牛顿第二定律解题技巧
牛顿第二定律及做题步骤
解:由题意得
(∵已知受恒力作用,所以物体做匀加速直线运动,并且在5s 内的位移为2.5m)
∴由 s = v0 t + a·t2 / 2 得:
a = 0.2m/s2
又由牛顿第二定律 F = m ·a
F合 = 1.6N 对物体做受力分析得:
F合 = F - f
注意:力也是矢量,所以如果题目要
求“得物:体受到的摩擦力”时,要注明
(2)撤去拉力时物体的速度大小。
(3)撤去F后物体运动的距离。
第3题图
第2题图
地址:泰华东邻银海恒基大厦401 电话:8199658
水平方向:F合 = F2 — f = 注m意·:a题目要求“加速度的F大N 小”,
竖直方向:FN + F1 = G F1 = F ·sin 37°
所以我们可以解得答案即可,若“求
物体的加速度”,则是F1要求加速度这
F
个矢量,必须要注明方向问题
F2 = F ·cos 37° f = μ · FN
f
37°
方而向本。题要求“摩擦力的F大N 小”可以只
求大小不求方向。
F
f
∴ f = F - F合 = 0.4N
G
牛顿第二定律及其基本做题步骤
作业
1. 质量为40 kg的物体放在水平面上,某人用绳子沿着与水平方向成37°角斜向上的
方向拉着物体前进,绳子的拉力为200 N,已知物体与水平面间的动摩擦因数为0.5,物
4)同体性: 在F=am中,F、a、m均是针对 同一 物体的。
5)相对性: 牛顿第二定律必须是对相对地面静止或做匀速直线运动 的参考系而言的,对相对地面加速运动的参考系不适用
一、牛顿第二定律
5、牛顿第二定律的解题步骤 : 1)确定研究对象 2)分析研究对象的受力情况,画出受力分析示意图 3)选定正方向或建立适当的正交坐标系 4)求合力,列方程求解 5)对结果进行检验或讨论
牛顿第二定律解题思路
牛顿第二定律解题思路一、高中物理研究问题,有两条最基本的途径:一是从运动和力的角度去进行研究,另一条是从功和能的角度去进行研究。
这两条途径,几乎渗透于整个高中物理的全部,其中第一条途径的核心是牛顿运动定律。
应用牛顿定律来解决问题,我们应该遵循的最基本的方法是:对象→受力→过程→模型→规律→方程→结果即首先要弄清研究的对象是哪个物体,它受到哪些力,运动的过程是怎么样的;然后建立起一个合理的动力学模型,确定所应用规律,例出方程,求得结果。
一般来说,应用牛顿定律来解决问题通常有如下二大类问题:第一类是非常重视力和加速度的因果关系。
第二类是动力学与运动学结合在一起。
二、解题方法(1)矢量合成法:若物体只受两个力作用时,应用平行四边形定则求这两个力的合力,再由牛顿第二定律求出物体的加速度的大小及方向.加速度的方向就是物体所受合外力的方向.反之,若知道加速度的方向也可应用平行四边形定则求物体所受的合力.(2)正交分解法:当物体受多个力作用时,常用正交分解法求物体的合外力.应用牛顿第二定律求加速度,在实际应用中常将受力分解,且将加速度所在的方向选为x 轴或y 轴,有时也可分解加速度,即⎩⎪⎨⎪⎧F x =ma x F y =ma y 基本(3)解题步骤:1、 确定研究对象2、 对研究对象进行受力分析3、 分析对象的运动情况(特别确定加速度的情况:包括方向和大小)4、 把物体受到的所有外力分解到加速度方向和垂直加速度方向5、 在加速度方向:利用牛顿第二定律建议程;在垂直加速度方向:利用单方向平衡建方程解题。
6、 关于加速度:利用已知条件或其它求解。
三:应用举例:例1:11.如图6-2-2所示,位于水平面上的质量为M 的小木块,在大小为F 、方向与水平方向成α角的拉力作用下沿地面做加速运动.若木块与地面之间的动摩擦因数为μ,则木块的加速度为[ ] 图6-2-2A F/MB .Fcos α/MC .(Fcos α-μMg)/M D.[Fcos α-μ(Mg-Fsin α)]/M 例2:如图所示,车内绳AB 与绳BC 拴住一小球,BC 绳水平,车由静止向右作匀加速直线运动,小球仍处于图中所示位置,则[ ]A .AB 绳拉力变大,BC 绳拉力变大 B .AB 绳拉力变大,BC 绳拉力变小C .AB 绳拉力变大,BC 绳拉力不变D .AB 绳拉力不变,BC 绳拉力变大例3. 如图所示,质量为m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m 1的物体l ,与物体l 相连接的绳与竖直方向成θ角,则( )A. 车厢的加速度为gsin θB. 绳对物体1的拉力为m 1g /cos θC. 底板对物体2的支持力为(m 2-m 1)gD. 物体2所受底板的摩擦力为m 2gtan θ例4:风洞实验中可产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径,如图1所示。
牛顿第二定律解题技巧
牛顿第二定律解题技巧牛顿第二定律是物理学中最基本的原理之一,也是学生们学习物理时必须了解的内容。
它可以描述物体的动力学行为,帮助我们计算物体的运动、加速度和力。
学习牛顿第二定律,需要掌握一些解题技巧,本文将介绍一些常见的解题方法,帮助学生更好地理解和解决物理问题。
首先,牛顿第二定律的公式为F=ma,其中F表示力,m表示物体的质量,a表示物体的加速度。
求解一个物理问题时,最好先将已知条件代入这个公式,看看你需要求解的未知量是什么。
如果你已知了物体的质量和力,你可以直接求出加速度。
如果你已知了物体的质量和加速度,你可以直接求出力。
其次,要注意力的方向和大小。
当你研究一个物体的运动时,你需要知道物体所受的力的方向和大小。
如果你知道这个信息,你就可以确定物体的加速度和运动轨迹。
注意,有时候物体会受到多个力的作用,这时候你需要对所有力进行矢量分解,求出每个力的分量,并将它们相加。
这可以使问题更简单易懂。
第三,练习使用自由体图。
自由体图是指一个独立于任何其他系统的物体或物体系统的图形描述。
通过绘制自由体图,你可以更好地理解物体所受的力和运动方向。
在自由体图上,你只需要考虑一个物体或系统,并绘制所有作用在这个物体或系统上的力。
这样做可以使问题更加清晰明了。
第四,注意单位和符号。
在解决物理问题时,单位和符号是非常重要的。
如果你使用了错误的单位或符号,就会得出错误的答案。
因此,你应该熟悉常见的物理单位,例如米、千克、牛顿和秒,并确保在运算时使用正确的单位和符号。
最后,要勤于练习。
学习牛顿第二定律需要勤奋练习,通过练习才能掌握解题技巧。
你可以多做一些练习题,掌握不同种类的物理问题解法,这样可以让你在实际使用中更加得心应手。
总之,牛顿第二定律是学习物理的基础,掌握解题技巧可以使学生更好地理解物理学原理并解决各种物理问题。
牛顿第二定律解题的关键是理解公式、力的大小和方向、熟悉自由体图并注意单位和符号。
只有通过大量的练习,才能真正掌握这些技巧。
牛顿第二定律详解
牛顿第二定律详解实验:用控制变量法研究:a与F的关系,a与m的关系知识简析一、牛顿第二定律1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a的方向与F合的方向总是相同。
2.表达式:F=ma揭示了:①力与a的因果关系,力是产生a的原因和改变物体运动状态的原因;②力与a的定量关系3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。
(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F=ma中,F的单位是牛顿,m的单位是kg,a的单位是米/秒2.(7)F=ma的适用范围:宏观、低速4. 理解时应应掌握以下几个特性。
(1) 矢量性F=ma是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。
(2) 瞬时性a与F同时产生、同时变化、同时消失。
作用力突变,a的大小方向随着改变,是瞬时的对应关系。
(3) 独立性(力的独立作用原理) F合产生a合;Fx合产生ax合;Fy合产生ay合当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫力的独立作用原理。
因此物体受到几个力作用,就产生几个加速度,物体实际的加速度就是这几个加速度的矢量和。
(4) 同体性F=ma中F、m、a各量必须对应同一个物体(5)局限性适用于惯性参考系(即所选参照物必须是静止或匀速直线运动的,一般取地面为参考系);只适用于宏观、低速运动情况,不适用于微观、高速情况。
牛顿运动定律的应用1.应用牛顿运动定律解题的一般步骤:(1) 选取研究对象(2) 分析所选对象在某状态(或某过程中)的受力情况、运动情况(3) 建立直角坐标:其中之一坐标轴沿的方向然后各力沿两轴方向正交分解(4) 列出运动学方程或第二定律方程F合=a合;Fx合=ax合;Fy合=ay合用a这个物理量把运动特点和受力特点联系起来(5) 在求解的过程中,注意解题过程和最后结果的检验,必要时对结果进行讨论.2.物理解题的一般步骤:(1) 审题:解题的关键,明确己知和侍求,特别是语言文字中隐着的条件(如:光滑、匀速、恰好追上、距离最大、共同速度等),看懂文句、及题述的物理现象、状态、过程。
牛顿第二定律详细解析
解: 对汽车研究 ,其受力分析如图.
FN
F合= F-f
F
由牛顿第二定律得:
f
F-f=ma
G
解得:
a= (F-f)/m =1.5 m/s2
汽车前进时的加速度大小为1.5 m/s2 ,方向与前进的 方向相同。
牛顿第二定律详细解析
五、解题步骤:
1、确定研究对象。 2、分析研究对象的受力情况,画出受力图。 3、选定正方向或建立适当的正交坐标系。 4、求合力,列方程求解。 5、对结果进行检验或讨论。
在x方向上:F合=FGxf 在x方向上:F合=Ff Gx
牛顿第二定律详细解析
5)F沿水平推 (G=20N F=20N f=4N)
FN
v
F
Gx
f
Fx
F
Fy
Gy
FN
v
F
f Fx
Gx
F
Fy
Gy
G
G
G xG si3n0G yGco3s0
FxFco3s0FyFsi3 n0
列方程(在y轴上没有运动) 列方程(在y轴上没有运动)
牛顿第二定律详细解析
五、总结
一、牛顿第二定律 1、内容:物体的加速度跟作用力成正比,跟物体的质 量成反比,这就是牛顿第二定律。
2、数学表达试:a∝F/m F ∝ma,即F=kma,k—比例 如果各量都用国际单位,则k=1,所以F=ma 系数
牛顿第二定律进一步表述:F合=ma 二、对牛顿第二定律F合=ma的理解
在y方向上:FNGyFy 在y方向上:FNGyFy
在x方向上:F合=FxGxf 在x方向上:F合=Fxf Gx
牛顿第二定律详细解析
4.一个质量为m的物体被竖直向上抛出,在空中 运动过程所受的阻力大小为f,求该物体在上升 和下降过程中的加速度.
高一物理专题牛顿第二定律的解题方法与技巧
牛二定律基本解题方法和步骤a.单物体步骤:确定一个研究对象m;选定研究状态;受力分析求解F合;运动分析求解a;由牛顿第二定律得F合=ma;列式求解。
关键:正确的受力分析。
基本思路:受力情况和运动情况之间相互关联的桥梁——加速度。
正交分解法:正交分解法是受力分析求合外力的常用方法。
F X=F1X+F2X+F3X=ma xF Y=F1Y+F2Y+F3Y=ma y正交分解的关键在于巧妙确定x轴方向。
大致有两种选择:Ⅰ分解力而不分解加速度——通常以加速度a的方向为x轴正方向,建立直角坐标系,将物体所受的各个力分解在x轴和y轴上,分别得x轴和y轴的合力。
根据力的独立作用原理,各个方向上的力分别产生各自的加速度,得方程组。
F=maF y=0Ⅱ分解加速度而不分解力——可根据物体受力情况,使尽可能多的力位于两坐标轴上而分解加速度a,根据牛顿第二定律得方程组=ma xFF y=ma y例1.如图,位于水平地面上的质量为m的小木块,在大小为F、方向与水平方向成α角的拉力作用下沿水平面做匀加速直线运动。
若木块与地面之间的动摩擦因数为μ,则木块的加速度为多少?答案:错误!未找到引用源。
例2.如图所示,一物块位于粗糙水平桌面上,物块与桌面间的滑动摩擦因数为μ,用一大小为F、方向如图所示的力去推它,使它以加速度a向右运动。
若保持力的方向不变而增大力的大小,则()A.a变大B.a不变C.因为夹角未知,故不能确定大小变化D.因为物体质量未知,故不能确定大小变化答案:C例3.一个重力为G的物体放在水平地面上,物体与地面间的动摩擦因数为μ,今用一个与水平方向成α角的恒力F拉物体,为使物体在水平地面上做匀加速直线运动,则力F的范围如何?答案:错误!未找到引用源。
例4.两物体甲和乙在同一直线上运动,它们在0~0.4 s时间内的v﹣t图象如图所示。
若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t1分别为()A.1/3和0.30 s B.3和0.30 sC.1/3和0.28 s D.3和0.28 s答案:B例5.为了测量小木板和斜面间的动摩擦因数,某同学设计了如下的实验.在小木板上固定一个弹簧秤(弹簧秤的质量可不计),弹簧秤下吊一个光滑小球。
牛顿第二定律之瞬时性问题
牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。
加速度由物体所受 决定,。
加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。
2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。
(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。
二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。
【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。
2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。
重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。
上课牛顿第二运动定律
3.选取正方向,列方程,画好受力图后,要规定正方 向或建立直角坐标系,把各力分解,然后列出牛顿第 二定律的表达式。
例、风洞实验中可产生水平方向的、大小可以调节的风力,先将一套有小球的细杆放入风洞实验室,小球孔径略大于细杆直径,如图所示
动力学的两类基本问题:
受力情况
通过分析受力求a, 再利用运动学公式
一类是已知受力情况求解运动情况;另一类是已 知运动情况求解受力情况.
运动情况
通过运动学公式 求a再计算力
应用牛顿第二定律的基本步骤
4.解方程、检验.求出结果后,要养成检验的好习惯,看看结果是否符合题意或实际情况.
1.明确研究对象根据题意选取某一物体作为研究对 象,往往是解题的第一要点。
基本题型
例5. 如图,质量为m=1kg的物体静止在与水平方向 成=370角的固定斜面上。当物体受到水平恒力F作用 后,经时间t=2秒,物体沿斜面向上移动了S=8米。如 果物体与斜面间的滑动摩擦系数=0.3, 求水平恒力的大小?
F
例2.A、B两物体的质量分别为mA=2kg,
力均为fm=12N,将它们叠放在光滑水平面上,
例1.如图所示,当剪断AB、OB舜时,
求两图中小球的加速度。
01
02
2、瞬时问题
[例2] 如图所示,A、B两物体的质量分别为M和m,中间用轻弹簧相连,物体与水平面间的摩擦因数为μ,在水平拉力作用下,A、B一起以加速度a向右作匀加速直线运动。试求突然撤去拉力的瞬间,两物体的加速度各为多大。
答案:aA=a ,aB=Ma+μ(M+m)g/m
牛顿第二定律的应用常见题型与解题方法(王老师原创)非常全面,经典..
牛顿第二定律的应用第一讲一、两类动力学问题1.1.已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:已知物体的受力情况求物体的运动情况:根据物体的受力情况求出物体受到的合外力,然后应用牛顿第二定律F=ma 求出物体的加速度,再根据初始条件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
件由运动学公式就可以求出物体的运动情况––物体的速度、位移或运动时间。
2.2.已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:已知物体的运动情况求物体的受力情况:根据物体的运动情况,应用运动学公式求出物体的加速度,然后再应用牛顿第二定律求出物体所受的合外力,进而求出某些未知力。
进而求出某些未知力。
求解以上两类动力学问题的思路,可用如下所示的框图来表示:求解以上两类动力学问题的思路,可用如下所示的框图来表示:第一类第一类 第二类第二类典型例题: 例1、如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求:求:(1)物体加速度a 的大小;的大小; (2)物体在t =2.0s 时速度v 的大小.例2、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s.(1)求列车的加速度大小.)求列车的加速度大小.(2)若列车的质量是1.01.0××106kg kg,机车对列车的牵引力是,机车对列车的牵引力是1.51.5××105N ,求列车在运动中所受的阻力大小.,求列车在运动中所受的阻力大小.二、正交分解法在牛顿第二定律中的应用例3、如图所示,质量为m 的人站在自动扶梯上,扶梯正以加速度a 向上减速运动,向上减速运动,a a 与水平方向的夹角为θ,求人所受到的支持力和摩擦力.求人所受到的支持力和摩擦力.三、整体法与隔离法在牛顿第二定律中的应用 物体的受力情况力情况 物体的加速度a 物体的运动情况动情况F 求内力:先整体后隔离求内力:先整体后隔离例4、如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F1和F2的作用,而且F1F1>>F2F2,则,则1施于2的作用力的大小为(的作用力的大小为( )A .F1B .F2C .(F1+F2F1+F2))/2D D..(F1-F2F1-F2))/2求外力:先隔离后整体求外力:先隔离后整体例5、如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面的质量为M M ,斜面与物块无摩擦,地面光滑。
牛顿第二定律的推导与解题技巧
牛顿第二定律的推导与解题技巧牛顿第二定律是经典力学中的一项基本定律,描述了物体受力所产生的加速度。
该定律将物体的质量、力和加速度联系在了一起,为解决力学问题提供了有力的工具。
本文将以牛顿第二定律为主题,探讨其推导和解题技巧。
首先,我们来回顾一下牛顿第二定律的表述:力等于物体质量乘以加速度,即F = ma。
其中,F表示作用在物体上的力,m表示物体的质量,a表示物体的加速度。
为了更好地理解这一定律的推导过程,我们以一个具体的例子来说明。
假设有一个质量为2kg的物体,受到一个4N的力而产生加速度。
我们希望通过牛顿第二定律来计算这个物体的加速度。
首先,我们需要明确的是,牛顿第二定律适用于力和质量都是标量的情况。
在我们的例子中,力和质量都是标量,因此可以直接使用牛顿第二定律进行计算。
根据牛顿第二定律的公式 F = ma,我们可以将已知的力和质量代入,得到 4N= 2kg * a。
接下来,我们只需要解这个方程,即可求得物体的加速度。
将上式化简,我们得到 a = 2m/s²。
这就是该物体在受到4N的力作用下所产生的加速度。
在解题过程中,我们需要注意的是单位的转换。
在力学中,常用的力单位是牛顿(N),质量单位是千克(kg),加速度单位是米每二次方秒(m/s²)。
除了推导牛顿第二定律的公式,我们还可以利用该定律解决各种力学问题。
以下是一些常见的解题技巧:1.分解力:当一个物体受到多个力的作用时,我们可以将力进行分解,拆分为水平和垂直方向的分力。
通过分解力,我们可以更好地确定不同方向上的力的大小和方向,从而求解加速度等物理量。
2.使用自由体图:绘制自由体图可以帮助我们更清晰地理解物体所受的力,并确定力的方向,从而可以更容易地运用牛顿第二定律求解问题。
3.采用代数方法:在实际问题中,可能会涉及到多个未知量。
这时,我们可以利用牛顿第二定律的线性特性,将未知量用代数方式表示,并构建方程组进行求解。
4.注意惯性系选择:在某些问题中,我们需要选择适当的惯性系进行计算。
牛顿第二定律_例题详解
牛顿第二定律一、牛顿第二定律1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同.2.公式:F=ma3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中,F的单位是N,m的单位是kg,a的单位是m/s2.【例1】如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m的物体,一端用F的拉力,结果物体上升的加速度为a1,后来将F的力改为重力为F的物体,m向上的加速度为a2则()A.a1=a2 ;B.a1>a2 C.a1<a2 D.无法判断二、突变类问题(力的瞬时性)(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A.轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。
B.不可伸长:即无论绳所受拉力多大,绳子的长度不变,绳子中的张力可以突变。
(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A.轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,同一弹簧的两端及其中间各点的弹力大小相等。
B.弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力。
不能承受压力。
C、由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能发生突变。
【例2】如图(a)所示,一质量为m的物体系于长度分别为l1、12的两根细绳上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态,现将l2线剪断,求剪断瞬间物体的加速度。
应用牛顿第二定律解题的一般方法和步骤
例2、、一个静止在地面上的物体,质量是2kg,在 6.4N的水平拉力作用下沿水平地面向右运动, 物体与水平地面间的滑动摩擦力是4.2N。求物体 4S末的速度和4S内发生的位移。
01
已知运动情况,应用运动学公式,求出加
02
速度,再根据牛顿第二定律,求出物体的受力
03
情况。
04
例1、一辆载重汽车,总质量是4000kg,牵引
03
度有多大?
04
求物块滑到斜面的底端所用的时间为多少?
05
(96年高考):一物块从倾角为a、长为s的斜
06
面的顶端由静止开始下滑,物块与斜面的动摩
07
擦因数为µ,求物块滑到斜面底端所需的时间。
08
应用牛顿第二定律解题的基本类型
一、已知受力情况,应用牛顿第二定律求出 加速度,求出物体的运动情况
例1:一个原来静止的物体,质量是7kg,在14N 的恒力作用下,5s末的速度是多大?5s内通过 的路程是多少?
确定研究对象
对研究对象进行受力分析
选取加速度的方向为正方向,求出在正 方向上所受的合外力
分析物体的运动状态
建立坐标系
根据牛顿第二定律列方程,求解,必要 时对结果进行讨论。
应用牛顿第二定律解题的一般方法和步骤
例:质量为m的物块由倾角为a的斜面顶端由静
01
止匀加速下滑,物块与斜面间的动摩擦因数为
02
Hale Waihona Puke µ,斜面的高度为h,求物块沿斜面下滑的加速
03
动飞船尾部的推进器,使飞船和火箭组成共同加速。
04
推进器的平均推力F等于895N,推进器开动7s,测出
05
飞船和火箭组的速度改变是0.91m/s。以知双子星号
应用牛顿第二定律解题的几种题型
应用牛顿第二定律解题的几种题型牛顿第二定律是一个重要的物理学定律,用于解释物体运动中加速度变化的原理。
它主要用于描述物体受外力时会发生的加速或减速过程,可用来解决许多实际问题。
本文将介绍应用牛顿第二定律解题的几种典型题型,以及如何解答这些题型。
一、牛顿运动速度题第一种典型题目是根据牛顿第二定律求解运动速度的题型。
例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,距离原点s米。
请求出t时刻物体的速度v?解题思路:物体由v0开始加速,到t时刻,它的速度是v=v0+at。
由于物体从原点出发,则v0=0。
所以,在t时刻,物体的速度是v=at。
二、牛顿运动加速度题第二种典型题目是根据牛顿第二定律求解加速度的题型。
例如:一个物体从原点出发,在t时刻后,距离原点s米,且物体的速度为v米/秒。
请求出加速度a?解题思路:由于物体从原点出发,则v0=0。
根据牛顿第二定律,v=v0+at,即v=at。
解出a=v/t。
三、牛顿运动时间题第三种典型题目是根据牛顿第二定律求解运动时间的题型。
例如:一个物体从原点出发,受一个匀加速度a作用,距离原点s米。
请求出物体从原点出发到s米的运动时间t?解题思路:根据牛顿第二定律,v=v0+at,解出t=v/a。
由于物体从原点出发,则v0=0,即t=s/a。
四、牛顿运动位移题第四种典型题目是根据牛顿第二定律求解位移的题型。
例如:一个物体从原点出发,受一个匀加速度a作用,在t时刻后,其速度是v米/秒。
请求出物体从原点出发到t时刻时的位移s?解题思路:根据牛顿第二定律,s=v0t+at^2/2。
由于物体从原点出发,则v0=0,即s=at^2/2。
到此,本文介绍了应用牛顿第二定律解题的几种典型题型,以及解答这些题型的解题思路。
熟练掌握牛顿第二定律,并灵活运用,可以很好地解决实际问题。
原创3:4.3 牛顿第二定律
要点提示
名师精讲
1.应用牛顿第二定律解题的步骤
2.两种求加速度的方法
(1)合成法:首先确定研究对象,画出受力分析图,将各个力按
照力的平行四边形定则在加速度方向上合成,直接求出合力,
再根据牛顿第二定律列式求解。
(2)正交分解法:当物体受多个力作用时,常用正交分解法求
物体所受的合力,应用牛顿第二定律求加速度。在实际应用
方面深刻理解:
因果性 力是产生加速度的原因,没有力也就没有加速度
公式 F=ma 是矢量式,任一瞬时,a 的方向均与 F 方向相同,
矢量性
当 F 方向变化时,a 的方向同时变化
物体的加速度与物体所受合力有瞬时对应关系,a 为某一
瞬时性
时刻的加速度,F 为该时刻物体所受合外力
有两层意思:一是指加速度 a 相对同一惯性系(一般指地
N=1 kg·m/s2。
3.比例系数k的含义:
关系式F=kma中的比例系数k的数值由F、m、a三量的单位
共同决定,三个量都取国际单位,即三量分别取N、kg、m/s2
作单位时,系数k=1。
·/
注意:重力加速度 g=9.8 N/kg=9.8
=9.8 m/s2。
一个物体受到4 N的力作用时,产生的加速度是2 m/s2,那么
据牛顿第二定律,a先增大后减小,v始终增大,故选项C正确。
答案:C
归纳总结
问题导引
牛顿第二定律的应用
行车时驾驶员及乘客必须系好安全带,以防止紧急刹车时
造成意外伤害。请思考:
(1)汽车突然刹车,要在很短时间内停下来,会产生很大的
加速度,这时如何知道安全带对人的作用力大小呢?
(2)汽车启动时,安全带对驾驶员产生作用力吗?
(完整)高中物理牛顿第二定律——板块模型解题基本思路
(完整)⾼中物理⽜顿第⼆定律——板块模型解题基本思路⾼中物理基本模型解题思路——板块模型(⼀)本模型难点:(1)长板下表⾯是否存在摩擦⼒,摩擦⼒的种类;静摩擦⼒还是滑动摩擦⼒,如滑动摩擦⼒,N F 的计算(2)物块和长板间是否存在摩擦⼒,摩擦⼒的种类:静摩擦⼒还是滑动摩擦⼒。
(3)长板上下表⾯摩擦⼒的⼤⼩。
(⼆)在题⼲中寻找注意已知条件:(1)板的上下两表⾯是否粗糙或光滑(2)初始时刻板块间是否发⽣相对运动(3)板块是否受到外⼒F ,如受外⼒F 观察作⽤在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定⼀、光滑的⽔平⾯上,静⽌放置⼀质量为M ,长度为L 的长板,⼀质量为m 的物块,以速度0v 从长板的⼀段滑向另⼀段,已知板块间动摩擦因数为µ。
⾸先受⼒分析:对于m :由于板块间发⽣相对运动,所以物块所受长板向左的滑动摩擦⼒,即:===m N N ma f F f mg F 动动µg a m µ= (⽅向⽔平向左)由于物块的初速度向右,加速度⽔平向左,所以物块将⽔平向右做匀减速运动。
对于M :由于板块间发⽣相对运动,所以长板上表⾯所受物块向右的滑动摩擦⼒,但下表⾯由于光滑不受地⾯作⽤的摩擦⼒。
即:动f N F N F '==+='M N N N Ma f F f F Mg F 动动µ M mg a M µ= (⽅向⽔平向右)由于长板初速度为零,加速度⽔平向右,所以物块将⽔平向右做匀加速运动。
假设当M m v v=时,由于板块间⽆相对运动或相对运动趋势,所以板块间的滑动摩擦⼒会突然消失。
则物块和长板将保持该速度⼀起匀速运动。
关于运动图像可以⽤t v -图像表⽰运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=?v v⼆、粗糙的⽔平⾯上,静⽌放置⼀质量为M ,⼀质量为m 的物块,以速度0v 从长板的⼀段滑向另⼀段,已知板块间动摩擦因数为1µ,长板和地⾯间的动摩擦因数为2µ,长板⾜够长。
牛顿第二定律(解析版)
牛顿第二定律1.解题步骤:(1)确定研究对象,进行受力分析,画受力图。
(2)建立XOY 坐标系,将各个力进行正交分解。
(3)根据牛顿第二定律和运动学公式列方程。
(4)统一单位,求解方程,对结果进行讨论。
力 加速度 运动∑F=ma a =t V V t 0- 2022t tV s a -= s V V a t 2202-= 2Tsa ∆=2.牛顿第二定律要点(1)牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
(2)牛顿第二定律是实验定律,实验采用“控制变量法”进行研究。
(3)对牛顿第二定律的理解①矢量性:牛顿第二定律是一个矢量方程,加速度与合外力方向一致.②瞬时性:力是产生加速度的原因,加速度与力同时存在、同时变化、同时消失.③独立性:当物体受几个力的作用时,每一个力分别产生的加速度只与此力有关,与其它力无关,这些加速度的矢量和即物体运动的加速度. ④同体性:公式中,质量、加速度和合外力均应对应同一个物体(系统).1.超重和失重:超重:加速度方向向上(加速向上或减速向下运动) 失重:加速度方向向下(加速向下或减速向上运动) 2.超重、失重和完全失重的比较maF =合超重现象失重现象完全失重现象概念物体对支持物的压力(或对悬挂物的拉力)□05大于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)□06小于物体所受重力的现象物体对支持物的压力(或对悬挂物的拉力)□07等于零的现象产生条件物体的加速度方向□08竖直向上物体的加速度方向□09竖直向下物体的加速度方向□10竖直向下,大小□11a=g 原理方程F-mg=maF=m(g+a)mg-F=maF=m(g-a)mg-F=maa=gF=0运动状态□12加速上升或□13减速下降□14加速下降或□15减速上升以a=g□16加速下降或□17减速上升[典例1]如图A所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度?若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图B所示,其他条件不变,求求剪断轻弹簧瞬时物体的加速度?【解析】设l1线上拉力为T1,l2轻弹簧上拉力为T2,重力为mg,物体在三力作用下保持平衡T1cosθ=mg,T1sinθ=T2,T2=mg tgθ,剪断线的瞬间,弹簧的长度末发生变化,力大小和方向都不变,物体即在T2反方向获得加速度.因为mg tgθ=ma,所以加速度a=gtgθ,方向在T2反方向。
牛顿第二定律的解题技巧
牛顿第二定律的解题技巧牛顿第二定律是物理学中的基础概念之一,它描述了物体运动的原理和力的作用效果。
在解题过程中,熟练掌握牛顿第二定律的应用是非常重要的。
本文将讨论牛顿第二定律的解题技巧,从加速度、质量、力的关系以及应用实例等方面展开。
一、理解牛顿第二定律牛顿第二定律的数学表示为F=ma,其中F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
这个公式表明物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
二、应用加速度、质量、力的关系1. 求解加速度当已知物体受到的力和质量时,可以通过牛顿第二定律求解加速度。
首先,将所受力的大小代入公式中,然后根据物体的质量求解加速度。
例如,一物体受到的外力为10N,质量为2kg,则根据F=ma可求出加速度为5m/s^2。
2. 求解质量有时候,我们需要求解物体的质量,而已知物体所受的力和加速度。
在这种情况下,我们可以通过牛顿第二定律的公式重新排列,得到质量的表达式m=F/a。
例如,如果一个物体所受力为20N,加速度为4m/s^2,则可得到质量为5kg。
3. 求解力当已知物体的质量和加速度时,可以通过牛顿第二定律求解作用在物体上的力。
根据公式F=ma,将质量和加速度代入可求出力的大小。
例如,当一物体的质量为3kg,加速度为6m/s^2时,力的大小为18N。
三、应用实例1. 下雨天的刹车距离假设某辆车质量为1000kg,在下雨天行驶时受到的制动力为500N,求车辆的减速度和刹车距离。
根据牛顿第二定律可得 F=ma,将已知数据代入可得500N=1000kg*a。
由此可求出车辆的减速度为0.5m/s^2。
刹车距离的计算可通过公式s=v^2/(2a)求解,其中v表示刹车前车辆的速度,a表示车辆的减速度。
假设车速为20m/s,则刹车距离为20^2/(2*0.5),计算后得到刹车距离为200m。
2. 摩擦力对斜坡上物体的影响一质量为2kg的物体放置在一个角度为30度的斜坡上,斜坡表面的摩擦系数为0.2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点名称:实验:探究加速度与力、质量的关系实验目的:验证牛顿第二定律。
实验原理:1、如图所示装置,保持小车质量不变,改变小桶内砂的质量,从而改变细线对小车的牵引力,测出小车的对应加速度,作出加速度和力的关系图线,验证加速度是否与外力成正比。
2、保持小桶和砂的质量不变,在小车上加减砝码,改变小车的质量,测出小车的对应加速度,作出加速度和质量倒数的关系图线,验证加速度是否与质量成反比。
实验器材:小车,砝码,小桶,砂,细线,附有定滑轮的长木板,垫木,打点计时器,低压交流电源,导线两根,纸带,托盘天平及砝码,米尺。
实验步骤:1、用天平测出小车和小桶的质量M和M',把数据记录下来。
2、按如图装置把实验器材安装好,只是不把挂小桶用的细线系在小车上,即不给小车加牵引力。
3、平衡摩擦力:在长木板的不带定滑轮的一端下面垫上垫木,反复移动垫木的位置,直至小车在斜面上运动时可以保持匀速直线运动状态(可以从纸带上打的点是否均匀来判断)。
4、在小车上加放砝码,小桶里放入适量的砂,把砝码和砂的质量m和m'记录下来。
把细线系在小车上并绕过滑轮悬挂小桶,接通电源,放开小车,打点计时器在纸带上打下一系列点,取下纸带,在纸带上写上编号。
5、保持小车的质量不变,改变砂的质量(要用天平称量),按步骤4再做5次实验。
6、算出每条纸带对应的加速度的值。
7、用纵坐标表示加速度a,横坐标表示作用力,即砂和桶的总重力(M'+m')g,根据实验结果在坐标平面上描出相应的点,作图线。
若图线为一条过原点的直线,就证明了研究对象质量不变时其加速度与它所受作用力成正比。
8、保持砂和小桶的质量不变,在小车上加放砝码,重复上面的实验,并做好记录,求出相应的加速度,用纵坐标表示加速度a,横坐标表示小车和车内砝码总质量的倒数,在坐标平面上根据实验结果描出相应的点并作图线,若图线为一条过原点的直线,就证明了研究对象所受作用力不变时其加速度与它的质量成反比。
注意事项:1、砂和小桶的总质量不要超过小车和砝码的总质量的。
2、在平衡摩擦力时,不要悬挂小桶,但小车应连着纸带且接通电源。
用手给小车一个初速度,如果在纸带上打出的点的间隔是均匀的,表明小车受到的阻力跟它的重力沿斜面向下的分力平衡。
3、作图时应该使所作的直线通过尽可能多的点,不在直线上的点也要尽可能对称地分布在直线的两侧,但如遇个别特别偏离的点可舍去。
1、牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma。
牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。
2、应用牛顿运动定律解题的一般步骤①认真分析题意,明确已知条件和所求量;②选取研究对象,所选取的研究对象可以是一个物体,也可以是几个物体组成的系统,同一题,根据题意和解题需要也可先后选取不同的研究对象;③分析研究对象的受力情况和运动情况;④当研究对对象所受的外力不在一条直线上时;如果物体只受两个力,可以用平行四力形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上,分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动方向上;⑤根据牛顿第二定律和运动学公式列方程,物体所受外力,加速度、速度等都可以根据规定的正方向按正、负值代公式,按代数和进行运算;⑥求解方程,检验结果,必要时对结果进行讨论。
3、常见问题:Ⅰ、动力学的两类基本问题:已知力求运动,已知运动求力①根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况;根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。
②分析这两类问题的关键是抓住受力情况和运动情况的桥梁——加速度。
③求解这两类问题的思路,可由下面的框图来表示。
Ⅱ、超重和失重物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重,处于超重的物体对支持面的压力F N(或对悬挂物的拉力)大于物体的重力mg,即F N=mg+ma;物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重,处于失重的物体对支持面的压力F N(或对悬挂物的拉力)小于物体的重力mg,即F N=mg-ma。
Ⅲ、连接体问题连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统。
处理方法——整体法与隔离法:当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。
Ⅳ、瞬时加速度问题①两种基本模型刚性绳模型(细钢丝、细线等):认为是一种不发生明显形变即可产生弹力的物体,它的形变的发生和变化过程历时极短,在物体受力情况改变(如某个力消失)的瞬间,其形变可随之突变为受力情况改变后的状态所要求的数值。
轻弹簧模型(轻弹簧、橡皮绳、弹性绳等):此种形变明显,其形变发生改变需时间较长,在瞬时问题中,其弹力的大小可看成是不变。
②解决此类问题的基本方法a、分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);b、分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);c、求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
Ⅴ、传送带问题分析物体在传送带上如何运动的方法①分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。
具体方法是:a、分析物体的受力情况在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。
在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。
b、明确物体运动的初速度分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。
c、弄清速度方向和物体所受合力方向之间的关系物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。
②常见的几种初始情况和运动情况分析a、物体对地初速度为零,传送带匀速运动(也就是将物体由静止放在运动的传送带上)物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。
(以下的说明中个字母的意义与此相同)物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。
其加速度由牛顿第二定律,求得;在一段时间内物体的速度小于传送带的速度,物体则相对于传送带向后做减速运动,如果传送带的长度足够长的话,最终物体与传送带相对静止,以传送带的速度V共同匀速运动。
b、物体对地初速度不为零其大小是V20,且与V的方向相同,传送带以速度V匀速运动(也就是物体冲到运动的传送带上)若V20的方向与V的方向相同且V20小于V,则物体的受力情况如图1所示完全相同,物体相对于地做初速度是V20的匀加速运动,直至与传送带达到共同速度匀速运动。
若V20的方向与V的方向相同且V20大于V,则物体相对于传送带向前运动,它受到的摩擦力方向向后,如图2所示,摩擦力f的方向与初速度V20方向相反,物体相对于地做初速度是V20的匀减速运动,一直减速至与传送带速度相同,之后以V匀速运动。
c、物体对地初速度V20,与V的方向相反如图3所示:物体先沿着V20的方向做匀减速直线运动直至对地的速度为零。
然后物体反方向(也就是沿着传送带运动的方向)做匀加速直线运动。
若V20小于V,物体再次回到出发点时的速度变为-V20,全过程物体受到的摩擦力大小和方向都没有改变。
若V20大于V,物体在未回到出发点之前与传送带达到共同速度V匀速运动。
说明:上述分析都是认为传送带足够长,若传送带不是足够长的话,在图2和图3中物体完全可能以不同的速度从右侧离开传送带,应当对题目的条件引起重视。
物体在传送带上相对于传送带运动距离的计算①弄清楚物体的运动情况,计算出在一段时间内的位移X2。
②计算同一段时间内传送带匀速运动的位移X1。
③两个位移的矢量之△X=X2-X1就是物体相对于传送带的位移。
说明:传送带匀速运动时,物体相对于地的加速度和相对于传送带的加速度是相同的。
传送带系统功能关系以及能量转化的计算物体与传送带相对滑动时摩擦力的功①滑动摩擦力对物体做的功由动能定理,其中X2是物体对地的位移,滑动摩擦力对物体可能做正功,也可能做负功,物体的动能可能增加也可能减少。
②滑动摩擦力对传送带做的功由功的概念得,也就是说滑动摩擦力对传送带可能做正功也可能做负功。
例如图2中物体的速度大于传送带的速度时物体对传送带做正功。
说明:当摩擦力对于传送带做负功时,我们通常说成是传送带克服摩擦力做功,这个功的数值等于外界向传送带系统输入能量。
③摩擦力对系统做的总功等于摩擦力对物体和传送带做的功的代数和。
即结论:滑动摩擦力对系统总是做负功,这个功的数值等于摩擦力与相对位移的积。
④摩擦力对系统做的总功的物理意义是:物体与传送带相对运动过程中系统产生的热量,即。
4、应用牛顿第二定律时常用的方法:整体法和隔离法、正交分解法、图像法、临界问题。