2017年山东省高考数学试卷(文科)

合集下载

2017年山东高考数学文+详细答案

2017年山东高考数学文+详细答案

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A , B 互斥,那么P (A +B )=P (A )+P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{||1|1}M x x =-<,{|2}N x x =<,则M N =I(A )(1,1)- (B )(1,2)- (C )(0,2) (D )(1,2)(2)已知i 是虚数单位,若复数z 满足1zi i =+,则2z =(A )2i - (B )2i (C )2- (D )2 (3)若变量,x y 满足250,30,2,x y x y -+≤⎧⎪+≥⎨⎪≤⎩则2z x y =+的最大值为 (A )3- (B )1-(C )1 (D )3(4)已知3cos 4x =,则cos2x = (A )14- (B )14 (C )18- (D )18(5)已知命题2:,10p x R x x ∃∈-+≥;命题:q 若22a b <,则a b <.则下列命题为真命题的是(A )p q ∧ (B )p q∧⌝ (C )p q ⌝∧ (D )p q ⌝∧⌝(6)执行右边的程序框图,当输入的x 的值为4时,输出的y的值为2,则空白判断框中的条件可能为(A )3x > (B )4x >(C )4x ≤ (D )5x ≤(7)函数3sin 2cos 2y x x =+的最小正周期为(A )2π (B )23π (C )π (D )2π(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A )3,5 (B )5,5(C )3,7 (D )5,7(9)设函数,01,()2(1), 1.x x f x x x ⎧<<⎪=⎨-≥⎪⎩若()(1)f a f a =+,则1()f a = (A )2 (B )4 (C )6 (D )8(10)若函数()xe f x (e 为自然对数的底)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中具有M 性质的是(A )()2x f x -= (B )2()f x x =(C )()3x f x -= (D )()cos f x x =第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)已知向量(2,6),(1,),a b λ==-r r 若//a b r r ,则λ= .(12)若直线1(0,0)x y a b a b+=>>过点(1,2), 则2a b +的最小值为 .(13)由一个长方体和两个14圆柱构成的几何 体的三视图如右图,则该几何体的体积为 .(14)已知()f x 是定义在R 上的偶函数,且(4)(2)f x f x +=-.若当[3,0]x ∈- 时,()6x f x -=,则(919)f =_______.(15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>, 的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为__________.三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家123,,A A A 和3个欧洲国家123,,B B B 中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括1A 但不包括1B 的概率.(17)(本小题满分12分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3,6,3ABC b AB AC S ∆==-=u u u r u u u r g , 求A 和a .(18)(本小题满分12分)由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD .(Ⅰ)证明:1//A O 平面11B CD ;(Ⅱ)设M 是OD 的中点,证明:平面1A EM ⊥平面11B CD .(19)(本小题满分12分)已知数列{}n a 是各项均为正数的等比数列,且121236,a a a a a +==g. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ){}n b 为各项非零的等差数列,其前n 项和为n S .已知211n n n S b b ++=g ,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .(20)(本小题满分13分)已知函数3211(),.32f x x ax a R =-∈ (Ⅰ)当2a =时,曲线()y f x =在点(3,(3))f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.(21)(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为22,椭圆C 截直线1y =所得的线段长度为2 2. (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线:(0)l y kx m m =+≠交椭圆C 与A 、B 两点,交y 轴于点M ,点N是M 点关于O 点的对称点.N e 的半径为||NO .设D 为AB 的中点,DE ,DF 与N e 分别相切于点E ,F ,求EDF ∠的最小值.。

2017届山东高考数学文科试卷及答案解析

2017届山东高考数学文科试卷及答案解析

-4-
2017 届山东高考数学文科试卷及答案解析
(3)为更深入了解教学情况,将成绩等级为 A、B 的学生中,按分层抽样抽取 7 人,再从 中任意抽取 2 名,求恰好抽到 1 名成绩为 A 的概率.
(II)若△ABC 的面积为
,且 c2+abcosC+a2=4,求 a.
17.(本小题满分 12 分)传统文化就是文明演化而汇集成的一种反映民族特质和风貌的 民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了 2017 年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文 化选修课的教学效果,进行了一次阶段检测,并从中随机抽取 80 名同学的成绩,然后就 其成绩分为 A、B、C、D、E 五个等级进行数据统计如下: 成绩 A B C D E 人数 9 12 31 22 6
. .
在点(2,3)处的切线与直线 ax+y+1=0 垂直,则 a=
14. 将某班参加社会实践编号为:1,2,3,…,48 的 48 名学生,采用系统抽样的方法 抽取一个容量为 6 的样本,已知 5 号,21 号,29 号,37 号,45 号学生在样本,则样本 中还有一名学生的编号是 ____________. 15. 如图甲,在 中, , , 中, 为.垂足,则 平面 、 , 、 , 平面 这三者
该结论称为射影定理.如图乙,在三棱锥 , 为垂足,且 在
内,类比射影定理,探究
之间满足的关系是
-3-
2017 届山东高考数学文科试卷及答案解析
三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤.解 答写在答题卡上的指定区域内. 16. (本小题满分 12 分)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 2cosA (ccosB+bcosC)=a. (I)求 A;

2017年高考山东文科数学试题及答案(word解析版)

2017年高考山东文科数学试题及答案(word解析版)

解法二:若空白判断框中的条件 x 3 ,输入 x 4 ,满足 4 3 ,输出 y 4 2 6 ,不满足,
故 A 错误,若空白判断框中的条件 x 4 ,输入 x 4 ,满足 4 4 ,不满足 x 3 , 输
出 y log2 4 2 ,故 B 正确;若空白判断框中的条件 x 4 ,输入 x 4 ,满足 4 4 , 满足 x 4 ,输出 y 4 2 6 ,不满足,故 C 错误,若空白判断框中的条件 x 5 , 输入 x 4 ,满足 4 5 ,满足 x 5 ,输出 y 4 2 6 ,不满足,故 D 错误,故选 B.
调递增,则称函数 f x 具有 M 性质,下列函数中具有 M 性质的是( )
(A) f x = 2x
(B) f x= x2
(C) f x = 3x
(D) f x= cosx
【答案】A 【解析】D 显然不对,B 不单调,基本排除,A 和 C 代入试一试。(正式解答可求导,选择题你怎么做?)
若 f (x) 2x ,则 ex f (x) ex 2x ( e )x ,在 R 上单调增,故选 A. 2
(B) 1, 2
(C) 0, 2
(D) 1, 2
【答案】C
【解析】 M : 0 x 2 , N、 x 2 ,所以 M I N (0, 2) ,故选 C.
(2)【2017 年山东,文 2,5 分】已知 i 是虚数单位,若复数 z 满足 zi 1 i ,则 z² ( )
(A) 2i
(B) 2i
(D) 3
【答案】D
【解析】可行域如图,在点 A1, 2 z 取最大值: zmax 3 ,故选 D.
(4)【2017 年山东,文 4,5 分】已知 cos x 3 ,则 cos 2x ( ) 4

2017山东高考文科数学试题及答案

2017山东高考文科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则MN = (A )()1,1- (B )()1,2- (C )()0,2 (D )()1,2 (2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =(A)-2i ( B)2i (C)-2 (D)2(3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3(4)已知3cos 4x =,则cos2x = (A)14- (B)14 (C)18- (D)18(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是(A)p q ∧ (B)p q ∧⌝ (C)p q ⌝∧ (D)p q ⌝∧⌝(6)执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤(7)函数2cos2y x x =+最小正周期为(A )π2 (B )2π3(C )π (D ) 2π (8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A ) 3,5 (B ) 5,5 (C ) 3,7 (D ) 5,7(9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B ) 4 (C ) 6 (D ) 8(10)若函数()e x f x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是(A )()2x f x -= (B )()2f x x = (C )()-3x f x = (D )()cos f x x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ-,若a ∥b ,则λ= .(12)若直线1(00)x y a b a b+=>,>过点(1,2),则2a +b 的最小值为 . (13)由一个长方体和两个14圆柱构成的几何体的三视图如右图,则该几何体的体积为 .(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= . (15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .(18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD , (Ⅰ)证明:1AO ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.19.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.(本小题满分13分)已知函数()3211,32f x x ax a =-∈R . (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,z.x.x.k 讨论()g x 的单调性并判断有无极值,有极值时求出极值. 21.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心,椭圆C截直线y=1所得线段的长度为率为2(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|. 设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求 EDF的最小值.。

2017年山东省高考文科数学真题及答案

2017年山东省高考文科数学真题及答案

2017年山东省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选 项中,只有一项是符合题目要求的。

(5 分)设集合 M={x|| x - 1| v 1},N={x|x v 2},则 M n N=( )y<2C.「p A q D .「p qx 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A . x >3B . x >4C . x < 4D . x < 57. (5分)函数y=. ;sin2x+cos2x 的最小正周期为()A . (-1, 1)2. (5分)已知 B •(- 1, 2) C. (0, 2) D. (1, 2)i 是虚数单位,若复数z 满足zi=1+i ,贝U z 2=( )A . -2i B. 2iC. - 2 D . 23. (5分)已知 x ,y 满足约束条件>.I:-则z=x+2y 的最大值是( )A . -3 B.- 1 4. (5分)已知 C. 1 D . 3cosx 匚,贝U cos2x=( ) 4(5分)已知命题p : 列命题为真命题的5. ? x € R, x 2-x+1 >0.命题 q :若 a 2v b 2,贝U a v b ,下A . p A qB . p A 「q6. (5分)若执行右侧的程序框图,当输入A .C 4 D/输曲/A K Dc n oA . B. ----------- C. n D . 2 n2 \38. (5分)如图所示的茎叶图记录了甲、乙两组各 5名工人某日的产量数据(单 位:件).若这两组数据的中位数相等,且平均值也相等,则 x 和y 的值分别为10. (5分)若函数e x f (x ) (e=2.71828 •是自然对数的底数)在f (x )的定义域 上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是( ) A . f (x ) =2x B. f (x ) =x ^C. f (x ) =3 x D . f(x ) =cosx二、填空题:本大题共5小题,每小题5分,共25分11. __________________________________________________________ (5 分)已知向量二(2, 6),b = (- 1,",若;,贝U 入 ________________ . 12. (5分)若直线—+^=1(a >0,b >0)过点(1,2),则2a+b 的最小值为 _______a b| 13. (5分)由一个长方体和两个+圆柱体构成的几何体的三视图如图,则该几14. (5分)已知f (x )是定义在R 上的偶函数,且f (x+4) =f (x -2).若当x € [ - 3, 0]时,f (x ) =6-x ,则 f (919) = ________ .( )甲组|乙组6 5 92 50 1 7 Vx 478A . 3, 5B . 5, 5 9. (5 分) 设 f (x )=A . 2B. 4C. 6若 f (a ) =f (a+1),则 f (右)=(D . 8C. 3, 7 D . 5, 70< x<l1)» Q115. (5分)在平面直角坐标系xOy 中,双曲线青七=1 (a >0, b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A , B 两点,若| AF+| BF =4| OF ,则 该双曲线的渐近线方程为 _____________ .三、解答题16. (12分)某旅游爱好者计划从3个亚洲国家A i , A 2, A 和3个欧洲国家B i , B 2, B 3中选择2个国家去旅游.(I )若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率; (U)若从亚洲国家和欧洲国家中各任选 1个,求这2个国家包括A 1但不包括 B 1的概率.17. (12分)在厶ABC 中,角A , B , C 的对边分别为a , b , c ,已知b=3,「= ■'= -6, S\ABC =3,求 A 和 a .18. (12分)由四棱柱ABCD H A 1B 1C 1D 1截去三棱锥C 1- B 1CD1后得到的几何体如 图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E 丄平面ABCD(I )证明:A 1O //平面 BCD ;(U)设M 是OD 的中点,证明:平面 A 1EM 丄平面B 1CD1.19. (12分)已知{a n }是各项均为正数的等比数列,且 a 1+a 2=6,自&二庆. (1) 求数列{a n }通项公式;(2) {b n }为各项非零的等差数列,其前n 项和为S n ,已知Qn +1=b n b n +1,求数列(1)当a=2时,求曲线y=f (x )在点(3, f (3))处的切线方程;(2)设函数g (x ) =f (x ) + (x- a ) cosx- sinx ,讨论g (x )的单调性并判断有 无极值,有极值时求出极值.的前n 项和T n .a €R ,_2 221. (14分)在平面直角坐标系xOy中,已知椭圆C: =1( a> b > 0)的a2 b£离心率为.,椭圆C截直线y=1所得线段的长度为2 ?.2(I )求椭圆C的方程;(U)动直线I: y=kx+m (m H0)交椭圆C于A, B两点,交y轴于点M .点N 是M关于O的对称点N的半径为| NO| .设D为AB的中点,DE, DF与。

2017年_2017山东高考文科数学试题及答案

2017年_2017山东高考文科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则M N = (A )()1,1- (B )()1,2- (C )()0,2 (D )()1,2 (2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =(A)-2i ( B)2i (C)-2 (D)2(3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3(4)已知3cos 4x =,则cos2x = (A)14- (B)14 (C)18- (D)18(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是(A)p q ∧ (B)p q ∧⌝ (C)p q ⌝∧ (D)p q ⌝∧⌝(6)执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤(7)函数2cos 2y x x =+最小正周期为 (A )π2 (B )2π3(C )π (D ) 2π (8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A ) 3,5 (B ) 5,5 (C ) 3,7 (D ) 5,7(9)设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B ) 4 (C ) 6 (D ) 8(10)若函数()e x f x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是(A )()2x f x -= (B )()2f x x = (C )()-3x f x = (D )()cos f x x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ-,若a ∥b ,则λ= .(12)若直线1(00)x y a b a b+=>,>过点(1,2),则2a +b 的最小值为 . (13)由一个长方体和两个14圆柱构成的几何体的三视图如右图,则该几何体的体积为 .(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= . (15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .(18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD , (Ⅰ)证明:1A O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.19.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.(本小题满分13分)已知函数()3211,32f x x ax a =-∈R . (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,z.x.x.k 讨论()g x 的单调性并判断有无极值,有极值时求出极值. 21.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心,椭圆C截直线y=1所得线段的长度为.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|. 设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求 EDF的最小值.11。

2017年高考数学山东卷文(附参考答案及详解)

2017年高考数学山东卷文(附参考答案及详解)

故选 )!
% & $!*!


*&槡':+;"#,<=:"#&":+;
"#,
" 4
#C&"""&"!
故选 *!
0!%!解析甲组数据的中位数为42#由甲$乙两组数据的 中 位 数 相
等得*&2!又 甲$乙 两 组 数 据 的 平 均 值 相 等#6
! 2
-
%24,42,
4",$/,$#,#&&
! 2
&L#即36""
&
! "
#6
6 3
&槡""#
6 双曲线的渐近线方程为*&3槡""#!
!4!%!&解由题意知'从4个国家中任选两个国家'其 一 切 可 能 的 结
果 组 成 的 基 本 事 件 有 ,#$!'$"$'#$!'$'$'#$!'"!$'#$!'""$' #$!'"' $'#$"'$' $'#$"'"! $'#$"'"" $'#$"'"' $'#$''"! $' #$''""$'#$''"'$'#"!'""$'#"!'"'$'#""'"'$'共 !2个 ! 所选两个国家都是亚洲国家的事件所包含的基本事件有,#$!'$"$'

2017年山东省高考文科数学试卷

2017年山东省高考文科数学试卷

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}x 2N x =<,则MN =A. (-1,1)B. (-1,2)C. (0,2)D. (1,2)(2)已知i 是虚数单位,若复数满足zi=1+i,则z ²=A.-2iB.2iC.-2D.2(3)已知x,y 满足约束条件x 2y 50x 302⎧≤⎪≥⎨⎪≤⎩-++y 则z=x+2y 的最大值是 A.-3 B.-1 C.1 D.3(4)已知cosx=34 ,则cos2x= (A)- 14 (B) 14 (C) - 18 (D) 18(5) 已知命题p :x R ∃∈ , x2-x+1≥ 0;命题q :若a2<b2,则a<b.下列命题为真命题的是(A )p Λ q (B)p Λ⌝ q (C) ⌝ p Λ q (D) ⌝ p Λ ⌝ q(6)执行右侧的程序框图,当输入的x 值时,输入的y 的值为2,则空白判断框中的条件可能为(A )x>3 (B) x>4 (C)x ≤ 4 (D)x ≤ 5(7)函数sin2cos23+=y x x 最小正周期为 A 2π B 23π C π D 2π (8)如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件)。

2017年山东省高考数学试卷文科-最新Word版

2017年山东省高考数学试卷文科-最新Word版

2017年山东省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2) D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.23.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3 B.﹣1 C.1 D.34.(5分)已知cosx=,则cos2x=()A.﹣ B.C.﹣ D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4 C.x≤4 D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2 B.4 C.6 D.810.(5分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2﹣x B.f(x)=x2C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x ∈[﹣3,0]时,f(x)=6﹣x,则f(919)=.15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E ⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1=b n b n+1,求数列的前n项和T n.20.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N 是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N 分别相切于点E,F,求∠EDF的最小值.2017年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

(完整)2017年山东省高考文科数学真题及答案,推荐文档

(完整)2017年山东省高考文科数学真题及答案,推荐文档

2017 年ft东省高考数学试卷(文科)一、选择题:本题共10 小题,每小题5 分,共50 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5 分)设集合M={x||x﹣1|<1},N={x|x<2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)2.(5 分)已知i 是虚数单位,若复数z 满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.23.(5 分)已知x,y 满足约束条件则z=x+2y 的最大值是()A.﹣3 B.﹣1 C.1 D.34.(5 分)已知cosx=,则cos2x=()A.﹣B.C.﹣D.5.(5 分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q6.(5 分)若执行右侧的程序框图,当输入的x 的值为4 时,输出的y 的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4C.x≤4D.x≤57.(5 分)函数y=sin2x+cos2x 的最小正周期为()A.B.C.πD.2π8.(5 分)如图所示的茎叶图记录了甲、乙两组各5 名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为()A.3,5 B.5,5 C.3,7 D.5,79.(5 分)设f(x)=若f(a)=f(a+1),则f()=()A.2 B.4 C.6 D.810.(5 分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M 性质,下列函数中具有M 性质的是()A.f(x)=2x B.f(x)=x2C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5 小题,每小题5 分,共25 分11.(5 分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5 分)若直线=1(a>0,b>0)过点(1,2),则2a+b 的最小值为.13.(5 分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5 分)已知f(x)是定义在R 上的偶函数,且f(x+4)=f(x﹣2).若当x∈[﹣3,0]时,f(x)=6﹣x,则f(919)= .15.(5 分)在平面直角坐标系xOy 中,双曲线=1(a>0,b>0)的右支与焦点为F 的抛物线x2=2py(p>0)交于A,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12 分)某旅游爱好者计划从3 个亚洲国家A1,A2,A3和3 个欧洲国家B1,B2,B3中选择2 个国家去旅游.(Ⅰ)若从这 6 个国家中任选 2 个,求这 2 个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1 个,求这2 个国家包括A1但不包括B1的概率.17.(12 分)在△ABC 中,角A,B,C 的对边分别为a,b,c,已知b=3,=﹣6,S△ABC=3,求 A 和a.18.(12 分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A1E⊥ 平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M 是OD 的中点,证明:平面A1EM⊥平面B1CD1.19.(12 分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n} 为各项非零的等差数列,其前n 项和为S n,已知S2n+1=b n b n+1,求数列的前n 项和T n.20.(13 分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2 时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14 分)在平面直角坐标系xOy 中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C 截直线y=1 所得线段的长度为2 .(Ⅰ)求椭圆 C 的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C 于A,B 两点,交y 轴于点M.点N 是M 关于O 的对称点,⊙N 的半径为|NO|.设D 为AB 的中点,DE,DF 与⊙N 分别相切于点E,F,求∠EDF 的最小值.2017 年ft东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10 小题,每小题5 分,共50 分。

2017山东高考文科数学试题及答案

2017山东高考文科数学试题及答案

2017山东高考文科数学试题及答案2017山东高考文科数学试题及答案一命题合理,题目涵盖了高中数学教学的各个层面,从基础知识到综合应用都有所涉及。

本文将按照试卷的结构,逐一为读者分析解题思路,并提供答案供参考。

第一部分选择题(共12小题,每小题5分,共60分)1. 设函数f(x) = 2x^2 - 3x,那么f'(x)在(-∞, ∞)上的单调递增区间是:()A. (-∞, 1/4)B. (1/4, ∞)C. (1/4, 0)D. (0, 1/4)解析:首先对函数f(x)求一阶导数:f'(x) = 4x - 3求导得到一次函数,该一次函数的斜率为4,大于0,说明函数在(-∞, ∞)上单调递增。

所以选项B正确。

2. 已知向量 a = (3, 4) , b = (-1, 2),若m是满足2a + mb = 0 的实数,则m =()A. -2B. 2C. 1/2D. -1/2解析:将已知的向量代入等式2a + mb = 0 中,得到:2(3, 4) + m(-1, 2) = (0, 0)对应分量相加得到:6 - m = 08 - 2m = 0解得m = -2所以选项A正确。

......第二部分解答题(共5大题,共60分)2. 已知等差数列 {an} 的前n项和Sn满足:Sn=3n^2-n,求该等差数列的通项公式。

解析:我们首先计算等差数列{an} 的通项差d。

由已知Sn=3n^2-n,我们可以推导出:an = Sn - Sn-1 = (3n^2 - n) - (3(n-1)^2 - (n-1))an = 3n^2 - n - 3(n^2 - 2n + 1) + n - 1整理后得到:an = 6n - 2所以等差数列的通项公式为:an = 6n - 2。

......附加部分答案1. A2. A3. C4. D5. B6. A7. C8. A9. D 10. B11. D 12. C 13. 122 14. A 15. D 16. B 17. C 18. B 19. C 20. D21. 8 22. m=12 23. m:2 24. 空集 25. B总结:本次2017山东高考文科数学试题整体难度适中,试题涵盖了高中数学各个知识点,考察面广。

2017年高考文科数学试题(山东卷)答案

2017年高考文科数学试题(山东卷)答案

2017年普通高等学校招生全国统一考试(山东卷)文科数学1.C 【解析】{|02}M x x =<<,所以{|02}M N x x =<<,选C .2.A 【解析】由i 1i z =+,得1i1i iz +==-,22(1i)2i z =-=-,选A . 3.D 【解析】不等式组可行域如图阴影部分,当2z x y =+过(1,2)A -时取得最大值3,选D . 4.D 【解析】由3cos 4x =得2231cos22cos 12()148x x =-=⨯-=,故选D . 5.B 【解析】取0x =,知1p 成立;若22a b <,得||||a b =,q 为假,所以p q ⌝∧为真,选B .6.B 【解析】输入x 的值为4时,由226,log 42x +==可知4x =不满足判断框中的条件,只能是4x >,故选B . 7.C 【解析】∵2sin(2)6y x π=+,∴2T ππω==,选C .8.A 【解析】甲组:56,62,65,70x +,74,乙组:59,61,67,60y +,78.要使两组数据的中位数相等,则6560y =+,所以5y =, 又566265(70)74596167657855x +++++++++=,解得3x =,选A .9.C 【解析】由1x ≥时()()21f x x =-是增函数可知,若,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =, 则1(4)2(41)6f f a ⎛⎫==-=⎪⎝⎭,故选C .10.A 【解析】对于A ,令()e 2x xg x-=⋅,11()e (22ln )e 2(1ln )022x x x x x g x ---'=+=+>,则()g x 在R 上单调递增,故()f x 具有M 性质,故选A . 11.3-【解析】由∥a b 可得162 3.λλ-⨯=⇒=- 12.8【解析】由题意有121a b+=,所以1242(2)()448b a a b a b a b a b +=++=+++=≥.当且仅当4b aa b=,即4b =,2a =时等号成立. 13.22π+【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+. 14.6【解析】由(4)(2)f x f x +=-,得(6)()f x f x +=,所以函数()f x 的周期6T =,所以(919)(61531)(1)f f f =⨯+=(1)6f =-=.15.y x =【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为2y x =±. 16.【解析】(Ⅰ)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:12{,}A A ,13{,}A A ,23{,}A A ,11{,}A B ,12{,}A B 13{,}A B ,21{,}A B ,22{,}A B ,23{,}A B ,31{,}A B ,32{,}A B ,33{,}A B ,12{,}B B ,13{,}B B ,23{,}B B ,共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:12{,}A A ,13{,}A A ,23{,}A A ,共3个.则所求事件的概率为:31155P ==. (Ⅱ)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}111213212223313233,,{,},,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B ,共9个,包含1A 但不包括1B 的事件所包含的基本事件有:{}{}1213,,,A B A B ,共2个,所以所求事件的概率为29P =. 17.【解析】因为6AB AC ⋅=-,所以cos 6bc A =-, 又 3ABC S ∆=, 所以sin 6bc A =,因此tan 1A =-,又0A π<<,所以34A π=, 又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(292a =+-⋅⋅-=,所以a = 18.【解析】(Ⅰ)取11B D 中点1O ,连接1CO ,11A O ,O 1ABCDE OM A 1B 1D 1由于1111ABCD A B C D -为四棱柱, 所以11AO OC ∥,11A O OC =, 因此四边形11AOCO 为平行四边形, 所以11AO O C ∥,又1O C ⊂面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD ,(Ⅱ)∵AC BD ⊥.E ,M 分别为AD 和OD 的中点, ∴EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1A E BD ⊥,∵11B D BD ∥,所以11EM B D ⊥,111A E B D ⊥, 又1A E ,EM ⊂平面1,A EM 1A E EM E =,所以11B D ⊥平面1,A EM又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD . 19.【解析】 (Ⅰ)设数列{}n a 的公比为q ,由题意知, 1(1)6a q +=,2211a q a q =.又0n a >,解得12a =,2q =,所以2nn a =.(Ⅱ)由题意知121211(21)()(21)2n n n n b b S n b +++++==+⋅又211n n n S b b ++=,10n b +≠, 所以21n b n =+,令nn nb c a =, 则212n nn c +=因此12n n T c c c =++⋅⋅⋅+,231357212122222n n n n --+=+++++ 又235113572121222222n nn n n T +-+=+++++, 两式相减得2111311121222222n n n n T -++⎛⎫=++++-⎪⎝⎭, 所以2552n nn T +=-. 20.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+-- 所以 ()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--,令()sin h x x x =-,则()1cos 0h x x '=->,所以()h x 在R 上单调递增, 因此(0)0h =,所以,当0x >时,()0h x >;当0x <时()0h x <. (1) 当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减;当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以,当x a =时,()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时,()g x 取到极小值,极小值是(0)g a =-.(2) 当0a =时,()(sin )g x x x x '=-,当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以,()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3) 当0a >时,'()()(sin )g x x a x x =--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以,当0x =时,()g x 取到极大值,极大值是(0)g a =-;当x a =时,()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-. 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--.21.【解析】,得2222()a a b =-, 又当1y =时,2222a x a b =-,得2222a a b-=,所以24a =,22b =,因此椭圆方程为22142x y +=. (Ⅱ)设1122(,),(,)A x y B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩ 得222(21)4240k x kmx m +++-=, 由0∆> 得2242m k <+ (*)且122421kmx x k +=+ , 因此122221my y k +=+ ,所以222(,)2121km mD k k -++ ,又(0,)N m - , 所以222222()()2121km mND m k k =-++++ 整理得:2242224(13)(21)m k k ND k ++=+ ,因为NF m =所以2422222224(31)831(21)(21)ND k k k k k NF+++==+++令283t k =+,3t ≥ 故21214t k ++=所以2221616111(1)2ND t t NFt t=+=++++. 令1y t t=+,所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[3,)+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF+=≤,由(*)得 m <<且0m ≠,故12NDNF ≥, 设2EDF θ∠=, 则1sin 2NF ND θ=≥ , 所以θ得最小值为6π. 从而EDF ∠的最小值为3π,此时直线l 的斜率时0.综上所述:当0k =,(m ∈⋃时,EDF ∠取得最小值为3π.。

2017年山东高考数学文+详细标准答案

2017年山东高考数学文+详细标准答案

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.ﻩ4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A , B 互斥,那么P (A +B )=P (A )+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{||1|1}M x x =-<,{|2}N x x =<,则M N =(A)(1,1)- (B)(1,2)- (C)(0,2) (D )(1,2)(2)已知i 是虚数单位,若复数z 满足1zi i =+,则2z =(A )2i - (B )2i (C)2- (D)2 (3)若变量,x y 满足250,30,2,x y x y -+≤⎧⎪+≥⎨⎪≤⎩则2z x y =+的最大值为 (A)3- (B)1-(C )1 (D)3(4)已知3cos 4x =,则cos2x = (A )14- (B )14 (C)18- (D)18(5)已知命题2:,10p x R x x ∃∈-+≥;命题:q 若22a b <,则a b <.则下列命题为真命题的是(A )p q ∧ (B )p q∧⌝ (C )p q ⌝∧ (D)p q ⌝∧⌝(6)执行右边的程序框图,当输入的x 的值为4时,输出的y的值为2,则空白判断框中的条件可能为(A)3x > (B)4x >(C)4x ≤ (D)5x ≤(7)函数3sin 2cos 2y x x =+的最小正周期为(A )2π (B)23π (C )π (D)2π(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A)3,5 (B)5,5(C)3,7 (D)5,7(9)设函数,01,()2(1), 1.x x f x x x ⎧<<⎪=⎨-≥⎪⎩若()(1)f a f a =+,则1()f a = (A)2 (B)4 (C)6 (D)8(10)若函数()x e f x (e为自然对数的底)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中具有M 性质的是(A)()2x f x -= (B)2()f x x =(C)()3x f x -= (D)()cos f x x =。

2017年山东卷文科数学高考试卷(原卷 答案)

2017年山东卷文科数学高考试卷(原卷 答案)

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷共21题,共150分。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{||1|1},{|2}Mx x N x x =−<=<则MN =A.(-1,1)B.(-1,2)C. (0,2)D.(1,2)(2)已知i 是虚数单位,若复数z 满足1zi i =+,则2z=A.-2iB.2iC.-2D.2(3)已知x,y 满足约束条件250,30,2,x y x y −+≤⎧⎪+≥⎨⎪≤⎩则2z x y =+的最大值是 A.-3 B.-1 C.1D.3(4)已知34cosx =,则2cos x = A .-14 B.14 C. - 18D. 18(5) 已知命题:p x R ∃∈ , 210xx −+≥;命题:q 若22a b <,则a b <.下列命题为真命题的是A.p q ∧B. p q ∧⌝C. p q ⌝∧D. p q ⌝∧⌝(6)执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能A.x>3B. x>4C.x ≤ 4D.x ≤ 5(7)函数cos2+=y x x 最小正周期为A.2πB.23π C.πD.2π(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)。

若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A . 3,5 B. 5,5 C. 3,7 D. 5,7(9)设1()2(1),1x f x x x <<=−≥⎪⎩,若()(1)f a f a =+,则1()f a =A. 2B. 4C. 6D. 8(10)若函数()( 2.71828 (x)e f x e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A .()2xf x −= B .2()f x x = C .()3xf x −=D .()cos f x x =二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ− ,若//a b ,则λ= 。

2017年山东文数高考真题(含答案)

2017年山东文数高考真题(含答案)

2017年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

学.科.网答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;学.科.网如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}2N x x =<,则M N =(A )()1,1- (B )()1,2-(C )()0,2(D )()1,2(2)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z = (A)-2i ( B)2i (C)-2 (D)2(3)已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是(A)-3 (B)-1 (C)1 (D)3 (4)已知3cos 4x =,则cos2x =(A)14-(B)14 (C)18- (D)18(5)已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是 (A)p q ∧ (B)p q ∧⌝ (C)p q ⌝∧ (D)p q ⌝∧⌝(6)执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为(A )3x > (B )4x > (C )4x ≤ (D )5x ≤ (7)函数3sin 2cos 2y x x =+最小正周期为(A )π2 (B )2π3(C )π (D ) 2π(8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为(A ) 3,5 (B ) 5,5 (C ) 3,7 (D ) 5,7(9)设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭(A )2 (B ) 4 (C ) 6 (D ) 8(10)若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 (A )()2xf x -=(B )()2f x x=(C )()-3xf x =(D )()cos f x x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知向量a =(2,6),b =(1,)λ-,若a ∥b ,则λ= .(12)若直线1(00)x ya b a b+=>,>过点(1,2),则2a +b 的最小值为 . (13)由一个长方体和两个14圆柱构成的几何体的三视图如右图,则该几何体的体积为 .(14)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈-时,()6xf x -=,则f (919)= .(15)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b -=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.(17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .(18)(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD ,(Ⅰ)证明:1A O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.19.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 20.(本小题满分13分)已知函数()3211,32f x x ax a =-∈R . (I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,z.x.x.k 讨论()g x 的单调性并判断有无极值,有极值时求出极值.21.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为22,椭圆C截直线y =1所得线段的长度为22. (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学试题参考答案一、选择题(1) C (2) A (3) D (4) D (5) B (6) B (7) C (8) A (9) C (10) A 二、填空题 (11)3- (12)8 (13)π22+ (14)6 (15)22y x =± 三、解答题 (16)解:(Ⅰ)由题意知,从6个国家里任选两个国家,其一切可能的结果组成的基本事件有:()()1213,,,,A A A A ()23,,A A ()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,,A B A B A B ()()()121323,,,,,,B B B B B B 共15个,所选两个国家都是亚洲国家的事件所包含的基本事件有:()()()121323,,,,,,A A A A A A 共3个,学科&网则所求事件的概率为:()31155P A ==. (Ⅱ) 从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,,A B A B A B 共9个,包括1A 但不包括1B 的事件所包含的基本事件有:()()1213,,,,A B A B 共2个. 则所求事件的概率为:29P =. (17)解:因为6AB AC ⋅=-,所以cos 6bc A =-, 又 3ABC S ∆=,所以sin 6bc A =, 因此tan 1A =-, 又0A π<< 所以34A π=,又3b =,所以22c =. 由余弦定理2222cos a b c bc A =+- 得22982322()292a =+-⨯⨯⨯-=, 所以29a =(18) 证明:(Ⅰ)取11B D 中点1O ,连接111,CO AO ,由于1111ABCD A B C D -为四棱柱, 所以1111//,=AO CO AO CO , 因此四边形11A OCO 为平行四边形, 所以11//A O O C ,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1//AO 平面11B CD , (Ⅱ)因为 AC BD ⊥,E,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又 1A E ⊥面ABCD ,BD ABCD ⊂平面 所以1,A E BD ⊥ 因为 11//B D BD所以11111EM B D A E B D ⊥⊥,又 A 1E, EM 11,A EM A E EM E ⊂⋂=平面 所以11B D ⊥平面111,A EM B D ⊂又平面11B CD ,所以 平面1A EM ⊥平面11B CD 。

2017年山东省高考文科数学真题及答案

2017年山东省高考文科数学真题及答案

2017年山东省高考数学试卷(文科)一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合M={x||x﹣1|<1},N={x|x <2},则M∩N=()A.(﹣1,1)B.(﹣1,2)C.(0,2)D.(1,2)2.(5分)已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.23.(5分)已知x,y满足约束条件则z=x+2y的最大值是()A.﹣3 B.﹣1 C.1 D.34.(5分)已知cosx=,则cos2x=()A.﹣B.C.﹣D.5.(5分)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q 6.(5分)若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3 B.x>4 C.x≤4 D.x≤57.(5分)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π8.(5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5 B.5,5 C.3,7 D.5,79.(5分)设f(x)=若f(a)=f(a+1),则f()=()A.2 B.4 C.6 D.810.(5分)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()A.f(x)=2x B.f(x)=x2 C.f(x)=3﹣x D.f(x)=cosx二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(5分)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x﹣2).若当x∈[﹣3,0]时,f(x)=6﹣x,则f(919)= .15.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.三、解答题16.(12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=﹣6,S △ABC=3,求A和a.18.(12分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E⊥平面ABCD,(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)设M是OD的中点,证明:平面A1EM ⊥平面B1CD1.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;(2){b n} 为各项非零的等差数列,其前n项和为S n,已知S2n+1=b n b n+1,求数列的前n 项和T n.20.(13分)已知函数f(x)=x3﹣ax2,a∈R,(1)当a=2时,求曲线y=f(x)在点(3,f (3))处的切线方程;(2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(Ⅰ)求椭圆C的方程;(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C 于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.2017年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本题共10小题,每小题5分,共50分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省高考数学试卷(文科)
一、选择题:本题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(★)设集合M={x||x-1|<1},N={x|x<2},则M∩N=()
A.(-1,1) B.(-1,2) C.(0,2) D.(1,2)
2.(★)已知i是虚数单位,若复数z满足zi=1+i,则z 2=()
A.-2i B.2i C.-2 D.2
3.(★)已知x,y满足约束条件则z=x+2y的最大值是()
A.-3 B.-1 C.1 D.3
4.(★)已知cosx= ,则cos2x=()
A.- B. C.- D.
5.(★★)已知命题p:∃x∈R,x 2-x+1≥0.命题q:若a 2<b 2,则a<b,下列命题为真命题的是()
A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q
6.(★)若执行右侧的程序框图,当输入的x的值为4时,输出的
y的值为2,则空白判断框中的条件可能为()
A.x>3 B.x>4 C.x≤4 D.x≤5
7.(★)函数y= sin2x+cos2x的最小正周期为()
A. B. C.π D.2π
8.(★)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产
量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()
A.3,5 B.5,5 C.3,7 D.5,7
9.(★★)设f(x)= 若f(a)=f(a+1),则f()=()
A.2 B.4 C.6 D.8
10.(★)若函数e x f(x)(e=2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质,下列函数中具有M性质的是()
A.f(x)=2-x B.f(x)=x2 C.f(x)=3-x D.f(x)=cosx
二、填空题:本大题共5小题,每小题5分,共25分
11.(★★)已知向量=(2,6),=(-1,λ),若,则λ= -3 .
12.(★★)若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为 8 .
13.(★★)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为 2+ .
14.(★★)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈-3,0时,f (x)=6 -x,则f(919)= 6 .
15.(★★★)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x 2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±x .
三、解答题
16.(★★)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.
(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.
17.(★★★★)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,=-6,S △ABC=3,求A和a.
18.(★★★★)由四棱柱ABCD-A 1B 1C 1D 1截去
三棱锥C 1-B 1CD 1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E
为AD的中点,A 1E⊥平面ABCD,
(Ⅰ)证明:A 1O∥平面B 1CD 1;
(Ⅱ)设M是OD的中点,证明:平面A 1EM⊥平面B 1CD 1.
19.(★★★★)已知{a n}是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.
(1)求数列{a n}通项公式;
(2){b n} 为各项非零的等差数列,其前n项和为S n,已知S 2n+1=b n b n+1,求数列的
前n项和T n.
20.(★★★★★)已知函数f(x)= x 3- ax 2,a∈R,
(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)设函数g(x)=f(x)+(x-a)cosx-sinx,讨论g(x)的单调性并判断有无极值,有极
值时求出极值.
21.(★★★)在平面直角坐标系xOy中,已知椭圆C:
=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2 .
(Ⅰ)求椭圆C的方程;
(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|.设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求∠EDF的最小值.。

相关文档
最新文档