几类常见递推数列的解题方法
常见递推数列通项的九种求解方法
![常见递推数列通项的九种求解方法](https://img.taocdn.com/s3/m/cff31c64de80d4d8d05a4f0c.png)
常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。
类型一:1()n n a a f n +=+(()f n 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。
【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。
2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。
3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。
4、已知}{n a 中,nn n a a a 2,311+==+,求n a 。
5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。
9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
最全的递推数列求通项公式方法
![最全的递推数列求通项公式方法](https://img.taocdn.com/s3/m/2e1ed9a8988fcc22bcd126fff705cc1755275f2f.png)
最全的递推数列求通项公式方法递推数列是指数列中的每一项都由前一项通过其中一种规律得出。
求递推数列的通项公式是数学中的重要问题,可以通过多种方法实现。
下面将介绍最常用的几种方法。
1.等差数列通项公式等差数列是指数列中的每一项与前一项之差都相等的数列。
设等差数列的第一项为a1,公差为d,则第n项为an=a1+(n-1)d。
这是等差数列的通项公式。
2.等比数列通项公式等比数列是指数列中的每一项与前一项之比都相等的数列。
设等比数列的第一项为a1,公比为r,则第n项为an=a1*r^(n-1)。
这是等比数列的通项公式。
3.斐波那契数列通项公式斐波那契数列是指数列中的每一项都是前两项之和。
设斐波那契数列的第一项为a1,第二项为a2,则第n项为an=a(n-1)+a(n-2)。
但通常情况下,我们将斐波那契数列的第一项设为0,第二项设为1,此时的通项公式为an=F(n-1),其中F(n-1)表示第n-1个斐波那契数。
4.龙贝尔数列通项公式龙贝尔数列是指数列中的每一项都是前一项与当前项索引之和。
设龙贝尔数列的第一项为a1,则第n项为an=a(n-1)+n。
这是龙贝尔数列的通项公式。
5.通项公式的递推法有些数列并没有明确的通项公式,但可以通过递推法求得通项公式。
递推法的核心思想是找到数列中的其中一种规律,通过前面的项得出后面的项。
这种方法比较灵活,可以适用于各种类型的数列。
总结起来,以上是求递推数列通项公式的几种常见方法。
在实际中,我们可以观察数列的规律,推测出通项公式,然后通过数学推导证明其正确性。
对于复杂的递推数列,我们可能需要运用更多的数学知识和技巧,如离散数学、线性代数等。
九类常见递推数列求通项公式方法
![九类常见递推数列求通项公式方法](https://img.taocdn.com/s3/m/412fdcee846a561252d380eb6294dd88d0d23d5e.png)
九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。
)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。
解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。
2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。
类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。
i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。
例2已知a11,anan1n,求an。
解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。
方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。
类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。
anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。
递推法解数列整除问题的常用方法
![递推法解数列整除问题的常用方法](https://img.taocdn.com/s3/m/e9c203aef9c75fbfc77da26925c52cc58ad6904e.png)
递推法解数列整除问题的常用方法递推法是解决数列问题的常用方法之一,其核心思想是根据已知的前项推导出后项,直到得到所求的项。
在解决数列整除问题中,递推法同样适用。
首先,我们需要明确题目所给的数列条件。
在数列整除问题中,常见的条件包括等差数列(公差为d的数列)、等比数列(公比为r的数列),以及递推关系。
我们以这些常见的数列为例进行讲解。
1.等差数列的整除问题:等差数列的通项公式为:an = a1 + (n-1)d,其中an为第n项,a1为第一项,d为公差。
例如题目给定的等差数列为1,4,7,10,13,...,其中公差d=3、我们需要找出该数列中可以整除一些特定数的项。
解决方法:(1)首先,我们找到该等差数列的第一项a1和公差d。
(2)观察题目给定的数是否为公差d的倍数。
如果是,说明数列中存在满足题目要求的项;如果不是,说明数列中不存在符合要求的项。
(3)如果题目要求找到满足一些条件的特定项,可以通过递推法得到满足要求的项。
例如,题目要求找到该数列中可以整除6的项:我们首先计算公差d=3,发现6不是3的倍数,所以该数列中不存在可以整除6的项。
2.等比数列的整除问题:等比数列的通项公式为:an = a1 * r^(n-1),其中an为第n项,a1为第一项,r为公比。
例如题目给定的等比数列为1,2,4,8,16,...,其中公比r=2、我们需要找出该数列中可以整除一些特定数的项。
解决方法:(1)首先,我们找到该等比数列的第一项a1和公比r。
(2)观察题目给定的数是否等于一些项的值。
如果是,说明数列中存在满足题目要求的项;如果不是,说明数列中不存在符合要求的项。
(3)如果题目要求找到满足一些条件的特定项,可以通过递推法得到满足要求的项。
例如,题目要求找到该数列中可以整除32的项:我们首先计算公比r=2,发现32等于第5项的值,即32=2^4、所以该数列中存在可以整除32的项。
3.递推关系的整除问题:有些数列的递推关系不仅包含等差或等比关系,还可能包含其他递推关系,例如斐波那契数列。
几类常见递推数列的解题方法
![几类常见递推数列的解题方法](https://img.taocdn.com/s3/m/b581b6047cd184254b3535a4.png)
类型一:累加法 形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消.类型二: 累积法 形如)(1n f a a n n =+.其中f (n ) =ppc mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或nn a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1).类型三:形如1+n n a a = 1++n n qa pa ,(pq ≠ 0).且0≠n a 的数列,——可通过倒数变形为基本数列问题.当p = -q 时,则有:p a a n n 1111=-+ 转化为等差数列; 当p ≠ -q 时,则有:p pa q a n n 111+-=+.同类型五转化为等比数列. 类型四:特征根法 形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数.当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x⇒a 1+n + x = p (a n + p x q +), 令x =px q + ∴x =1-p q 时,有a 1+n + x = p (a n + x ), 从而转化为等比数列 {a n +1-p q } 求解. 类型五:形如a 1+n =pa n + f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数.当p =1时,则 a 1+n =a n + f (n ) 即类型一.当p ≠1时,f (n )为关于n 的多项式或指数形式(a n)或指数和多项式的混合形式.⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.⑵若f (n )为关于n 的指数形式(a n ).①当p 不等于底数a 时,可转化为等比数列;②当p 等于底数a 时,可转化为等差数列.。
根据递推关系求数列通项公式的几种方法
![根据递推关系求数列通项公式的几种方法](https://img.taocdn.com/s3/m/b974afa880c758f5f61fb7360b4c2e3f572725b2.png)
根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。
在数学中,有几种方法可以求解这类问题。
一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。
这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。
k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。
解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。
二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。
该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。
解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。
利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。
三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。
该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。
例如,我们考虑求解斐波那契数列的通项公式。
斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。
数列递推公式的九种方法
![数列递推公式的九种方法](https://img.taocdn.com/s3/m/3bd2f743aaea998fcc220e6a.png)
求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题) 解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵ n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:n a a n 11=,即n a =n1. 三、换元法例3 已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为: }{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b )31()31(91)31(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。
十类递推数列的通项公式的求法
![十类递推数列的通项公式的求法](https://img.taocdn.com/s3/m/592c7788a0116c175f0e48f9.png)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&
文!黄爱民
一、an+1= an+ f(n)型 这类递推数列可通过累加法求得其通项公式.当 f(n)
为常数时,通过累加法可求得等差数列的通项公式;当
f(n)为等差数列形式时,an+1= an+ f(n)为二阶等差数列, 它的通项公式的形式为 an=an2+bn+c.同时要注意它与等 差数列求和公式的一般形式的区别,后者是 Sn=an2+bn, 它的常数项一定为 0.
对数,得 lgan=lg2an4- 1 ,则有 lgan=4lgan-1+lg2.
∴lgan+
1 3
lg2=4(lgan-
1+
1 3
lg2).从而知{lgan+
1 3
lg2}是
首项为 1 lg2,公比为 4 的等比数列. 3
∴lgan=
(4n-1- 1)lg2 3
=(4n-1- 1)lg#3 2
,即
高中生·高考指导 13
×(3 2
)n- 1=(3 2
)n,即
an=
2n 3n- 2n
.
九、a n+1=
Aan+B Can+D
(A,B,C,D 为非零常数)型
这类递推数列的通项公式是利用函数的不动点来
求的.尽管这个知识点高考不作要求,但考题往往就从
这些地方出,只需增加一些铺垫.
例 9 若 f(x0)=x0,则称 x0 为 f(x)的不动点.已知函 数 f(x)= 2x+3 .
+1 2
.令
bn=
an 2n
,则有
bn+1=
3 2
bn+
常见递推数列求通项公式的七种方法
![常见递推数列求通项公式的七种方法](https://img.taocdn.com/s3/m/2005f60b0740be1e650e9a0b.png)
解A争 1_. l 1 边 - 得 一 :—-= , : q 两 加2 :l =L 2. } I . ‘+ 在 ,
例 5已知数列 ‘ l a 2 = . 中,t , =
)C k十 l
。 求数列 { ) 的
类 型 二 : 知 口: 口 ) 。, ・ 型 . 用 累 乘 法 求 已 I ≠o , = ( | 可
‘ ・
例. 数 {J,} =,数 {) 4知 列 中8 , 列 的 已 - + 求 = -
通项公式.
由 口- 叶
。 可知 :
u l
1 )
u
, , …
t t. t ̄ 1
一
1 ) ・
解法一 : 已知 + 两边 同除 以 2 J 给 a 肿, }一 得
把上面各项两边分别相乘 , 得
’ 1 ,b 参- + 冷6 则 . } 1 ,
・
= l ) 2… ・ 一 ) 口・ 【) 1 ≥2 1 . )
.
.
例 2设 I l 首 项 为 1的 正 项 数 列 , (+ ) . 是 且 ,1 l
至多 有 1 是 二 等 品 ” 件 的概 率 P A)O9 . ( = .6
解 法 二 : I 2 两 边 同除 以 ( 1 , ( 1“ 广 对 + = l I 一 ) 得 一 )
=
・
}^ ‘‘=. ・ }争争} ・
E . Ⅳ) .
} 等 比数 列. 为
(1 = (2^ _ ) 一- ) . 令 6 - ) , 6 l(1 ‰ l (1 则 =_ ,
常见递推数列 求通项公 式的七种方法
递推数列求通项公式的常见类型及方法
![递推数列求通项公式的常见类型及方法](https://img.taocdn.com/s3/m/74acd23610661ed9ad51f386.png)
递推数列求通项公式的常见类型及方法递推数列求通项即依据给出数列中相邻两项或几项的关系式,n a 与n S 的关系式等,求出通项公式,是数列中的重要内容,是高考中常见的题目.本文给出常见的类型和方法.1. )(1n f a a n n +=+.方法:叠加法. 令1,2,1-=n n,得21321(1)(2)(1)n n a a f a a f a a f n -=+=+=+-以上1-n 个式子相加,得111().n ni a a f i -==+∑ 例1.数列{}n a 中,)2(1,1211≥-+==-n n n a a a n n ,求数列{}n a 的通项. 解: 令n n ,,3,2 =,得212322121221331n n a a a a a a n n -=+-=+-=+-n n a a n -++-+-+=∴22211331221 11111223(1)111111(1)()()223112.a n n n n n =+++⨯⨯-=+-+-++--=- 2. )(1n f a a n n =+. 方法:累积法. 令1,2,1-=n n,得21321(1)(2)(1).n n a a f a a f a a f n -===-以上1-n 个式子求积,得)(111i f a a n i n-=∏+=. 例2. 数列{}n a 中,)2()11(,2121≥⋅-==-n a na a n n ,求数列{}n a 的通项.解: 由题1212)1)(1()11(--+-=-=n n n a nn n a n a ,令1,2,1-=n n ,得 21232212132243(1)(1)n n a a a a n n a a n -⨯=⨯=-+= 2221)1)(1(342231n n n a a n +-⋅⋅⨯⋅⨯⋅=∴ 11121.n a n n n +=⋅⋅+= 3. )0,1(1≠≠+=+q p q pa a n n . 方法一:配凑法.1().n n a p a λλ+-=-方法二:待定系数法.令)(1λλ-=-+n n a p a 比较已知得,.1q p q pλλλ-==- λ是方程q px x +=的根. q px x +=是特征方程.方程三: 两根同除以1+n p ,得111++++=n n n n n p q p a p a 转化为类型1. 例3(07.全国) 数列{}n a 中, ,3,2,1),2)(12(,21=+-==n a a a n n ,求数列{}n a 的通项. 解法一: )2)(12(1+-=+n n a a {}为公比的等比数列为首项,是以数列122222)2)(12(211--=--∴--=-∴+a a a a n n nn n na )12(2)12)(22(21-⨯=--=-∴- 故 2)12(2+-⨯=n n a解法二:令))(12(1λλ--=-+n n a a)12(2)12(-=--∴λλ 解得2=λ下同解法一.解法三:)12(2)12()2)(12(1-+-=+-=+n n n a a a两边同除以1)12(+-n ,得nn n n n a a )12(2)12()12(11-+-=-++ 令n n n n n a a b )12()12(+=-= 则n n n b b )12(21++=+.令.1,2,1-=n n 得11223112)12(2)12(2)12(2--++=++=++=n n n b b b b b b1211)12(2)12(2)12(2-+++++++=∴n n b b2)12(2)12(1])12(1)[12(2)12(21++=+-+-+⋅++=-n nn n n n b a )12(22)12(-⨯+=-=∴.4. )0,1(,1≠≠+=+q p q pa a n n n .方法一:两边同除以1+n p ,得111++++=n nn n n n p q p a p a 转化为类型一.方法二:待定系数法.令)(11-+-=-n n n n q a p q a λλ比较已知得p q q -=λ. 例4.数列{}n a 中,)1(,23,111≥+==+n a a a n n n ,求数列{}n a 的通项. 解法一:两边同除以13+n ,得1113233++++=n nn n n n a a . 令n n n a b 3=,则1132+++=n nn n b b . 令.1,2,1-=n n 得n n n n b b b b b b 323232113223212--+=+=+= n n n b b 32323213221-++++=∴ nn n n )32(1321])32(1[31323232311322-=--=++++=- n n n a 23-=∴.解法二:令)2(3211-+⋅-=-n n n n a a λλn n n 22321=-⋅∴-λλ解得2-=λ.即)2(3211n n n n a a +=+++,所以数列{}n n a2+是以321=+a 为首项,3为公比的等比数列. .23,32n n n n n n a a -==+∴故5. )1).((1≠+=+p n f pa a n n .方法:两边同除以1+n p ,得111)(++++=n n n n n pn f p a p a 转化为类型一. 例5. 数列{}n a 中,)1(,223,111≥-+==+n n a a a n n ,求数列{}n a 的通项.解: 两边同除以13+n ,得11132233+++-+=n n n n n n a a 令n nn a b 3=,得11322++-+=n n n n b b . 利用叠加法及错位相减法,以求得2123+-=n a n n . 6.)()(1n g a n f a n n +=+.方法: 两边同除以)()2()1(n f f f ,得)()2()1()()()2()1()()2()1(1n f f f n g n f f f a n f f f a n n +=+转化为类型一 例6. (2008年河南省普通高中毕业班教学质量调研考试)数列{}n a 中,)1(2)1(22,111≥++++==+n n n a n n a a n n ,求数列{}n a 的通项. 解: 令,2)(+=n n n f 则)2)(1(2211534231)()2()1(++=+⨯+-⨯⨯⨯⨯=n n n n n n n f f f 两边同除以)()2()1(n f f f ,得)2)(1(22)1(2)1(2)2)(1(21++++++=+++n n n n n n a n n a n n 即21)1(2)1()1)(2(+++=+++n na n a n n n n 令n n na n b )1(+=,则21)1(2++=+n b b n n令.1,2,1-=n n 得2122321223222n b b b b b b n n +=⨯+=⨯+=-)32(22221n b b n +++⨯+=∴3)12)(1(]16)12)(1([212++=-++⨯+⨯=n n n n n n 312+=∴n a n . 7. )(1n f a a n n =+. 方法: 由已知)1(12+=++n f a a n n ,两式相除,得)()1(2n f n f a a n n +=+. 例7. 数列{}n a 中,)1(,)31(,211≥==+n a a a n nn ,求数列{}n a 的通项. 解: 由题2,31121==a a a ,得612=a n n n a a )31(1=+ ………..① 112)31(+++=n n n a a ……...② ②÷①得 312=+n n a a k k a a a a a a 2421231,,,,,,和+∴都是以31为公比的等比数列 当n 为奇数时,21211)31(2--⋅==n n n q a a 当n 为偶数时,22222)31(61--⋅==n n n q a a ⎪⎪⎩⎪⎪⎨⎧⋅⋅=∴--为偶数,为奇数n n a n nn 2221)31(61,)31(2. 8.n n n qa pa a +=++12. 方法一: 配凑法.)(112n n n n a a a a αβα-=-+++方法二: 待定系数法. 令)(112n n n n a a a a αβα-=-+++,比较已知得 ⎩⎨⎧==+q p αββα 得出βα, 其中βα,是方程q px x +=2的两根,方程q px x +=2是特征方程.例8. 数列{}n a 中,)1(,65,5,11221≥-===++n a a a a a n n n ,求数列{}n a 的通项.解: 令)(112n n n n a a a a αβα-=-+++比较已知得⎩⎨⎧==+65αββα 得出2,3==βα )3(23112n n n n a a a a -=-∴+++数列{}n n a a 31-+是以2312=-a a 为首项,2为公比的等比数列.则n n n a a 231=-+,即n n n a a 231+=+.下同例4. 9.)0(,1≠++=+ac b aa d ca a n n n . 方法: 不动点法. 令bax d cx x ++=………(*) 若(*)有两重根,021x x x ==,则⎭⎬⎫⎩⎨⎧-01x a n为等差数列. 若(*)有两根,21x x ≠,则⎭⎬⎫⎩⎨⎧--21x a x a nn 为等比数列. 例9.(08,洛阳三练)数列{}n a 中,n n a a a -==+21,2111,求数列{}n a 的通项. 解:令xx -=21,得1=x . 111121111111-=----=---+n n n n a a a a , 为公差的等差数列为首项,是以1-2121111111-=-=-⎭⎬⎫⎩⎨⎧-∴a a n . 1)1()1(211--=-⨯-+-=-∴n n a n 1+=∴n n a n . 例10.(07.全国)数列{}n b 中,)1(3243,211≥++==+n b b b b n nn ,求数列{}n b 的通项. 解: 令3243++=x x x ,解得2,221=-=x x , 则411)12(2223243232432222+=-+-+++++=-+-+++n n n n n n n n n n b b b b b b b b b b 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+22n n b b 是以22222211-+=-+b b 为首项,4)12(+为公比的等比数列. 24)1(4)12()12(222222--+=+⋅-+=-+∴n n n nb b故1)12(1)12(22424-+++⋅=--n n nb .10. n n S a 与的关系.方法: ⎩⎨⎧-=-,,1n nn n S S S a 21≥=n n 可以向n a 转化,也可以向n S 转化.例11. 数列{}n a 的前n 项和,)1(12≥+=n a a S nn n ,求数列{}n a 的通项公式. 解法一: 1=n 时,1111212a a a S =+=,解得11=a )2(,1212111≥+=∴+=---n a a S a a S n n n nn n 两式相减得 11112---+-=n n n n n a a a a a ,)1(111--+-=-n n n n a a a a . 平方得 4)1()1(212122=+-+--n n n n a a a a . 数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+221n n a a 是以212121=+a a 为首项,4为公差的等差数列。
常见递推数列通项公式的求法
![常见递推数列通项公式的求法](https://img.taocdn.com/s3/m/de3fdd19c5da50e2524d7f74.png)
(5)累乘法:
an1 an
f (n) ( f (1) f (2)
i 1
f (n)可求)
(6)构造法 an1 kan b
(7)作商法( a1a2 an cn 型);
(8)数学归纳法.
类型1 an1 an f (n)
类型1 an1 an f (n)
求法:累加法
类型3 an1 pan q( p 0, p 1)
求法 : 待定系数法.令an1 p(an ), 其中为待定系数,化为等比数列 {an }求通项.
例3 已知数列{an }中,若a1 1, an1 2an 3(n 1),求数列{an }的通项公式.
为首项, 公比为
(1)n1. 2
1 2
的等比数列.
又
an
1 2
an1
1,
an 2 21n.
【1】设数列{an}的前 n 项和为 Sn , 已知 a1 5 ,且 nSn1 2n(n 1) (n 1)Sn (n N ) , 则数列 an 的通项公式 是( A)
1 3 (an1 2an2 )(n 3,4, ) (1)求证 : 数列{an1 an }是等比数列; (2)求数列{an }的通项公式an .
【1】已知数列 {an} 中,
a1=1,
an+1=
1 2
an+1 (nN*),
则an =___2___2__1_n____.
Q
an1
类型6
an1
pan qan
r
(
p, q,
r均不为零)
类型6
an1
数列递推公式的九种方法
![数列递推公式的九种方法](https://img.taocdn.com/s3/m/a8edc9a8541810a6f524ccbff121dd36a22dc477.png)
数列递推公式的九种方法1.等差数列递推公式:在等差数列中,相邻两项之间存在相同的差。
如果已知等差数列的首项为a1,公差为d,可以求得递推公式为an = a1 + (n-1)d,其中n为第n项。
2.等比数列递推公式:在等比数列中,相邻两项之间的比值相同。
如果已知等比数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。
3. 几何数列递推公式:几何数列是一种特殊的等比数列,其公比是常数项。
如果已知几何数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。
4. 斐波那契数列递推公式:斐波那契数列是一种特殊的数列,每一项都是前两项的和。
斐波那契数列的递推公式为an = an-1 + an-2,其中n为第n项,a1和a2为前两项。
5. 回型数列递推公式:回型数列是一种特殊的数列,它的每一项都是由周围的四个数字决定的。
回型数列的递推公式为an = an-1 + 8 * (n-1),其中n为第n项,a1为第一项。
6. 斯特恩-布洛特数列递推公式:斯特恩-布洛特数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的约数个数决定的。
斯特恩-布洛特数列的递推公式为an = 2 * an-1 - an-2,其中n为第n项,a1和a2为前两项。
7. 阶乘数列递推公式:阶乘数列是一种特殊的数列,它的每一项都是前一项的阶乘。
阶乘数列的递推公式为an = n * (n-1) * ... * 3 * 2 * 1,其中n为第n项,a1为第一项。
8. 斯特林数列递推公式:斯特林数列是一种特殊的数列,它的每一项都是由前一项和当前项之积的和决定的。
斯特林数列的递推公式为an = an-1 * n + 1,其中n为第n项,a1为第一项。
9. 卡特兰数列递推公式:卡特兰数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的乘积决定的。
卡特兰数列的递推公式为an = (4*n - 2) / (n + 1) * an-1,其中n为第n项,a1为第一项。
利用递推关系求数列通项的九种类型及解法
![利用递推关系求数列通项的九种类型及解法](https://img.taocdn.com/s3/m/9379e20d6c85ec3a87c2c54c.png)
利用递推关系求数列通项的九种类型及解法1.形如)(1n f a a n n =-+型(1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 方法如下: 由 )(1n f a a n n =-+得:2≥n 时,)1(1-=--n f a a n n ,)2(21-=---n f a a n n ,)2(23f a a =-)1(12f a a =-所以各式相加得 )1()2()2()1(1f f n f n f a a n +++-+-=-即:∑-=+=111)(n k n k f a a .为了书写方便,也可用横式来写:2≥n 时,)1(1-=--n f a a n n ,∴112211)()()(a a a a a a a a n n n n n +-++-+-=---=1)1()2()2()1(a f f n f n f ++++-+- . 例 1. (2003天津文) 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明213-=nn a证明:由已知得:故,311--=-n n n a a112211)()()(a a a a a a a a n n n n n +-++-+-=---=.213133321-=++++--nn n ∴213-=nn a .例 2.已知数列{}n a 的首项为1,且*12()n n a a n n N+=+∈写出数列{}n a 的通项公式.答案:12+-n n例3.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:na n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
数列递推的技巧
![数列递推的技巧](https://img.taocdn.com/s3/m/7f53b0f959f5f61fb7360b4c2e3f5727a5e924a6.png)
数列递推的技巧
数列递推是指根据已知的数列前几项,通过某种规律或公式来确定数列的后续项。
下面列举一些常见的数列递推的技巧:
1. 线性递推法:对于满足线性递推关系的数列,可以使用线性递推法来求解。
线性递推关系一般可以表示为an = c1 * an-1 + c2 * an-2 + ... + ck * an-k,其中c1,c2,...,ck为常数。
常见的线性递推数列有斐波那契数列、等差数列等。
2. 指数递推法:对于满足指数递推关系的数列,可以使用指数递推法来求解。
指数递推关系一般可以表示为an = c * an-1^k,其中c和k为常数。
常见的指数递推数列有幂函数数列、几何数列等。
3. 差分递推法:对于满足差分递推关系的数列,可以使用差分递推法来求解。
差分递推关系一般可以表示为an = an-1 + dn,其中dn为常数。
常见的差分递推数列有阶乘数列、等差数列等。
4. 递归递推法:对于满足递归递推关系的数列,可以使用递归递推法来求解。
递归递推关系一般可以表示为an = f(an-1, an-2, ...),其中f为一个函数。
常见的递归递推数列有斐波那契数列、双核函数数列等。
5. 其他递推技巧:还有一些特殊的递推技巧,如矩阵快速幂递推法、莫比乌斯反演递推法等,可根据具体的问题和数列特点选择合适的方法进行递推求解。
几种由递推式求数列通项的方法介绍
![几种由递推式求数列通项的方法介绍](https://img.taocdn.com/s3/m/2a321f848ad63186bceb19e8b8f67c1cfbd6ee69.png)
几种由递推式求数列通项的方法介绍求数列通项通常可以通过递推式来实现,即通过之前的项推导出后一项。
下面介绍几种常见的方法:1.直接法:直接法是最基本的一种方法,即通过观察数列中的规律,找出递推式,然后根据递推式求解通项。
这种方法适用于简单的数列,如等差数列、等比数列等。
例如,求等差数列1, 3, 5, 7, ...的通项。
由观察可知,每一项与前一项的差值为2,即递推式为an = an-1 + 2、再根据首项a1 = 1,得到an = 2n-12.假设法:假设法是一种通过假设通项形式来求解递推式的方法。
通过猜测通项的形式,并将它代入递推式中,得到一个等式,再通过递推式和等式求解未知系数。
例如,求Fibonacci数列的通项。
观察Fibonacci数列的前几项0, 1, 1, 2, 3, 5, ...,可以猜测通项形式为an = A * φ^n + B * (1-φ)^n,其中A和B为待定系数,φ为黄金分割比。
将该通项代入Fibonacci数列的递推式an = an-1 + an-2,得到A = 1/√5,B = -1/√5、因此,Fibonacci数列的通项为an = (1/√5) * (φ^n - (1-φ)^n),其中φ约等于1.6183.代数法:代数法是通过代数运算来求解通项。
将数列的递推式变形为一个方程,再通过方程求解通项。
例如,求等比数列1, 2, 4, 8, ...的通项。
观察可知,每一项与前一项的比值为2,即递推式为an = 2 * an-1、变形方程为an = 2 * an-1,将an-1代入等式中得到an = 2^n。
因此,等比数列的通项为an =2^n。
4.积分法:积分法适用于一些特殊的数列,如等差递减数列、等比递减数列等。
通过对递推式进行积分,可以得到一个通项形式的积分表达式。
例如,求等差递减数列1, 4/3, 1, ...的通项。
观察可知,每一项与前一项的差值为-1/3,即递推式为an = an-1 - 1/3、对递推式进行积分得到通项的积分表达式∫an dn = ∫(-1/3) dn,即an = C - n/3,其中C为常数。
求递推数列的通项公式的十一种方法
![求递推数列的通项公式的十一种方法](https://img.taocdn.com/s3/m/dd12c657fd4ffe4733687e21af45b307e871f993.png)
求递推数列的通项公式的十一种方法
递推数列是一种数学数列,其中每一项都是由前一项推算出来的。
通
项公式则是通过已知的数列项之间的关系,找出数列的整体规律,从而可
以直接计算任意一项的值。
下面将介绍11种方法来推导递推数列的通项公式。
1.递归定义法
递归定义法是通过规定数列的首项以及前面项与后面项之间的关系,
来表达出数列的通项公式。
2.直接求和法
直接求和法是通过将数列的前n项求和,并将结果化简得出通项公式。
3.递推关系法
递推关系法是通过规定数列前两项之间的关系,并将该关系推广到前
n项之间的关系,从而求出通项公式。
4.变量代换法
变量代换法是通过引入新的变量,将原数列表示成一个新的数列,从
而得到新数列的通项公式。
5.假设公式法
假设公式法是通过猜测数列的通项公式,并验证猜测的公式是否符合
已知项的规律。
6.拆项法
拆项法是通过拆解数列的项,将数列表示成两个或多个部分,再求和得出通项公式。
7.枚举法
枚举法是通过穷举数列的前几项,找出数列项之间的规律,推算出通项公式。
8.差分法
差分法是通过计算数列项之间的差值,找出数列项之间的规律,从而得到通项公式。
9.生成函数法
生成函数法是通过将数列视为多项式的系数,构造一个生成函数,再通过求导、积分等运算得到通项公式。
10.求和公式法
求和公式法是通过利用已知的数列求和公式,计算数列的前n项和,并化简得出通项公式。
11.对称性法
对称性法是通过观察数列的对称性,推断出数列的通项公式。
求数列递推式常用的八种方法
![求数列递推式常用的八种方法](https://img.taocdn.com/s3/m/95bdde7b86c24028915f804d2b160b4e767f812b.png)
求数列递推式常用的八种方法1. 直接法直接法是最简单和直接的方法,通过观察数列的规律,直接写出递推式。
例如,对于等差数列,递推式可以直接表示为:an = a1 + (n - 1)d,其中a1为首项,d为公差。
2. 分析法分析法是通过对数列进行数学分析,找出其中的规律,并根据规律推导出递推式。
这种方法通常需要一定的数学知识和分析能力,适用于较复杂的数列。
3. 求通项法求通项法是通过求出数列的通项公式,然后根据通项公式得到递推式。
对于一些特殊的数列,可以通过求通项的方式得到简洁的递推式。
4. 差分法差分法是通过对数列的前后项进行差分,找出差分序列的规律,并根据差分序列得到递推式。
差分法适用于一些变差规律较为明显的数列。
5. 指标法指标法是通过设立指标,将数列的各项表示为指标的函数,然后根据指标的变化规律得出递推式。
指标法通常用于描述具有规律性的数列。
6. 递推法递推法是通过递推关系式,从已知的前几项不断递推得到后面的项,并找到递推关系的规律性。
递推法适用于对于递推关系有一定了解的数列。
7. 求和法求和法是通过数列的和式表达式,将和式中的各项表示为数列的递推式,然后得出递推式。
求和法常用于求解数列的递推式,特别是对于等差数列和等比数列。
8. 递归法递归法是通过将数列的递推关系式表示为函数的递归定义,然后根据递归定义得到递推式。
递归法适用于递推关系较为复杂的数列。
以上是求数列递推式常用的八种方法,通过不同的方法可以找到适合不同数列的递推式,帮助我们更好地理解和描述数列的规律。
递推式求数列通项公式常见类型及解法
![递推式求数列通项公式常见类型及解法](https://img.taocdn.com/s3/m/ef58fa25af45b307e8719730.png)
递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。
一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。
例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。
解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。
答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。
解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叠加、 叠乘、迭代递推、代数转化——几类常见递推数列的教学随笔已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消.类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消.例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1)∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) =21[1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n .⑵.已知数列{a n }满足a 1=3,)1(21+=-+n n a a n n ,n ∈N +,求a n .二、叠乘相约.类型二:形如)(1n f a a n n =+.其中f (n ) =p pc mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或nn a a 1+= km n( k ≠ 0, 0<m 且m ≠ 1).例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴11+=+n n a an n∴nn n n n nn a a a a a a a a a a n n n n n n n 11212312111232211=⨯⨯⨯--⨯--⨯-=⨯⨯⨯⨯⨯=-----练习2:⑴已知数列{a n }满足S n =2n a n ( n ∈N *), S n 是{ a n }的前n 项和,a 2=1,求a n .⑵.已知数列{a n }满足a 1+n = 3 n a n ( n ∈N *),且a 1=1,求a n .三、逐层迭代递推.类型三:形如a 1+n = f (a n ),其中f (a n )是关于a n 的函数.——需逐层迭代、细心寻找其中规律.例3:已知数列{a n },a 1=1, n ∈N +,a 1+n = 2a n +3 n ,求通项公式a n . 解: ∵a 1+n = 2 a n +3 n∴ a n =2 a 1-n +3 n -1 =2(2 a 2-n +3 n -2)+3 n -1 = 22(2 a 3-n +3 n -3)+2·3 n -2+3 n -1=……=2 n -2(2 a 1+3 )+2 n -3·3 2+2 n -4·3 3+2 n-5·3 4+…+22·3 n-3+2·3 n -2+3 n-1 =2 n -1+2 n -2·3 +2 n -3·3 2+2 n-4·3 3+…+22·3 n -3+2·3 n -2+3 n -1 n n n n 2323123121-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=- 练习3:⑴.若数列{a n }中,a 1=3,且a 1+n =a 2n (n ∈N +),求通项a n .⑵.已知数列{a n }的前n 项和S n 满足S n =2a n +()n1-,n ∈N +,求通项a n .四、运用代数方法变形,转化为基本数列求解.类型四:形如1+n n a a = 1++n n qa pa ,(pq ≠ 0).且0≠n a 的数列,——可通过倒数变形为基本数列问题.当p = -q 时,则有:p a a n n 1111=-+ 转化为等差数列; 当p ≠ -q 时,则有:ppa q a n n 111+-=+.同类型五转化为等比数列. 例4:若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . 解: ∵ 221+=+n n n a a a又,011>=a ∴0>n a ,∴n n a a 12111+=+ ∴21111=-+n n a a ∵111=a∴数列{ a n }是首项为1,公差为21的等差数列. ∴n a 1=1+()121-n ∴a n =12+n n ∈N + 练习4:已知f (n ) = x x +32,数列{ a n }满足 a 1=1,a n =23f (a 1-n ),求a n .类型五:形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数.当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x⇒a 1+n + x = p (a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p (a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例5:已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n = 1、2、3、…,求通项a n . 解:∵ a n = 21a 1-n + 1 ⇒ a n -2 =21(a 1-n -2)又∵a 1-2 = -1≠0 ∴数列{ a n -2}首项为-1,公比为21的等比数列.∴ a n -2 = -11)21(-⨯n 即 a n = 2 -2n -1 n ∈N +练习5:⑴.已知 a 1=1,a n = 2 a 1-n + 3 (n = 2、3、4…) ,求数列{a n }的通项.⑵. 已知数列{a n }满足a 1=21,a 1+n =12+n n a a ,求a n .类型六:形如a 1+n =pa n + f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数.当p =1时,则 a 1+n =a n + f (n ) 即类型一.当p ≠1时,f (n )为关于n 的多项式或指数形式(a n )或指数和多项式的混合形式.⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.例6:已知数列{ a n }满足a 1=1,a 1+n = 2a n +n 2,n ∈N +求a n . 解:令a 1+n + x [a (n +1)2+ b (n +1) + c ] = 2(a n + an 2+ bn + c )即 a 1+n = 2 a n + (2a –ax )n 2+ (2b -2ax – bx )n +2c –ax –bx – cx 比较系数得:⎪⎩⎪⎨⎧=---=--=-0202212cx bx ax c bx ax b ax a ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-=-=x bx ax c x ax b x a 22221 ⇒ 令x = 1,得:⎪⎩⎪⎨⎧===321c b a ∴ a 1+n + (n +1)2+2(n +1) + 3 = 2(a n + n 2+2n + 3) ∵ a 1+1+2×1+3 = 7令b n = a n + n 2+2n + 3 则 b 1+n = 2b n b 1= 7 ∴数列{ b n }为首项为7,公比为2德等比数列 ∴ b n = 7× 21-n 即 a n + n 2+2n + 3 = 7× 21-n ∴ a n = 7× 21-n -( n 2+2n + 3 ) n ∈N +⑵若f (n )为关于n 的指数形式(a n). ①当p 不等于底数a 时,可转化为等比数列; ②当p 等于底数a 时,可转化为等差数列. 例7:(同例3)若a 1=1,a n = 2 a 1-n + 31-n ,(n = 2、3、4…) ,求数列{a n }的通项a n .解: ∵ a n = 2 a 1-n + 31-n ∴ 令a n + x ×3n = 2(a 1-n +x ×31-n ) 得 a n = 2 a 1-n -x ×31-n 令-x ×3n = 3n ⇒x = -1 ∴ a n -3n = 2(a 1-n -31-n ) 又 ∵ a 1-3 = - 2∴数列{nn a 3-}是首项为-2,公比为2的等比数列.∴nn a 3-=-2·21-n 即a n = 3n -2n n ∈N +例8:数列{ a n }中,a 1=5且a n =3a 1-n + 3n -1 (n = 2、3、4…) 试求通项a n . 解: a n =3a 1-n + 3n -1 ⇒ a n +-=--)21(3211n a 3n⇒132132111+-=---n n n n a a ⇒{nn a 321-}是公差为1的等差数列. ⇒n n a 321-=3211-a +(1-n ) = 3215-+(1-n ) = n +21 ⇒a n = (213)21+⨯+n n n ∈N +⑶若f (n )为关于n 的多项式和指数形式(a n )的混合式,则先转换多项式形式在转换指数形式.例如上面的例8.练习6:⑴.已知数列{a n }中a 1= 1,a 1+n = 3 a n + n ,+∈N n ; 求{a n }的通项.⑵设a 0为常数,且a n = 31-n -2 a 1-n (n ∈N +且n ≥ 2 ). 证明:对任意n ≥ 1,a n =51[3n+ (-1)1-n 2n ] +(-1)n 2n a 0. 类型七:形如a 2+n = p a 1+n + q a n ( pq ≠ 0, p 、q 为常数且p 2+ 4q > 0 ),——可用待定系数法转化为等比数列.例9: 已知数列{a n }中a 1= 1, a 2= 2且n n n a a a 212+=++ ,+∈N n ; 求{a n }的通项. 解:令a 2+n +x a 1+n = (1+x ) a 1+n + 2 a n ⇒ a 2+n +x a 1+n = (1+x )( a 1+n +x+12a n)令x =x+12 ⇒x 2+ x – 2 = 0 ⇒x = 1或 -2当x = 1时,a 2+n + a 1+n =2(a 1+n + a n ) 从而a 2+ a 1= 1 + 2 = 3 ∴数列{ a 1+n + a n }是首项为3且公比为2的等比数列. ∴ a 1+n + a n = 312-⨯n …… …… ①当x = - 2时, a 2+n - 2a 1+n = - (a 1+n -2a n ) , 而 a 2- 2a 1= 0 ∴ a 1+n - 2a n = 0 …… …… ② 由①、②得:a n = 21-n , +∈N n练习7:⑴已知: a 1= 2, a 2= 35, n n n a a a 323512-=++ ,(n = 1、2、3、……),求数列{ a n }的通项.⑵已知数列:1、1、2、3、5、8、13、……,根据规律求出该数列的通项. 五、数列的简单应用.例10:设棋子在正四面体ABCD 的表面从一个顶点移向另外三个顶点时等可能的.现抛掷骰子,根据其点数决定棋子是否移动,若投出的点数是奇数,则棋子不动;若投出的点数是偶数,棋子移动到另外一个顶点.若棋子初始位置在顶点A ,则:⑴投了三次骰子,棋子恰巧在顶点B 的概率是多少? ⑵投了四次骰子,棋子都不在顶点B 的概率是多少? ⑶投了四次骰子,棋子才到达顶点B 的概率是多少? 分析:考虑最后一次投骰子分为两种情况①最后一次棋子动;②最后一次棋子不动. 解:∵ 事件投一次骰子棋子不动的概率为21;事件投一次骰子棋子动且到达顶点B 的概率为3121⨯ =61. ⑴.投了三次骰子,棋子恰巧在顶点B 分为两种情况①.最后一次棋子不动,即前一次棋子恰在顶点B ;②.最后一次棋子动,且棋子移动到B 点.设投了i 次骰子,棋子恰好在顶点B 的概率为p i ,则棋子不在顶点B 的概率为(1- p i ).所以,投了i +1次骰子,棋子恰好在顶点B 的概率:p 1+i = p i ×21+ (1- p i )×61i = 1、2、3、4、…… ∴ p 1+i = 61 + 31×p i ∵ p 1= 3121⨯=61 ∴ p 2=92 ∴ p 3=5413⑵.投了四次骰子,棋子都不在顶点B ,说明前几次棋子都不在B 点,应分为两种情况①最后一次棋子不动;②最后一次棋子动,且不到B 点.设投了i 次骰子,棋子都不在顶点B 的概率为i p ',则投了i +1次骰子,棋子都不在顶点B 的概率为:1+'i p =i p '×21+ i p '×21×(1﹣31) i = 1、2、3、4、…… 即:1+'i p =65i p ' 又∵1p '= 21+21×(1﹣31) = 65 ∴ 4p ' = (65)4 ⑶.投了四次骰子,棋子才到达顶点B ;说明前三次棋子都不在B 点,最后一次棋子动且到达顶点B .设其概率为P 则: P =3121⨯×3p ' = 61×(65)3= 1296125答:(略).例11:用砖砌墙,第一层(底层)用去了全部砖块的一半多一块;第二层用去了剩下的一半多一块,…,依次类推,每层都用去了上层剩下的一半多一块.如果第九层恰好砖块用完,那么一共用了多少块砖?分析:本题围绕两个量即每层的砖块数a i 和剩下的砖块数b i ,关键是找出a i 和b i 的关系式,通过方程(组)求解.解:设第i 层所用的砖块数为a i ,剩下的砖块数为b i (i = 1、2、3、4、…… )则b 9= 0,且设b 0为全部的砖块数,依题意,得a 1=21b+ 1,a2=21b1+ 1,……ai=21b1-i+ 1 …………①又b1-i = ai+ bi……………②联立①②得b1-i -bi=21b1-i+ 1 即bi=21b1-i- 1∴bi + 2 =21(b1-i+ 2) ∴b9+2 = (21)9(b+ 2 ) ∴b+2 = 2×29∴b= 1022练习8:⑴十级台阶,可以一步上一级,也可以一步上两级;问上完十级台阶有多少种不同走法?⑵. 三角形内有n个点,由这n个点和三角形的三个顶点,这n + 3个点可以组成多少个不重叠(任意两个三角形无重叠部分)的三角形?⑶.甲、乙、丙、丁四人传球,球从一人手中传向另外三个人是等可能的.若开始时球在甲的手中.若传了n次球,球在甲手中的概率为an ;球在乙手中的概率为bn.(n = 1、2、3、4、……).①问传了五次球,球恰巧传到甲手中的概率a5和乙手中的概率b5分别是多少?②若传了n次球,试比较球在甲手中的概率an 与球在乙手中的概率bn的大小.③传球次数无限多时,球在谁手中的概率大?参考答案练习1:⑴. an =21(3 n-1) ⑵. a n=nn2+练习2:⑴. a n= n -1 ⑵. a n= 32)1(-nn练习3:⑴. an = 321-n(提示:可两边取对数) ⑵. an=32[22-n+ (-1)1-n]练习4:an =23+n练习5:⑴a n= 21+n-3 ⑵a n=12211+--nn练习6:⑴可得a1+n +21(n+1)+41= 3(a n+21n +41) 从而a n=47×31-n-(21n +41) ⑵(略)练习7:⑴an = 3 -132-nn,⑵由已知得a2+n= a1+n+ a n⇒a n=55[(251+)n-(251-)n]练习8:⑴∵a2+n= a1+n+ a n,a1= 1,a2= 2,∴a10= 89 ⑵∵a1+n= a n+ 2 ,a1= 3 ∴a n= 2n+1⑶①∵a1+n =31(1 - a n) b1+n=31(1 - b n) a1= 0 b1=31∴a5=8120;b5=24361.②可解得an =41-41×1)31(--n bn=41+121×1)31(--n∴当n为奇数时,an <41<b n;当n为偶数时,a n>41>b n③当n →∞时,an →41,b n→41故球在各人手中的概率一样大.。