小桥和涵洞孔径计算

小桥和涵洞孔径计算
小桥和涵洞孔径计算

第八章 小桥和涵洞孔径计算 (20分)

一、小桥和涵洞勘测的主要任务:外业勘测和内业设计

二、小桥和涵洞勘测的主要内容

1) 勘测前的准备工作:地形资料、地质资料、水文资料、气象资料、其他资料、组织与

配备完成工程勘测任务的人员、仪器和工具等

2) 小桥和涵洞位置的选择

3) 小桥和涵洞测量

4) 小桥和涵洞类型选择

三、下游天然水深的大小可分自由出流(k t h h 3.1≤)与淹没式出流(k t h h 3.1>)

四、在孔径计算中,小桥涵与大中桥有不同特点。大中桥允许桥下河床发生一定的冲刷,一般天然河槽平均流速作为设计流速。小桥涵一般不允许河底发生冲刷,可以根据河床加固的类型,选择适当的容许流速作为设计流速。

五、根据已知的设计流量和拟定的河床容许流速,计算小桥孔径与桥前壅水高度。计算程序:

三、判别桥下水力图式

四、确定小桥孔径长度L

五、确定桥前水深

六、确定路基和桥面最低标高

七、根据漏洞出水口是否被下游水面淹没,可分自由式出流与淹没式出流两类。

六、按涵洞进水口建筑形式不同与涵前水头高低,水流通过涵洞可分为:

1) 无压力式:当涵洞的进水口建筑为普通型而涵前水深T h H 2.1≤,或者进水口建筑为流线

开,而涵前水深T h H 4.1≤时,水流在进水口处受到侧向束窄,水面急剧下降,在洞口不远处形成一个收缩断面,水流流经全涵洞均保持自由水面。

2) 半压力式:当涵洞的进水口建筑为普通型,且水流充满进口,涵前水深T h H 2.1>时,

但收缩断面以后在整个涵洞内都具有自由水面

3) 压力式:当涵洞的进水口建筑为流线形,而涵前水深T h H 4.1>,且涵底纵坡w i i <,

或者下游洞口被淹没时,则整个涵洞的断面都充满水流。

八、小桥和涵洞的选用,主要根据设计流量、路堤高度、河床纵坡以及建筑材料确定。当跨越常年有水但流量较少,或季节性水流且漂浮物和上游泥沙较少,路堤高度能够满足壅水高度和宣泄设计流量的要求时,宜采用涵洞。当设计流量较大,或河道漂浮物和泥沙运动较多,或河沟地处陡峭深谷并填土过高时,都应采用小桥。

九、根据涵洞洞身的构造形成不同,涵洞可分为圆管涵、拱涵、盖板涵、箱涵、倒虹吸管

十、涵洞洞口形式的选择

1) 八字翼墙式或锥式护坡式洞口

2) 一字墙护坡洞口

3) 跌水井式洞口

4) 流线形洞口

5) 斜交涵洞洞口

十一、涵洞进出口沟床的处理是与涵洞本身设置的坡度和涵洞上下游河沟的纵坡有关,加固防护类型根据土质和流速而定。

八字墙施工工艺

涵洞八字墙现浇施工标准方法 一、八字墙施工工艺流程 测量放线定位→模板制作与支设→浇筑混凝土→拆除模板→混凝土养护 二、八字墙施工操作要点 1、八字墙测量放样 采用全站仪对强身进行精确的放样,根据放样点用墨线弹出立模内边线, 2、八字墙模板加工 ①、为了保证涵洞通道八字墙表面平整光滑密实颜色一致,采用单块面积大于2㎡的整体钢模板,模板面板厚6mm。模板在生产厂家进行试拼,经监理工程师和质检工程师共检合格后方可起运,到工地后进行二次验收,合格后方可用于工程。 ②、对拉螺栓位置应进行设计,保证纵横向在一条线上。螺栓采用φ16的光圆钢筋制作,八字墙截面范围内采用塑料套管,套管伸出模板并封堵严密,严防漏浆。 3、脱模剂的选用 脱模剂采用色拉油,涂刷必须均匀。为防止涂油后的尘土污染和曝晒,刷脱模剂后的模板应用塑料薄膜覆盖,立模后长时间未浇筑混凝土,模板应遮盖。 4、模板支立

①、严格控制其平面位置,竖直度。按模板安装检查项目分别查验,保证各允许偏差在规范允许之内。 ②、为防止模板底部漏浆出现烂根现象,采用模板支立后底部缝隙用油枪打入膨胀胶,也可采用基础底部切5cm缝,缝内插入薄PVC板。 模板安装质量检查与验收标准表 5、混凝土的拌合 ①、拌合混凝土用的粗骨料进行水洗,中粗砂进行过筛。 ②、优化混凝土配合比设计,施工前检测砂石料的含水率,调整施工配合比。增加拌和机内干料和湿料的搅拌时间,湿料的搅拌时间≮180S。严格控制水灰比和混凝土的塌落度,混凝土的塌落度控制在90mm以下。在材料和浇筑方法允许

的条件下,应采用尽可能低的塌落度和水灰比,以减少泌水的可能性。同时控制混凝土含气量不超过1.7%,初凝时间为6-8h。 6、混凝土的浇筑 ①、八字墙混凝土浇筑要选择适宜的时间浇筑,避免高温和低温点。浇筑必须连续进行,不得停顿,一次准备充足砂石料水泥,防止中途换料影响混凝土的颜色。 ②、混凝土采用吊车,漏斗和串筒等入模。严格控制每次下料的高度和厚度,保证分层厚度不超过30cm。 ③、振捣不得漏振和过振。可采用二次振捣工艺,以减少表面起泡。即第一次在混凝土浇筑时振捣,第二次待混凝土静置一段时间再振捣,而顶层一般在0.5后进行第二次振捣。 4、严格控制振捣时间和振捣棒插入下一层混凝土的深度,保证插入下层深度在5-10cm,振捣时间以混凝土翻浆,不再下沉和表面无起泡泛起为止,一般为15S左右。 5、要求混凝土浇筑现场由试验员、施工员或技术员全过程潘展值班,试验人员每车检测砼塌落度。施工员督促班组人员检查模板的情况,随时紧固拉杆。 6、施工中避免施工人员踏踩拉杆,保证拉杆的直顺 八、拆除模板 拆模是根据气温和混凝土强度而顶,(一般达到2.5MPa时)能保证其表面及棱角不因拆除摸板而受损坏时方可拆除,并

涵洞力学计算书很全面

2米净跨径.686米填土暗盖板涵整体计算 一.盖板计算 1.设计资料 汽车荷载等级:城-B级;环境类别:Ⅱ类环境; 净跨径:L =2m;单侧搁置长度:0.35m;计算跨径:L=2.3m;填土高:H=.686m; 盖板板端厚d 1=30cm;盖板板中厚d 2 =30cm;盖板宽b=0.99m;保护层厚度c=4cm; 混凝土强度等级为C30;轴心抗压强度f cd =11.73Mpa;轴心抗拉强度f td =1.04Mpa; 主拉钢筋等级为HRB400;抗拉强度设计值f sd =330Mpa; 主筋直径为20mm,外径为22mm,共11根,选用钢筋总面积A s =0.003456m2 盖板容重γ 1=25kN/m3;土容重γ 2 =21kN/m3 根据《公路圬工桥涵设计规范》(JTG D61-2005)中7.0.6关于涵洞结构的计算假定:盖板按两端简支的板计算,可不考虑涵台传来的水平力 2.外力计算 1) 永久作用 (1) 竖向土压力 q=γ 2 ·H·b=21×.686×0.99=14.26194kN/m (2) 盖板自重 g=γ 1·(d 1 +d 2 )·b/2/100=25×(30+30)×0.99/2 /100=7.43kN/m 2) 由车辆荷载引起的垂直压力(可变作用) 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.4的规定: 计算涵洞顶上车辆荷载引起的竖向土压力时,车轮按其着地面积的边缘向下做30°角分布。当几个车轮的压力扩散线相重叠时,扩散面积以最外面的扩散线为准

根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.1关于车辆荷载的规定:车辆荷载顺板跨长 L a =0.2+2·H·tan30=0.2+2×.686×0.577=0.99m 车辆荷载垂直板跨长 L b =1.9+2·H·tan30=1.9+2×.686×0.577=2.69m 车轮重 P=280kN 车轮重压强L p=P/L a /L b =280/0.99/2.69=104.83kN/m2 3.内力计算及荷载组合 1) 由永久作用引起的内力 跨中弯矩 M 1 =(q+g)·L2/8=(14.26+7.43)×2.32/8=14.34kNm 边墙内侧边缘处剪力 V 1=(q+g)·L /2=(14.26+7.43)×2/2=21.69kN 2) 由车辆荷载引起的内力 跨中弯矩 M 2=p·L a ·(L-L a /2)·b/4=104.83×0.99×(2.30-0.99/2)×0.99/4=46.44kNm 边墙内侧边缘处剪力 V 2=p·L a ·b·(L -L a /2)/L )=104.83×0.99×0.99×(2.00-0.99/2)/2.00=77.43kN 3) 作用效应组合 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.1.6关于作用效应组合的规定:跨中弯矩 γ0M d =0.9(1.2M 1 +1.4M 2 ) =0.9×(1.2×14.34+1.4×46.44)=74.00kNm 边墙内侧边缘处剪力 γ0V d =0.9(1.2V 1 +1.4V 2 ) =0.9×(1.2×21.69+1.4×77.43)=120.98kN 4.持久状况承载能力极限状态计算

对照表之水泵管径流速流量

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Q——断面水流量(m3/s) C——Chezy糙率系数(m1/2/s) A——断面面积(m2) R——水力半径(m) S——水力坡度(m/m) Darcy-Weisbach公式 h f——沿程水头损失(mm3/s)

f ——Darcy-Weisbach水头损失系数(无量纲) l——管道长度(m) d——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1

涵洞孔径计算

涵洞计算 1、涵洞的布设 本路段小桥涵设置时主要考虑了:上游洞口应考虑流向,下游洞口以不危及农田村镇为原则,同时考虑到圆管涵利于施工,又经济简便,所以大部分形式均采用无压力式圆管涵形式。本设计所取标准跨径为1.0m 。本设计中涵洞的位置以及孔径见表1所示: 表1 涵洞一览表 序号 涵洞位置 结构类型 交角(°) 孔数及孔径 洞口型式 1 K16+708 钢筋混凝土圆管涵 90 1-Φ1.5 一字 2 K17+200 钢筋混凝土圆管涵 90 1-Φ1.5 一字 管涵的标准跨径通常取50、75、100、125、150(cm )。下面以排水总体规划图中K16+708处的涵洞计算为例。 采用的方法为径流形成法,此法是以暴雨资料为主推算小流域洪水流量的一种方法,是公路部门目前普遍使用的一种计算方法,该公式只适用于汇水面积F ≤30 km 2的小流域。 汇水面积:0.0312km ,主河沟平均比降:12.4%,流域土壤吸水类属:Ⅲ,年平均降雨量:793mm ,设计洪水频率1/50,汇流时间:30min ,径流系数:0.95,粗糙度系数n=0.014。 我国公路系统最常采用的是公路科学研究所提出的简化公式,其中未 考虑洪峰削减的公式为:由涵洞设计手册得洪峰流量计算:。 ()βγδ?5 42 30m z -h F Q = 式中 Q P ——规定频率为P 时的雨洪设计流量(m 3/s ) F ——汇水面积(km 2) h ——暴雨径流厚度(mm ) Z ——被植物或坑挖滞流的径流厚度 φ——地貌系数,根据地型、汇水面积F 、主河沟平均坡

度I z 决定 β——洪峰传播的流量折减系数,由汇水面积重心至桥涵 的距离(L 0=0.3Km<1Km )及汇水区的类型(丘陵汇 水区)综合查表3.2-10得 γ——汇水区降雨不均匀的折减系数 δ——考虑湖泊或小水库调节作用对洪峰流量影响的折 减系数 根据已知条件查《公路桥涵设计手册·涵洞》表4-8、表4-11、表4-12、表4-13、表4-14、表4-15,分别得地貌系数0?取0.09,常用迳流厚度h 取53mm ,植物坑洼滞留的迳流厚度z 取10mm ,洪峰传播的流量折减系数β取1、降水不均匀折减系数γ取1.0、小水库(湖泊)调节折减系数δ取1。 ()βγδ?5 42 30m z -h F Q = =0.09×(53-10)23×0.0315 4×1×1×1 =1.58s /m 3 1、确定涵洞孔径d 查《公路排水设计手册》(人民交通出版社 姚祖康编著)公式 (3.3-18)得管径与流量关系式52 5352gk Q d k d b A gd Q k k ===或,式中系数 k=k 13/k 2,为充满度h/d 的函数。 初选临界水深h k 时的充满度为8 .0=d h k 。表3.3-3得k=0.382。 则管径d 为: 5 2 382 .081.958.1?= d =0.92m 取管径为1.0m 。

热力管道水力计算表

热力管道水力计算表

————————————————————————————————作者:————————————————————————————————日期: ?

热力管道水力计算表(一) Kd=0.5mm r=958.4kg/m3 DN 25 32 4050 DN 253240 50 70 D w×δ32×25 38×2.545×2.557×3.5D w×δ32×2.538×2.545×2.557×3.573×3.5 G(t/h) W R W R W R WR G(t/h)W RW R W R W R WR 0.20.1 0. 95 1.250.63 34.2 0.4 2 1 1.6 0.2 9 4.2 0.1 8 1. 34 0.22 0.11 1.1 4 1.3 0. 66 37 0. 44 1 2.6 0.3 4.5 1 0.1 9 1.4 4 0. 11 0. 34 0.24 0.1 2 1.3 5 1.35 0.68 39. 9 0.46 13.6 0.3 1 4. 86 0.2 1 .55 0 .1 1 0.37 0.26 0.13 1.59 1.40 0.7 1 42.9 0. 47 1 4 .6 0.3 2 5.2 1 0.2 1 1. 6 7 0.1 2 0.3 9 0.28 0.1 4 1. 82 1.450.73 46 0.49 15 .7 0.33 5.5 9 0.2 1 1.78 0. 12 0.42 0.30 0. 15 2.0 8 1.50 0. 76 49.2 0 .5 1 16.8 0.3 5 5.9 8 0.2 2 1.91 0.1 3 0.4 5 0.320.1 6 2.3 7 1.55 0.7 9 52.6 0.53 17 .9 0.3 6 6 .3 8 0 .23 2.02 0.13 0.48 0.340.17 2.7 1 1.6 0.8 1 56 0.5 4 19.1 0.3 7 6.8 0.2 4 2.14 0. 13 0.5

箱涵计算书

已知计算条件: 涵洞的设计安全等级为三级,取其结构重要性系数:.9 涵洞桩号= K16+170 箱涵净跨径= 3米 箱涵净高= 3.1米 箱涵顶板厚= .6米 箱涵侧板厚= .6米 板顶填土高= 0米 填土容重= 18千牛/立方米 钢筋砼容重= 25千牛/立方米 混凝土容重= 22千牛/立方米 水平角点加厚= 0米 竖直角点加厚= 0米 涵身混凝土强度等级= C25 钢筋等级= II级钢筋 填土内摩擦角= 30度 基底允许应力= 250千牛/立方米 顶板拟定钢筋直径= 18毫米 每米涵身顶板采用钢筋根数= 6根 底板拟定钢筋直径= 20毫米 每米涵身底板采用钢筋根数= 5根 侧板拟定钢筋直径= 18毫米 每米涵身侧板采用钢筋根数= 5根 荷载基本资料: 土系数 K = 1.04 恒载产生竖直荷载p恒=17.46千牛/平方米恒载产生水平荷载ep1=.82千牛/平方米 恒载产生水平荷载ep2=26.62千牛/平方米 汽车产生竖直荷载q汽=583.33千牛/平方米 汽车产生水平荷载eq汽=15.66千牛/平方米 计算过程 重要说明: 角点(1)为箱涵左下角,角点(2)为箱涵左上角,角点(3)为箱涵右上角,角点(4)为箱涵右下角 构件(1)为箱涵顶板,构件(2)为箱涵底板,构件(3)为箱涵左侧板,构件(4)为箱涵右侧板 1>经过箱涵框架内力计算并汇总,结果如下(单位为:千牛.米):a种荷载(涵顶填土及自重)作用下:

涵洞四角节点弯矩和构件轴力: MaA = MaB = MaC = MaD = -1 / (K + 1) * P * Lp^2 / 12 = -9.299244kN.m Na1 = Na2 = 0kN Na3 = Na4 = P * Lp / 2 = 31.428kN a种荷载(汽车荷载)作用下: MaA = MaB = MaC = MaD = -1 / (K + 1) * M顶板端部 = -35.19036kN.m Na1 = Na2 = 0kN Na3 = Na4 = V顶板端部 = 91kN b种荷载(侧向均布土压力)作用下: 涵洞四角节点弯矩和构件轴力: MbA = MbB = MbC = MbD = -K / (K + 1) * P * hp^2 / 12 = -.474149kN.m Nb1 = Nb2 = P * Lp / 2 = 1.517kN Nb3 = Nb4 = 0kN c种荷载(侧向三角形土压力)作用下:

涵洞水力计算书

涵洞水力计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本设计资料 1.依据规范及参考书目: 武汉大学水利水电学院《水力计算手册》(第二版) 中国水利水电出版社《涵洞》(熊启钧编著) 2.计算参数: 计算目标: 已知设计流量、洞身高度、进、出口水深,确定洞身宽度。 进口型式: 八字墙。 设计流量Q = 40.000 m3/s 洞身形状:矩形 洞身高度D = 4.000m 洞身长度L = 30.000m 纵坡i = 0.0020 糙率n = 0.0140 上游行近流速V = 0.700m/s 进口水深H = 4.050m 出口水深h = 3.500m 流量系数m = 0.360 侧收缩系数ε= 0.950 进口损失系数ξ1 = 0.200 拦污栅损失系数ξ2 = 0.000 闸门槽损失系数ξ3 = 0.000 出口损失系数ξ4 = 1.000 进口渐变段损失系数ξ5 = 0.200 出口渐变段损失系数ξ6 = 0.300 三、计算过程 采用试算,拟定洞身宽度B = 3.460m进行流量计算。 1.判断流态: 进口水深与洞高之比H/D = 4.050/4.000 = 1.013 < 1.2, 同时因下游水深h = 3.500m < 洞高D = 4.000m,因此判定流态为无压流。 无压流洞身水面以上净空面积与洞身横断面面积的比值(D-h)/D = 0.125,不小于10%~30%,满足要求。 当洞高D>3.0m时,无压流洞身净空高度D-h = 0.500m ≥0.5m,满足要求。 洞长L = 30.00m < 8H = 8×4.05 = 32.40m,按无压流短洞计算。 2.计算公式

涵洞台背回填标准化施工工法

目录 1、目的 (1) 2、工艺特点 (1) 3、适用范围 (1) 4、编制依据 (1) 5、工艺流程及操作要点 (1) 5.1施工准备 (1) 5.2施工工艺流程 (1) 5.3、施工方法 (2) 5.4、台背预压 (5) 6、操作要点 (6) 7、质量控制 (6) 8、安全措施 (7) 9、参考文献 (7)

涵台台背回填标准化施工工艺 1、目的 明确涵台台背回填标准化施工的工艺流程、操作要点,消除不合理的施工工序及工艺,提升台背回填的工程质量,以达到消除台背沉降质量通病的目的。 2、工艺特点 本工艺回填材料采用合格天然砂砾,回填按分层对称填筑、压路机分层压实,具有便于现场实际操作、回填质量容易控制等特点。 3、适用范围 本工艺适用于盖板涵洞涵背及桥台台背回填等。 4、编制依据 1、十天高速公路项目办下发《十天高速公路建设标准化管理细则》。 2、交通运输部公路局编写的《高速公路施工标准化技术指南》第二分册路基工程。 3、《公路路基施工技术规范》JTG F10-2006。 4、本行业通行的和先进的工艺及管理办法。 5、工艺流程及操作要点 5.1施工准备 台背回填应满足如下条件后才能进行施工: (1)涵洞八字墙、盖板安装、铺底及支撑梁已施工完成; (2)涵洞回填时,砌体砂浆和混凝土强度须达到85%。 (3)盖板涵沉降缝、盖板缝和墙身侧面应均匀涂刷沥青或防水材料进行防水处理后方可回填。防水处理须符合设计和规范要求。 (4)基坑若有积水应及时排出,并将基底被水浸泡过的软土清除。 5.2施工工艺流程 见下图:

图1施工工艺流程图 5.3、施工方法 (1)测量放样 涵背:根据设计图纸及施工规范要求,放出台背回填过渡段范围及标高范围。使用白灰洒出台背施工范围。 涵洞台背回填过渡段范围为:顺路线方向长度,底部距涵洞基础为H,顶部距侧墙2H(H 为基础顶面至盖板顶面高度)。具体回填范围见下图: 图2 涵洞回填范围图

实用堰水力计算公式

1、 游水位较低,水流在流出堰顶时将产生第二次跌落。 2、 4、 100 >H δ时,用明渠流理论解决不能用堰流理论。f h 不可忽略。 同一堰,当堰上水头H 较大时,视为实用堰;当堰上水头较小时,视为宽顶堰。 §8-2 堰流的基本方程 以宽顶堰为例来推求堰流的基本方程 取渐变流断面1-1 C-C (近似假设渐变流) 以堰顶为基准面, 列两断面能量方程: g v g v h g v H c c c 2222 2 000? α α++=+ 02H g v H =+ α作用水头 c h 与H 有关,引入一修正系数k 。则 00 H h k c = 机0kH h co =。修正系数k 取决于堰口的 形状和过流断面的变化。 代入上式,整理得: 21211 gH k gH k v c -=++= ?? α 2 3 0021H g b k k b RH v b h v Q c c c -===? 2 3 02H g mb = 式中:b ——堰宽 ?——流速系数 ?α?+= 1 m ——流量系数,k k m -=1? 适用:堰流无侧向收缩 注:堰流存在侧向收缩或堰下游水位对堰流的出水能力产生影响时,可对此公式进行修正。 §8-3 薄壁堰 一、一、分类: 矩形薄壁堰→较大流量 按堰口形状: 三角形薄壁堰→较小流量 梯形薄壁堰→较大流量 1、 1、 矩形薄壁堰 ① ① 矩形薄壁堰的自由出流;在无侧向收缩的影响时,其流量公式为: 2 3 02H g mb Q = 上式为关于流速的隐式方程,了;两边均含有流速,一 般计算法进行计算,较复杂,于是,为计算简便,将上式改写成: 2 3 02H g b m Q =

涵洞八字墙计算公式

涵洞八字墙计算公式 帽缘缘石砼=(Q6+R6+涵长计算!E6+0.1)*0.2*0.35*2 隔水墙=(Y6*TAN(RADIANS(K6))+Y6*TAN(RADIANS(ABS(L6)))+涵长计算!E6+0.4)*F6*0.4*2 洞身铺砌=涵长计算!Y6*涵长计算!E6*J6 洞口铺砌=(Y6*TAN(RADIANS(K6))+2*涵长计算!E6/COS(RADIANS(涵长计算!C6))+Y6*TAN(RADIANS(ABS(L6))))*Y6*J6 V =Z6+AA6 V基= =(D6*(Q6+U6+W6)*(N6-M6)*G6+D6/(2*O6)*(N6^2-M6^2)*G6)*2+(D6*(R6+V6+X6)*(N6-M6)*G6+D6/(2*P6)*(N6^2-M6^2)*G6)*2 V身= =(1/2*Q6*D6*(N6^2-M6^2)+D6/(6*O6)*(N6^3-M6^3))*2+(1/2*R6*D6*(N6^2-M6^2)+D6/(6*P6)*(N6^3-M6^3))*2 G= =D6*(N6-M6) e2正翼墙= =I6/COS((A TAN(TAN(RADIANS(K6))-1/(D6*O6)))) e2反翼墙= =IF(L6<0,I6/COS((A TAN(TAN(RADIANS(ABS(L6)))+1/(D6*P6)))),I6/COS((ATAN(TAN(RADIANS(ABS(L6)))-1/(D6*P6))))) e1正翼墙= =I6/COS(RADIANS(K6)) e1反翼墙= =I6/COS(RADIANS(L6)) c1正= =Q6+N6/O6 c1反= =R6+N6/P6 c正= =H6/(COS(RADIANS(K6))) c反= =H6/(COS(RADIANS(L6))) n0正= =(E6+SIN(RADIANS(K6))/D6)*COS(RADIANS(K6)) n0反= =IF(L6<0,(E6-SIN(RADIANS(ABS(L6)))/D6)*COS(RADIANS(L6)),(E6+SIN(RADIANS(ABS(L6)))/D6)*COS(RADIANS(L6))) H= =涵长计算!F6+涵长计算!G6+F6-G6 h= =F6-G6+0.2 β1= =IF(C6<10,30,IF(C6>=30,55,35)) β2 =IF(C6<10,30,IF(C6>=30,-20,0)) 涵长计算 净跨径L0= =IF(D6<3,D6-0.4,D6-0.6) 路肩标高左侧= =IF(N6=0,K6+(B6-S6*TAN(RADIANS(C6))-J6)*L6-P6*(S6-R6/2),K6+(B6-S6*TAN(RADIANS(C6))-J6)*L6+(M6-ABS(B6-S6*TAN(RADIANS(C6))-J6))^2/(2*N6))-P6*(S6-R6/2) 路肩标高右侧= =IF(N6=0,K6+(B6+T6*TAN(RADIANS(C6))-J6)*L6-Q6*(T6-R6/2),K6+(B6+T6*TAN(RADIANS(C6))-J6)*L6+(M6-ABS(B6+T6*TAN(RADIANS(C6))-J6))^2/(2*N6))-Q6*(T6-R6/

小桥和涵洞孔径计算

第八章 小桥和涵洞孔径计算 (20分) 一、小桥和涵洞勘测的主要任务:外业勘测和内业设计 二、小桥和涵洞勘测的主要内容 1) 勘测前的准备工作:地形资料、地质资料、水文资料、气象资料、其他资料、组织与 配备完成工程勘测任务的人员、仪器和工具等 2) 小桥和涵洞位置的选择 3) 小桥和涵洞测量 4) 小桥和涵洞类型选择 三、下游天然水深的大小可分自由出流(k t h h 3.1≤)与淹没式出流(k t h h 3.1>) 四、在孔径计算中,小桥涵与大中桥有不同特点。大中桥允许桥下河床发生一定的冲刷,一般天然河槽平均流速作为设计流速。小桥涵一般不允许河底发生冲刷,可以根据河床加固的类型,选择适当的容许流速作为设计流速。 五、根据已知的设计流量和拟定的河床容许流速,计算小桥孔径与桥前壅水高度。计算程序: 三、判别桥下水力图式 四、确定小桥孔径长度L 五、确定桥前水深 六、确定路基和桥面最低标高 七、根据漏洞出水口是否被下游水面淹没,可分自由式出流与淹没式出流两类。 六、按涵洞进水口建筑形式不同与涵前水头高低,水流通过涵洞可分为: 1) 无压力式:当涵洞的进水口建筑为普通型而涵前水深T h H 2.1≤,或者进水口建筑为流线 开,而涵前水深T h H 4.1≤时,水流在进水口处受到侧向束窄,水面急剧下降,在洞口不远处形成一个收缩断面,水流流经全涵洞均保持自由水面。 2) 半压力式:当涵洞的进水口建筑为普通型,且水流充满进口,涵前水深T h H 2.1>时, 但收缩断面以后在整个涵洞内都具有自由水面 3) 压力式:当涵洞的进水口建筑为流线形,而涵前水深T h H 4.1>,且涵底纵坡w i i <, 或者下游洞口被淹没时,则整个涵洞的断面都充满水流。 八、小桥和涵洞的选用,主要根据设计流量、路堤高度、河床纵坡以及建筑材料确定。当跨越常年有水但流量较少,或季节性水流且漂浮物和上游泥沙较少,路堤高度能够满足壅水高度和宣泄设计流量的要求时,宜采用涵洞。当设计流量较大,或河道漂浮物和泥沙运动较多,或河沟地处陡峭深谷并填土过高时,都应采用小桥。 九、根据涵洞洞身的构造形成不同,涵洞可分为圆管涵、拱涵、盖板涵、箱涵、倒虹吸管 十、涵洞洞口形式的选择 1) 八字翼墙式或锥式护坡式洞口 2) 一字墙护坡洞口 3) 跌水井式洞口 4) 流线形洞口 5) 斜交涵洞洞口

涵洞计算

涵洞模板计算 一、荷载: 2mkN/G?1 1)以下楼板木模板为0.75,此处保守取①模板及支架自重:(4m k1②盖板自重:232m/?14.4kN0q?24kN/m?.6mm/24kN) a.砼砼32m/66kN6?0m1.1kN/.?0.q?1.1kN)钢 筋 b.钢筋G?q?q?15.06kN/m∴k2钢筋砼2mkN/2.5Q?当计算模板和直接支承模板的小梁时,条:4.1.2 第1 ③施工人员、机械荷载:(k12m5kN/2.kN.52均布活载可取,再用集中荷载进行验算,比较两者所得弯矩值取其大值)22m/?Q2kNm/2kN④振捣混凝土时产生的荷载:)k2二、荷载组合: (1)计算承载力时荷载组合 ①由可变荷载效应控制的组合: ?25.6(保守考虑,取消0.9可变荷载系数) ②由永久荷载效应控制的组合: S应从以上两个组合值中取最不利值确定:荷载效应组合的设计值 (2)验算挠度时的荷载组合形式: 三、涵洞顶板计算 (1)面板计算:(根据《JGJ 162-2008》 5.2.1,按简支跨进行计算,取b=1m宽板带为计算单元)(次楞300mm)间距取 ①材料信息: ??223?mm/29N?mmE?9?10N/由于胶合板材料未最终确定,,胶合板厚度取12mm,材料信息: 23mm/?E?610N暂保守取值mm1000计算单元取②强度验算面板抗弯计算符合承载力要求∴ ③刚度验算f0.465111???)200430400l400∴刚 度验算符合要求 600mm、计算宽度b=0.3)次楞木计算:(主楞间距取)(2①材料信息: ??223?mm/?11Nmm/E10N9??9070?次楞木采用的杉木:,②模型建立。实际的悬挑况情两楞虑外,情况另还需考次的端程合要定的跨计次楞算数假需符工q?S?0.3?7.83kN/m1建模,取三跨作连续梁计算,两端自由端留300mm,如下图 支座反力如下图: ③强度验算 弯矩运算结果如下: ∴满足要求 ③抗剪验算 弯矩运算结果如下: ∴满足要求 ③挠度验算 建模,取三跨作连续梁计算,如下图 支座反力如下图:

涵洞八字墙工程量计算公式推导

涵洞八字墙工程量计算公式推导 *注:因为常用平均面积法、切分法、棱台算法等计算法计算翼墙体积(砼用量),在长大翼墙计算过程中会随着长度增长误差也随着增长,若求精确故不可采用。以下计算公式,均能精确到0.01m3左右。 一、墙身体积计算公式 如下图所示的涵洞翼墙 令翼墙的顶宽为K墙背坡为B填土坡为T、墙高为X、(注:高的一端为X高、低的一端为X 低)、翼墙低端基础宽J、基础的厚度为H, X变量从翼墙的低端变化到翼墙的高端(如图中从1米变化到3.82米),墙长与填土坡T相关,它随墙高增高而增长。 1:100I i _i 1:100 1''1:100 t:100

即:墙长二T(X高—X低)。墙身体积计算公式推导如下: 面积=~I'2 x = KX +7? (1)注1:面积=(上底{底"高 体积:: (TKX+^X2) (2) 将(2)式脱出积分公式整理得 二、墙身体积计算例上图中K=0.46、B=3.75、T=1.5、X低=1、X高 =3.82 卞体积=15 0.46(3.822 -12)1.5(3.823-13)= 8.339 2 6汉3.75 2、体积=( 3.82 1)扌23 0.46 1.5633 75 1)8.339 三、基础体积计算公式 基础体积二0x高以氐(TJH TH X)dx(4) 将(4)式脱出积分公式整理得 TH 体积= TJHX +詣X? (5) Z D ?t 其实八字墙基础是底面为梯形的一个棱柱体 基础体积二梯形面积乘以高 四、基础体积计算例上图中T=1.5、J=1.18、H=0.6、X=3.82-仁2.82 。2 1基础体积=1.51J8 °6 282+ 黑06 2^ =泅9 2、基础体积(倔1:8)4.23 0.6 = 3.947 T(驾- 曝〕 体积=

涵洞内力计算范例

3米净跨径1.65米填土暗盖板涵整体计算 一.盖板计算 1.设计资料 汽车荷载等级:公路-I级;环境类别:II类环境; 净跨径:L =3m;单侧搁置长度:0.2m;计算跨径:L=3.3m;填土高:H=1.65m;盖板板端厚d=30cm;盖板宽b=0.99m;保护层厚度c=25mm; 混凝土强度等级为C30;轴心抗压强度f cd =13.8Mpa;轴心抗拉强度f td =1.39Mpa; 主拉钢筋等级为Q235;抗拉强度设计值f sd =195Mpa; 盖板容重γ 1=26kN/m3;路面结构和填土的平均容重γ 2 =20kN/m3 根据《公路圬工桥涵设计规范》(JTG D61-2005)中7.0.6关于涵洞结构的计算假定:盖板按两端简支的板计算,可不考虑涵台传来的水平力 2.外力计算 1) 永久作用 (1) 竖向土压力 q=γ 2 ·H·b=20×1.6×0.99=31.68kN/m (2) 盖板自重 g=γ 1 ·d·b/100=26×30×0.99/100=7.722kN/m 2) 由车辆荷载引起的垂直压力(可变作用) 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.4的规定: 计算涵洞顶上车辆荷载引起的竖向土压力时,车轮按其着地面积的边缘向下做30°角分布。当几个车轮的压力扩散线相重叠时,扩散面积以最外面的扩散线为准 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.1和4.3.2关于车辆荷载的规定,填料厚度等于或大于0.5m的涵洞不不计冲击力:

一个后轮单边荷载横向分布宽度=0.6/2+1.65tan30o=1.25m>1.3/2m(1.8/2m) 故后轮垂直荷载分布宽度互相重叠,荷载横向分布宽度L a 应按二辆车后轮外边至外边计算,即: L a =(0.6/2+1.65tan30)*2+(1.3+2*1.8)=7.41m>l o 一个车轮单边荷载纵向分布宽度=0.2/2+1.65tan30o=1.05m>1.4/2m 故纵向后轮垂直荷载分布长度互相重叠,荷载纵向分布宽度L b 应按二轮(后轴)外边至外边计算,即: L b =(0.2/2+1.65tan30)*2+1.4=3.51m 车轮重 P=2*(2*140)=560kN 车轮重压强L q 汽=P/L a /L b =560/7.41/3.51=21.53kN/m2 3.内力计算及荷载组合 1) 由永久作用引起的内力 跨中弯矩 M 1 =(q+g)·L2/8=(31.68+7.722)×3.32/8=53.64kN·m 边墙内侧边缘处剪力 V 1=(q+g)·L /2=(31.68+7.722)×3/2=59.10kN 2) 由车辆荷载引起的内力 跨中弯矩 M 2= q 汽 ·L2·b/8=21.53×3.32×0.99/8=29.01kN·m 边墙内侧边缘处剪力 V 2= q 汽 ·L ·b/2=21.53×3.0×0.99/2=31.97kN 3) 作用效应组合 根据《公路桥涵设计通用规范》(JTG D60-2004)中4.1.6关于作用效应组合的规定:跨中弯矩(安全等级为三级) γ0M d =0.9(1.2M 1 +1.4M 2 ) =0.9×(1.2×53.64+1.4×29.01)=94.48kN·m 边墙内侧边缘处剪力 γ0V d =0.9(1.2V 1 +1.4V 2 ) =0.9×(1.2×59.10+1.4×31.97)=104.11kN

第6章 水力计算及管径的确定

第6章 水力计算及管径的确定 1、画出水力计算简图,进行管段编号,立管编号并注明各管段的热负荷和管长,如附录3所示。 2、选择最不利环路 本系统为单管异程式系统,取最远立管的环路作为最不利环路。由附录中水力简图可见,水力计算分为两部分分别计算,左半部分和右半部分,其中左半部分的最不利环路是从入口到立管6的环路。这个环路包括管段1、2、3、4、5、6、7、8、9,10, 11, 12, 13, 14, 15;右半部分的最不利环路是从入口到立管11的环路,这个环路包括管段1、20、21、22、23、24、25、26、27、36、9。 3、计算各管段流量 G=0.86∑Q/(t g ′-t h ′) Q ——管段的热负荷,W 'g t ——系统的设计供水温度,℃ 'h t ——系统的设计回水温度,℃ 4、计算最不利环路各管段管径 虽本设计中引入口处外网的供回水压差较大,但考虑系统中各环路的压力损失易于平衡,采用推荐的平均比摩阻R pj 大致为60~120Pa/m 来确定最不利环路各管段的管径。 首先根据上式确定各管段的流量,根据G 和选用的R pj 值,查出各管段d 、R 、v 值,填入表中,然后计算沿程压力损失,局部压力损失,各管段的压力损失,最后算出最不利环路的总压力损失,并将不平衡率控制在15%以内,若有剩余循环压力,用调节阀消耗掉。本系统有左右两部分,故需要计算两部分的最不利环路的阻力。 5、同上述方法,以左半部为例,计算通过除最不利环路立管外离供水立管最远的立管5的环路,从而确定出立管16,17的管径及其压力损失。 如计算立管5的管径: 根据并联环路节点压力平衡原理,立管3的资用压力△P IV =△P 7~10=Pa 立管5包括,管16和17,分别根据G 值确定,查出各管段d,R,v 值,方法如第4步所说,计算出两管路的压力总损失后,与资用压力相比,将不平衡率控制在15%以内,,并校验不平衡率,多余的循环压力用调节阀调节。 6、计算其余各管段管径 与上述方法类似继续计算剩余立管的压力损失,根据各立管的资用压力和立管各管段的流量,选用合适的立管管径,计算压力损失并校验。

1-2.5m×2.5m涵洞计算书

1-2.5m×2.5m盖板涵计算书 一、基本参数 涵洞设计安全结构重要性系数:0.9 涵洞类型:盖板涵 适用涵洞桩号: JK0+048.08, JK3+094.874 设计荷载等级:公路一级 最大布载宽度=23.016(m) 板顶最高填土高度=1.195(m) 土容重=18 KN/m3 土的内摩擦角=35度 盖板单侧搁置长度=20cm 净跨径=250(cm) 计算跨径=270cm 涵洞斜交角度=0度 正标准跨径=290cm 板间接缝长度=2cm 受力主筋:11根直径为18mm的HRB335钢筋,间距为9cm 单侧基础襟边宽=25cm 盖板厚度22cm 盖板宽度=99cm 盖板容重=25千牛/立方米 盖板抗压强度=13.8MPa 盖板抗拉强度=1.39MPa 涵台顶宽度=75cm 涵台底宽度=75cm 涵台高度=250cm 涵台容重=23千牛/立方米 台身抗压强度=14.5MPa 基础级数=2 每级基础高度=60cm 基础容重=23千牛/立方米 铺底厚度=40 铺底容重=23千牛/立方米 基底容许应力=250 每延米铺底宽度=40cm 单侧基础襟边宽=25cm

1-2.5m×2.5m盖板涵洞身断面 二、盖板计算 1.恒载内力计算 系数 K = 1.114 q土 = K ×土容重×填土高度 = 23.96kN q自 = 盖板容重×盖板厚度 = 5.5kN 恒载产生的支座剪力 V恒=(q土 + q自) ×净跨径 / 2=36.82kN 恒载产生的跨中弯矩 M恒=1 / 8 × (q土 + q自) ×计算跨径2 = 26.84kN·M 2.活载计算 设计荷载等级:公路一级 布载宽度=23.016米 用动态规划法求得设计荷载作用下盖板上产生的最大弯矩和剪力 冲击力系数 U = 0 最大弯矩 M设 = M设× (1 + U)=26.647× (1 + 0)=26.65kN·M 最大剪力 V设 = V设× (1 + U)=36.55× (1 + 0)=36.55kN. 3.荷载组合 (1)承载能力极限状态效应组合 Md = 1.2 × M恒 + 1.4 × M设 = 69.52kN×m V支= 1.2 × V恒 + 1.4 × V设=95.36kN (2)正常使用极限状态效应组合 正常使用极限状态效应组合短期组合 Msd = M恒 + 0.7 × M设 = 45.5kN×m 正常使用极限状态效应组合长期组合 Mld = M恒 + 0.4 × M设 = 37.5kN×m

涵洞八字墙墙身计算方法

路斜交涵洞斜八字式洞口布置图及尺寸表进行分析整理: 已知:γ—涵洞轴线与路线前进方向的夹角(右侧顺时针方向) θ—水流扩散角,即八字墙与涵洞轴线的夹角 a —涵洞斜度,即涵轴线的法线方向与路线的夹角(锐角) H —接涵洞洞身部位八字墙墙身高度(等于涵洞墙身高度+板厚) h —接出口部位八字墙墙身高度(根据实际可不同,常取0.2) m —路基边坡坡比 n —八字墙墙身正背坡(常取4.0) α—八字墙顶面垂直宽度(常取0.4) e —八字墙基础襟边宽度(常取0.1或0.2) d —八字墙基础厚度 正翼墙(常称大八字墙): 反翼墙(常称小八字墙): а+= βθ正 а-= βθ反 正βαcos /c =正 反反βαcos /c = γsin /m m =0 γsin /m m =0 ()正正正ββcos m /sin n n 0+= () 反反反ββcos m /sin n n 0-= 八字墙墙身体积: ()()3300220h H n 6m c h H m 21 V -+ -= 正 身正 ()()3300220h H n 6m c h H m 21V -+-=反身反 八字墙墙身体积计算示意图

()正正正0mn /1tan arctan δ-=β () 反反反0mn /1tan arctan δ+=β 正正βcos /e e 1= 反反βcos /e e 1= 正正δcos /e e 2= 反反δcos /e e 2= ()正正正ββcos /sin 1e e 3 -= ()反反反δcos /δsin 1e e 3  -= 八字墙基础体积: ()()() ( )ed n h c 21e e e d h H n 2m d h H e e c m V 0312******* ??? ?? ?+++++-+ -++=正正正正正正正正正正 ()()() ()ed n h c 21e e e d h H n 2m d h H e e c m V 03122 200210 ????? ?+++++-+-++=反反反反反反反反反反 附图: 涵洞八字墙墙身计算方法参考 某涵洞八字墙墙身设计如下(见下图:涵洞右侧洞口前方冀墙):

桥涵水文总复习题3.271

桥涵水文复习题 一、填空题 1、水力学研究方法有三类,分别是理论分析法、实验法、数值计算法。 2、静水压强的特性包括:垂直指向作用面,同一点处,静水压力各向等值。 3、静水压力的计算方法有两种:解析法和图解法。 4、非均匀流中,又可有渐变流和急变流。 5、文丘里管由渐缩管、喉管、渐扩管三部分组成。 6、水力学的三个定律有连续方程、能量方程、动量方程。 7、水流阻力分两类,一类是沿程阻力,一类是局部阻力。 8、有压管路按管路布设与其组成情况可分为简单管路和复杂管路。 9、有压管路按水力计算方法可分为短管和长管两类。 10、水跃表面旋滚前后断面分别时跃前端面和跃后断面。 11、按下游水位对泻流能力的影响程度,堰的泻流情况可分为两类:自由出流和淹没出流。 12、水文现象的共同特点如下:随机性、周期性、地区性。 13、从横断面上来看,河道又可分为主槽、边滩、河滩。 14、河段按地形特点分为山区河段和平原河段。 15、河川径流的形成过程可分为降水、流域蓄流、坡面漫流、河槽急流。 16、河川径流的主要影响因素为降水、蒸发、下垫面。 17、按泥沙在河槽内的运动情况,可分为悬移质、推移质和床沙三类。 18、河床演变有两种类型:纵向变形和横向变形。 19、常用的频率分析法有试错法、三点适线法、矩法。 20、按几何特性分,相关关系有两类:直线相关、曲线相关。 21、按相关变量多少,相关关系可分为:简单相关和复相关。 22、多孔跨径大于30m小于100m的、单孔跨径大于等于20m小于40m的桥梁成为中桥。 23、多孔跨径大于等于8m小于等于30m的、单孔跨径大于等于5m小于20m的桥梁成为小桥。 24、桥面标高其计算公式可分为两类:非通航河流和通航河流。 25、涵洞洞口类型有端墙式、八字墙式和跌水井式。 26、涵洞组成的主体有洞口、洞身两大部分。 27、小桥由上部结构、下部结构、附属工程组成。 28、静水压力有两种,其一是压强,另一是总压力。 29、水动力学研究的主要问题是流速和压强在流场中分布。 30、直到1883年英国科学家雷诺所做的试验研究,才科学的阐明了水头损失的机理。 31、以梯形渠道为例,水力计算主要有三种基本问题:验算渠道的泻水能力;决定渠道底坡;决定渠道过水断面尺寸。 32、消除或缩短泄水建筑物下游急流段的工程措施,简称消能。 33、水面高程,称为水位,它是确定桥高、桥长的必备资料。 34、应用数理统计方法来分析水文现象变化规律的这类方法称为水文统计法。 35、随机事件的总体可分为两类:容量无限总体,容量有限总体。 36、事件的机率可分为两种:一为事先机率,另一为事后机率或后验机率。 37、水文勘测的目的是为了确定设计流量和水位,并为确定桥涵孔径提供数据。 38、当实测值n<20年时,称为只有短期实测资料系列。 39、水文站或形态断面距桥位断面很近,流域面积相差小于5%时,可直接采用水文站或形态断面处的设计流量。 40、变量之间的相关关系式称为相关过程或回归方程。 41、明渠中的实际流速应控制在不冲容许流速与不淤容许流速。

相关文档
最新文档