: 研究基因组的科学,包括研究分析核酸序列、基因成分、基因结构和基因数目.5. 细胞遗传学: 从细胞学和遗传学发展起来的交叉学科,它涉及染色体的形态、结构、数目、功能和运动等特征,以及这些特征的各种变异对遗传传递、重组、表达与调控的作用和影响,也涉及染色体外的遗传因子。

以染色体遗传为研究核心。

6. FISH(fluorescent in situ hybridization):荧光原位杂交7. 原位杂交:是一项利用标记的DNA或RNA探针直接在染色体、细胞或组织水平定位特定靶核酸序列的分子细胞遗传学技术。

8. FISH工作原理:用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行特异性结合,形成可被检测的杂交双链核酸。

由于DNA分子在染色体上是沿着染色体纵轴呈线性排列,因而可以将探针直接与染色体进行杂交从而将特定的基因在染色体上定位。

与传统的放射性标记原位杂交相比,荧光原位杂交具有快速、检测信号强、杂交特性高和可以多重染色等特点。

9. FISH的应用:⑴位点特异性探针:能与染色体的特定部位杂交;已经分离出一段基因的一小部分,若要确定这段基因位于哪个染色体,就准备这段基因的探针并观察该探针与哪个染色体杂交。

⑵整个染色体探针:能分别与染色体纵轴的不同序列杂交的很短的探针的集合。

用这些探针库能画出全部染色体并产生核型谱带,再进行核型分析,用于检测染色体异常10.原位杂交的种类:⑴GISH(Genomic in situ hybirdization)——以基因组为探针(整个染色体)。

⑵FISH(Fragment in situ hybridization)——以特定的基因为探针(基因片段)。

⑶mFISH (multicolor FISH)——利用不同颜色的荧光素标记不同的探针。

分子遗传学第一章

分子遗传学第一章
(1).遗传(heredity):亲子间的相似现象。 (1).遗传( ):亲子间的相似现象。 ):亲子间的相似现象 “种瓜得瓜、种豆得豆” 种瓜得瓜、种豆得豆” (2).变异(variation):个体之间的差异。 ):个体之间的差异 (2).变异( ):个体之间的差异。 “母生九子,九子各别” 母生九子,九子各别” (3).遗传和变异是一对矛盾。 (3).遗传和变异是一对矛盾。 (4).遗传、变异和选择是生物进化和新品种选育的 (4).遗传、变异和选择是生物进化和新品种选育的 (5).遗传和变异的表现与环境不可分割。 (5).遗传和变异的表现与环境不可分割。 环境不可分割
大连水产学院 分子遗传学第一章
是遗传学
24
3.基因突变方面 3.基因突变方面
1927年穆勒和1928年斯塔德勒就用X 1927年穆勒和1928年斯塔德勒就用X射线等诱发了果蝇 年穆勒和1928年斯塔德勒就用 和玉米的基因突变, 和玉米的基因突变,但是在此后一段时间中对基因突 变机制的研究进展很慢, 变机制的研究进展很慢,直到以微生物为材料广泛开 突变机制研究和提出DNA DNA分子双螺旋模型以后才取 展,突变机制研究和提出DNA分子双螺旋模型以后才取 得显著成果。例如碱基置换理论便是在T4 碱基置换理论便是在T4噬菌体的诱 得显著成果。例如碱基置换理论便是在T4噬菌体的诱 变研究中提出的,它的根据便是DNA DNA复制中的碱基配对 变研究中提出的,它的根据便是DNA复制中的碱基配对 原理。 原理。
大连水产学院
分子遗传学第一章
9
2.遗传学研究的对象: 2.遗传学研究的对象: 遗传学研究的对象
以微生物(细菌、真菌、病毒)、 以微生物(细菌、真菌、病毒)、 植物和动物以及人类为对象,研究其 植物和动物以及人类为对象,研究其 遗传变异规律。 遗传变异规律

遗传学课件全部ppt课件

遗传学课件全部ppt课件

图 2-5 人类染色体核型
二、染色体数目
就一物种,其染色体数目是恒定的 表2-1 (P14)
A染色体:正常染色体
B染色体:额外染色体、超数染色 体、副染色

第三节 裂
分裂(直接) 细胞分裂
分裂
细胞的有丝分 无丝 有丝
图 2-6 细胞有丝分裂周期
因主要控制
中的关键蛋
合成 基因控制 细胞周期
第一类基 细胞周期 白质或酶
遗传学研究的任务
现象、规律
遗传学
因、物质基础
遗传 原
变异 育种实践
指导
2 遗传学发展简史
十八世纪下半叶和十九世纪上半叶 拉马克认为环境条件的改变是生物变异的根本原因 提出器官的用进废退和获得性状遗传等学说 达尔文发表了《物种起源》 提出自然选择和人工选择的进化学说
↓ 孟德尔(Mende1,G. J.,1822 1884) 18561864年从事豌豆杂交试验 1866年发表“植物杂交试验”论文 提出分离和独立分配两个遗传基本规律
第三章 遗传物质的分子基础
第一节 DNA作为主要遗传物质 的证据
分子遗传学的大量直接和间 接的证据,说明DNA是主要的 遗传物质,而在缺乏DNA的某 些病毒中,RNA就是遗传物质
一、间接证据
DNA含量、代谢、结构、染色体 共有等
二、直接证据
1、细菌的转化 肺炎双球菌两种类型:
光滑型(S型): I S、II S、 III S
普通遗传学
授课教案
第一章 绪 言
1 遗传学研究的对象和任务 2 遗传学发展简史 3 遗传学在科学和生产发展
中的作用
1 遗传学研究的对象和任务
现象、规律
遗传学
因、物质基础

遗传学课件全部完整版

遗传学课件全部完整版
与单基因性状的区别
多因子复杂性状受多个基因控制,每个基因作用较小,且易受环境 影响;而单基因性状通常受单一基因控制,遗传效应显著。
研究意义
揭示多因子复杂性状的遗传机制,为疾病预测、诊断和治疗提供理论 依据。
数量性状遗传学原理
数量性状定义
01
表现为连续变异的性状,如身高、体重等。
遗传基础
02
数量性状受多对基因控制,每对基因作用微小,呈累加效应。
克隆技术介绍
简要介绍动物克隆技术的原理、方法和应用实例。
伦理道德问题
探讨动物克隆技术所涉及的伦理道德问题,如生命尊严、生物多样 性、人类安全等。
社会影响与监管
分析动物克隆技术对社会的影响以及政府对相关技术的监管措施。
未来发展趋势预测
精准医学
随着遗传学研究的深入,精准医学将成为 未来发展的重要方向,实现个体化诊断和
RNA翻译的过程
RNA翻译是以mRNA为模板合成蛋白质的过程。在翻译过程中,核糖体识别 mRNA上的遗传密码,并根据密码子的顺序合成相应的氨基酸序列,从而合成蛋 白质。
基因突变与修复机制
基因突变的类型
基因突变包括点突变、插入突变、缺失突变等类型。这些突变可能导致遗传信息的改变,从而影响生 物体的性状和表型。
包括点突变、插入突变、缺失突变等。
对生物表型的影响
可能导致生物体形态、生理、生化等方面的 异常表现。
对蛋白质结构和功能的影响
可能导致蛋白质结构异常、功能丧失或获得 新的功能。
对生物进化的意义
是生物进化的原材料,为自然选择提供多样 性。
基因重组与染色体变异
基因重组类型
包括同源重组、非同源重组等 。
染色体变异类型
DNA复制的特点

分子遗传学.

分子遗传学.
ห้องสมุดไป่ตู้
三、染色体数目的改变 1、整倍体
2、非整倍体
1、常规的形态分析 长度、臂比值(长臂:短臂) 中部着丝粒染色体 (m) 亚中部着丝粒染色体 (sm) 亚端部着丝粒染色体 ( st) 端部着丝粒染色体 (t)
2, 染色体分带
1.01—1.70 1.71---3.00 3.01---7.00 7.01--- 2、
• 二、染色体畸变 (一)染色体结构变异 1、缺失(deletion) (1) 末端缺失 猫叫综合征
(2)中间缺失
缺失的细胞遗传学效应 a. 细胞学
b.遗传学 2、重复(duplication) (1)正向重复 (2)反向重复
3、倒位(inversion) (1)臂内倒位 (2)臂间倒位
4、易位(translocation ) (1)相互易位 (2)单向易位 (3)罗伯逊易位
易位的细胞遗传学效应
分子遗传学
前 言
一、分子遗传学的涵义 分子遗传学是在分子水平上研究生物遗传变 异规律的一门学科。它是分子生物学和遗传学的 一个重要分支。它依据物理、化学的原理来解释 遗传现象,并在分子水平上研究遗传机制及遗传 物质对代谢过程的调控。 分子遗传学不同于一般的遗传学,它着重在 分子水平上研究基因的结构和功能、储存、复制、 表达及调控过程。 基因的概念
二、分子遗传学的产生 1、实验证明遗传物质是核酸。 2、DNA双螺旋结构模型的提出,从分子水平 上解决了遗传机制的问题。 3、遗传密码的破译。 三、分子遗传学的展望 1、对基因的研究 2、真核细胞的基因调控 3、遗传与发育 4、蛋白质遗传 5、生物信息学、基因组学
第一章 染色体及染色体畸变
一、核型与核型分析 核型:是指一个物种所特有的染色体数目和每一条染 色体所特有的形态特征,包括染色体长度、着丝粒的位 置、臂比值、随体的有无、次缢痕的数目及位置。核型 是物种最稳定的性状和标志。通常在体细胞有丝分裂中 期时进行核型的分析鉴定。 核型分析:是指利用显微摄影的方法,把生物体细胞 内整套染色体拍摄下来,并按其形态学特征(长度、臂 比值等)排列起来,并进行分析的过程。

《遗传学》课件ppt

《遗传学》课件ppt

谢谢聆听
长发育异常、生殖障碍以及多种躯体畸形等问题。对于染色体疾病的诊断,通常需要进行遗传学咨询、家族史 调查、临床表现观察以及遗传学检测等综合评估。治疗方面,目前尚无根治方法,但可以通过对症治疗、康复 训练以及社会心理支持等手段,提高患者的生活质量和社会适应能力。
03 基因表达调控与表观遗传学
基因表达调控机制
阐述基因歧视的概念、表现形式 和危害,包括在就业、保险、教 育等领域的歧视现象。
原因分析
分析基因歧视产生的社会、文化 和心理等方面的原因,以及现有 法律法规在防止基因歧视方面的 不足。
应对措施建议
提出防止基因歧视的政策建议, 包括完善法律法规、加强宣传教 育、推动基因科技合理应用等。
辅助生殖技术中伦理道德问题思考
染色体的形态结构
染色体的功能
染色体是遗传物质的主要载体,通过 复制、转录和翻译等过程,控制生物 体的遗传性状。
染色体在细胞分裂的不同时期呈现不 同的形态,包括染色质丝、染色单体、 四分体等。
染色体数目异常及遗传效应
1 2
染色体数目异常的类型 包括整倍体和非整倍体,如单体、三体、多倍体 等。
染色体数目异常的原因 主要是由于细胞分裂过程中染色体的不分离或丢 失所致。
高通量测序技术
利用微流控边测序。
第三代测序技术
基于单分子荧光测序或纳米孔测序,无需PCR扩增,具有读长长、速 度快、成本低等优点。
生物信息学在分子遗传学中应用
基因组组装与注释 利用生物信息学方法对基因组序列进行组装、拼接和注释, 解析基因结构和功能。
个性化医疗
基于患者的基因组信息, 制定个性化的治疗方案 和用药指导,提高治疗 效果和减少副作用。
基因治疗

《遗传学》ppt课件

《遗传学》ppt课件
应用实例
杂交水稻、转基因作物、优良畜禽品种 选育等。
05
分子遗传学原理与技术应 用
DNA复制、转录和翻译过程
DNA复制
半保留复制机制,碱基互 补配对原则,DNA聚合酶 的作用。
转录
RNA聚合酶的作用,启动 子和终止子的识别,转录 产物的加工和修饰。
翻译
遗传密码的解读,tRNA的 作用,核糖体的结构和功 能,蛋白质合成的调控。
如果双亲的性状同时在F1个体 上表现出来,即一对等位基因 的两个成员在杂合体中都表达
的遗传现象称为共显性。
04
镶嵌显性
双亲的性状在后代的同一个体 上的不同部位表现出来,形成 镶嵌图式,这种显隐关系的形
式称为镶嵌显性。
04
多基因遗传与数量性状分 析
多基因假说及数量性状表现
多基因假说
多个基因共同控制某一性状,每个基因作用微小但累加效果显著。
1 2
分子标记类型
RFLP、SSR、SNP等标记的原理和特点。
分子标记在育种中的应用
基因定位、遗传图谱构建、辅助选择育种等。
3
分子标记辅助选择育种的优点
提高选择效率、缩短育种周期、实现基因聚合等 。
转基因技术原理及安全性评价
转基因技术原理
外源基因的获取、载体的构建、转化方法的选择等。
转基因生物的安全性评价
THANKS
基因流、突变、选择和遗传漂变
影响群体遗传结构的四大因素。
群体内遗传结构分析和研究方法
遗传多态性
基因频率和基因型频率的估算
群体中同一基因座位上存在多个等位基因 的现象。
通过样本数据推断群体中的基因频率和基 因型频率。
哈迪-温伯格平衡
遗传连锁不平衡和关联分析

遗传学--第一章-绪论-PPT课件

遗传学--第一章-绪论-PPT课件
遗传学 第一章 绪论
第一章 绪论
第一节 什么是遗传学 (genetics): 遗传学就是研究生物的遗传与变异的科学
世代间相似的现象就是“遗传” (heredity, inheritance) “ 种瓜得瓜,种豆得豆。”
生物个体间的差异叫做“变异”(variation) “一母生九子,九子各不同。”
2、微生物和生化遗传学时期遗传学 (1940-对 象从真核转到了原核,更为深入地研究了 基因的精细结构和生化功能。 重大成果有“一基因一酶”(Beadle and Tatum,1941)的建立.
遗传物质确定为DNA,而不是蛋白(Avery, 1944);
双螺旋模型的建立(Watson和Crick 1953)以及中心法 则的提出(Crick,1958)。
Frankling and wilkins
分子遗传学时期。(1953-现在)
此期是遗传学发展的第三次高潮,可以说成果累累, 月新年异,而且趋向于应用,大大缩短了转化为生 产力的周期。
乳糖操纵子模型的建立(Jacob and Monod,1961)
青山衬托之下,是一片金灿灿 的中国水稻梯田。2002年4月5 日以中国梯田为封面的« Science»杂志以14页篇幅率先 发表了一个重大成果—中国人 独立完成的论文《水稻(籼稻) 基因组的工作框架序列》,显 示对中国科学家成就充分肯定。
第三节遗传学在国民经济中的作用 一、 遗传学与农牧业的关系 无论是农林还是畜牧水产业都是和国计民生
遗传学:研究遗传物质(基因)结构、 功能、 传递和表达规律。
遗传与变异的关系
遗传与变异现象在生物界普遍存在,是生命活 动的基本特征之一。
没有变异生物界就失去进化的素材,遗传只的 是简单的重复

遗传的分子基础-PPT课件.ppt

遗传的分子基础-PPT课件.ppt
(1)稀有性 (2)重演性 (3)可逆性 (4)多向性 (5)有害性和有利性 (6)突变的时期
稀有性
突变率(mutation rate):指在特定的条件下一
个细胞的某一基因在一个世代中发生突变的概
率。
表3-1人类中某些遗传病的基因突变频率
遗传病
突变频率
白化病 苯丙酮尿症
血友病 色盲 鱼鳞病 肌肉退化症 小眼球症
三、基因突变的类型和遗传效应
(一)碱基替换
➢ 碱基替换发生在编码区可出现的效应: 同义突变(same sense mutation) 错义突变(missense mutation) 无义突变(nonsense mutation)
例:DNA ——ATG → ATT m RNA——UAC → UAA (酪氨酸)(终止信号)
➢ 短分散序列 ➢ 长分散序列
短分散序列
DNA序列长度300-500bp,拷贝数可达105 以上,但无编码作用,散在分布于人类 基因组中,平均间隔距离约2.2kb。
如:Alu家族(Alu family)
Alu家族
长达300bp,在一个基因组中重复30万~50万次。
长分散序列 DNA序列长5-7kb,拷贝数在102-104之间。 如:KpnⅠ家族(KpnⅠ family)
“基因”概念的发展
19世纪60年代初,孟德尔提出“遗传因子”(genetic factor) 1909年,Johansen提出了“基因”(gene) 1910年,摩尔根等证明基因位于染色体上,并呈直线排列。基 因既是一个结构单位,又是一个功能单位(重组单位和突变单 位)——遗传的染色体理论 1941年,Beadle和Tatum提出了“一个基因一个酶”的学说 1944年,Avery证明DNA是遗传物质 1953年,Watson和Crick提出了DNA双螺旋结构模型,明确了 DNA在活体内的复制方式 1957年,Crick提出中心法则,并于1961年提出三联遗传密码

分子遗传学-课件

分子遗传学-课件

3. DNA的结构及其功能
DNA是生物体内的遗传物质,包含了基因信息。它由脱氧核苷பைடு நூலகம்组成,通过编码蛋白质来控制生物体的生命活动。
4. RNA的结构及其功能
RNA是DNA的复制产物,具有多种功能,包括信息传递、蛋白质合成和基因调 控等。它由核苷酸组成,并在细胞中起着重要的作用。
5. 蛋白质的结构及其功能
8. RNA加工(RNA processing)
RNA加工是指在转录后产生的RNA分子上进行修饰和切割的过程,使其能够发 挥相应的功能。
9. 翻译(Translation)
翻译是将RNA上的遗传信息转化为蛋白质的过程。在细胞中,翻译是蛋白质合 成的重要步骤。
蛋白质是生物体内的重要组成部分,由氨基酸组成。它在细胞中承担着结构支持、酶催化、运输等多种功能。
6. DNA复制
DNA复制是生物体生长和繁殖的基础过程,通过复制DNA分子来传递遗传信息, 并确保基因的稳定传递。
7. 转录(Transcription)
转录是通过RNA的合成将DNA的遗传信息转换为RNA的过程。它是基因表达的关键环节。
分子遗传学-课件
介绍分子遗传学的概念、研究对象、DNA、RNA和蛋白质的结构与功能。
1. 什么是分子遗传学?
分子遗传学研究遗传物质(DNA和RNA)的结构与功能,以及遗传信息的传递和调控机制。
2. 分子遗传学的研究对象是什 么?
分子遗传学的研究对象包括DNA、RNA和蛋白质,它们在生物体内承担着遗传 信息的传递和调控功能。

分子遗传学-1-幻灯片(1)

分子遗传学-1-幻灯片(1)

1961年Nirenberg和Mattheai用酶促合成尿嘧啶核 苷酸多聚物(poly(u)),并将poly(u)加入除去 正常mRNA的细胞抽提物中,结果只合成苯丙氨 酸连接成的肽链,这个结果表明UUU一定是苯丙 氨酸(Phe)的密码子。 poly(A)编码赖氨酸(Lys)肽链 poly(C)编码脯氨酸(Pro)肽链
Rosalind Franklin(1920~1958): The Dark Lady of DNA(Harper Collins Publishers,2002)
布蓝妲 • 麦多克斯(Brenda Maddox) 2011年新诺贝尔化学奖颁发给她,以表彰她在 DNA双螺旋上的贡献,但是对她已是太晚
分子遗传学的创立阶段
• 二十年代,Levene研究了核酸的结构,并提出 了四核苷酸假说。
• Erwin Chargaff 1949 DNA是由四种脱氧核 苷酸(nucleotide),就是腺嘌呤(adenine)、鸟嘌 呤(guanine)、胸腺嘧啶(thymidine)和胞嘧啶 (cytocine)组成的,且在不同物种中四种核苷酸 的比率不同。但A 与T的量相等,G与C 的量 相等,即A=T;G=C,这就是所谓的Chargaff 规则(Chargaff's rules)。
第一章
分子遗传学绪论
分子遗传学的孕育阶段
Gregor Mendel (1822-1884)是遗传学的创始人 1865年豌豆杂种后代形性状分离实验,35年后又
被重新发现
1. 荷兰Hugo de Vires(1848-1935)月见草杂交F2分离 2. 德国Carl Correns(1864-1933)杂种后代表现方式的
Watson和Crick在1953年《Nature》杂志上(Vol 171, pp737-738)发表“核酸的分子结构-脱氧核 糖核酸的结构”(图1-9),这标志着遗传学乃 至整个生物学进入分子水平的新时代。 在同一期3篇:Watson,Wilkins,Franklin

分子遗传学基础精品PPT课件

分子遗传学基础精品PPT课件
from an adult cell 2000 Human Genome Project completes seenome Project
The Human Genome Project is an international research effort to map the human genome and the genomes of other organisms.
It officially began in 1990 with planning and funding through the US Department of Energy and the National Institutes of Health.
The aim was to complete physical and genetic maps of the entire human genome, elucidating the complete sequence of the 3 billion base pairs per genome, localizing all the genes therein, and making the data public along the way. The project uses DNA from a number of individuals who will remain anonymous to protect their privacy.
1985-6 The Human Genome Project was first proposed 1986 Mullis invented the concept of PCR 1990 Official start of the Human Genome Project 1995 First genome fully sequenced H. influenzae 1996 First eukaryote genome fully sequenced – yeast 1997 Dolly first successful attempt at animal cloning

分子遗传学讲义PPT课件

分子遗传学讲义PPT课件

从DNA编码链上5’端到3’端方向的三联体核苷酸密码子(triplet codon)序列与蛋白质的N端到C端的氨 基酸序列相对应,这种对应关系称为遗传密码(genetic codon)。 DNA中的遗传信息是由信使RNA(messenger RNA, mRNA)介导而决定蛋白质的一级结构。 其中61个密码子编码各种氨基酸,3个密码子使蛋白质合成终止,故称终止密码子(termination codon)。 几种密码子编码同一种氨基酸,这称为密码子的简并性(degeneracy of the codon)。编码同一种氨基酸的 两种以上的密码子称为简并密码子(degenerate codon)或称同义密码子(synonym)。 密码子最后一位碱基因特异性降低的现象称为第三碱基的简并性(third-base degeneracy)。 除极少数例外,所有生物的遗传密码都是相同的,这种密码子的通用性(universality)表明生物是从共同 祖先而来的
1941年, Beadle和Tatum对粗糙脉孢菌 (Neurospora crassa)的进化突变型进行 研究时才发现了Garrod 的工作,明确提 出了“一个基因一个酶”(one gene-one enzyme)的理论。后来将“一个基因一 个酶”改为 “一个基因一种多肽”(one gene-one polypeptide)。这表明基因是通 过控制多肽的合成而影响生物遗传性状 的发育和表达(图1-4)。
1、分子遗传学的涵义 遗传学是以基因作为研究的核心,是研究基因的结构、功能、变异、传递和表达规律的学科。分 子遗传学是遗传学的一个分支学科,是在分子水平上研究基因的结构与功能以揭示生物遗传和变 异以及表达的分子机制。它研究的范畴包含基因在生命系统中的储存、组织结构、基因的复制与 传递的分子机制、基因表达与调控规律、基因表达产物的结构与功能、基因变异的分子机制、基 因在控制细胞分裂、生长和分化以及形态发生与个体发育中的作用机制 2、分子遗传学研究的任务 (1)研究遗传物质的分子结构与传递机制 遗传物质必须具备的特性是:①贮存并表达遗传信息;②.能把遗传信息传递给子代;③.物 理和化学性质稳定;④.含有遗传重组和变异的信息。 DNA;RNA;半保留复制, (2)研究遗传信息表达的分子机制 中心法则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子遗传学
第一章 遗传物质
1953年,由Watson Crick阐明的DNA结构是遗传学 历史上最重大的发现之一。当时对基因和DNA的认 识有以下几点: (1)基因:是由孟德尔提出的遗传因子。它与特定 的性状相连系,但其物质基础不清。 (2)“一个基因一种酶”的学说推测基因控制蛋白 质的结构。 (3)基因位于染色体上。染色体由DNA和蛋白组成 (4)早先由Griffith后由Avery指出DNA是遗传物质
美国学者Avery等证明转化因子是DNA。Summary of Avery s experiment which demonstrated that DNA is the transforming principle.
,


在S型细胞的各种组分中,只有DNA能引 起R型细胞的转化,DNA是S型细胞多糖荚膜和 病源特征的决定因子,只要给R型细胞提供S型 细菌的DNA,就等于是提供了S基因。
每个核苷酸之间由 磷酸二酯键相连 接。
(a)Linkage of two nucleotides by the formation of a C-3,—C-5’ (3'5’) phosphodiester bond, producing a dinucleotide.
(b) Shorthand notation for a polynucleotide chain.
Waster Crick DNA双螺旋模型
双螺旋的几种形式
目前已知有三种不同形式DNA:
1.B—form:即Watson-Crick模型,在正常的细胞生活
状态时存在,右手螺旋、碱基的平面对 DNA 的中轴是
垂直的,DNA分子每转一圈是10.4bp。
2.A—form:在高盐或脱水状态时存在,右手螺旋, 碱基对倾斜并偏离双螺旋中轴,转一圈11bp。
意义:第一次证明基因是由DNA组成的,DNA
是遗传物质。转化已成为基因工程的重要手段
二、The HersheyChase实验
T2噬菌体的生活周期 Life cycle of a T-even bacteriophage
The Hershey-Chase实验要回答的 问题
• 噬菌体的感染过程涉及病毒复制的特异 信息转入到细菌中去的过程。要问转入
细菌中去的信息物是DNA还是蛋白质?
• 1952 年,用 T2 噬菌体标记的感染实验说 明转入细菌中去的信息物是DNA。
The Hershey-Chase实验的关键点:
1.蛋白质中没有磷,磷是DNA中的主要成分,在
T2的DNA中占99%
2.硫存在于蛋白质中,在DNA中从未发现有硫.
3.用32P和35S分别标记两个噬菌体的培养物中的
的病毒颗粒所需的遗传物质是RNA而不是 蛋白质


以上三个实验说明,DNA是遗 传物质,在不具有DNA而只有 RNA的生物中,RNA是遗传物 质。
第二节 DNA的结构
• DNA由四种基本的分子脱氧核苷酸组成。每种
核苷酸由磷酸、脱氧核糖和四种碱基之一组成。
四种碱基的名称:腺嘌呤(Adenine,A)、鸟
嘌呤(Guanine,G)、胞嘧啶(Cytosine,C)、
胸腺嘧啶(Thymine,T)。
•四种核苷酸的名称是:
脱氧腺苷酸dAMP或A; 脱氧鸟苷酸dGMP或G;
脱氧胞苷酸dCMP或C;
脱氧胸苷酸dTMP或T.
DNA和 RNA中的碱基和糖的结构
Watson Crick根据两个线索:
(1)DNA结构的X光衍射资料,表明DNA由
TMV和HRV建成杂合病毒作感染实
验回答了这一问题。
TMV 外 壳 蛋 白
HRV
R N A 杂合病毒
TMV抗体 病毒失活 不能感染
HRV抗体 能感染出现 HRV病灶 分离出病毒
子代病毒能 被HRV抗体 失活,说明 子代病毒不 但具有HRV 的RNA,而 且具有HRV 的蛋白
病毒重建实验结论:复制和繁殖新
两条互相平行的链组成,两条链呈螺旋状;
(2)Chargaff关于不同生物DNA组成成份的
规律:
A+G=T+C Pu=Py
A=T
G=C
A+T并不一定等于G+C
双螺旋(The doudle helix)要点
1 .双螺旋的每一条链是一条核苷酸长链。每个核苷 酸之间由磷酸二酯键相连接(phosphodiester bands ) 。两条链之间由氢键相连。配对原则是:A-T, G-C。 2.两条链的走向方向相反,它们是反向平行的( Antiparallel)一条是5’→3’,另一条是3’→5’。 3.由于G-C对有三个氢键,A-T对只有两个氢键, 因此富含G-C对的DNA比富含A-T对的DNA更加稳 定。
DNA和蛋白质.
The HersheyChase实验
Demonstrating that DNA, and not protein, is responsible for directing the reproduction of phage T2 during the infection of E.coli.
The Hershey-Chase实验的结论
只有噬菌体DNA进入细菌,蛋白质外壳从 不进入细胞。噬菌体蛋白只是结构上的
包装物。当DNA进入细菌后蛋白质外壳就
留在了外边。 意义:说明DNA是遗传物质。
三、病毒重建实验
• 有些病毒没有DNA而只有RNA,它 们的遗传物质是什么? • 1956年,Fraenkel-Conrat和Singer用
第一节 DNA是遗传物质
有3个重要的实验证明遗传物 质是DNA: • 1.细菌转化实验 • 2.T2噬菌体的感染实验 • 3.病毒重建实验
Griffith s细 菌转化实验
Greffith’s tபைடு நூலகம்ansformatio n experiment
,
实验提示:加热杀死的 S型有毒品系中一定有一种因子能使无 毒的R品系转化为有毒的S品系(transformation)。16年实验证 明,R转化为S的物质是DNA。 □ 1944年,美国学者Avery等证明将R无毒品系转化为有毒 S 品系的物质是DNA。 (S) 加热杀死 多糖 ↓ R ↓ R ↓ R ↓ 型 ↓ R 脂类 ↓ RNA ↓ 细 ↓ R ↓ R S 蛋白质 ↓ 菌 DNA
相关文档
最新文档