无穷限反常积分敛散性及审敛法则(教案)

合集下载

同济高等数学第六版-D5_5反常积分审敛法

同济高等数学第六版-D5_5反常积分审敛法

满足
limxpf(x)l
x
则有: 1) 当 p1,0l 时af(x)dx收敛 ;
2) 当 p1,0l 时af(x)dx发散 .
证: 1) 当p1时, 根据极限定义, 对取定的 0,当 x 充
分大时, 必有 xpf(x)l, 即
0
f
(x)

M xp
2) 当 q1,0l 时,abf(x)dx发散 .
例5. 判别反常积分 13ldnxx的敛散性 .
解: 此处 x1为瑕,利点 用洛必达法则得
lim(x1) 1 lim 1 1
x1
lnx
x 1
1 x
根据极限审敛法2 , 所给积分发散 .
定理4 目录 上页 下页 返回 结束
(M l)
可见 af(x)dx收敛 ;
目录 上页 下页 返回 结束
2) 当p1时,可取 0,使 l0,(l 时用任意
数 N代l替 ),必有
xpf(x)l

f
(x)

l
xp
N x
(Nl)
可见 af(x)dx发散 .
注意: xl im xpf(x)xl im f(1x) 此极限的大小刻画了
1 3 x4

1
4
x3
由比较审敛法 1 可知原积分收敛 .
思考题:
讨论反常积分
13
1 dx x3 1
的收敛性
.
提示: 当 x≥1 时, 利用
1 1 1 3x31 3(x1)3 x1
可知原积分发散 .
目录 上页 下页 返回 结束
定理4. (极限审敛法1) 若 f( x ) C [ a , ) ,且 f( x ) 0 ,

第五节 反常积分的审敛法 Γ函数

第五节  反常积分的审敛法 Γ函数

第五节* 反常积分的审敛法 函数
二、无界函数的反常积分的审敛法
第五节* 反常积分的审敛法 函数
由上节

例6 证明知反,常反积常分积分b
q
1
时发散b .
a(
x
dx a)q
a
,
(
x
dx a)
q
当 0< q <1 时收敛
当 0< q <1证时明收敛当,当q =q1时1 ,时发散. 于是有下面两个
b
f (x)dx 发散.
a
第五节* 反常积分的审敛法 函数
定理7(极限审敛法2) 设函数 f (x) 在区间(a , b] 上
连续,且 f (x) 0,x = a 为 f (x) 的瑕点.
(1) 如果存在常数 0 < q < 1,使得 lim (x a)q f (x) xa
连续,且 f (x) 0 , x = a 为 f (x) 的瑕点.
(1) 如果存在常数 M > 0 及 q < 1,使得
f
(x)
(x
M a)q
(a x b) ,
则反常积分 b f (x)dx 收敛;
a
(2) 如果存在常数 N > 0 ,使得 f (x)
N
(a x b) ,
xa
则反常积分
aa
gg
((
xx))ddxx
收收敛敛,,则则
aa
gg
((
xx))ddxx
发发散散,,则则
证明
设 0< t < +,由 0 g (x) f (x) 及
g ( x)dx
a
收敛,得
t
t

反常积分的审敛法

反常积分的审敛法

例1 判别反常积分 ∫ 1
+∞
dx
3
x4 + 1
的收敛性 .
解 ∵当 x ∈ [1,+∞ ) 时 ,
0<
1
3
<
+∞ 1
1
3
x +1
3
4
4 = , p = > 1, 4 3 x4 / 3 x
1
收敛.
∴ 反常积分 ∫
dx x4 + 1
(比较审敛法1)
定理 4 ( 极限审敛法1) 设函数 f ( x ) 在区间 [a ,+∞ ) (a > 0) 上连续,且 f ( x ) ≥ 0. 如果存在常数 p > 1,使得 lim x p f ( x ) 存在,
判别反常积分

3
1
dx 的收敛性 . ln x
1 ∵ lim = + ∞ ∴ x = 1是瑕点 x →1+ lnx
1 x −1 lim ( x − 1) = lim + x →1 x →1+ ln x ln x
0 ( )型 0
= lim +
x →1
= 1 > 0, 3 dx ∴ 反常积分 ∫ 发散 . (极限审敛法2) 1 ln x
1.递推公式 Γ( s + 1) = sΓ( s ) ( s > 0).
证明 Γ( s + 1) =
+∞ −x s 0

+∞
0
e x
+∞ 0 +∞
−x
( s + 1 ) −1
dx
−x
= ∫ e x dx = ∫ = [ x ( −e )]

无穷限反常积分的审敛法

无穷限反常积分的审敛法

1
根据极限审敛法 1 , 该积分收敛 .
x 例3. 判别反常积分 d x 的敛散性 . 2 1 1 x 3 2 2 1 x x 解: lim lim x 2 1 2 2 x 1 x x 1 x

3 2
根据极限审敛法 1 , 该积分发散 .
例 3.判别下列反常积分的敛散性: 1 比较判别法 (1) sin 2 dx 1 x 1 1 1 解:∵ 0 sin 2 2 , dx 收敛 , 而 1 x2 x x 1 ∴ sin 2 dx 收敛 。 1 x
a
2) 若存在常数 N 0 , p 1, 使对充分大的 x 有 N f ( x) p x 则 f ( x) d x 发散 .
a
例1. 判别反常积分
x4 1 1 sin 2 x 解: 3 4 14 03 4 x x 1 x3 由比较审敛法 1 可知原积分收敛 . 1 思考题: 讨论反常积分 d x 的敛散性 . 3 3 1 x 1 提示: 当 x≥1 时, 利用 1 1 1 3 3 x 1 3 ( x 1) 3 x 1
a
当 p 1时, 可取 0 , 使 l 0 , (l 时用任意正
数 N 代替 l ) , 必有
x p f ( x) l

l N f ( x) p x x
a
(N l )
可见
f ( x) d x 发散 .
x
定理1. 设 f ( x) C [a , ) , 且 f ( x) 0 , 若函数
F ( x) f (t ) d t
a
x
在[a , ) 上有上界 , 则反常积分

反常积分审敛法-精品文档

反常积分审敛法-精品文档
x

a
f ( x)dx 收 敛 ;
x
如 果limxf ( x) d 0 (或 limxf ( x) ), 则
x


af ( x)dx 发Fra bibliotek散 .
证明
dx 的收敛性 . 例2 判别反常积分 2 1 x1 x 1 2 解 lim x 1 , p21 2 x x1 x
F (x )在 [a , )上是单调增加的 .
F (x ) 在 [ a , ) 上有上界
lim F (x ) 存在 (极限的存在准则)
x x
即 lim 存在 f(t)dt
x a

收敛 f(x)dx
a
程序设计 网络课件 教学设计 多媒 体课件 PPT文档
f(x ) dx 发散 a 1 特别地,取 g( x ) p ,即得下面的 x
网络课件 教学设计 多媒 比较审敛法. 程序设计体课件 PPT文档

定理 3 (比较审敛法1 ) 设函数 f ( x) 在区间 [a, ) (a 0) 上连续,且 f ( x) 0. 如果存在常数 M 0 及 p 1 ,使得

arctan x 例4 判 别 反 常积 dx 分 的收 . 敛性 1 x arctan x x lim arctan x 解 lim 0 x x x 2
定理 2 ( 比较审敛原 ) 理 设函数 f (x)、 g(x) 在 区 间 [a, )上 连 续 、 非 , 负
如果 f (x) g(x),(a x ),并 且 a g(x)dx收 敛 , 则a f (x)dx也 收 敛 ; 如 f( 果 x) g(x),(a x ), 并且 则 f (x)dx也 发 散 . a g(x)dx发 散 , a

高等数学第五章第五节反常积分的审敛法函数课件.ppt

高等数学第五章第五节反常积分的审敛法函数课件.ppt
使每一项只含一种类型的反常积分,
只有各项都收敛时,
才可保证给定的积分收敛 .
3. 函数的定义及性质 .
思考与练习
P263 题1 (1), (2), (6), (7)
P264 题5 (1), (2)
作业 P263 1 (3), (4), (5), (8) 2 ; 3
由定义
例如
因此无穷限反常积分的审敛法完全可平移到无界函数
的反常积分中来 .
定理6. (比较审敛法 2)
瑕点 ,


利用
有类似定理 3 与定理 4 的如下审敛法.
使对一切充分接近 a 的 x ( x > a) .
定理7. (极限审敛法2)
则有:
1) 当
2) 当
例5. 判别反常积分
解:
利用洛必达法则得
根据极限审敛法2 , 所给积分发散 .
例6. 判定椭圆积分
散性 .
解:
由于
的敛
根据极限审敛法 2 , 椭圆积分收敛 .
类似定理5, 有下列结论:
例7. 判别反常积分
的敛散性 .
解:
称为绝对收敛 .
故对充分小
从而
据比较审敛法2, 所给积分绝对收敛 .
则反常积分
三、 函数
1. 定义
下面证明这个特殊函数在
一、无穷限反常积分的审敛法
定理1.
若ห้องสมุดไป่ตู้数
证:
根据极限收敛准则知
存在 ,
定理2 . (比较审敛原理)
且对充
, 则
证: 不失一般性 ,
因此
单调递增有上界函数 ,
说明: 已知
得下列比较审敛法.

反常积分的敛散性判定方法

反常积分的敛散性判定方法

XX财经大学本科学年堆文反常积分敛散牲的判定方法作者陈志强学院统廿与数学学院专世数学与应用数学年级2012级学号122094102 指导教师魏运导师职称蟄授最终成绩摘要 (1)关鍵词 (1)弓I 言一、预备知识......1•无穷限反常枳分2.暇枳分3•反常枳分的性质二、反常积分的收敛判别法1无穷枳分的收敛判别⑴•定义判别法(2)•比较判别法⑶嗣西圳别法⑷阿贝尔判别法.⑸•放利克雷判别法2瑕枳分的收敛判别⑴•定义列别法(2)•定理判别法(3)・比较判别法⑷•柯西判别法• ••••••...4卑屿01参考文献......在很多实际间题中,要突破枳分区同的有穷11和被枳函数的有界性,由此得到了定枳分的两种形式的推广:无穷限反常枳分和瑕枳分。

我们将这两种枳分貌称为反常枳分。

因为反常枳分涉及到一个收敛问题,所以反常枳分的敛散性判定就显得非常重要了。

本文将对反常枳分的敛散性判定进行I月纳总结,并给出了相关定理的込明,举例说明其应用,这样将有MTKffl灵活的运用各种等价定理利Bi反常枳分的敛散性。

关键词:反常枳分陨枳分极限敛散性引言近些年以来,一些数学工作者对反常枳分敛散性的判别方法做了研究并取得了许名重要的进展。

如华东IMX大学数学系编,数学分析(上IB ),对反常枳分枳分的定义,性质的运用及讲义其判别收敛性的方法。

华中科枝大学出版的数学分折理论方法与技H,也对反常枳分敛散性判别做了库细的讲解,连用图形的方法说明其直义。

引申岀反常枳分敛散II的等价定义,并通ii例题说明其应用。

众多学者研究的内容全而广,实用性很高,尤其是在研究敛散性的判别很明显,逆对我现所研究的论文题目提fftTt量的理论依据和参考文献,对我完成此次论文有很大的帮助,但绝大多数文献只是对其一种方法进行研究,而本文冷对其8H亍归纳总给,举例说明其应用。

一、预备知识1.无穷限反常秋分定义1.1设函数于(X )在[a, +00)有定义,若/(X)在[a, A]上可枳(A>a )rA 『8目当A-+OO时,[im[fZx存在,称反常枳分[fZx收敛,否则4—>oo Ja J a称反常枳分£/U^^£/(A>/X发散。

反常积分--无穷积分教案

反常积分--无穷积分教案

引入复习定积分dx x f ba )(⎰满足:(1)[]b a ,是有限闭区间 (2))(x f 是[]b a ,上的有界函数则称此积分为常积分.当这两个条件至少有一个不满足时称为反常积分. 其中无限区间上的反常积分称为无穷积分,无界函数的反常积分称为瑕积分。

新课讲授1.无穷积分的定义:设函数)(x f 在区间[)+∞,a 上有定义,符号dx x f a)(+∞⎰表示函数)(x f 的无穷积分.对R b ∈∀,且a b >,函数)(x f 在[]b a ,上可积.若极限dx x f b a b )(lim ⎰+∞→存在(不存在),则称无穷积分dx x f a )(+∞⎰收敛(发散),其极限称为无穷积分dx x f a)(+∞⎰(的值),即 =⎰+∞dx x f a )(dx x f b a b )(lim ⎰+∞→同理可定义 =⎰∞-dx x f b)(dx x f ba a )(lim ⎰-∞→=⎰+∞∞-dx x f )(+⎰∞-dx x f c)(dx x f c)(+∞⎰(c 为任意取定的常数)并且只有当无穷积分dx x f c )(∞-⎰和dx x f c )(+∞⎰都收敛时,才称无穷积分dx x f )(+∞∞-⎰收敛,否则称为发散。

2.无穷积分的计算:(以无穷积分dx x f a)(+∞⎰的计算为例)(1)定义法:先计算定积分dx x f b a )(⎰,再令+∞→b ,求出dx x f a )(+∞⎰(2)推广的牛顿-莱布尼兹公式:)()(lim )()(a F x F x F dx x f x a a -=⎰=⎰+∞→+∞+∞=⎰∞-dx x f b )()(lim )()(x F b F x F x b -∞→∞--=⎰=⎰+∞∞-dx x f )()(lim )(lim )(x F x F x F x x -∞→+∞→+∞∞--=⎰例题剖析例1、 计算下列无穷积分 (1)dx x 2011+⎰∞- (2)dx x x 1sin 122∞+⎰π例2、证明无穷积分)0(1>⎰∞+a dx xp a 当1>p 时收敛,当1≤p 时发散.巩固练习判断下列无穷积分是否收敛,若收敛算出它的值.(1) dx e x -+∞⎰0 (2) dx xe x-+∞⎰0(3) dx x x ln e1∞+⎰ (4) dx x x 401+⎰∞+课堂小结同学们需要理解无穷积分的概念,并能够运用定义或推广的牛顿-莱布尼兹公式计算无穷积分。

§6.2反常积分判敛法1

§6.2反常积分判敛法1
∴ dx 收敛。
1 x 1 x2
1 1 , p 2, l 1, 1 1 x2
3
(2) x 2 dx
1 1 x 2 3
解:∵ lim x x 2 lim x2 x , p 1, l ,
x 1 x 2 x 1 x 2
3
∴ x 2 dx 发散。
1 1 x 2
(3) x arctan xdx
0 (1 x 2 )(1k 2 x 2 )
解:x1 是瑕点。
1
∵ lim (1 x) 2
1
x1
(1 x2 )(1k 2 x2 )
lim
1
1 , (q 1, l
x1 (1 x)(1k 2x2 ) 2(1k 2 )
2
1) 2(1k 2 )
∴ 1
dx
收敛。
0 (1 x2 )(1k 2 x2 )
(2)
定理 4(比较判别法)
设 f (x),g(x)C[a, b) , x b 为无穷型间断点,
且 x[a,b) 时,0 f (x) g(x) ,
则(1)当
b
ag
(x)dx
收敛时,
b a
f
(x)dx
也收敛;
b
b
(2)当 a f (x)dx 发散时,a g(x)dx 也发散。
定理 5(极限判别法)
设 f (x)C[a, b) , f (x) 0 ,x b 为无穷型间断点,
0
当 x 为正整数n 时,有
(n1)n(n)n(n1)(n1) n(n1)(n2)21(1)n!(1)
而(1) etdt 1 ,故 (n1) n !。 0
3. 函数的定义域的扩充
当 1 x 0 ,即x1 0 时,(x1) 有定义, 从而定义(x) (x1) ,1 x 0 ,

《数学分析》第十一章 反常积分教案

《数学分析》第十一章 反常积分教案

第十一章反常积分一、教学内容1.反常积分的概念2.无穷积分的性质与收敛判别3.瑕积分的性质与收敛判别二、教学目的1.使学生掌握反常积分收敛和发散的概念,2.能判别反常积分的敛散性,3.能计算收敛的反常积分。

三、教学建议1.重点:无穷积分和瑕积分收敛的判别法2.难点:无穷积分和瑕积分收敛的判别法四、教学课时教学要点反常积分收敛和发散的概念及敛散性判别法。

教学时数8学时教学内容§1反常积分的概念(4学时)反常积分的引入,两类反常积分的定义反常积分的计算。

§2无穷积分的性质与收敛判别(4学时)无穷积分的性质,非负函数反常积分的比较判别法,Cauchy判别法,反常积分的Dirichlet判别法与Abel判别法。

§3瑕积分的性质与收敛判别瑕积分的性质,绝对收敛,条件收敛,比较法则。

考核要求掌握反常积分敛散性的定义,奇点,掌握一些重要的反常积分收敛和发散的例子,理解并掌握绝对收敛和条件收敛的概念,并能用反常积分的Cauchy收敛原理、非负函数反常积分的比较判别法、Cauchy判别法,以及一般函数反常积分的Abel、Dirichlet判别法判别基本的反常积分。

1、反常积分概念一、问题的提出例1(第二宇宙速度问题)在地球表面初值发射火箭,要是火箭克服地球引力,无限远离地球,问初速度至少多大?解设地球半径为,火箭质量为地面重力加速度为,有万有引力定理,在距地心处火箭受到的引理为于是火箭上升到距地心处需要做到功为当时,其极限就是火箭无限远离地球需要作的功在由能量守恒定律,可求得处速度至少应使例2从盛满水开始打开小孔,问需多长时间才能把桶里水全部放完?解由物理学知识知道,(在不计摩擦情况下),桶里水位高度为时,水从小孔里流出的速度为设在很短一段时间内,桶里水面降低的高度为,则有下面关系:由此得所以流完一桶水所需的时间应为但是,被积函数在上是无界函数,,所一我们取相对于以前学习的定积分(正常积分),我们把这里的积分叫做反常积分。

反常积分 的审敛法

反常积分 的审敛法

第11章 反常积分§11. 1 反常积分的概念一 基本内容一、无穷限反常积分定义 1 设函数()f x 在[, )a +∞上有定义,且在任意区间[, ]a u 上可积,如果lim()d uau f x x→+∞⎰存在,则称此极限为()f x 在[, )a +∞上的反常积分,亦称为()f x 在[,)a +∞上的无穷限反常积分,简称无穷限积分,记作 ()d af x x+∞⎰.ie ()d lim ()d ua au f x x f x x+∞→+∞=⎰⎰:,此时并称 ()d a f x x+∞⎰收敛.如果极限不存在,则称 ()d af x x+∞⎰发散.同理可定义 ()d lim()d bbuu f x x f x x-∞→-∞=⎰⎰, ()d ()d ()d a af x x f x x f x x+∞+∞-∞-∞=+⎰⎰⎰,几何解释如图.()d af x x+∞⎰收敛是指图中阴影区域的 面积存在.二、瑕积分定义 2 设函数()f x 在(, ]a b 上有定义,且在点a 的任一右邻域内无界,而在[, ](, ]u b a b ⊂上有界可积,如果 lim ()d buu a f x x +→⎰存在,则称此极限为无界函数()f x 在上(, ]a b 的反常积分,记作 ()d baf x x⎰,ie ()d lim ()d bbauu af x x f x x+→=⎰⎰:,并称 ()d baf x x⎰收敛,否则称其发散.其中a 称为瑕点.无界函数的反常积分亦称为瑕积分.同理可得b 为瑕点时, ()d lim ()d bu a a u b f x x f x x-→=⎰⎰.当()f x 的瑕点(, )c a b ∈,则定义()d ()d ()d bcbaacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d u bauu cu cf x x f x x -+→→=+⎰⎰.若, a b 都是()f x 的瑕点,则定义()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d c uucu au bf x x f x x+-→→=+⎰⎰.二 习题解答1 讨论下列无穷积分是否收敛?若收敛,则求其值 (1)2d x xe x+∞-⎰;解:由于2201d (1)2ux u xe x e --=--⎰,21limd 2ux u xe x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(2)2d x xe x+∞--∞⎰;解:由于22 01d (1)2x u uxe x e -=--⎰21limd 2x ux xe x -→-∞=-⎰而2220d d d 0x x x xe x xe x xe x +∞+∞----∞-∞=+=⎰⎰⎰所以该反常积分收敛,且收敛于0.(3)0x +∞⎰;解:由于21ux ⎛⎫= ⎝⎰,lim 212u →+∞⎛⎫= ⎝.所以该反常积分收敛,且收敛于2.(4) 2 11d (1)x x x +∞+⎰;解:由于22 111111d d (1)1uu x x x x x x x ⎛⎫=-+ ⎪++⎝⎭⎰⎰11111ln 1ln ln 2ux u x x u u ++⎛⎫=-+=-+- ⎪⎝⎭.2 11limd 1ln 2(1)uu x x x →+∞=-+⎰.所以该反常积分收敛,且收敛于1ln 2-.(5) 2 1d 445x x x +∞-∞++⎰;解:由于 22 0 0111d d(21)4452(21)1u u x x x x x =+++++⎰⎰011arctan(21)arctan(21)228|u x u π=+=+-2 01lim d 445488uu x x x πππ→+∞=-=++⎰,0 022 111d d(21)4452(21)1u u x x x x x =+++++⎰⎰ 011arctan(21)arctan(21)282|u x u π=+=-+02 1lim d 44584u u x x x ππ→-∞=+++⎰所以该反常积分收敛,且收敛于2π.(6) 1sin d x e x x+∞-⎰;解:由于 11sin d [1(sin cos )]2ux ue x x e u u --=-+⎰,11lim sin d 2ux u e x x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(7) sin d x e x x+∞-∞⎰;解:由于 01sin d [1(sin cos )]2uxu e x x e u u =-+⎰,1limsin d ux u e x x →+∞=∞⎰.所以该反常积分发散. (8)1x +∞⎰.解:由于 1ln(u x u =+⎰,1limuu x →+∞=+∞⎰.所以该反常积分发散.2 讨论下列瑕积分是否收敛?若收敛,则求其值(1) 1d ()b p a x x a -⎰; 解:由于x a =为瑕点,而11 ()1()11d 11()ln()ln()1p p b p u b a u a p x p px a b a u a p --⎧---≠⎪=--⎨-⎪---=⎩⎰,1 ()11lim d 1()1pb p u u a b a p x p x a p +-→⎧-<⎪=-⎨-⎪∞≥⎩⎰,所以1p <时,该瑕积分收敛,且值为1()1pb a p ---; 所以1p ≥时,该瑕积分发散.(2) 1201d 1x x -⎰;解:由于1x =为瑕点,而u2011d [ln(1)ln(1)]12x u u x =+---⎰,u2011lim d 1u x x -→=∞-⎰.所以该瑕积分发散.(3)2x⎰;解:由于1x =为瑕点,而2(1uux x ==⎰⎰,1lim 2uu x -→=⎰.同理21lim 2uu x +→=⎰,所以该瑕积分收敛,且值为4.(4)1x ⎰;解:由于1x =为瑕点,而1u x =⎰1lim 1uu x -→=⎰所以该瑕积分收敛,且值为1. (5)1ln d x x⎰;解:由于0x =为瑕点,而1ln d 1ln ux x u u u=-+-⎰,1lim ln d 1uu x x +→=-⎰.所以该瑕积分收敛,且值为1-. (6)x ⎰;解:令2sin x t =,则cos dx t t t=⎰⎰2220 02sin d(1cos2)d2t t t tπππ==-=⎰⎰,所以该瑕积分收敛,且值为2π.(7)1x⎰;解:令2sinx t=,则12x tπ=⎰⎰22d tππ==⎰.所以该瑕积分收敛,且值为π.(8)11d(ln)pxx x⎰.解:由于0x=,1为瑕点,又11(ln)111d(ln)ln ln1ppx C ppxx xx C p-⎧+≠⎪-=⎨⎪+=⎩⎰,而1p=时,1limlnlnxx-→=∞,1p<时,11lim(ln)1pxxp+-→=∞-1p>时,111lim(ln)1pxxp--→=∞-所以p R∀∈,瑕积分11d(ln)pxx x⎰发散.3 举例说明:瑕积分()dbaf x x⎰收敛时,2()dbaf x x⎰不一定收敛.解:例如x⎰收敛于2π,但1d1xxx-⎰发散.4 举例说明:积分()daf x x+∞⎰收敛,且()f x在[,)a+∞上连续时,不一定有lim()0xf x→+∞=.解:例如+41sin dx x x∞⎰.因令x=+ +41 11sin d4x x x t∞∞=⎰⎰.所以 +4 1sin d x x x∞⎰收敛,且4()sin f x x x =在[,)a +∞上连续,但lim ()x f x →+∞不存在.5 证明:若 ()d af x x+∞⎰收敛,且lim ()x f x A→+∞=存在,则0A =. 证:假设0A ≠,不妨设0A >,因lim ()x f x A→+∞=,所以0M ∃>,()2Ax M f x ∍>⇒>“”.于是 ()d ()2uMAf x x u M >-⎰,从而lim()d uMu f x x →+∞=∞⎰.此与 ()d af x x+∞⎰收敛矛盾,故0A =.6 证明:若()f x 在[,)a +∞上可导,且()d af x x+∞⎰与()d af x x+∞'⎰都收敛,则li m ()0x f x →+∞=.证:因为()d ()()u af x x f u f a '=-⎰,所以由()d af x x+∞'⎰都收敛知lim ()x f x →+∞存在,故由上一题知lim ()0x f x →+∞=.§11. 2 无穷限积分的性质与收敛判别一 基本内容一、无穷限积分的性质 由无穷限积分的定义知()d af x x+∞⎰收敛lim()d uau f x x→+∞⇔⎰存在;由极限的柯西收敛准则知lim()d uau f x x→+∞⎰存在0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.定理1()d af x x+∞⎰收敛0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.性质1 若 1 ()d ,af x x +∞⎰ 2 ()d af x x+∞⎰都收敛,则12,k k ∀,[] 1111()()d ak f x k f x x +∞+⎰也收敛,且[] 11111122 ()()d ()d ()d a aak f x k f x x k f x x k f x x+∞+∞+∞+=+⎰⎰⎰.性质2 若,()u a f x ∀>在[, ]a u 上可积,则b a ∀>, ()d af x x+∞⎰与 ()d bf x x+∞⎰同收同发,且()d ()d ()d b aabf x x f x x f x x+∞+∞=+⎰⎰⎰.性质3 若,()u a f x ∀>在[, ]a u 上可积,则()d af x x+∞⎰收敛()d af x x+∞⇒⎰收敛,且()d ()d aaf x x f x x+∞+∞≤⎰⎰.定义1 如果 ()d af x x+∞⎰收敛,则 ()d af x x+∞⎰称绝对收敛.二、比较判别法比较判别法仅应用于绝对收敛的判别. 由于()()d uaF u f x x=⎰单调上升,所以,()d af x x+∞⎰收敛()()d ua F u f x x⇔=⎰有上界.定理2 若,(),()u a f x g x ∀>在[, ]a u 上可积,且,()()x a f x g x ∀>≤,则 ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛;而 ()d af x x+∞⎰发散()d ag x x+∞⇒⎰发散.推论 (比较判别法的极限形式)若,(),()u a f x g x ∀>在[, ]a u 上可积,, ()0x a g x ∀>>,且()lim()x f x cg x →+∞=, 则(1) 0c <<+∞ ()d af x x+∞⇒⎰与 ()d ag x x+∞⎰同收同发; (2) 0c =时, ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛; (3) c =+∞时, ()d ag x x+∞⎰发散()d af x x+∞⇒⎰发散.当选用 11d p x x+∞⎰为比较“尺子”时,则得下面的柯西判别法.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]a u 上可积,则 1(1) ()p f x x ≤,且1p >时, ()d a f x x+∞⎰收敛;1(2) ()pf x x ≥,且1p ≤时, ()d a f x x +∞⎰发散.定理'3(柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]a u 上可积,且lim ()p x x f x λ→+∞=,则(1) 0λ≤<+∞,且1p >时, ()d af x x +∞⎰收敛; (2) 0λ<≤+∞,且1p ≤时, ()d af x x+∞⎰发散.三、狄立克雷判别法与阿贝尔判别法 此法是对一般无穷限积分的敛散性判别. 定理4 (狄立克雷判别法) 若,()()d uau a F u f x x∀>=⎰有界,()g x 在[,)a +∞上单调,且lim ()0x g x →+∞=,则()()af xg x dx+∞⎰收敛.定理 5 (阿贝尔判别法) 若()d af x x+∞⎰收敛,()g x 在[,)a +∞上单调有界,则()()d af xg x x+∞⎰收敛.二 习题解答1 设()f x 与()g x 是定义在[,)a +∞上的函数,u a ∀>,()f x 与()g x 在[,]a u 上可积,证明:若2 ()d af x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,则 ()()d af xg x x+∞⎰与 2 [()()]d af xg x x+∞+⎰亦收敛.证:(1) 因为t R ∀∈,()2()()0tf x g x -≥,从而()2()()d 0a tf x g x x +∞+≥⎰, 即222()d 2()()d ()d 0aaat f x x t f x g x x g x x +∞+∞+∞-+≥⎰⎰⎰.故由判别式为负得()2222()()d 4()d ()d 0aaaf xg x x f x x g x x +∞+∞+∞-≤⎰⎰⎰.即()222()()d ()d ()d aaaf xg x xf x xg x x+∞+∞+∞≤⎰⎰⎰.而 2()d a f x x +∞⎰,2()d a g x x+∞⎰收敛, 所以 ()()d a f x g x x +∞⎰收敛.又2 [()()]daf xg x x +∞+⎰2()d af x x +∞=⎰2()()af xg x x +∞+⎰2()d a g x x+∞+⎰,所以2 [()()]d af xg x x+∞+⎰收敛.证:(2) 因为 2 ()d af x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,所以22 ()()d 2af xg x x+∞+⎰收敛.而 22()()()()2f x g x f x g x +≤,故 ()()d a f x g x x+∞⎰绝对收敛,亦收敛.又2 [()()]d af xg x x+∞+⎰22 ()d 2()()d ()d aaaf x x f xg x x g x x+∞+∞+∞=++⎰⎰⎰.所以由四则运算知 2 [()()]d af xg x x+∞+⎰收敛.2 设()f x 、()g x 、()h x 是定义在[,)a +∞上的三个连续函数,且()()()f x g x h x ≤≤,证明(1) 若 ()d a f x x+∞⎰, ()d a h x x+∞⎰都收敛,则 ()d a g x x+∞⎰也收敛;证:因为()()()f x g x h x ≤≤,所以u a ∀>,()d uaf x x ⎰()d u ag x x ≤⎰ ()d uah x x≤⎰.而()d af x x+∞⎰, ()d ah x x +∞⎰都收敛,所以 lim()d uau f x x →+∞⎰, lim()d ua u h x x→+∞⎰都存在,从而 lim()d uau g x x→+∞⎰存在,故 ()d ag x x+∞⎰收敛.(2) 若 ()d af x x +∞⎰ ()d ah x x A+∞==⎰,则 ()d a g x x A+∞=⎰.证:因为 ()d a f x x +∞⎰ ()d ah x x A +∞==⎰所以lim()d uau f x x A→+∞=⎰, lim()d uau h x x A→+∞=⎰,于是由夹逼性定理得 lim ()d uau g x x A→+∞=⎰,故 ()d a g x x A+∞=⎰.3 讨论下列无穷限积分的收敛性:(1) 0x +∞⎰;解:因为43lim 1x x →+∞=,而x+∞⎰收敛,故x+∞⎰收敛.(2)1d 1x xx e +∞-⎰;解:因为2lim 01x x x x e →+∞⋅=-,而 2 11d x x +∞⎰收敛,故 1d 1xxx e +∞-⎰收敛.(3)x +∞⎰;解:因为lim 1x =,而1x+∞⎰发散,故x+∞⎰发散.(4) 3 1arctan d 1x xx x +∞+⎰;解:因为23arctan lim 12x x x x x π→+∞⋅=+,而 2 01d xx +∞⎰收敛,故 3 1arctan d 1x xx x +∞+⎰收敛. (5) 1ln(1)d n x x x +∞+⎰; 解:当1n ≤时, 1ln(1)d n x x x +∞+⎰发散,当1n >时, 1ln(1)d n x x x +∞+⎰收敛.(6)d (,0)1mnx x m n x +∞>+⎰.解:因为lim 11m n mn x x xx -→+∞⋅=+,所以当1n m -≤时,0d 1mn x x x +∞+⎰发散, 当1n m ->时,0d 1mn x x x +∞+⎰收敛.4 讨论下列无穷限积分绝对收敛还是条件收敛: (1)1x x +∞⎰;解:因为12lim 1x x →+∞=,而1x+∞⎰发散,所以1x ⎰发散.又1()2cos14uF u x ==-≤⎰,()g x 在x →+∞时单调下降以零为极限,所以由狄氏判别法知1x ⎰收敛.综上可知 1x ⎰条件收敛.(2) 2 0sgn(sin )d 1x x x +∞+⎰; 解:因为22sgn(sin )111x x x ≤++,而 2 01d 1x x +∞+⎰收敛,所以 2 0sgn(sin )d 1x x x +∞+⎰绝对收敛.(3)x⎰;解:因为0()cos d sin 1u F u x x u ==≤⎰,而()g x =在x →+∞时单调下降以零为极限,所以由狄氏判别法知x⎰收敛.=+,而x ⎰发散,0x⎰收敛,所以x⎰发散,综上可知0x⎰条件收敛.(4)ln(ln )sin d ln ex x x x +∞⎰.解:因为()sin d cos cos 2u eF u x x e u ==-≤⎰,ln(ln )()ln x g x x =在x →+∞时单调下降以零为极限,所以由狄氏判别法知ln(ln)sin dlnexx xx+∞⎰收敛.又2ln(ln)ln(ln)ln(ln)ln(ln)sin sin cos2ln ln2ln2lnx x x xx x x x x x x≥=-,而ln(ln)dlnexxx+∞⎰发散,ln(ln)cos2dlnexx xx+∞⎰收敛,所以ln(ln)sin dlnexx xx+∞⎰条件收敛.5 举例说明,()daf x x+∞⎰收敛时,2()daf x x+∞⎰不一定收敛;()daf x x+∞⎰绝对收敛时,2()daf x x+∞⎰也不一定收敛.证:例如()f x=1()df x x+∞⎰收敛,但221 1()df x x x+∞+∞=⎰⎰发散.又如345345333100,221,()1,11 01,(1)xn x n n x n nnf xn x n n x n nnx n nn n ⎧⎡⎤∈-⎪⎢⎥⎣⎦⎪⎪⎛⎫+-∈-⎪ ⎪⎝⎭⎪=⎨⎡⎤⎪-++∈+⎢⎥⎪⎣⎦⎪⎛⎫⎪∈-+-⎪⎪-⎝⎭⎩,如图.则23331111()d231236f x x nnπ+∞=⋅+⋅++⋅+=-⎰,所以 1()d f x x+∞⎰收敛且为绝对收敛.但21()df x x+∞⎰发散.6 证明:()daf x x+∞⎰若绝对收敛,且lim()0xf x→+∞=,则2()daf x x+∞⎰必定收敛.证:因为lim()0xf x→+∞=,所以110,,()1M a x M f x ε∀>∃>∍>⇒≤“”,于是1x M >时,2()()f x f x ≤,又()d af x x+∞⎰收敛,就上述ε,2M a ∃>,21122,()d u u u u M f x x ε∍>⇒<⎰“”取12max{,}M M M =,则12,u u M >时,22112()d ()d u u u u f x x f x x ε≤<⎰⎰,故 2 ()d af x x+∞⎰收敛.7 证明:若()f x 是[,)a +∞上的单调函数,且 ()d a f x x +∞⎰收敛,则lim ()0x f x →+∞=. 证:不妨设()f x ,则[,),()0x a f x ∀∈+∞≥.实因假设00[,),()0x a f x ∃∈+∞<,则0x x >时,0()()f x f x ≤, 从而 000 ()d ()()ux f x x f x u x ≥-⎰,即 0 l i m ()dux u f x x →+∞=∞⎰,此与 ()d af x x+∞⎰收敛矛盾.又由 ()d af x x+∞⎰收敛得 0,M a ε∀>∃>,22()d 2xx x M f t t ε∍>⇒<⎰“”. 而221()d ()d ()02x xxx f t t f x t xf x ≥=≥⎰⎰,所以2x M >时,0()xf x ε≤<,于是0()f x ε≤<, 故lim ()0x f x →+∞=.8 证明:若()f x 在[,)a +∞上一致连续,且 ()d a f x x+∞⎰收敛,则lim ()0x f x →+∞=.证:假设lim ()0x f x →+∞≠,则00ε∃>,M a ∀>,0x M ∃>,00()f x ε∍≥“”.因为()f x 在[,)a +∞上一致连续,所以0δ∃>,000()()22x x f x f x εδδ∍<-<⇒-<“”. 从而00()()()()2f x f x f x f x ε≥--≥于是M a ∀>,0,x x M ∃>,00()d 24xx f x x x x εεδ∍≥->⎰“”.此与 ()d af x x+∞⎰收敛矛盾,故lim ()0x f x →+∞=.9 利用狄利克雷判别法证明阿贝尔判别法. 证:因为 ()d af x x+∞⎰收敛,所以0M ∃>,u a ∀>,()()d uaF u f x x M=≤⎰,即()F u 在[,)a +∞上有界.又()g x 单调有界,所以极限存在.设lim ()x g x A→+∞=,则()lim ()0x g x A →+∞-=,从而由狄氏差别法知() ()()d af xg x A x+∞-⎰收敛.而() ()()d ()()d ()d a aaf xg x x f x g x A x A f x x+∞+∞+∞=--⎰⎰⎰故 ()()d af xg x x+∞⎰收敛.§11. 3 瑕积分的性质与收敛判别一 基本内容一、瑕积分的性质设a 为瑕点,由瑕积分的定义知()d baf x x⎰收敛存在lim ()d buu af x x+→⇔⎰,由极限的柯西收敛准则知lim ()d buu af x x+→⎰存在0,0,εδ⇔∀>∃>2112 ,(,)()u u u u a a f x dx δε∍∈+⇒<⎰“”.定理1()d baf x x⎰收敛0,0εδ⇔∀>∃>,2112 ,(,)()d u u u u a a f x x δε∍∈+⇒<⎰“”.性质 1 设 a 为瑕点,若1 ()d baf x x⎰、2 ()d baf x x⎰都收敛,则12,k k ∀,[] 1122()()d bak f x kf x x+⎰也收敛,且[] 11221122 ()()d ()d ()d bbba aak f x k f x x k f x x k f x x+=+⎰⎰⎰.性质2 设a 为瑕点,则(,)c a b ∀∈, ()d baf x x⎰与 ()d caf x x⎰同收同发,且收敛时,()d ()d ()d bcb aacf x x f x x f x x=+⎰⎰⎰.性质3 设 a 为瑕点,若,()u a f x ∀>在[, ]u b 上可积,则()d baf x x⎰收敛()d baf x x⇒⎰收敛,且()d ()d bbaaf x x f x x≤⎰⎰.定义1 如果收敛 ()d ba f x x⎰,则称 ()d ba f x x⎰绝对收敛. 二、比较判别法比较判别法仅应用于绝对收敛的判别.定理2 设a 为瑕点,若,(),()u a f x g x ∀>在[, ]u b 上可积,且,()()x a f x g x ∀>≤, 则 ()d ba g x x⎰收敛()d baf x x⇒⎰收敛,而()d baf x x⎰发散⇒()d bag x x⎰发散.推论(比较判别法的极限形式) 若,(),()u a f x g x ∀>在[, ]u b 上可积,, ()0x a g x ∀>>,且()lim ()x af x cg x +→=,则(1) 0c <<+∞时, ()d ba f x x⎰与 ()d bag x x ⎰同收同发; (2) 0c =时, ()d bag x x⎰收敛()d b af x x⇒⎰收敛;(3) c =+∞时, ()d bag x x⎰发散 ()d ba f x x ⇒⎰发散.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]u b 上可积,则(1)1()()pf x x a ≤-且01p <<时, ()d b a f x x ⎰收敛; (2)1()()pf x x a ≥-且1p ≥时, ()d ba f x x ⎰发散. 定理 3 (柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]ub 上可积,且l i m ()|()|p x a x a f x λ+→-=,则(1) 0λ≤<+∞且01p <<时, ()d ba f x x⎰收敛;(2) 0λ<≤+∞且1p ≥时, ()d ba f x x⎰发散.二 习题解答1 讨论瑕积分的收敛性(1) 22 01d (1)x x -⎰;解:瑕点为1x =.改写积分为 2 1 2222 0 0 1111d d d (1)(1)(1)x x xx x x =+---⎰⎰⎰.因为121d(1)xx-⎰发散,所以221d(1)xx-⎰发散.(2)32sindxxxπ⎰;解:瑕点为0x=.因为2lim1xx→=,而 0xπ⎰收敛,所以32sindxxxπ⎰收敛.(3)1x ⎰;解:瑕点为0,1x=.因为H1111lim(1)lim11x x xxx--→→→-==,而11d1xx-⎰发散,所以1x⎰发散.(4)1lnd1xxx-⎰;解:瑕点为1x=.而112H211112ln ln(1)lim(1)lim lim012(1)x x xx x xxx xx---→→→--⋅===--,又1x⎰收敛,所以1lnd1xxx-⎰收敛.(5)13arctand1xxx-⎰;解:瑕点为1x=.而3211arctan arctanlim(1)lim1112x xx xxx x xπ--→→-⋅==-++,又11d1xx-⎰发散,所以13arctand1xxx-⎰发散.(6)21cosdmxxxπ-⎰;解:瑕点为0x=.而21cos1lim2mmxxxx+-→-⋅=,所以当21m-<,即3m<时21cosdmxxxπ-⎰收敛;所以当21m -≥,即3m ≥时2 01cos d m xx x π-⎰发散.(7) 1011sin d x xx α⎰;解:瑕点为0x =.而111sin x x x αα≤, 所以当01α<<时, 1 011sin d x x x α⎰绝对收敛;又2α≥时,1111sin xx x αα-≤,而 11 01d x x α-⎰发散,所以此时1011sin d x x x α⎰发散; 当12α≤<时, 1 011sin d x xx α⎰条件收敛. (8) 0ln d x e x x+∞-⎰.解:积分表为11ln d ln d ln d x x x e x x e x x e x x+∞+∞---=+⎰⎰⎰.就 1ln d x e x x-⎰,瑕点为0x =,而120lim ln 0xx x e x +-→⋅=,所以 1 0ln d x e x x-⎰收敛;就 1ln d x e x x+∞-⎰,因20lim ln 0x x x e x +-→⋅=,所以 1ln d x e x x+∞-⎰收敛.综上可知 0ln d x e x x+∞-⎰收敛.2 计算下列瑕积分的值 (1) 1(ln )d n x x⎰;解:设1 0(ln )d n n I x x=⎰,则1111 0lim(ln )lim (ln )d |n n n n eee e I x x n x x nI ++--→→=-=-⎰,而10 0d 1I x ==⎰,所以 1 0(ln )d (1)!n n x x n =-⎰.(2)1nx ⎰.解:令2sin x t =,则d 2sin cos d x t t t =,于是121202sin d n n n I x t t π+==⎰⎰ 22 02sin d(cos )n t t π=-⎰22122202sin cos 22sin cos d |nn t t n t t tππ-=-+⋅⎰212122 04sind 4sin d n n n t t n t tππ-+=-⎰⎰12()n n n I I -=-,于是 1221n n n I I n -=+,而0I =2 02sin d 2t t π==⎰,所以212(2)!!2(!)2(21)!!(21)!n n n n I n n +=⋅=++.3 证明瑕积分2 0ln(sin )d J x xπ=⎰收敛,且ln 22J π=-,(提示:利用22 0ln(sin )d ln(cos )d x x x xππ=⎰⎰,并将它们相加).证:瑕点为0x =,而3H 20001sin lim ln(sin )lim lim 2cos x x x x x x x+++→→→=-⋅3201sin lim 02cos x x x x +→=-=,所以2 0ln(sin )d J x xπ=⎰收敛.令2x t π=-知22 0 0ln(sin )d ln(cos )d x x x x ππ=⎰⎰,于是22 0 02ln(sin )d ln(cos )d J x x x xππ=+⎰⎰22 0 0sin 2ln(sin cos )d lnd 2xx x x x ππ==⎰⎰2 0ln sin 2d ln 22x x ππ=-⎰.而令2x t =得201ln sin 2d ln sin d 2x x t t ππ=⎰⎰ 2 0 211ln sin d ln sin d 22t t t t πππ=+⎰⎰ 22 0 011ln sin d ln cos d 22t t t t J ππ=+=⎰⎰.所以ln 22J π=-.4 利用上题结果,证明(1)2ln(sin )d ln 22ππθθθ=-⎰;证:令t θπ=-,则ln(sin )d ()ln(sin )d t t tππθθθπ=-⎰⎰,于是ln(sin )d ln(sin )d 2πππθθθθθ=⎰⎰220ln(sin )d ln 22πππθθ==-⎰.(2) 0sin d 2ln 21cos πθθθπθ=-⎰.证:() 0 0sin d d ln(1cos )1cos ππθθθθθθ=--⎰⎰ln 2ln(1cos )d ππθθ=--⎰2 0 0ln 2ln 2d ln sin d 2ππθπθθ⎛⎫=-- ⎪⎝⎭⎰⎰ 02lnsin d 2πθθ=-⎰2 04lnsin d t tπ=-⎰2ln2π=. 所以 0sin d 2ln 21cos πθθθπθ=-⎰.总练习题111 证明下列等式(1) 110 1d d ,011p px x x x p x x --+∞=>++⎰⎰;证:令1x t =,则21d d x t t =-,于是1111 1112 0 00111d lim d lim d 1111p p p e e e e x x x x t x x t t t ++---→→⎛⎫==⋅⋅-⎪++⎝⎭+⎰⎰⎰1 1 10lim d d 11p p ee t t t tt t +--+∞→==++⎰⎰, 所以110 1d d ,011p p x x x x p x x --+∞=>++⎰⎰.(2) 10 0d d ,0111p px x x x p x x --+∞+∞=<<++⎰⎰.证:因为01p <<,所以0x =为瑕点.令1x t =,则21d d x tt =-,于是1 0 12 00111d d d 1111p pp x t x t tx t t t t --+∞+∞-+∞=-⋅⋅=+++⎰⎰⎰所以10 0d d 11p px x x x x x --+∞+∞=++⎰⎰. 2 证明下列不等式(1)12π<<⎰; 证:1x =为瑕点.而12111lim(1)lim 2x x x --→→-==,所以1⎰收敛.又设sin x t =,则d cos d x t t =,于是12 0π=⎰⎰而1≤≤, 所以12π<<⎰. (2) 21111d 122x e x e e +∞-⎛⎫-<<+ ⎪⎝⎭⎰. 证:因为22lim 0x x x e -→∞=,所以2d xe x+∞-⎰收敛.而2222110 1d d d d x x x xe x e x e x e x+∞+∞----=+>⎰⎰⎰⎰22 11201d d()2x x xe x e x --≥=--⎰⎰1122e =-.222211d d d 1d x x x xe x e x e x xe x+∞+∞+∞----=+<+⎰⎰⎰⎰()22111d 2x e x +∞-=--⎰112e =+. 故结论成立.3 计算下列反常积分的值. (1) 0cos d (0)ax e bx x a +∞->⎰;解:01cos d d(sin )ax axe bx x e bx b +∞+∞--=⎰⎰ 01sin sin d ax axa e bx e bx x bb +∞+∞--=+⎰2d(cos )ax a e bx b +∞-=-⎰2 22cos cos d ax ax a a e bx e bx xb b +∞+∞--=--⎰222 0cos d ax a a e bx xb b+∞-=-⎰所以22 0cos d ax ae bx x a b +∞-=+⎰为所求.(2) 0sin d (0)ax e bx x a +∞->⎰;解:方法同上可得22 0sin d ax be bx x a b +∞-=+⎰.(3) 2 0ln d 1xx x +∞+⎰;解: 1 222 0 0 1ln ln ln d d d 111x x xx x x xx x +∞+∞=++++⎰⎰⎰,就 2 1ln d 1x x x +∞+⎰作变换1x t =,则21d d x t t =-,于是20 12222 1 1 0ln ln 1ln d d d 111x t t t x t t x t t t +∞⎛⎫=-⋅-=- ⎪+++⎝⎭⎰⎰⎰ 所以 2 0ln d 01xx x +∞=+⎰. (4)2ln(tan )d πθθ⎰.解:设tan x θ=,则21d d 1x x θ=+,于是2ln(tan )d πθθ⎰2 0ln d 01xx x +∞==+⎰.4 讨论反常积分sin d (0)bxx b x λ+∞≠⎰,λ取何值时绝对收敛,λ取何值时条件收敛.解: 1 0 0 1sin sin sin d d d bx bx bxx x x x x x λλλ+∞+∞=+⎰⎰⎰,就 1 0sin d bxx x λ⎰,当0λ>时,0x =为瑕点.当01λ<<时,sin 1bx x x λλ≤,而 1 01d x x λ⎰收敛, 所以当01λ<<时, 1 0sin d bxx xλ⎰绝对收敛.当12λ≤<时,因为10sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xx λ-⎰收敛,所以当12λ≤<时,10sin d bxx x λ⎰绝对收敛.当2λ≥时,因为100sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xxλ-⎰发散,所以当2λ≥时,10sin d bxx x λ⎰发散.就 1sin d bx x xλ+∞⎰,当0λ≤时, 1sin d bxx x λ+∞⎰发散.当01λ<≤时, 1()sin d uF u bx x=⎰在[1,)+∞上有界,1()g x x λ=单调以零为极限,由狄氏判别法知1sin d bxx x λ+∞⎰收敛.而22sin sin 1cos bx bx bx x x x x λλλλ≥=-, 所以1sin d bx x x λ+∞⎰发散,故 1sin d bxx x λ+∞⎰条件收敛.当1λ>时,因为sin 1bx x x λλ≤, 而 1 01d x xλ⎰收敛,所以当1λ>时, 10sin d bxx x λ⎰绝对收敛.综上可知,当0λ≤时,或2λ≥时, + 0sin d bxx xλ∞⎰发散;当01λ<≤时, + 0sin d bxx x λ∞⎰条件收敛;当12λ<<时, + 0sin d bxx x λ∞⎰绝对收敛.5 证明:设f 在[0,)+∞上连续,0a b <<. (1) 若lim ()x f x k→+∞=,则()()d ((0))ln f ax f bx bx f k x a +∞-=-⎰;证:令ax t =,则 ()()d d A aA a f ax f t x t x t δδ=⎰⎰,令bx t =,则 ()()d d A bA b f bx f t x t xt δδ=⎰⎰,于是 0()()()()d d d aA bA a b f ax f bx f t f t x t t x t t δδ+∞-=-⎰⎰⎰ ()()()()d d d d b bA aA bA a b bA b f t f t f t f t t t t t t t t t δδδδ=++-⎰⎰⎰⎰()()d d b bA a aA f t f t t t t t δδ=-⎰⎰ ()()d d b b a a f y f Ay y y y y ε=-⎰⎰1[()()]d b a f f A yyδξη=-⎰(积分中值定理,,(,)a b ξη∈)[()()]lnbf f A a δξη=-.令0,A δ+→→+∞得 0()()d ((0))lnf ax f bx bx f k x a +∞-=-⎰.(2) 若 ()d a f x x x +∞⎰收敛,则 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.证:由(1)得()()d f ax f bx x x +∞-⎰()()d d b bA a aA f t f t t tt t δδ=-⎰⎰.因()d af x x x +∞⎰收敛,所以由柯西收敛准则得0,M a ε∀>∃>,2112(),d u u f x u u M x x ε∍>⇒<⎰“”.即 ()lim d 0bA aA A f t t t →∞=⎰.故 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.6 证明下述命题(1) 设0a >,()f x 为[,)a +∞上的非负连续函数.若 ()d axf x x+∞⎰收敛,则 ()d af x x+∞⎰也收敛.证:因为 ()d axf x x+∞⎰收敛,所以所以由柯西收敛准则得0,M a ε∀>∃>,2112,()d u u u u M xf x x a ε∍>⇒<⎰“”.而1()d ()d aa f x x xf x xa +∞+∞<⎰⎰,于是亦有21()d u u f x x ε<⎰.故 ()d af x x+∞⎰收敛.(2) 设0a >,()f x 为[,)a +∞上的连续可微函数,且当x →+∞时,()f x 递减地趋于0,则 ()d af x x+∞⎰收敛的充要条件为 ()d axf x x+∞'⎰收敛.证:()⇒设 ()d af x x+∞⎰收敛,因()d ()()d |aaaf x x xf x xf x x+∞+∞+∞'=-⎰⎰而lim ()0x xf x →+∞=(本章第二节第8题) 所以 ()d axf x x+∞'⎰收敛.()⇐设 ()d a xf x x +∞'⎰收敛,则0ε∀>,M a ∃>,()d AxA x M tf t t ε'∍>>⇒<⎰“”.因为()f x 递减地趋于0,所以()0f x '≤, 于是由积分中值定理得()d ()d [()()]AAxxtf t t f t t f A f x ξξ''==-⎰⎰,从而 0[()()][()()]x f A f x f A f x ξε≤-≤-<.又lim ()0A f A →+∞=,所以lim ()0x xf x →+∞=.从而()d ()()d |aaaxf x x xf x f x x+∞+∞+∞'=-⎰⎰()()d aaf a f x x+∞=-⎰,故 ()d af x x+∞⎰收敛.反常积分无限区间上的积分或无界函数的积分,这两类积分叫作广义积分,又名反常积分.1.无限区间上的积分一般地,我们有下列定义定义6.2设函数在区间上连续,如果极限()存在,就称上极限值为在上的广义积分.记作即( 6.24 )这时我们说广义积分存在或收敛;如果不存在,就说不存在、发散或不收敛.类似地,可以定义在及上的广义积分.( 6.25 )其中( 6.26 )对于广义积分,其收敛的充要条件是:与都收敛.广义积分收敛时,具有常义积分的那些性质与积分方法,如换元法、分部积分法以及牛顿—莱布尼兹公式等,但有时代数和运算要注意,不要随便拆开.在用广义的牛顿—莱布尼兹公式时,无穷远点应取极限.为方便起见,引入记号,这样,若为的一个原函数,则(其中)注意:这里与是独立变化的,不能合并成 .2.无界函数的积分先给出瑕点或奇点的概念,若(或)时,,则点(或点)称为无界函数的瑕点或奇点. 的无穷间断点就是的瑕点.定义6.3设函数在上连续,左端点为的瑕点,如果存在,就称此极限值为无界函数在上的广义积分.记作( 6.27 )这时我们说广义积分存在或收敛.如果不存在,就说广义积分不存在、不收敛或发散.。

反常积分法课件省名师优质课赛课获奖课件市赛课一等奖课件

反常积分法课件省名师优质课赛课获奖课件市赛课一等奖课件
当q 1时反常积分发散.
2 dx
例6
计算反常积分
1
. x ln x

2 dx
1 x ln x
lim t 1
2 t
dx x ln x
lim 2 d(ln x) lim ln(ln x) 2
t1 t ln x
t 1
t
lim ln(ln 2) ln(ln t) t 1
. 故原反常积分发散.
类似地,设函数 f ( x)在区间[a,b)上连续,
t
点b

f
(
x)的瑕点.若极限
lim
t b
a f ( x)dx 存在,
则称此极限为函数 f ( x)在区间[a,b)上的反常
积分,记作
b
t
a
f ( x)dx lim t b
a f ( x)dx .
当极限存在时,称反常积分收敛;当极限不存在
2
2
.
例2
计算反常积分
2
1 x2
sin
1 x
dx.

2
1 x2
sin
1 x
dx
2
sin
1 x
d
1 x
lim b
b
2
sin
1 x
d
1 x
lim
b
cos
1 x
b 2
lim
b
cos
1 b
cos
2
1.
例3
证明反常积分 1
1 xp
dx

p
1时收敛,
当 p 1时发散.
1 xp 发散;
2、广义积分 1 dx 当_______时收敛;当_______时发

反常积分判敛法2011

反常积分判敛法2011

f
xdx 发散时, a
gxdx 发散.
定理 2(比较判别法极限形式)
如果 f , g 在a,非负连续, 且 gx 0 ,

lim
x
f x gx

l
有 限 或
,那么
1
当l 0时 , f xdx 与 gxdx同敛散;
利用分部积分法可得:
x 1 x x,
又(1) 1,
故当x为正整数 n时, (n 1) n!
2. 函数定义域的扩充:
当 1 x 0时, x 1 0, ( x 1)有定义,
从而定义 ( x) ( x 1)
1 x 0
x
与无穷区间的审敛准则类似,有: (仅讨论 f , g 在[a,b)连续,b为奇点的积分)
定理4(比较判别法)
设 f , g 在[a, b)连续, lim f ( x) , lim g( x) ,
xb
xb
并且0 f x gx, x [a,b),

1

b
a
a
2
当l 0时 , 若 gxdx 收敛,则 f xdx
a
a
也收敛;
3
当l 时 , 若 gxdx 发散,则 f xdx
a
a
也发散.
常取p积分作为比较对象。
若取g( x)
1 xp
, 则 由 比 较 判 别 法 可 得 使用 起 来 比 较 方 便 的
a
g

x
dx
收敛
时,
b
a
f

x
dx

敛;
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无穷限反常积分敛散性及审敛法则一、教学目标分析在开始本节课程学习之前,学生已经对定积分有所了解,并初步掌握定积分的基本知识,本节通过介绍反常积分,加深学生对积分的了解,使同学对积分的了解更加系统化,并通过讲解让同学们减轻对积分的迷惑。

让学生反常积分在一些实际问题中的应运。

二、学情/学习者特征分析学生通过对前面课程的学习,对积分已经有了初步的了解。

但对于一些特殊积分或者有关实际问题的积分还是存在着一定的迷惑。

由于本节内容有点枯燥,所以要积极调动学生的兴趣,培养好课堂气氛,使学生充分掌握本节课的内容。

三、学习内容分析1.本节的作用和地位通过对本节的学习来解决一些不属于定积分的问题,这些问题通常是一些实际问题。

例如:常会遇到积分区间为无穷区间,或者被积函数为无界函数的积分等问题。

2.本节主要内容1. 无穷限反常积分的定义与计算方法2. 无穷限反常积分的性质3. 无穷限反常积分的比较审敛法则4. 条件收敛与绝对收敛3.重点难点分析教学重点:无穷限反常积分计算,无穷限反常积分的比较审敛法则;教学难点:无穷限反常积分的比较审敛法则。

4.课时要求:2课时四、教学理念学生在之前就已经掌握了一定的知识,通过本节对学生的教学使学生进一步了解反常积分,尤其是其在一些实际问题中的应运。

五、教学策略在教学中主要讲清反常积分的定义及其性质,并适时举例讲解,引导学生互动,相互讨论解决问题。

六.教学环境网络环境下的多媒体教室与课堂互动。

七、教学过程一、无穷限反常积分的定义定义1 设函数/定义在无穷区间[+∞,a )上,且在任何有限区间[u a ,]上可积.如果存在极限J dx x f uau =⎰+∞→)(lim则称此极限J 为函数f 在[+∞,a )上的无穷限反常积分(简称无穷积分),记作dx x f J a ⎰+∞=)(,并称dx x f a⎰+∞)(收敛.如果极限J dx x f uau =⎰+∞→)(lim不存在,亦称dx x f a⎰+∞)(发散.类似地,可定义f 在(b ,∞-]上的无穷积分:.)(lim)(dx x f dx x f buu b⎰⎰-∞→∞-=对于f 在(+∞∞-,)上的无穷积分,它用前面两种无穷积分来定义:,)()()(dx x f dx x f dx x f a a ⎰⎰⎰+∞∞-∞-+∞+=其中a 为任一实数,当且仅当右边两个无穷积分都收敛时它才是收敛的. 注: dx x f a⎰+∞)(收敛的几何意义是:若f 在],[+∞a 上为非负连续函数,则介于曲线)(x f y =,直线a x =以及x 轴之间那一块向右无限延伸的阴影区域有面积J .例1 讨论无穷积分.1)102⎰+∞+x dx ,.1)22⎰∞+∞-+x dx ,.)302⎰+∞-dx xe x 的收敛性.例2 讨论下列无穷积分的收敛性:⎰+∞1)1px dx, ;)(ln )22⎰+∞p x x dx二、无穷积分的性质由定义知道,无穷积分⎰+∞adx x f )(收敛与否,取决于积分上限函数=)(u F ⎰uadx x f )(在+∞→u 时是否存在极限.因此可由函数极限的柯西准则导出无穷积分收敛的柯西准则.定理11.1 无穷积分⎰+∞adx x f )(收敛的充要条件是:任给ε>0,存在G ≥a ,只要G u u >21,,便有ε<=-⎰⎰⎰2121)()()(u u u au adx x f dx x f dx x f .此外,还可根据函数极限的性质与定积分的性质,导出无穷积分的一些相应性质.性质 1 若dx x f a)(1⎰+∞与dx x f a)(2⎰+∞都收敛,1k ,2k 为任意常数,则[]dx x f k x f ka⎰+∞+)()(2211也收敛,且[]dx x f k dx x f k dx x f k x f k aaa )()()()(22112211⎰⎰⎰+∞+∞+∞+=+.性 质 2 若f 在任何有限区间[u a ,)上可积,且有⎰+∞adx x f )(收敛,则⎰+∞adx x f )(亦必收敛,并有⎰⎰+∞+∞≤aadx x f dx x f )()(.证:⎰+∞adx x f )( 由收敛,根据柯西准则(必要性),任给0>ε,存在G ≥a ,当G u u >>12时,总有⎰⎰≤2121)()(u u u u dx x f dx x f . 利用定积分的绝对值不等式,又有⎰21)(u u dx x f ≤ε<⎰21)(u u dx x f .再由柯西准则(充分性),证得⎰+∞adx x f )(收敛又因⎰uadx x f )(≤⎰uadx x f )(,令+∞→u 取极限,立刻得到不等式.当⎰+∞adx x f )(收敛时,称⎰+∞adx x f )(为绝对收敛.性质3指出:绝对收敛的无穷积分,它自身也一定收敛.但是它的逆命题不成立,称收敛而不绝对收敛的无穷积分为条件收敛.性质3 若f 在任何有限区间[u a ,]上可积,b a <,则⎰+∞adx x f )(与⎰+∞bdx x f )(同敛态(即同时收敛或同时发散),且有⎰+∞adx x f )(=⎰b adx x f )(+⎰+∞bdx x f )(,性质2相当于定积分的积分区间可加性,由它又可导出⎰+∞adx x f )(收敛的另一充要条件:任给ε>0,存在0≥G ,当u >G 时,总有.)(ε<⎰+∞adx x f .事实上,这可由 ⎰⎰⎰+∞+∞+=uaudx x f dx x f dx x f )()()(结合无穷积分的收敛定义而得.三、比较判别法首先给出无穷积分的绝对收敛判别法.由于⎰uadx x f )(关于上限u 是单调递增的,因此⎰+∞adx x f )(收敛的充要条件是⎰uadx x f )(存在上界.根据这一分析,便立即导出下述比较判别法:定理11.2 (比较法则) 设定义在[+∞,a )上的两个函数f 和g 都在任何有限区间[u a ,]上可积,且满足),,[),()(+∞∈≤a x x g x f 则当⎰+∞adx x g )(收敛时dx x f a⎰+∞)(必收敛(或当dx x f a⎰+∞)(发散时,⎰+∞adx x g )(必发散).例3 讨论dx xx⎰+∞+021sin 的收敛性. 解:由于],0[,111sin 22+∞∈+≤+x x x x ,而2102π=+⎰+∞x dx 为收敛,故dx x x ⎰+∞+021sin 为绝对收敛. 当选用⎰+∞1p xdx作为比较对象⎰+∞a dx x g )(时,比较判别法有如下两个推论(称为柯西判别法). 推论1 设f 定义于[+∞,a ] (0>a ),且在任何有限区间[u a ,]上可积,则有:(i)当 ),[,1)(+∞∈≤a x xx f p ,且1>p 时, dx x f a ⎰+∞)(收敛;(ii)当),[,1)(+∞∈≥a x xx f p 且1≥p 时, dx x f a ⎰+∞)(发散.推论2 设定义于[+∞,a ),在任何有限区间[u a ,.]上可积,且λ=+∞→)(lim x f xpx .则有:(i)当 +∞<≤>λ0,1p 时, dx x f a⎰+∞)(收敛; (ii)当 +∞≤<≤λ0,1p 时,dx x f a⎰+∞)(发散.推论3 若f 和g 都在任何[u a ,)上可积,0)(>x g ,且,)()(lim c x g x f x =+∞→则有(i)当+∞<≤c 0时,由⎰+∞adx x g )(收敛可推知dx x f a ⎰+∞)(也收敛; (ii)当+∞≤<c 0时,由⎰+∞adx x g )(发散可推知dx x f a⎰+∞)(也发散.四、狄利克雷判别法与阿贝尔判别法这里来介绍两个判别一般无穷积分收敛的判别法. 定理11.3 (狄利克雷判别法) 若⎰=uadx x f u F )()(在[+∞,a )上有界,)(x g 在[+∞,a )上当+∞→x 时单调趋于0,则无穷积分⎰+∞adx x g x f )()(收敛.定理11.4 (阿贝尔(Abel)判别法) 若⎰+∞adx x f )(收敛,)(x g 在[+∞,a )上单调有界,则无穷积分⎰+∞adx x g x f )()(收敛.用积分第二中值定理来证明狄利克雷判别法与阿贝尔判别法.例5 讨论dx x xp ⎰+∞1sin 与)0(cos 1>⎰+∞p dx xx p 的收敛性. 解:这里只讨论前一个无穷积分,后者有完全相同的结论.下面分两种情形来讨论: (i)当p >1时dx x xp ⎰+∞1sin 绝对收敛.这是因为),,[,1sin +∞∈≤a x x x x p p 而⎰+∞1p xdx 当p >1时收敛,故由比较法则推知dx x xp⎰∞+1sin 收敛. (ii)当10≤<p 时dx x xp ⎰+∞1sin 条件收敛.这是因为对任意u ≥1,有2cos 1cos sin 1≤-=⎰u xdx u ,而p x1当0>p 时单调趋于)(0+∞→x ,故由狄利克雷判别法推知dx xxp ⎰+∞1sin 工当0>p 时总是收敛的. 另一方面,由于),1[,22cos 21sin sin 2+∞∈-=≥x x xx x x x x p,其中dt t tdx x x ⎰⎰+∞+∞=21cos 2122cos 是收敛的,而⎰+∞12xdx 是发散的,因此当10≤<p 时该无穷积分不是绝对收敛的.所以它是条件收敛的. 例6 证明下列无穷积分都是条件收敛的.,sin 12⎰+∞dx x ,cos 12⎰+∞dx xdx x x ⎰+∞14sin证:前两个无穷积分经换元2x t =得到,2sin sin 112dt tt dx x ⎰⎰+∞+∞=.2cos cos 112dt tt dx x ⎰⎰+∞+∞=由例5知它们是条件收敛的.对于第三个无穷积分,经换元2x t =而得⎰⎰+∞+∞=1214sin 21sin dt t dx x x ,它也是条件收敛的.从例6中三个无穷积分的收敛性可以看到,当+∞→x 时被积函数即使不趋于零,甚至是无界的,无穷积分仍有可能收敛.八、学习评价本节成功向学生讲解了两种定积分的推广即反常积分,尤其对无穷反常积分进行介绍,并对其敛散性及审敛性附带介绍。

作业内容:教材260P :1(4,6,9);2;3.。

相关文档
最新文档