几何公差的意义和要素

合集下载

几何公差概述

几何公差概述

(4)基准要素的标注
3)基准要素为两个同类要素构成的公共基准:应分
别标注基准符号。
(4)基准要素的标注
基准要素为多基准体系时,表示基准的字母按照优先 注意
顺序写。(三基面体系)
顺序
(4)基准要素的标注
4)基准要素为局部要素时。 如只以要素的某一局部作基准要素,则应用粗点 画线示出该部分并加注尺寸。
几何公差研究对象 几何公差项目及符号 几何公差带 几何公差的标注
几何公差研究对象
几何公差的研究对象是构成零件几何特征的点、 线、面。这些点、线、面统称为几何要素。 一般在研究形状、方向、跳动公差时,涉及的对
象有线和面两类要素;
一般在研究位置公差时,涉及的对象有点、线和 面三类要素。
几何公差就是研究这些几何要素在形状及其相互 之间方向或位置方面的精度问题。
(1)按结构特征分类
1)组成要素(轮廓要素) 即构成零件外形的具体要素。 2)导出要素(中心要素) 由一个或几个组成要素得到的中 心点、中心线、中心面。
(2)按存在状态分类
1)实际(组成)要素
接近实际(组成)要素所限定的工件实际表面组成要
素部分,这些要素不同程度上存在误差。 2)公称要素
(5)常用的简化标注方法
多项公 差要求
(5)常用的简化标注方法
相同公 差带
公共公 差带
(5)常用的简化标注方法
同一公差 要求
(6)理论正确尺寸
当给出一个或一组要素的位置、方向或轮廓度公差时,
分别用来确定其理论正确位置、方向或轮廓的尺寸, 称为理论正确尺寸,代号为TED。
理论正 确尺寸
是按设计要求确定的理论正确要素。它由图样给出的

几何公差知识点问答

几何公差知识点问答

几何公差知识点问答1、几何公差的研究对象是什么,如何分类,各自的含义是什么?几何公差的研究对象是零件的几何要素,它是构成零件几何特征的点、线、面的统称。

其分类及含义如下:(1)理想要素和实际要素具有几何学意义的要素称为理想要素。

零件上实际存在的要素称为实际要素,通常都以测得要素代替实际要素。

(2)被测要素和基准要素在零件设计图样上给出了形状或(和)位置公差的要素称为被测要素。

用来确定被测要素的方向或(和)位置的要素,称为基准要素。

(3)单一要素和关联要素给出了形状公差的要素称为单一要素。

给出了位置公差的要素称为关联要素。

(4)轮廓要素和中心要素由一个或几个表面形成的要素,称为轮廓要素。

对称轮廓要素的中心点、中心线、中心面或回转表面的轴线,称为中心要素。

2、形状公差有哪些,各自的含义是什么,如何标注?形状公差有直线度、平面度、圆度和圆柱度。

其含义和标注如下:1)直线度注意几种直线度公差在图样上标注的方式。

2)平面度平面度公差带只有一种,即由两个平行平面组成的区域,该区域的宽度即为要求的公差值。

3)圆度在圆度公差的标注中,箭头方向应垂直于轴线或指向圆心。

4)圆柱度由于圆柱度误差包含了轴剖面和横剖面两个方面的误差,所以它在数值上要比圆度公差为大。

圆柱度的公差带是两同轴圆柱面间的区域,该两同轴圆柱面间的径向距离即为公差值。

3、定向公差有哪些,各自的含义是什么,如何标注?定向公差有平行度、垂直度和倾斜度。

其含义和标注如下:1)平行度对平行度误差而言,被测要素可以是直线或平面,基准要素也可以是直线或平面,所以实际组成平行度的类型较多。

2)垂直度垂直度和平行度一样,也属定向公差,所以在分析上这两种情况十分相似。

垂直度的被测和基准要素也有直线和平面两种。

3)倾斜度倾斜度也是定向公差。

由于倾斜的角度是随具体零件而定的,所以在倾斜度的标注中,总需用将要求倾斜的角度作为理论正确角度标注出,这是它的特点。

4、定位公差有哪些,各自的含义是什么,如何标注?定位公差有同轴度、对称度、位置度、圆跳动和全跳动。

几何公差知识介绍

几何公差知识介绍

几何公差知识介绍01什么是几何公差?“几何特性”指的是物体的形状、大小、位置关系等,“公差”则是“容许误差”。

“几何公差”不仅定义尺寸,还会定义形状、位置的容许误差。

(1)尺寸公差与几何公差的区别设计图纸的标注方法,大致可分为“尺寸公差”与“几何公差”这两类。

尺寸公差管控的是各部分的长度。

而几何公差管控的则是形状、平行度、倾斜度、位置、跳动等。

尺寸公差图纸几何公差图纸意为“请进行对示面(A)的‘平行度’不超过‘0.02’的加工”。

(2)几何公差的优点为什么需要标注几何公差呢?举个例子,设计者在订购某板状部件时,通过尺寸公差进行了如下标示。

但是根据上述图纸,生产方可能会交付如下所示的部件。

这样的部件会成为不适合品或不良品。

究其原因,就是没有在图纸上标注平行性。

相应的责任不在于加工业者,在于设计者的公差标示。

用几何公差标注同一部件的图纸,可得到如下所示的设计图。

该图在尺寸信息的基础上,追加了“平行度”、“平面度”等几何公差信息。

这样一来,就能避免因单纯标注尺寸公差而导致的问题。

差标注同一部件的图纸,可得到如下所示的设计图。

该图在尺寸信息的基础上,追加了“平行度”、“平面度”等几何公差信息。

这样一来,就能避免因单纯标注尺寸公差而导致的问题。

综上所述,几何公差的优点,就是能够正确、高效地传达无法通过尺寸公差来体现的设计者意图。

(3)独立原则尺寸公差与几何公差管控的公差不同。

尺寸公差管控的是长度,几何公差管控的则是形状及位置关系。

因此,尺寸公差和几何公差并无优劣之分,结合使用这两种公差,可实现高效的公差标示。

此外,尺寸公差及几何公差分别以不同测量设备及检测方法测量。

例如,尺寸公差会使用游标卡尺、千分尺等测量2点间距离,此时,下图中的尺寸公差全部合格。

但是,几何公差会利用真圆度测量仪、三坐标测量仪检测真圆度及中心轴的位置,根据指定的公差范围,可能会被判定为不合格。

换言之,根据尺寸公差会被判定为合格,根据几何公差则不合格。

几何公差概念及标注课件

几何公差概念及标注课件
3
几何公差(形状和位置公差)
2.几何要素分类
⑵ 按存在状态分为: 实际要素、公称要素 实际要素:零件上实际存在的要素。 标准规定:测量时用提取要素(测得要素)代替 实际要素。 公称要素(理论要素):具有几何学意义的要素, 即几何的点、线、面,它们不存在任何误差。图 样上表示的要素均为公称要素。
4
几何公差(形状和位置公差)
域即为合格。
合格!
24
几何公差(形状和位置公差)
平面度
几何公差带
公差带是距离为公差值 t 的两平行平面之间的区域,只 要被测平面不超出该区域即为合格。被测要素与基准无关, 公差带可以随被测要素浮动。
合格!
合格!
25
几何公差(形状和位置公差)
平面度的测量
主要有间隙
公差值为30m
法、打表法、光 轴法和干涉法。
合格!
43
平行度
几何公差(形状和位置公差)
几何公差带
公差带是距离为公差值 t 且平行于 基准平面的两平行平面之间的区域。
不合格!
44
平行度
几何公差(形状和位置公差)
几何公差带
公差带是距离为公差值 t 且平行于基准平面的两平行平 面之间的区域。
45
平行度
几何公差(形状和位置公差)
、几何公差带
公差带是距离为公差值 t 且平行于基准平面的两平行 平面之间的区域。
公差带是在垂直于基准轴线的任意测量平面内,半径差为 公差值 t 且圆心在基准轴线上的两同心圆之间的区域。
62
圆跳动
几何公差(形状和位置公差)
、几何公差带
0.1 A
30h6
A
50h7
公差带是在垂直于基准轴线的任意测量平面内,半径差为 公差值 t 且圆心在基准轴线上的两同心圆之间的区域。

几何公差带与尺寸公差带的异同点

几何公差带与尺寸公差带的异同点

几何公差带与尺寸公差带的异同点
一、概念不同
1、几何公差:几何公差包括形状公差和位置公差。

任何零件都是由点、线、面构成的,这些点、线、面称为要素。

机械加工后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。

2、尺寸公差:指允许的,最大极限尺寸减最小极限尺寸之差的绝对值的大小,或允许的上偏差减下偏差之差大小。

二、测量方法不同
1、几何公差:以较低的成本提高测量效率:与类似产品比较,其成本非常低,测量效率有较大的提高;提高测量的准确性:传统方式采用测量人员的目视观看的方法容易导致错误的测量结果;数据可追溯:保存数据记录,并可进行追溯与分析,传统模式由于无实时的记录,可追溯性较差分析。

2、尺寸公差:切削加工所获得的尺寸精度与使用的设备、刀具和切削条件等密切相关。

尺寸精度愈高,零件的工艺过程愈复杂,加工成本也愈高。

因此在设计零件时,应在保证零件的使用性能的前提下,尽量选用较低的尺寸精度。

基本尺寸0至500mm标准公差数值表。

三、应用不同
1、几何公差:影响零件的功能要求。

影响零件的配合性质。

影响零件的互换性。

影响零件本身及配合件寿命。

2、尺寸公差:影响着产品的质量、加工工艺路线、检测、生产制造成本及最终产品的装配等。

然而,现有CAD系统虽能提供对实际物体精确的数学表示,但公差信息只是一种符号式的表示,缺少有效的工程语义,没有包含对下游工作有用的全部信息,难以真正实现CAD,CAPP和CAM的集成。

几何公差

几何公差

图4-1 零件的几何要素
互换性与技术测量
第4章 几何公差
几何要素可从不同角度分类 1.按存在状态分
⑴理想要素:具有几何学意义的要素, 它不存在任何误差。 ⑵实际要素:零件上实际存在的要素。
2.按结构特征分
⑴组成要素 :组成零件轮廓外形的 要素(如球面、圆柱面、圆锥面以及圆 柱面和圆锥面的素线)。
第一格: 几何公差符号
第三格及其以后框格: 基准代号及其它符号
公差值及有关附加符 号;
基准符号及有关附加 符号。
第二格: 公差数值及有关符号
AB
框格画法:细实线,两个字高的线框。
互换性与技术测量
几何公差框格由两格或多格组成,框格中的 主要内容从左到右按以下次序填写: 公差特征项目符号; 公差值及有关附加符号;
互换性与技术测量
第4章 几何公差
(3)当基准要素为中心孔或圆锥体的轴线时,则按下图所示方法标注 。
60°
C
图4-9
基准代号的连线应与 相应基准要素的尺寸线对 齐。
B
基准要素为中心孔或圆锥体轴线时的标注
基准代号的连线应与 相应基准要素的尺寸线对 齐。
中心孔或圆锥体的轴线为基准要素时的标注
互换性与技术测量
4、当一个以上的要素作为被测要素,如6个要 素,应在框格上方标明。
互换性与技术测量
5、当多个被测要素有相同的几何公差(单项或多项)要求 时,可以在从框格引出的指引线上绘制多个指示箭头, 并分别与被测要素相连
互换性与技术测量
6、当同一个被测要素有多项几何公差要求,其标注 方法又是一致时,可以将这些框格绘制在一起,并引 用一根指引线。
平面度公差带是距离 为公差值t的两平行 平面之间的区域。如 图所示,表面必须位 于距离为公差值

几何公差 PPT

几何公差 PPT

- 0.05/100
0.01/100
∥ 0.08/100 A

(a)
(b)
A
(c)
32
第三章几何公差 3.1.3几何公差的标注
1.被测要素的标注
(4) 当被测要素为视图上的整个轮廓线(面)时,应在指示箭头的 指引线的转折处加注全周符号。如图a所示线轮廓度公差0.1mm是 对该视图上全部轮廓线的要求。其他视图上的轮廓不受该公差要 求的限制。以螺纹、齿轮、花键的轴线为被测要素时,应在几何 公差框格下方标明节径PD、大径MD或小径LD,如图(b)。
规则1:水平放置 从左到右 项目符号、公差值、基准符号、 其他附加符号。 规则2:竖直放置 从下到上 项目符号、公差值、基准符号、 其他附加符号。
21
第三章几何公差
3.1.3 几何公差的标注方法
(1) 第一格: 形位公差特征的符号。
(2) 第二格 :形位公差数值和有关符号。
(3) 第三格和以后各格 :基准字母(大写英文)和有关符号。
其标注方法又一致时,可将一个框格放在另一个框格的下方,
如图3.3c;当多个被测要素有相同的几何公差时,可以从框格
引出的指引线上绘制多个指示箭头并分别与被测要素相连,如
图3.3d。
6槽
0.05 B
⌒ 0.05
0.05
∥ 0.1 A
在a、b范围内
(a)
(b)
(c)
0.06CZ (d)
28
第三章几何公差 3.1.3几何公差的标注 1、被测要素的标注
几何公差
第三章几何公差
学 习 指导
学习目的: 掌握形位公差和形位误差的基本概念,熟悉
形位公差国家标准的基本内容,为合理选择形位 公差打下基础。 学习要求:

第4章 几何公差

第4章 几何公差

方向公差具有如下特点: 1) 方向公差带相对基准有确定的方向,而其位置往 往是浮动的。 2) 方向公差带具有综合控制被测要素的方向和形状 的功能。 因此在保证功能要求的前提下,规定了方向公差 的要素,一般不再规定形状公差,只有需要对该要 素的形状有进一步要求时,则可同时给出形状公差, 但其公差数值应小于方向公差值。
2)给定方向上直线度
当给定相互垂直的两个方向时,直线度公差带是正截 面为公差值t1*t2的四棱柱内的区域。 如图表示三棱尺的棱线必须位于水平方向距离为公差 值0.2mm,垂直方向距离为公差值0.1mm的四棱柱内。
给定一个方向或给定两个方向由设计者根据零件的功能要求 来确定。例如,车床床身的导轨是用于大拖板纵向进给使进给 时起导向作作用。为了保证导向精度,对平导轨只需给定垂直 方向的直线度公差,而对于三角导轨,除了给定垂直方向的直 线度误差外,还需要给定水平方向的直线度公差,如图所示.
练习
改正图中标注错误。
形状误差的评定
形状误差:被测实际要素的形状对其理想要素的 变动量(偏离量)。 形状误差值不大于相应的公差值,则认为是合格 的。 评定形状误差的基本原则: 形状误差值:用最小包容区的宽度和直径表示。 最小包容区:指包容被测实际要素,且具有最小 宽度f或直径Φf区域。

例1:


几何公差带四要素:几何公差带的大小、形状、方向和位 置。 几何公差带的主要形状有11种 。

4.1.3 几何公差带概念
4.2 几何公差的标注
几何公差标注 ——特征项目符号 ——被测要素 ——公差值
——基准要素 ——附加符号 4.2.1 公差框格与基准符号 4.2.2 公差框格在图样上的标注
4.2.1 公差框格与基准符号

几何公差及其标注方法详解-精

几何公差及其标注方法详解-精

几何公差带
直线度
1、在给定平面内对直线提出要求的公差带:距离为公差值 t 的一对平行直线之间的区域,只要被测直线不超出该区域即 为合格。
14
直线度
合格!
不合格!
说明: 实际直线在公差带内即为合格,被测要素与基准
无关,公差带可以随被测要素浮动。
15
直线度测量
常用的方法有光隙法(透光法)、 打表法、水平仪法、闭合测量法等。
合格!
34
圆度
圆度误差值 f 由包容区确定,包容区的尺
寸不同,得到的圆度误差值 f 也不同。
f≤t 合格!
用最小包容区的 值与公差值比较
35
圆柱度
、几何公差带
公差带是半径差为公差值 t 的两同轴圆柱面之间的区域。
36
圆柱度
与半径无关
37
圆柱度
合格!
不合格!
38
、几何公差带
线轮廓度
公差带是包络一系列直径为公差值 t 的圆的两包络线之间 的区域,诸圆心位于具有理论正确几何形状的曲线上。
31
平面度的测量, 公差值为30m
0 +8 -7 -7 +18 -5 +15 -7 -2
合格!
32
、几何公差带
圆度
公差带是在同一正截面上,半径差为公差值 t 的两同心 圆之间的区域。
33
圆度
被测圆柱面任一正截面上的圆周位于半径差为公差值 t 的两同心圆之间即为合格。此时,可以认为被测圆周圆度误 差值(圆度误差带的半径差)f小于等于公差值t。
39
线轮廓度
在平行于图样所示投影面的任一截面上,被测轮廓线必 须位于包络一系列直径为公差值 t 的圆且圆心位于具有理论正 确几何形状的曲线上的两包络线之间。

精度设计第4章 几何公差

精度设计第4章 几何公差

最小条件及最小包容区域

最小条件是提取被测要素对其拟合要素的最大变 动量为最小。
最小包容区域是包容被测提取要素并且有最小宽 度或直径的区域,即满足最小条件的包容区域。 方向位置公差要求的被测提取要素的最小包容区 域,构成要素与基准应保持方向要求。 位置公差要求的被测提取素的最小包容区域,构 成要素与基准既保持方向要求,还应保持理想位 置要求。
• 一、几何误差的评定 • 几何公差带与最小包容区域(包容被测实际要素 并且具有最小宽度或直径的区域)都具有大小、 形状和方位三要素,二者的形状和方位相同,大 小不同。 • 最小包容区域的尺度即为几何误差值; • 零件的几何误差合格条件: • f(几何误差值)<t(几何公差值),即被测要 素的最小包容区域必须被相应的几何公差带所包 容。
平行平 面形状
平行直线形状
四棱柱 形状
同心圆 形状 同轴圆柱面
t
圆柱 形状
形状公差
• 单一要素对其理想要素允许的变动量。其公 差带只有大小和形状,无方向和位置的限制。 • 直线度 _ • 平面度 _ • 圆度 _ • 圆柱度 _
直线度公差
•直 线 度 公 差 用 于 控 制 直线和轴线的形状误差, 根据零件的功能要求, 直线度可以分为在给定 平面内,在给定方向上 和在任意方向上三种情 •在给定平面内的直线度 况。 •在给定方向内的直线度
a)六孔组的图样标注 b)六孔组的几何框图 c)六孔组的位置度公差带
面轮廓度
• 面轮廓度公差带是包 络一系列直径为公差 值t的球的两包络面之 间的区域,诸球的球 心应位于理想轮廓面 上。如图所示。 • 面轮廓度也分无基准 要求的面轮廓度公差、 有基准要求的面轮廓 度公差。
公差带的特点

4-3几何公差的定义及几何公差带

4-3几何公差的定义及几何公差带

凸轮轴

轮廓度公差


【定义】轮廓度公差是对任意形状的线轮廓要素或面轮 廓要素提出的公差要求, 线轮廓要素和面轮廓要素的理想形状由理论正确尺寸确 定。
理论正确尺寸
被测要素的 理论正确几何形状
1.线轮廓度公差

线轮廓度是限制实际曲线对理想曲线变动量的 一项指标。
无基准的线轮廓度公差
理论正确尺寸
线轮廓度公差带:是包络一系列直径为公差t的圆的两包
【定义】单一实际被要素的形状对其理想要素允许的变 动量。 用来限制形状误差。 限制单一实际被要素变动的区域。 直线度公差带、平面度公差带、……

形状公差带


1. 直线度


直线——直线度
被测要素——直线

对直线度的描述和形容

笔直、挺拔、直挺挺、……

【直线】:一点始终不变地在同一方向行进时所描出的线。

形状? 大小? 位置公差带相对于基准具有确定的位置
当同一被测要素有位置公差要求时,一般不再给出方向公差和 形状公差; 仅在对其方向精度或(和)形状精度有进一步要求时,才另行 给出方向公差和形状公差。
形状公差值<方向公差值<位置公差值
4.3.6 跳动公差

跳动公差

圆跳动、全跳动

跳动公差特点:
无基准的面轮廓度公差
面轮廓度公差带为直径等于公差值t、球心位于被测要素理论 正确几何形状上的一系列圆球的两包络面所限定的区域。
相对于基准体系的面轮廓度公差
面轮廓度公差带
轮廓度公差的特点

轮廓度有时有基准要求!

无基准要求时——形状公差 有基准要求时——方向公差,位置公差

机械制图——标注几何公差--;标注零件表面结构要求

机械制图——标注几何公差--;标注零件表面结构要求

4、表面结构的符号及意义
(1)表面粗糙度符号的画法
H1 ≈1.4h h —— 字高
H2≈ 2H1
(2)表面粗糙度符号的含义
符号
意 义及说明
基本图形符号。用任何方法获得的表面 (单独使用无意义)。
用去除材料的方法获得的表面
用不去除材料的方法获得的表面。
完整图形符号。横线上用于标注有关 参数和说明
表示构成图形封闭轮廓的所有 表面有相同的表面要求。
2 标注几何公差
为保证零件的性能,除对尺寸提出尺寸公
差要求外,还应对形状和位置公差提出要求。
轴线弯曲
由于形状和位
置公差不合格,则轴
线弯曲且与端面不
垂直,导致两零件 不能正确装配
轴线与端 面不垂直
几何公差(GB/T1182-2008)指形状、方向、位置、跳动公差。
圆柱形零件的理想母线应是直线,但实际加工时往往出现 中间粗、两头细的情况,这种形状上的误差,叫做形状误差。
当某项公差应用于几个相同要素时,可在公差框格的上方
被测要素的尺寸之前注明要素的个数。
2×φ21
3× 0.1
6×Φ12 Φ0.1
如果某个要素 有几种几何公差要 求,可将一个公差 框格放在另一个的 下方。
0.01 0.06 A
2、被测要素的标注
(1)当被测要素是线或表面时,指引线的箭头应指向要 素的轮廓线或其延长线上,并明显地与尺寸线错开。
公差带的主要形状有:
两等距平面
一、基本术语
1、要素:指零件上的特征部分——点、线、面; 2、被测要素:提出了几何公差要求的点、线、面; 3、基准要素:用来确定被测要素方向或位置的点、线、面; 4、公差带:由公差值确定的限制实际要素变动的区域。

几何公差的解释及测定方法

几何公差的解释及测定方法
[判定] 1. 平面度大小≤理论值时, 平面度OK ; 2. 平面度大小>理论值时, 平面度NG
[测定实例]
八、直线度
1. 直线度公差定义
公差定义:零件的直线实际形状与理想直线形状的偏差大小 表示符号:
2. 直线度公差的实例 实例1
解释: 直线度指示的线必须位于距离为公差值0.1mm的 两平行直线内
[测定方法] 1. 基准平面A---固定面 2. 基准平面B---基准轴 3. 寸法148的中点---X轴方向的原点 4. 将原点移到寸法 R31的中心位置[X=-19,Y=21,Z=0] 5. 将 R31上任意位置线上多点测定,求得半径与尺寸 R31的差 6. 将原点移到寸法 R41的中心位置[X=90,Y=0,Z=0] 7. 将 R41上任意位置线上多点测定,求得半径与尺寸 R41的差 8. 将原点移到寸法R18的中心位置[X=39,Y=46,Z=0] 9. 将 R18上任意位置线上多点测定,求得半径与尺寸 R18的差 10. 将5&7&9项中Max值与Min值分别求差(即线轮廓度大小)
0.05 A
右侧表面
A
基准平面
0.05
3. 垂直度公差的测量
垂直度的测定
[测定机器] 三次元/百分表
[测定方法] 1. 基准平面A---固定 ; 2. 基准平面B---基准轴 ; 3. 基准平面C---原点 4. 测出垂直度指示面从上端到根部的Max.值/Min.值 5. 计算出Max.值与Min.值的差值(即垂直度大小)
[判定] 1. 垂直度大小≤理论值时, 垂直度OK ; 2. 垂直度大小>理论值时, 垂直度NG
[测定实例]
六、倾斜度
1. 倾斜度公差定义
公差定义:实际的形体相对于保持理论上正确角度的基准直线或基准平面而言 偏差的大小

机械制造基础6.2几何公差

机械制造基础6.2几何公差

h
18
直线度
形状公差带定义
在给定方向上,公差带是距 离为公差值t的两平行平面之 间的区域
标注和解释
被测表面的各条素线 必须位于距离为 0.1mm的两平行平面 之间
测量方案
将平尺与被测表面相接触, 井使两者的最大间隙为最小, 此时平尺与表面间的最大间 隙就为该表面的直线度误差。 按上述方法测量若干次,取
的几何特征,因此,在大多数情况下都有基准要求。
h
14
2. 几何公差的附加符号 如表6.2.2所示
hቤተ መጻሕፍቲ ባይዱ
15
3. 几何公差带
几何公差带是指由一个或几个理想的几何线或面所限定的、由线性 公差值表示其大小的区域。它是限制实际被测要素变动区域。
几何公差带有形状、大小、方向和位置四个要素。
(1)几何公差带形状 如下表所示(主要有9种) 教材中的图6.2.3
h
3
6.2.1 概述
几何公差t几何是控制几何误差f几何的: t几何≥f几何 。
几何误差是指零件加工后的实际形状、方向和相互位置与理想 形状、方向和相互位置的差异。在形状上的差异称形状误差,在方 向上的差异称方向误差,在相互位置上的差异称位置误差。
如图6.2.1所示, 加工后的零件存在形状 误差和方向误差。
h
16
6.2.3 形状公差与误差
⒈ 形状公差与公差带
形状公差是指单一实际要素的形状所允许的变 动全量。形状公差带是限制实际被测要素变动的 一个区域。典型的形状公差带见表6.2.3。
形状公差带的特点是不涉及基准,其方向和位置随实 际要素不同而浮动。
h
17
表6.2.3形状公差带定义、标注和解释、测量方案
其中最大值作为该零件表 面的直线度误差

几何公差(公司内部培训资料)

几何公差(公司内部培训资料)

几何公差(公司内部培训资料)几何公差一、引言几何公差是在机械工程中广泛应用的一种公差控制方式,它能够有效地保证零件的功能性和可靠性。

本文将介绍几何公差的基本概念、分类以及常见的应用方法,以期提供给公司内部培训者一份全面而且准确的资料。

二、几何公差的定义和分类1. 定义几何公差是指描述零件几何形状和相对位置关系的公差,它包括了零件形状、位置、尺寸、直线、平面等多个方面。

2. 分类根据几何要素的不同,几何公差可以分为以下几种类型:(1)平面度公差:用于描述一个表面相对于基准面的平面性。

(2)圆度公差:用于描述一个圆形要素与其公差带之间的圆度关系。

(3)直线度公差:用于描述直线要素与其公差带之间的直线度关系。

(4)轴线度公差:用于描述轴线要素与其公差带之间的轴线度关系。

(5)角度公差:用于描述两个零件间或零件内的角度关系。

三、几何公差的计算和应用方法在实际工程中,几何公差的计算和应用主要包括以下几个方面:1. 基准确定在几何公差的设计中,首先要确定合适的基准。

基准的选取关系到几何公差的计算和应用准确性,因此需要综合考虑零件功能性、制造工艺以及成本等因素。

2. 公差链法则公差链法则是几何公差计算的基本原则,它通过将各个公差要素串接起来,从而确定最终零件的公差范围。

在进行公差链计算时,要注意各个要素之间的相互关系,避免误差的累积。

3. 几何公差的应用几何公差的应用可以通过以下几个步骤完成:(1)确定公差带和公差尺寸,将零件的实际尺寸与公差带进行比较。

(2)控制公差带内的几何形状,确保零件的功能性和可靠性。

(3)使用适当的测量工具和方法进行检验,以确保零件的质量符合要求。

四、几何公差的重要性和应用案例1. 重要性几何公差在机械工程中具有重要的作用,它能够保证零件的功能性和可靠性,提高产品的工作效率。

几何公差的合理应用还能够减少制造成本,提高生产效率。

2. 应用案例几何公差在实际工程中有着广泛的应用。

例如,在汽车制造中,几何公差能够确保车身的平整度和尺寸精度,提高汽车的乘坐舒适性;在航空航天领域,几何公差能够保证飞机零件的准确性和可靠性,确保飞机的飞行安全。

第4章 几何(形状和位置)公差

第4章 几何(形状和位置)公差
① 被测要素:即图样中给出了形位公差要求的要素,是测量的对象。
② 基准要素:即用来确定被测要素方向和位置的要素。基准要素在图 样上都标有基淮符号或基准代号。
4) 按功能关系分类 ① 单一要素:指仅对被侧要素本身给出形状公差的要素。 ② 关联要素:即与零件基准要素有功能要求的要素。
形状公差:单一实际要素的形状对其理想要素的
宽度或直径。 最小包容区域的宽度或直径即是形状误差的大小
问题:在实际测量呈中,如何知道何时符合最小条件,如何符合最小区域?
4.3.1 形状公差 一、直线度 1、直线度公差的标注及其公差带。P94表4-4 三种标注法:
①在给定平面内:一般标注平面。
公差带:两条距离为t的平行直线所夹的区域。 ②在给定方向上:一般标注母线,棱线。 公差带:两个距离为t的平行平面所夹的区域。 ③在任意方向上:一般标注孔、轴中心线。
③ 当被测要素为中心要素如中心点、圆心、轴线、中心线、 中心平面时,指引线的箭头应对准尺寸线,即与尺寸线的延 长线相重合。若指引线的箭头与尺寸线的箭头方向一致时, 可合并为一个,如图4.8 所示。
当被测要素是圆锥体轴线时,指引线箭头应与圆锥体的大端 或小端的尺寸线对齐。必要时也可在圆锥体上任一部位增 加—个空白尺寸线与指引箭头对齐,如图4.9(a)所示。 ④ 当要限定局部部位作为被测要素时,必须用粗点画线示出 其部位并加注大小和位置尺寸,如图4.9(b)所示。
几何误差:被测提取(实际)要素对其拟合要素的变动量。 几何公差:被测提取(实际)要素对其拟合要素所允许的 的变动全量。
被测提取(实际)要素
拟合要素
几何要素分类
1) 按结构特征分类 ① 组成要素(轮廓):即构成零件外形,为人们直接感觉到的 点、线、面。 ② 导出要素(中心):即轮廓要素对称中心所表示的点、线、 面。其特点是它不能为人们直接感觉到,而是通过相应的 轮廓要素才能体现出来,如零件上的中心面、中心线、中 心点等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学难点: 1.评定形状误差的基本原则---最小条件。 2.基准体系中,正确选择各基准的顺序排次,是表征了不同的地位和作用。 3.理论正确尺寸(角度)如 100(45°)。几何图框、动态公差图、实效尺寸、实效边界、 成组要素。 4.公差原则:独立原则、包容要求、最大实体议提示:
❖ 1.对形位公差标准的理解及测量是较难的环节,建议教学通过结合实 物或工件多读图、多画图、多讨论、多辅导的方式解决。
❖ 2.对直线度(如长导轨)、平度面(如大平板、机床工作台等)的测 量,书中有例4-5、例4-7求值。现在其测量仪器的发展,已配有电脑处 理软件用来求值,很方便。
❖ 3.介绍新技术EG电子水平仪测量系统:由电子水平仪、连接电缆、计 算机和测量软件四部分组成。使对于直线度、垂直度、平直度大工件的 测量智能化、使计算工作量大为减少。
指引线可从框格的任一端引出,引出段必须垂直于框格;引向被测要素时允许{弯折,但不 得多于两次。
图4-3 形位公差代号 a)水平放置 b)垂直放置
1.被测要素的标注(表4-3)
3.几何公差的特殊标注方法(表4-5)
3.几何公差的特殊标注方法(表4-5)
4.几何误差的限定符号(表4-6)
5.避免采用的标注方法(表4-7)

即:使用专用电缆将电子水平仪通过RS232接口与计算机相连。利用
操作测量软件,采集数据,选择检测方法,可以及时准确地计算工件的
平面度、直线度及垂直度等数据结果。借助于线框图和仿真图,直观地
了解测量情况,迅捷高效地完成工作
❖ 4.当测量实验室工作条件不够宽裕时,到机加工实训车间,做零件与 整机检测更有实际意义。
图4-1 要素
3.按所处地位分 1)被测要素—图样上给出了几何公差要求的 要素。 2)基准要素—用来确定被测要素方向或(和) 位置的要素,简称基准,图4-2所示。
4.按功能要求分
1)单一要素—仅对其本身给出形状公差要求,或仅涉 及其形状公差要求时的要素。
2)关联要素—相其他要素有功能要求而给出方向、位 置和跳动公差的要素
第二节 形状公差
一、形状公差带定义
形状公差有直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度六个项目。 形状公差是单 一被测要素的形状对其理想形状要素允许的变动全量。形公差没有基准要求,所以公差带是浮动 的。
形状公差的功能:
1)直线度公差 是限制用于控制平面内或空间内直线的形状误差。
2)平面度公差 是限制实际表面对理想表面变动量的项目。
第一节 概 述
零件在加工中,不仅产生尺寸误差,同时也产生形状误差和几何要素之间的位置 误差。完工后的零件,由于各种误差的共同作用将对其配合性质、功能要求、互换 性造成影响。因此,必须制定相应的几何公差加以限制。
一、零件的要素
构成零件几何特征的点、线、面均称要素(图4-1)。要素可从不同角度来分类。
1
四、几何公差的标注
在技术图样上,几何公差应采用代号标注。几何公差代号包括:几何公差有 关项目的符号、几何公差框格和指引线、几何公差数值和其他有有关符号、基 准符号。
几何公差框格有两格或多格,它可以水平放置,也可以垂直放置,自左至右依次填写写几 何特征符号、公差值(单位为mm)、基准字母。第2格及其后各格中还可能填写其他翻芎符 号,如图4-3所示。
f
图4-4最小区域与最小条件
第三节 轮廓度公差
线轮廓度或面轮廓度公差是对零件表面的要求(非圆曲线和非圆曲面),可以 仅限定其形状误差,也可在限制形状误差的同时,还对基准提出要求。前者属于 形状公差,方向或位置公差。它们是关联要素在方向或位置上相对于基准所允许 的变动全量。
一、零件的要素
1.按结构特征分 1)组成要素-构成零件内、外表面外形的具体要素 2)导出要素-组成要素的对称中心所表示的(点、线、面) 要素,属抽象要素,如中心线、中心面。
2.按存在状态分 1) 实际要素-零件上实际存在的要素,测量时由提取要素 代替。
2) 称为理想要素-具有几何学意义,无误差的要素 3) 导出要素-设计图样所表示的要素如轮廓或中心要素
二、几何公差项目及符号
图4-2 基准要素和被测要素
国家标准规定了14项几何公差,其名称、符号及分类见表4-1。
三,几何公差的意义和要素
几何公差是图样中对要素的形状和位置规定的最大允许的变动量。 控制要素的形状或位置,均是对整个要素的控制。因此,设计给出的几何公差要求,实质
上是对几何公差带的要求。确定公差带应考虑其形状、大小、方向及位置四个要素。 1)公差带的形状常用的有9种,见表4-2。 2)公差带的大小指公差带的宽度t或直径φt,取值大小取决于被测要素的形状和功能要求。 3)公差带的方向即评定被测要素误差的方向,公差带的宽度方向为被测要素的法向。 4)对于公差带的位置,形状公差带没有位置要求,只用来限制被测要素的形状误差。在尺 寸公差内浮动,或或由理论正确尺寸固定。对于位置公差带,是由相对于基准的尺寸公差 或理论正确尺寸确定。
3)圆度公差 是限制实际圆对理想圆变动量的项目。
4)圆柱度
是限制实际圓柱面对理想圆柱面变动量的项目,它可以控制轴向截面及轴截面内的
圆度、素线直线度、轴线直线度等误差,是控制圆柱体内、外表面多项综合性形状误差的指标。
形状公差带的定义及标注示例见表4-8。
二、形状误差的评定 形状误差值用最小区域的宽度或直径表示。按最小区域法所得到的形状误差值最 小,且是惟一的;所谓最小条件是指实际被提取要素对其拟合(理想)要素的最大 变动量为最小,如图4-4所示。这是评定形状误差的基原则。
第四章 形状和位置公差
本章要点:也是本课程的两大重点之一
1.各项形位一公差符号及其公差带的含义;如何正确选用和标注形位公差。
2.公差原则的含义、应用要素、功能要求、控制边界及检测方法。
3.形状、方向、位置和跳动误差的检测原则及其应用。
教学时数参考:12 授课方式:本章釆用以教师带领学员,用工程语言既耍达到:识图、读图并加对该图 工件的几何误差进行测量,所应选择的测量方法及量仪。在课堂中发动“教”与“学” 互动的讨论气氛。 所用教具:1.教材中本章有表37个是最接近生产的图样典例,2.电子课件。
相关文档
最新文档