(完整word版)银行家算法实验报告(C语言版)
操作系统实验报告-银行家算法5页word
![操作系统实验报告-银行家算法5页word](https://img.taocdn.com/s3/m/efb7459e856a561253d36f0d.png)
南昌大学实验报告---(3)编程实现银行家安全算法学生姓名:张虹学号:6100409033 专业班级:电Ⅲ091班实验类型:□验证■综合□设计□创新实验日期:实验成绩:一、实验目的通过实验加强对银行家安全算法的理解和掌握。
二、实验内容熟悉避免死锁发生的方法,死锁与安全序列的关系,编程实现银行家算法,要求输出进程的安全序列。
三、实验要求1、需写出设计说明;2、设计实现代码及说明3、运行结果;四、主要实验步骤1、分析银行家算法结构;2、画出银行家算法的流程图,即设计说明;3、根据画出的流程图使用C语言编写相应的代码(代码过长,放到最后);程序主要由main函数和以下几个函数组成:void input();用户输入银行家算法的初始数据;void output();输出当前系统资源分配情况;void change();当请求资源满足要求时,进行分配,系统资源发生改变;int check();安全性算法,检查是否存在安全序列;void outputsafe();输出安全序列的资源分配表。
4、检查代码,将编出的代码编译、链接,验证其正确性。
五、实验数据及处理结果六、实验体会或对改进实验的建议体会:编写银行家算法需要较好分析能力,C语言也要掌握的很好,而且需要细心和极大地耐心。
我的程序在最开始编出来的第一份代码编译时大大小小一堆错误,有些是一个小错误导致了下面全错,这些小错误在一百多行里找起来非常费劲。
然后小错误全部找出来以后,再编译,错误没有了,但是得到的结果却是错误的,这样又要开始一行一行分析,看是哪里出了问题。
到最后得到了想要的结果以后,程序还需要修饰,至少要输出要简洁明朗,要让别人一运行这个程序就知道自己在什么时候该输入什么数据,数据是什么作用,而不是只有自己知道输进去的是什么东西。
七、参考资料《计算机操作系统》《C程序设计》《C语言程序设计_现代方法》八、实验代码#include <stdio.h> //本实验中使用到的库函数#include <stdlib.h>#include <string.h>int max[5][3]; //开始定义银行家算法中需要用到的数据int allocation[5][3];int need[5][3];int available[3];int request[5][3];char *finish[5];int safe[5];int n,i,m;int k=0;int j=0;int work[3];int works[5][3];void line() //美化程序,使程序运行时更加明朗美观printf("------------------------------------------------------------------\n");void start() //表示银行家算法开始line();printf(" 银行家算法开始\n");printf(" ——Designed by Zhang Hong\n");line();void end() //表示银行家算法结束line();printf(" 银行家算法结束,谢谢使用\n");line();void input() //输入银行家算法起始各项数据for (n=0;n<5;n++)printf("请输入进程P%d的相关信息:\n",n);printf("Max:");for (m=0;m<3;m++)scanf("%d",&max[n][m]);printf("Allocation:");for (m=0;m<3;m++)scanf("%d",&allocation[n][m]);for (m=0;m<3;m++)need[n][m]=max[n][m]-allocation[n][m];printf("请输入系统可利用资源数Available:");for (m=0;m<3;m++)scanf("%d",&available[m]);void output() //输出系统现有资源情况line();printf("资源情况Max Allocation Need Available\n");printf("进程 A B C A B C A B C A B C\n");line();for(n=0;n<5;n++)printf("P%d%9d%3d%3d%5d%3d%3d%6d%3d%3d",n,max[n][0],max[n][1],max[n][2],allocation[n][ 0],allocation[n][1],allocation[n][2],need[n][0],need[n][1],need[n][2]);if (n==0)printf("%6d%3d%3d\n",available[0],available[1],available[2]);elseprintf("\n");line();void change() //当Request[i,j]<=Available[j]时,系统把资源分配给进程P[i],Available[j]和Need[i,j]发生改变for (m=0;m<3;m++)available[m]-=request[i][m];allocation[i][m]+=request[i][m];need[i][m]-=request[i][m];void outputsafe() //输出安全序列的资源分配表printf("该安全序列的资源分配图如下:\n");line();printf("资源情况Work Need Allocation Work+Allocation Finish\n");printf("进程 A B C A B C A B C A B C\n");line();for(n=0;n<5;n++)printf("P%d%9d%3d%3d%5d%3d%3d%5d%3d%3d%6d%3d%3d%12s\n",safe[n],works[safe[n]][0], works[safe[n]][1],works[safe[n]][2],need[safe[n]][0],need[safe[n]][1],need[safe[n]][2],allocation[safe[n]][0 ],allocation[safe[n]][1],allocation[safe[n]][2],works[safe[n]][0]+allocation[safe[n]][0],works[safe[n]][1]+allocation[safe[n]][1],works[safe[n]][2]+allocation[safe[n]][2],finish[n]);line();int check() //安全性算法printf("开始执行安全性算法……\n");for (m=0;m<3;m++) //数组work和finish初始化work[m]=available[m];for (n=0;n<5;n++)finish[n]="false";safe[n]=0;k=0;for (m=0;m<5;m++)for (n=0;n<5;n++)if(strcmp(finish[n],"false")==0 && need[n][0]<=work[0] && need[n][1]<=work[1] && need[n][2]<=work[2]) //查找可以分配资源但尚未分配到资源的进程safe[k]=n; //以数组safe[k]记下各个进程得到分配的资源的顺序works[safe[k]][0]=work[0];works[safe[k]][1]=work[1];works[safe[k]][2]=work[2];work[0]+=allocation[n][0]; //进程执行后释放出分配给它的资源work[1]+=allocation[n][1];work[2]+=allocation[n][2];finish[n]="ture"; //finish[n]变为1以示该进程完成本次分k++;for (m=0;m<5;m++) //判断是否所有进程分配资源完成if (strcmp(finish[m],"false")==0)printf("找不到安全序列,系统处于不安全状态。
银行家算法实验报告
![银行家算法实验报告](https://img.taocdn.com/s3/m/0e11a2df7f1922791688e814.png)
银行家算法实验报告银行家算法是为了实现避免出现死锁的状态而采取的一种算法,本实验则是用C语言实现。
一、银行家算法数据结构1、可利用资源数量Avail。
这是一个含M个元素的数组,其中每一个元素代表一类可用的资源数目,定义为int型,Avail[m]。
2、最大需求矩阵Max。
这是一个nxm的二维矩阵,它定义了系统中n个进程的每一个进程对m类资源的最大需求,定义为int型,Max[n][m]。
3、分配矩阵Alloc。
这是一个nxm的二维矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。
定义为int型,Alloc[n][m]。
4、需求矩阵Need。
这也是一个nxm的二维矩阵,用以表示每一个进程尚需的各类资源数。
定义为int型,Need[n][m]。
5、请求资源数目Request。
这是一个含M个元素的数组,它表示进程请求的资源数目,定义为int型,Request[m]。
6、系统当前可用的资源矩阵Work,这是一个含M个元素的数组,表示系统还可以分配的资源数目,用于对安全算法的检测。
定义为int型,Work[m]。
7、记录安全序号的数组sequence,用于记录系统的安全信号,便于在后面输出。
定义为int型,sequence[n].二、银行家算法过程步骤如下:1、判断请求的资源是否超过他所宣布需要的最大值,即如果request[j]>need[i][j],则判断出错,否则继续执行。
2、判断请求的资源是否超过系统可分配的数目,即如果request[j]>Avail[j],则判断出错,否则继续执行。
3、系统试探着把资源分配给进程Pi。
并修改其中的数据Avail、Alloc、Need。
4、系统进行安全性算法的检查。
三、安全性算法其中有两个信号量,Work和Finish。
分别用于表示系统可提供给进程的继续运行所需的各类资源的数目,含m个int型的元素。
而Finish用于标识系统是否有足够的资源分配给进程,使之运行完成,默认为1(不能),从而只有在finish都为0时才能表示安全算法成功。
银行家算法实验报告(C语言版)
![银行家算法实验报告(C语言版)](https://img.taocdn.com/s3/m/2211a178a8114431b90dd87a.png)
printf("您输入的第%d个进程的%d个资源数据有错,请重新输入\n",i,j);
}
}
void init2()
{ int i,j;
for (i=0;i<m;i++)
for (j=0;j<n;j++)
need[i][j]=max[i][j]-allocation[i][j];
continue;
}
}
for(i=0;i<n;i++){
available[i]=available[i]-request[number][i];
allocation[number][i]=allocation[number][i]+request[number][i];
need[number][i]=need[number][i]-request[number][i];
(3)若以上两个条件都满足,则系统试探着将资源分配给申请的进程,并修改下面数据结构中的数值:
Available[i,j]= Available[i,j]- Request [j];
Allocation[i][j]= Allocation[i][j]+ Request [j];
need[i][j]= need[i][j]- Request [j];
int allocation[max_process][max_resource]={{0,1,0},{2,0,0},{3,0,2},{2,1,1},{0,0,2}};//分配矩阵
int need[max_process][max_resource];//需求矩阵
C语言实验报告范例
![C语言实验报告范例](https://img.taocdn.com/s3/m/43a4414bf4335a8102d276a20029bd64783e62e9.png)
C语言实验报告范例
实验题目:C语言实现银行家算法
实验目的:掌握C语言实现银行家算法的基本思想,并能熟练应用矩阵处理实现银行
家算法的功能。
实验内容:
1. 利用C语言实现银行家算法的核心思想,利用矩阵处理实现其核心功能模块。
2. 银行家算法是一种负责实现“当前分配”的基于矩阵的编程模型。
该算法可以通
过利用安全状态来识别一次可行解,从而解决请求和分配资源的冲突问题。
3. 根据上述信息,我们设计了C语言实现银行家算法的基本框架,包括初始化步骤、可行性检查步骤、回滚步骤以及主步骤。
4. 在初始化步骤中,我们采用矩阵存储技术,将银行家算法中的各个参数保存起来,具体过程中采用数组存储。
5. 在可行性检查步骤中,我们判断当前系统状态是否处于安全状态,如果处于安全
状态,则继续完成下一步余额检查;否则,处理发生冲突时,回滚处理。
6. 在主步骤中,我们过程中判断若系统处于可行状态,则继续分配资源;否则,则
执行回滚操作,将系统恢复到上一状态。
实验结果和结论:
通过实验,我们学会了如何使用C语言来实现银行家算法,进而通过实现矩阵处理,
实现了该算法的核心功能模块。
此外,我们还学习了安全状态机制,进行系统可行性检查,和完成系统的分配工作,以达到有效地实现银行家算法的目的。
本次实验结论如下:
1. 通过C语言实现银行家算法中的核心功能模块,使系统的可行性检查得以有效实现;
2. 利用矩阵存储来实现系统的可行性检查,从而有效地节省时间和提高资源分配的
效率;
3. 通过回滚处理,有效地解决资源请求和分配冲突问题,使系统能够有效地实现安
全状态。
(完整word版)《银行家算法的模拟实现》—实验报告
![(完整word版)《银行家算法的模拟实现》—实验报告](https://img.taocdn.com/s3/m/9a2339a2b9f3f90f76c61b9f.png)
《银行家算法的模拟实现》 --实验报告题目: 银行家算法的模拟实现专业:班级:组员:指导老师:一、实验目的死锁会引起计算机工作僵死,因此操作系统中必须防止。
本实验的目的在于让学生独立的使用高级语言编写和调试一个系统动态分配资源的简单模拟程序,了解死锁产生的条件和原因,并采用银行家算法有效地防止死锁的发生,以加深对课堂上所讲授的知识的理解。
二、实验内容模拟实现银行家算法实现死锁避免。
要求:初始数据(如系统在T0时刻的资源分配情况、每一种资源的总数量)从文本文件读入,文件中给出最大需求矩阵Max、分配矩阵Allocation,在程序中求得需求矩阵Need和可利用资源向量Available。
三、实验分析过程1、整个银行家算法的思路。
先对用户提出的请求进行合法性检查,再进行预分配,利用安全性检查算法进行安全性检查。
1)进程一开始向系统提出最大需求量.2)进程每次提出新的需求(分期贷款)都统计是否超出它事先提出的最大需求量.3)若正常,则判断该进程所需剩余剩余量(包括本次申请)是否超出系统所掌握的剩余资源量,若不超出,则分配,否则等待2、算法用到的主要数据结构和C语言说明。
(1)、可利用资源向量INT A V AILABLE[M] M为资源的类型。
(2)、最大需求矩阵INT MAX[N][M] N为进程的数量。
(3)、已分配矩阵INT ALLOCA TION[N][M](4)、还需求矩阵INT NEED[N][N](5)、申请各类资源数量int Request[x]; //(6)、工作向量int Work[x];(7)、int Finish[y]; //表示系统是否有足够的资源分配给进程,0为否,非0为是3、银行家算法(主程序)(1)、系统初始化。
输入进程数量,资源种类,各进程已分配、还需求各资源数量,各资源可用数量等(2)、输入用户的请求三元组(I,J,K),为进程I申请K个J类资源。
(3)、检查用户的请求是否小于还需求的数量,条件是K<=NEED[I,J]。
(完整word版)计算机操作系统银行家算法实验报告
![(完整word版)计算机操作系统银行家算法实验报告](https://img.taocdn.com/s3/m/3d9bfaf855270722182ef78b.png)
计算机操作系统实验报告一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的.若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待.(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available—Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态.3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true.(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②Need〈or=Work如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程P获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向步骤(2).(4)如果所有进程的Finish[i]=true,则表示系统处于安全状态;否则,系统处于不安全状态。
银行家算法实验报告
![银行家算法实验报告](https://img.taocdn.com/s3/m/b5e76b53b6360b4c2e3f5727a5e9856a5612260e.png)
银行家算法实验报告实验目的:了解和掌握银行家算法,进一步熟悉进程和如何避免死锁。
实验内容:1、主要程序结构(a)resource allocation algorithm如果要求的资源量+占有的资源总的资源需求量可以carry out allocation(b) test for safety algorithm注:《--- 》中的内容为未具体写明但说明其功能的程序段bool safe(struct state new ){bool possible = true,found=false;process rest[n];//正在执行的进程号int p=n;// 正在执行的进程数量int currentavail[m];//可用资源的一个副本《---为rest和currentavail赋值---》while(possible==true&&p>0){int g=0;《---寻找可以执行完成的进程---》if(found==true){int c=0;《---假设可以执行完的进程以完成,及currentavail[*]=currentavail[*]+new.alloc[g][*];---》rest[g] = -1;--p;found =false;}else{possible=false;}}return possible;}2、实验步骤1)设计结构体#ifndef STATE_H_#define m 3#define n 5struct state{int resource[m];int available[m];int claim[n][m];int alloc[n][m];} ;#define STATE_H_#endif /* STATE_H_ */2)设计实现程序的结构的具体程序Safe算法的具体代码bool safe(struct state new ){bool possible = true,found=false;process rest[n]; //正在执行的进程号int f=0,p=n;// 正在执行的进程数量do{rest[f]=f;++f;}while(f<n);int currentavail[m]; //可用资源的一个副本int i=0;do{currentavail[i]=new.available[i];++i;}while(i<m);while(possible==true&&p>0){int g=0;/*------------------寻找可以执行完成的进程------------------------------------------*/ while(g<n){int h = 0;/*while(h<m){if((new.claim[g][h]-new.alloc[g][h])<=currentavail[h]&&rest[g]!=(-1)){if(h==m-1){found=true;}}++h;}if(found==true)break;++g;}/*-------------------------------------------------------------------------------------*/ if(found==true){int c=0;while(c<m){currentavail[c]=currentavail[c]+new.alloc[g][c];c++;}rest[g] = -1;--p;found =false;}else{possible=false;}}return possible;}实验代码:/*============================================================================ Name : pre.cAuthor :Version :Copyright : Your copyright noticeDescription : Hello World in C, Ansi-style============================================================================ */#include <stdio.h>#include <stdlib.h>#include"state.h"#define bool int#define process int#define false 0#define true 1int main(void) {bool alloc(int,int[],struct state );struct state sta1={{10,5,7},{3,3,2},{{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}},{{0,1,0},{2,0,0},{3,0,2},{2,1,1},{0,0,2}}};int request[m];int k=0;while(k>=0){puts("输入要改变资源的进程号");scanf("%d",&k);puts("输入要改变的资源");int i =0;while(i<m){scanf("%d",&request[i]);i++;}if(alloc(k,request,sta1)==true){i=0;puts("输出个进程占用的资源");while(i<n){int j=0;printf("%d ",i);while(j<m){if(i==k){sta1.alloc[k][j]=request[j]+sta1.alloc[k][j];sta1.available[j]=sta1.available[j]-request[j];}printf("%d ",sta1.alloc[i][j]);j++;}printf("\n");++i;}}puts("银行家算法");}return 0;}bool alloc(int l,int request[m],struct state nest){bool safe(struct state news);bool t = false;int i=0;while(i<m){if(nest.alloc[l][i]+request[i]>nest.claim[l][i]){puts("!!resource request error!!");return false;}else if(request[i]>nest.available[i]){puts("suspend process");return false;}else{if(i==m-1){int f=0;while(f<m){nest.alloc[l][f]=nest.alloc[l][f]+request[f];nest.available[f]=nest.available[f]-request[f];f++;}if(safe(nest)==true){t=true;}else{puts(" no safe suspend process");t=false;}}}i++;}return t;}bool safe(struct state new ){bool possible = true,found=false;process rest[n];int f=0,p=n;do{rest[f]=f;++f;}while(f<n);int currentavail[m];int i=0;do{currentavail[i]=new.available[i];++i;}while(i<m);while(possible==true&&p>0){int g=0;while(g<n){int h = 0;while(h<m&&(new.claim[g][h]-new.alloc[g][h])<=currentavail[h]&&rest[g]!=(-1)){if(h==m-1){found=true;}++h;}if(found==true)break;++g;}if(found==true){int c=0;while(c<m){currentavail[c]=currentavail[c]+new.alloc[g][c];c++;}rest[g] = -1;--p;found =false;}else{possible=false;}}return possible;}。
(完整word版)操作系统银行家算法实验报告 (1)
![(完整word版)操作系统银行家算法实验报告 (1)](https://img.taocdn.com/s3/m/11d8f41c27d3240c8547ef23.png)
银行家算法实验报告【实验目的】(1)根据设计题目的要求,充分地分析和理解题目,叙述系统的要求,明确程序要求实现的功能以及限制条件。
(2)明白自己需要用代码实现的功能,清楚编写每部分代码的目的,做到有的放矢,有条理不遗漏的用代码实现银行家算法。
【实验要求】(1)了解和理解死锁;(2)理解利用银行家算法避免死锁的原理;(3)会使用某种编程语言。
【实验原理】一、安全状态指系统能按照某种顺序如<P1,P2,…,Pn>(称为<P1,P2,…,Pn>序列为安全序列),为每个进程分配所需的资源,直至最大需求,使得每个进程都能顺利完成。
二、银行家算法假设在进程并发执行时进程i提出请求j类资源k个后,表示为Requesti[j]=k。
系统按下述步骤进行安全检查:(1)如果Request i≤Need i则继续以下检查,否则显示需求申请超出最大需求值的错误。
(2)如果Request i≤Available则继续以下检查,否则显示系统无足够资源,Pi阻塞等待。
(3)系统试探着把资源分配给进程Pi,并修改下面数据结构中的数值:Available[j]∶=Available[j]-Request i[j];Allocation[i,j]∶=Allocation[i,j]+Request i[j];Need[i,j]∶=Need[i,j]-Requesti[j];(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
若安全,才正式将资源分配给进程Pi,以完成本次分配;否则,将本次的试探分配作废,恢复原来的资源分配状态,让进程Pi等待。
三、安全性算法(1)设置两个向量:①工作向量Work: 它表示系统可提供给进程继续运行所需的各类资源数目,它含有m个元素,在执行安全算法开始时,Work∶=Available;② Finish: 它表示系统是否有足够的资源分配给进程,使之运行完成。
开始时先做Finish[i]∶=false; 当有足够资源分配给进程时,再令Finish [i]∶=true。
银行家算法实验报告电子版
![银行家算法实验报告电子版](https://img.taocdn.com/s3/m/9cdaf0a858fb770bf68a5525.png)
if(work[k]>=y[j].need[k]) //判断资源是否满足第j进程所需
continue;
else
b=1; //b为判断资源是否满足为1表示不满足
}
if(b==0) //满足时交换可执行的进程
{
v=y[i];
y[i]=y[j];
y[j]=v;
for(l=0;l<N;l++)
{
work[l]=work[l]+y[i].allocation[l]; //回收可完成进程资源
printf("\n已有进程分配情况"); //输出初始化结果
printf("\n进程号 最大资源 以分配资源 需要资源");
for(i=0;i<M;i++)
{
printf("\n%d ",i);
for(j=0;j<N;j++)
{
printf("%d",x[i].max[j]);
}
printf(" ");
};
static available[N];//可分配资源
void yhjsf(int x,int a[],jc y[]) //银行家算法
{
int work[N],i,j,k,l,sum,b;
jc v;
sum=0;
for(i=0;i<N;i++) //假设分配请求资源
{
work[i]=available[i]-a[i]; //把修改的可分配资源赋予work
Process
Max
A B C
Allocation
c语言银行家算法实验报告
![c语言银行家算法实验报告](https://img.taocdn.com/s3/m/2696bcc86429647d27284b73f242336c1eb9308e.png)
c语言银行家算法实验报告C语言银行家算法实验报告引言:计算机科学领域中,操作系统的资源管理是一个十分重要的课题。
在多任务处理系统中,多个进程同时竞争有限的资源,如何合理地分配和调度资源,以保证系统的稳定性和效率,是一个关键问题。
银行家算法(Banker's Algorithm)是一种经典的资源分配算法,它通过分析系统的资源状态和进程的资源需求,来判断是否能够安全地分配资源,从而避免产生死锁。
一、实验目的本次实验旨在通过C语言编程实现银行家算法,加深对资源管理和死锁问题的理解,并通过实际案例验证银行家算法的有效性。
二、实验环境本次实验使用C语言进行编程,并在Linux操作系统下进行测试。
三、实验过程1. 设计数据结构在开始编写代码之前,我们需要先设计适合的数据结构来表示系统资源和进程的状态。
在银行家算法中,我们需要记录系统中的可用资源数量、各个进程的最大需求资源数量、已分配资源数量和需要资源数量等信息。
通过定义合适的数据结构,我们可以方便地进行资源的分配和回收。
2. 实现银行家算法根据银行家算法的原理,我们可以将其分为两个步骤:安全性检查和资源分配。
在安全性检查中,我们需要判断当前系统状态下是否存在安全序列,即是否能够满足所有进程的资源需求,避免死锁的发生。
在资源分配中,我们需要根据当前系统状态和进程的资源需求,动态地分配和回收资源。
3. 编写测试用例为了验证银行家算法的正确性和有效性,我们需要编写一些测试用例。
测试用例应该包括各种不同的进程资源需求和系统资源状态,以覆盖不同情况下的资源分配和回收。
4. 运行测试用例在编写完测试用例后,我们可以运行程序,观察输出结果。
通过比较实际输出与预期结果,我们可以判断银行家算法的正确性和有效性。
四、实验结果与分析通过运行多个测试用例,我们可以得出以下结论:1. 银行家算法能够有效地避免死锁的发生。
在安全性检查过程中,如果存在安全序列,那么系统可以继续分配资源,否则需要阻塞等待。
银行家算法 实验报告
![银行家算法 实验报告](https://img.taocdn.com/s3/m/bc1d1369bb68a98270fefa40.png)
淮海工学院计算机工程学院实验报告书课程名:《操作系统原理》题目:银行家算法班级:学号:姓名:一、实验目的银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。
实验环境TurboC2.0/3.0或VC++6.0实验学时4学时,必做实验。
二、实验内容用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。
程序能模拟多个进程共享多种资源的情形。
进程可动态地申请资源,系统按各进程的申请动态地分配资源。
要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。
三、实验说明实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。
初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。
四、实验步骤1、理解本实验中关于两种调度算法的说明。
2、根据调度算法的说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
五、分析与思考1.要找出某一状态下所有可能的安全序列,程序该如何实现?答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述:进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和;通过这个描述来算出系统是否安全,从而找出所有的安全序列。
2.银行家算法的局限性有哪些?答:银行家算法是一种最有代表性的避免死锁的算法。
银行家算法即把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
银行家算法实验报告c语言
![银行家算法实验报告c语言](https://img.taocdn.com/s3/m/c97429d6dc88d0d233d4b14e852458fb770b38b0.png)
银行家算法实验报告c语言银行家算法实验报告引言:计算机科学中的银行家算法是一种资源分配和避免死锁的算法。
它是由艾德加·戴克斯特拉(Edsger Dijkstra)在1965年提出的。
银行家算法通过判断一个系统是否处于安全状态来决定是否分配资源给进程。
本实验旨在使用C语言实现银行家算法,并通过一系列的实例来验证其有效性。
一、实验背景银行家算法是为了解决资源分配中的死锁问题而提出的。
在多进程系统中,每个进程都需要一定数量的资源来完成任务。
然而,如果资源分配不当,可能会导致死锁的发生,即所有进程都陷入无法继续执行的状态。
银行家算法通过合理地分配资源,避免了死锁的发生。
二、实验目的本实验的主要目的是通过C语言实现银行家算法,并通过实例验证其正确性和有效性。
具体而言,我们将模拟一个系统中的多个进程,并为每个进程分配资源。
然后,我们将使用银行家算法来判断系统是否处于安全状态,从而决定是否继续分配资源。
三、实验过程1. 创建进程和资源我们首先创建了5个进程和3种资源。
每个进程需要的资源数量是随机生成的,以模拟真实情况下的资源需求。
2. 分配资源根据银行家算法的原则,我们按照以下步骤来分配资源:- 首先,检查每个进程的资源需求是否小于等于系统当前可用的资源数量。
- 如果满足条件,将资源分配给该进程,并更新系统剩余资源数量。
- 如果不满足条件,暂时不分配资源给该进程,继续检查下一个进程。
3. 判断系统状态在每次资源分配后,我们需要判断系统是否处于安全状态。
为此,我们使用银行家算法的核心原则:只有当系统能够为每个进程提供所需的资源时,系统才是安全的。
我们通过遍历所有进程来检查其资源需求是否小于等于系统剩余资源数量,如果满足条件,说明系统是安全的。
4. 实例验证我们进行了多个实例验证,以确保银行家算法的正确性。
在每个实例中,我们模拟了不同的进程和资源需求,并观察系统的状态。
通过比较实验结果和预期结果,我们验证了银行家算法的有效性。
银行家算法实验报告
![银行家算法实验报告](https://img.taocdn.com/s3/m/57a268e66bec0975f565e251.png)
计算机操作系统实验报告何美西109253030212一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程P获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向步骤(2)。
银行家算法实验报告电子版
![银行家算法实验报告电子版](https://img.taocdn.com/s3/m/0b53bec1f46527d3250ce071.png)
else
{
prin tf("error");
j=1;
}
}
if(j==0) //满足调用银行家算法
yhjsf(y,a,x);
}
运行结果:
7120¥02£4-R源P漏圧源3'®;M澜佛最督駆賢曾甌耶鬣需分需分需分需为需分所伊已所已所己誓-—I.■/-■1■--.1■-—I.---1.■-7---11■--11■进齐逵1£进壬l£^^4yIl•11工、一工・=1-、-A、1!—*•AT^T^T^T^T^iB011223344fMUSIA-AAJAJAJAiAJAJAx-丿nJ"JM丿丿1JM丿a丿丿m丿
另帛另另DRPRDR另另另
八R^<F<R^<^<R<[^XP
諫卑王"聲电璋源 戏分配资源 需要貸源
0753RIB
1322209
Z爭村23OZ
3222211
|4433Q02
帆入每环贪源可用教量辺5
Lnuut reauest-[N];
for(i=0;i<M;i++) //初始化max,allocation,need
{
x[i]. num=i;
x[i].fi nish=0;
printf("分别输入第%c个进程所需最大资源",i);
for(j=0;j<N;j++)
{
scan f("%d", &x[i].max[j]);
福州大学数学与计算机科学学院
(word完整版)实验二银行家算法
![(word完整版)实验二银行家算法](https://img.taocdn.com/s3/m/c67244318bd63186bdebbca9.png)
实验二银行家算法一、目的:加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
要求编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效地防止和避免死锁的发生。
二、内容:银行家算法是避免死锁的一种重要方法,本实验要求编写和调试一个简单的银行家算法程序。
用银行家算法实现资源分配。
三、编程思想:首先分析银行家算法的数据结构,分析可利用资源向量Available、最大需求矩阵Max、分配矩阵Allocation、需求矩阵Need 、进程申请资源的关系,由所学知识可知;Need[i,j]=Max[I,j]—Allocation[i,j];当进程申请资源的时候;a)Request i>Need[i]。
这种情况表示该进程的资源需求已超过系统所宣布的最大值,出错。
b)Request i=Need[i]。
这种情况表示该进程现在对他所需的全部资源一次申请完成。
c)Request i〉Need[i]。
这种情况表示该进程现在对它所需资源再进行部分的申请,剩余的资源以后再次申请。
发出资源请求后;当进程pia)如果Request i<=Need[i],转向步骤b,否则显示为出错,因为所需的资源数超过事先要求的最大值。
b)Request i<=Available,便转向步骤三,否则则表示尚无足够资源,p i需等待。
c)假如系统将资源分配给p i 则:Available=Available—RequestiAllocation[i]=Allocation[i]+RequestiNeed[i]=Need[i]-Request安全性算法检查(1)设置向量:工作向量Work,它表示系统可提供给进程继续运行所需的各类资源数目,在执行安全性算法开始时,Work[]= Available[]。
Finish[],它表示系统是否有足够的资源分配给每个进程,使之运行完成。
银行家算法 实验报告
![银行家算法 实验报告](https://img.taocdn.com/s3/m/900e1307bed5b9f3f90f1c19.png)
淮海工学院计算机工程学院实验报告书课程名:《操作系统原理》题目:银行家算法班级: D学号:姓名:一、实验目的银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。
实验环境Turbo C 2.0/3.0或VC++6.0实验学时4学时,必做实验。
二、实验内容用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。
程序能模拟多个进程共享多种资源的情形。
进程可动态地申请资源,系统按各进程的申请动态地分配资源。
要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。
三、实验说明实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。
初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。
四、实验步骤1、理解本实验中关于两种调度算法的说明。
2、根据调度算法的说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
五、分析与思考1.要找出某一状态下所有可能的安全序列,程序该如何实现?要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述:进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和;通过这个描述来算出系统是否安全,从而找出所有的安全序列。
2.银行家算法的局限性有哪些?银行家算法是一种最有代表性的避免死锁的算法。
银行家算法即把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
操作系统实验报告(银行家算法c语言描述)
![操作系统实验报告(银行家算法c语言描述)](https://img.taocdn.com/s3/m/99442a375727a5e9856a6115.png)
Inint(&processNum, &resourceNum);
printf("T0时刻安全性:");
if(safe(processNum, resourceNum))
{
isSafe=true;
printf("存在安全序列故系统是安全的!\n安全序列为:");
for(inti=0;i<processNum;++i)
{
if(Need[j][k]<=Work[k])
{
++count;
}
}
if(count==resourceNum)
{
for(intk=0;k<resourceNum;++k)
{
tempWork[j][k]=Work[k];
Work[k]=Work[k]+Allocation[j][k];
}
Finish[j]=true;
{intnum,typ源自;printf("输入进程数量和资源种类:");
scanf("%d%d",&num,&type);
*processNum=num;
*resourceNum=type;
printf("输入各类资源可用量:");
for(intj=0;j<type;++j)
{
scanf("%d",&Available[j]);
boolsafe(int,int);
boolIsValidate(int,int*,int,int);
voiddisplayInfo(int,int);
银行家算法实验报告
![银行家算法实验报告](https://img.taocdn.com/s3/m/61d8a64955270722182ef739.png)
一.绪论这次课程设计要求完成一个资源管理系统,该系统必须包括资源的添加、删除和修改等功能,并且允许其它进程来申请这里的资源,任何一个进程来申请资源时,必须先登记该进程对资源的申请要求,然后由系统检查当前资源的状况,并用银行家算法和安全性算法来检查是否允许分配资源给进程。
通过课程设计,加深我们对利用银行家算法避免死锁的理解。
在设计中主要的难点是用语言编写银行家算法和安全性算法,使系统资源分配能安全进行,避免系统死锁。
二.设计目的在多道程序系统中,虽可借助于多个进程的并发执行,来改善系统的资源利用提高吞吐量,但可能发生一种危险——死锁。
所谓死锁,是指多个进程运行中因争夺资源而造成的一种僵局,当进程处于这种僵持状态时,若无外力作用,他们都无法再向前推进。
虽然进程在运行过程中,可能发生死锁,但死锁的发生必须同时具备四个条件:互斥条件、请求和保持条件、不剥夺条件、环路等待条件;防止死锁的机构只须确保上述四个条件之一不出现,则系统不会发生死锁。
系统的状态分为安全状态和不安全状态,只要能使系统都处于安全状态,便可避免死锁。
所谓安全状态,是指系统能按某种进程顺序(P1,P2,…,P n),来为每个进程P i分配其所需分配,直至满足每个进程对资源的最大需求,使每个进程都可顺利地完成。
如果系统无法找到一个这样地安全系列,则称系统处于不安全状态。
在操作系统中研究资源分配策略时也有类似的问题,系统中有限的资源要供多个进程使用,必须保证得到资源的进程能在有限的时间内归还资源,以供它进程使用资源。
如果资源分配不得当就会发生进程循环等待资源,各进程都无法继续执行下去的死锁现象。
而最有代表性的避免死锁的算法,是Dijkstra的银行家算法。
银行家算法是避免死锁的一种重要方法,在课程设计中用C语言编写一个资源管理系统,并要用银行家算法和安全性算法检查是否允许分配资源给进程,避免死锁。
通过课程设计,加深我们对了解有关资源申请、避免死锁等概念,并加深我们对银行家算法理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
int need[max_process][max_resource];//需求矩阵
int request[max_process][max_resource];//进程需要资源数
(4)试分配后,执行安全性检查,调用check()函数检查此次资源分配后系统是否处于安全状态。若安全,才正式将资源分配给进程。否则本次试探分配作废,恢复原来的资源分配状态,让该进程等待。
(5)用do{…}while循环语句实现输入字符y/n判断是否继续进行资源申请。
(二)安全性算法(safe()函数):
int finish[max_process];
int m=5,n=3;
void init();int safeຫໍສະໝຸດ );void bank();
void init2();
void print();
void print2();
void main()
{
int i;
printf("请输入测试数据,按0由用户输入测试数据,按1由系统提供测试数据:\n");
scanf("%d",&n);
printf("请按顺序输入系统中可利用的每种资源量:\n");
for(i=0;i<n;i++)
scanf("%d",&available[i]);
printf("请输入最大需求矩阵:\n");
for (i=0;i<m;i++)
for (j=0;j<n;j++)
{
scanf("%d",&max[i][j]);
if(need[i][j]<0)
printf("您输入的第%d个进程的%d个资源数据有错,请重新输入\n",i,j);
}
}
void init2()
{ int i,j;
for (i=0;i<m;i++)
for (j=0;j<n;j++)
need[i][j]=max[i][j]-allocation[i][j];
}
void print(){
int i,j;
printf("最大需求矩阵如下:\n");
for(i=0;i<m;i++)
《操作系统》课程综合性实验报告
姓名:学号:2016年11月20日
实验题目
进程调度算法程序设计
一、实验目的
通过对安全性算法和银行家算法的模拟,进一步理解资源分配的基本概念,加深对资源申请,资源分配(银行家算法)以及系统是否能分配(安全性算法)资源的理解。
二、设备与环境
1.硬件设备:PC机一台
2.软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发环境,如C \C++\Java等编程语言环境。
}
printf("请输入分配矩阵:\n");
for (i=0;i<m;i++)
for (j=0;j<n;j++)
{
scanf("%d",&allocation[i][j]);
}
for (i=0;i<m;i++)
for (j=0;j<n;j++)
{
need[i][j]=max[i][j]-allocation[i][j];
三、实验内容
用C语言(或其它语言,如Java)实现对资源的资源申请与分配;
(一)银行家算法(bank()函数):
进程i发出请求资源申请,
(1)如果Request [j]<=need[i,j],转向步骤(2),否则认为出错,因为他所需要的资源数已经超过它所宣布的最大值。
(2)如果:Request i[j]<=available[i,j],转向步骤(3),否则表示尚无足够资源,进程i需等待。
(3)若以上两个条件都满足,则系统试探着将资源分配给申请的进程,并修改下面数据结构中的数值:
Available[i,j]= Available[i,j]- Request [j];
Allocation[i][j]= Allocation[i][j]+ Request [j];
need[i][j]= need[i][j]- Request [j];
scanf("%d",&i);
switch(i){
case 0: init();
break;
case 1: init2();
break;
}
print();
safe();
bank();
}
void init()
{
int i,j;
printf("请输入进程数目:\n");
scanf("%d",&m);
printf("请输入资源种类数目:\n");
(4)如果所有的Finish[i]=true都满足,则表示系统处于安全状态,否则,处于不安全状态。
四、实验结果及分析
1.实验设计说明
按0由用户输入,按1由系统提供数据
2.实验代码
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define max_process 50 //最大进程数
(1)设置两个向量:工作向量Work,它表示系统可提供给进程继续运行所需的各类资源数目,在执行安全性算法开始时,Work= Available。工作向量Finish,它表示系统是否有足够的资源分配给进程,使之运行完成。开始时先做Finish[i]=false;当有足够的资源分配给进程时,再令Finish[i]=true。
#define max_resource 100//最大资源数
#define false 0
#define true 1
int available[max_resource]={3,3,2};//可利用资源向量
int max[max_process][max_resource]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};//最大需求矩阵
(2)在进程中查找符合以下条件的进程:条件1:Finish[i]=false;条件2:need[i][j]<=Work[j]若找到,则执行步骤(3)否则,执行步骤(4)
(3)当进程获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:Work[j]= Work[j]+ Allocation[i][j];Finish[i]=true;goto step (2);