勾股定理典型练习题

合集下载

勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)1.勾股定理典型练题勾股定理是几何中的一个重要定理。

在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。

如图1所示,由边长相等的小正方形和直角三角形构成,可以用其面积关系验证勾股定理。

图2是由图1放入矩形内,已知AC = 4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?已知AB = 3,得到∠BAC = 90°。

根据勾股定理,BC = 5.所以矩形KLMJ的面积为 4 × 5 + 3 × 4 = 32.因此,答案为C。

2.勾股定理典型练题XXX所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。

若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是多少?根据图中所示,正方形E的边长为2,所以面积为2 × 2 = 4.因此,答案为C。

3.勾股定理典型练题如图所示,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点。

则图中阴影部分的面积是多少?首先,根据勾股定理,AC = 4,BC = 4,AB = 4√2.因此,三角形ABC的面积为4√2 × 4 / 2 = 8√2.由于三角形ADE和三角形ABF相似,所以ADE的面积是ABF的面积的一半。

同理,三角形BDF和三角形BCE相似,所以BDF的面积是BCE的面积的一半。

因此,阴影部分的面积为8√2 - 2 × 2 - 2 ×1 = 8√2 - 6.因此,答案为C。

4.勾股定理典型练题如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为多少?根据图中所示,正方形a和正方形c的边长分别为√5和√11.因此,正方形b的边长为√11 - √5,所以面积为(√11 - √5)² = 6.因此,答案为C。

5.勾股定理典型练题如图所示,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则S1和S2的大小关系是什么?首先,根据勾股定理,AB = √(BC² + AC²) = 2√2.因此,半圆的面积为π × (2√2 / 2)² = 2π。

勾股定理典型试题(自编)

勾股定理典型试题(自编)

勾股定理1、如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上, 以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(A )2.5 (B )22 (C )3 (D )52、如图2所示,在Rt ABC △中,90A ∠=°,BD 平分ABC ∠,交AC 于点D ,且4,5AB BD ==,则点D到BC 的距离是:(A)3 (B)4 (C)5 (D)6练习:在ABC △中,AB=AC=5,BC=6。

若点P 在边AC 上移动,求BP 的最小值。

3、如图,已知正方形ABCD 的边长为3,E 为CD 边上一点, 1DE =.以点A 为中心,把△ADE 顺时针旋转90︒,得△ABE ',连接EE ',则EE '的长等于 .4、 (勾股定理、垂直平分线——中等)如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD ,AC 于点E ,O ,连结CE ,则CE 的长为_____________。

练习1:如图,在矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好在边BC 上的点F 处,若AE=5,BF=3,则CD 边长是_____________。

练习2:如图.矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE,且EF=3.则AB 的长为( )练习3: 如图所示,将一个长方形纸片ABCD 沿对角线AC 折叠.点B 落在E 点,AE 交DC 于F 点,已知AB=8cm,BC=4cm.则折叠后重合部分的面积为( )练习4:为了丰富少年儿童的业余文化生活,某社区要在如图所示的AB 所在的直线上建一图阅览室,本社区的两所学校分别位于如图的点C 和点D 的位置上,已知CA ⊥AB 于点A ,DC ⊥AB 于点B,AB=25km,CA=15km,DB=10km ,试问阅览室E 应建在距点A 多少km 处,才能使它到C 、D 两学校的距离相等?练习5:如图,矩形ABCD 中,点P 、Q 分别是边AD 和BC 的中点,沿过C 点的直线折叠矩形ABCD 使点B 落在线段PQ 上的点F 处,折痕交AB 边于点E,交线段PQ 于点G,若BC 长为3,则线段FG 的的长为( )5、 满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶5练习:下列几组数:①9,12,15;②,,;③,,;④3a,4a,5a(a 为大于1的自然数);⑤m 2-n 2,2mn,m 2+n 2 其中m 、第3题E第2题第4题 第4题练习4E 第4题练习1 第4题练习2 第4题练习5 第4题练习3n为任意正整数(m>n).其中是勾股数的有( )6、(勾股定理——中等)某市道路交通管理条例规定:小汽车在市区路上行驶速度不得超过70km/h。

勾股定理练习题及答案

勾股定理练习题及答案

勾股定理练习题及答案问题一:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。

解答一:根据勾股定理,斜边的平方等于两条直角边的平方和。

设斜边的长度为c,则有:c^2 = 3^2 + 4^2c^2 = 9 + 16c^2 = 25取平方根得到c = 5cm。

所以,斜边的长度为5cm。

问题二:已知直角三角形的斜边长度为10cm,一条直角边的长度为6cm,求另一条直角边的长度。

解答二:设另一条直角边的长度为a。

根据勾股定理,可得:a^2 + 6^2 = 10^2a^2 + 36 = 100a^2 = 100 - 36a^2 = 64取平方根得到a = 8cm。

所以,另一条直角边的长度为8cm。

问题三:已知直角三角形的一条直角边的长度为5cm,另一条直角边的长度为12cm,求斜边的长度。

解答三:设斜边的长度为c。

根据勾股定理,可得:c^2 = 5^2 + 12^2c^2 = 25 + 144c^2 = 169取平方根得到c = 13cm。

所以,斜边的长度为13cm。

问题四:已知直角三角形的斜边长度为15cm,一条直角边的长度为9cm,求另一条直角边的长度。

解答四:设另一条直角边的长度为a。

根据勾股定理,可得:a^2 + 9^2 = 15^2a^2 + 81 = 225a^2 = 225 - 81a^2 = 144取平方根得到a = 12cm。

所以,另一条直角边的长度为12cm。

问题五:已知直角三角形的一条直角边的长度为7cm,另一条直角边的长度为24cm,求斜边的长度。

解答五:设斜边的长度为c。

根据勾股定理,可得:c^2 = 7^2 + 24^2c^2 = 49 + 576c^2 = 625取平方根得到c = 25cm。

所以,斜边的长度为25cm。

以上是五道勾股定理练习题及答案的解答过程。

通过这些练习题,我们可以加深对勾股定理的理解,熟练掌握如何在已知条件下求解三角形的边长。

勾股定理在几何学和实际应用中都有广泛的应用,是数学中的重要概念之一。

勾股定理常见练习试题

勾股定理常见练习试题

(一)情境引入如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下, 树顶落在离树根24m 处. 大树在折断之前高多少?(二)合作探究(1)观察下面两幅图并填表:A 的面积 (单位面积)B 的面积 (单位面积)C 的面积 (单位面积)左图 右图(2)问:①、图形A 、B 、C 的面积有何关系?②、图形A 、B 、C 的面积与三角形的边长有何关系? ③、由①、②可得出直角三角形三边长有什么结论?1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:AB CC BAcba HG FEDCBA方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5..勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数) 题型一:已知两边求第三边【例1】直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_____15____2cm .【例2】已知直角三角形的两边长为5、12,则另一条边长是____13或____________. 【例3】作出长度为10的线段。

中考数学勾股定理知识点-+典型题及答案

中考数学勾股定理知识点-+典型题及答案

一、选择题1.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DG QM 的值为( )A .32B .53C .45D .31-2.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )A .1B .2C .32D .33.如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值是( )A .8B .9C .10D .12 4.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45︒,若AD =4,CD =2,则BD 的长为( )A .6B .27C .5D .255.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )A .3B .3.3C .4D .4.56.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A .AB 的中点B .BC 的中点 C .AC 的中点D .C ∠的平分线与AB 的交点7.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .200mB .300mC .400mD .500m8.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )A .12cmB .14cmC .20cmD .24cm9.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是( )A .245B .5C .6D .810.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )A .332cmB .4cmC .32cmD .6cm二、填空题11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.12.将一副三角板按如图所示摆放成四边形ABCD ,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD =32,则AB 的长为__________.13.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.14.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________.15.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.16.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.17.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线l AB ,F 是l 上的一点,且AB AF =,则FC =__________. 18.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.19.如图,直线423y x =+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.20.如图所示,圆柱体底面圆的半径是2π ,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.24.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.25.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠;(2)若=8AB ,=6CE . 求BC 的长 .26.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .(1)若OA =52,求点B 的坐标; (2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 1(2,2),P 2(2,22),P 3(2+2,2﹣2),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.28.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.29.(已知:如图1,矩形OACB 的顶点A ,B 的坐标分别是(6,0)、(0,10),点D 是y 轴上一点且坐标为(0,2),点P 从点A 出发以每秒1个单位长度的速度沿线段AC ﹣CB 方向运动,到达点B 时运动停止.(1)设点P 运动时间为t ,△BPD 的面积为S ,求S 与t 之间的函数关系式;(2)当点P 运动到线段CB 上时(如图2),将矩形OACB 沿OP 折叠,顶点B 恰好落在边AC 上点B ′位置,求此时点P 坐标;(3)在点P 运动过程中,是否存在△BPD 为等腰三角形的情况?若存在,求出点P 坐标;若不存在,请说明理由.30.如图,在△ABC 中,D 是边AB 的中点,E 是边AC 上一动点,连结DE,过点D 作DF ⊥DE 交边BC 于点F(点F 与点B 、C 不重合),延长FD 到点G,使DG=DF,连结EF 、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG ≌△BDF ;(2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(4)求线段EF 长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,31PQ -=,所以33QM QP PM +=+=;易证Rt △ACB ≌Rt △DCG (HL ),从而得3DG AB ==然后代入所求数据即可得DG QM 的值. 【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠,∴△EAB ≌△CAM (SAS ),∴30EBA CMA ==︒∠∠,∴60BPQ APM ==︒∠∠,∴90BQP ∠=︒,12PQ PB =, 设1AP =,则AM =2PM=,1PB =,PQ =,∴2QM QP PM =+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BC AC CD =⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ),∴DG AB ==∴12DG GM==. 故选D .【点睛】 本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.2.B解析:B【解析】【分析】如图,连接BB′.根据折叠的性质知△BB′E 是等腰直角三角形,则.又B′E 是BD 的中垂线,则DB′=BB′.【详解】∵四边形ABCD 是平行四边形,BD=2,∴BE=12BD=1. 如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E .∴∠BEB′=90°,∴△BB′E 是等腰直角三角形,则,又∵BE=DE ,B′E ⊥BD ,∴故选B.【点睛】考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3.C解析:C【解析】【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【详解】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BN,BD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点 N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8−2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故选:C.【点睛】此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.4.A解析:A【解析】【分析】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,则有∠AD′D=∠D′AD=45︒,∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22'AD AD +=42,∠D′DA+∠ADC=90°,由勾股定理得CD′=22DC DD +'=()22422+=6,故选A.【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键.5.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D 在线段AB 的垂直平分线上,∴DA =DB ,在Rt △BCD 中,BC 2+CD 2=BD 2,即42+(8﹣BD )2=BD 2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=12×CD×BC=12×3×4=6,∵P是BD的中点,∴S△PBC=12S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6.A解析:A【分析】先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000∴BC2+AC2=AB2,∴△ABC是直角三角形,∴活动中心P应在斜边AB的中点.故选:A.【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.7.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,22500+=AB BC m∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选D.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.8.D解析:D【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:22201612-=cm∴则该圆柱底面周长为24cm.故选:D.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.9.A解析:A【分析】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,由角平分线的性质得出PQ=PM,这时PC+PQ有最小值,为CM的长,然后利用勾股定理和等面积法求得CM的长即可解答.【详解】过C作CM⊥AB于M,交AD于P,过P作PQ⊥AC于Q,∵AD是∠BAC的平分线,∴PQ=PM,则PC+PQ=PC+PM=CM,即PC+PQ有最小值,为CM的长,∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴由勾股定理得:AB=10,又1122ABCS AB CM AC BC==△,∴6824105 CM⨯==,∴PC+PQ的最小值为245,故选:A.【点睛】本题考查了角平分线的性质、最短路径问题、勾股定理、三角形等面积法求高,解答的关键是掌握线段和最短类问题的解决方法:一般是运用轴对称变换将直线同侧的点转化为异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短,使两条线段之和转化为一条直线来解决.10.A解析:A【分析】先根据角平分线的性质可证CD=DE,从而根据“HL”证明Rt△ACD≌Rt△AED,由DE为AB中线且DE⊥AB,可求AD=BD=3cm ,然后在Rt△BDE中,根据直角三角形的性质即可求出BE 的长.【详解】∵AD平分∠BAC且∠C=90°,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E为AB中点,∴AC=AE=12AB,所以,∠B=30° .∵DE为AB中线且DE⊥AB,∴AD=BD=3cm ,∴DE=12BD=32,∴22332⎛⎫-=⎪⎝⎭33故选A.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.二、填空题11.5【解析】试题分析:取AB 中点E ,连接OE 、CE ,在直角三角形AOB 中,OE=AB ,利用勾股定理的逆定理可得△ACB 是直角三角形,所以CE=AB ,利用OE+CE≥OC ,所以OC 的最大值为OE+CE ,即OC 的最大值=AB=5.考点:勾股定理的逆定理,12.3【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=32∴226AD CD +=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =, ∵222AC BC AB +=, ∴22216()2AB AB +=,解得AB=3 故答案为:3【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键. 13.413【分析】延长AD 至点E ,使得DE =AD =4,结合D 是中点证得△ADC ≌△EDB ,进而利用勾股定理逆定理可证得∠E =90°,再利用勾股定理求得BD 长进而转化为BC 长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,BD BE DE64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.14.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222-=-=,13125CD AC AD∵∠D=90°,AB=15,AD=12,∴2222=-=-,15129BD AB AD∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC 是锐角三角形时,∵∠ADC=90°,AC=13,AD=12, ∴222213125CD AC AD =-=-=,∵∠ADB=90°,AB=15,AD=12,∴222215129BD AB AD =-=-=,∴BC=BD-CD=9+5=14,∴△ABC 的周长=14+15+13=42;综上,△ABC 的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.15.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM中,2222-=-=,PD DM1086当P在M的左边时,CP=10-6=4,则P的坐标是(4,8);当P在M的右侧时,CP=10+6=16,则P的坐标是(16,8).故P的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.16.72965【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD2229DE BE+(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD2265DE BE+故答案为:72965【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.17.31+或31-【解析】 如图,l AB ,2AC =,作AD l ⊥于点D ,∴1AD =, ∵222AF AB ===,且F 有2个, ∴2212213DF DF ==-=∵1DC AD ==,∴1113CF CD DF =+= 2231CF DF CD =-=.点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.18.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.19.(0,34). 【分析】 由423y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到53122OA '=-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=32,∴52AB ===, ∴53122OA '=-=, 设点C 的坐标为(0,m )由翻折得ABC A BC '≌,∴2A C AC m '==-,在Rt A OC '中, 222A C OC A O ''=+,∴222(2)1m m -=+,解得m=34,∴点C 的坐标为(0,34). 故答案为:(0,34). 【点睛】 此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 20.5【分析】先将图形展开,再根据两点之间线段最短可知.【详解】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•2π=2,CB=1. ∴22AB +BC 222=5+15【点睛】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.三、解答题21.(132)150°;(313【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD =3; (2)在△ADE 中,∵7,3,2AD AE DE ===, ∴DE 2+AE 2=()()222237+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP 22213-=,∴AE =CP ,在△AEG 与△CPG 中,∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12, ∴AG ()2222113322AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG 13【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.(1)出发2秒后,线段PQ 的长为2132)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答;(3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:PQ=22224652213BQ BP +=+==∴出发2秒后,线段PQ 的长为213;(2)BQ=2t ,BP=8−t由题意得:2t=8−t解得:t=83∴当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴AC=2268+=10.①当CQ=BQ 时(图1),则∠C=∠CBQ ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC 时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ 时(如图3),过B 点作BE ⊥AC 于点E ,∴BE=6824105AB BC AC ⋅⨯==, 所以CE=22BC BE -=185=3.6, 故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.23.(1)132)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ; ③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,222246213()PQ BQ BP cm +=+=;(2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E ,则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.24.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵AE AP ==90EAP ∠=︒,∴2PE ==,∴2222BE +=,解得:BE =作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 45322HB BE =︒==, ∴点B 到直线AE 的距离为6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =,∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯⨯+⨯⨯ 13=+,故②正确;③在Rt AHB 中,由①知:62EH HB ==, ∴62AH AE EH =+=+, 22222256623AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 21153222ABD S AB AD AB ∆=⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称, ∴523AB BC ==+, ∴225231043AC BC ==+=+,∴ min PC AC AP =-,10432=+-,故④错误;⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.25.(1)见解析;(2)27BC =.【分析】(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒.∴CED ADB ∠=∠.(2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =,∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒.∵△ABD 是等边三角形,8AB =∴8AD BD AB ===,∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=.∵60CED ADB ∠=∠=︒.∴60EFD ∠=︒.∴△EDF 是等边三角形.∴2EF DF DE ===,∴4CF CE EF =-=,2OF OD DF =-=.在Rt △COF 中, ∴2223OC CF OF =-=.在Rt △BOC 中,∴22224(23)27BC BO OC =+=+=.【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.26.(1)(5,0);(2)见解析;(3)①P (4,2),②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.理由见解析【分析】(1)由题意可以假设A (a ,a )(a >0),根据AB 2+OB 2=OA 2,构建方程即可解决问题; (2)由角平分线的性质定理证明CH=CF ,CG=CF 即可解决问题;(3)①如图3中,在BC 的延长线上取点P ,使得CP=DB ,连接AP .只要证明△ACP ≌△CDB (SAS ),△ABP 是等腰直角三角形即可解决问题;②根据SAS 即可判断满足△ACP 与△BDC 全等的点是P 1、P 2,P 3;【详解】解:(1)∵点A 在射线y =x (x ≥0)上,故可以假设A (a ,a )(a >0),∵AB ⊥x 轴,∴AB =OB =a ,即△ABO 是等腰直角三角形,∴AB 2+OB 2=OA 2,∴a 2+a 2=(52)2,解得a =5,∴点B 坐标为(5,0).(2)如图2中,作CF ⊥x 轴于F .∵OC 平分∠AOB ,CH ⊥OE ,∴CH=CF,∵△AOB是等腰直角三角形,∴∠AOB=45°,∵BC∥OE,∴∠CBG=∠AOB=45°,得到BC平分∠ABF,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.27.(1)假;(2)∠A=45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论;(3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,DB=AB-AD=c-a,DG=BG=12(c-a),AG=12(a+c),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt△ABC是类勾股三角形,∴ab+a2=c2,。

勾股定理典型分类练习题

勾股定理典型分类练习题

勾股定理典型分类练习题题型一:直接考查勾股定理例1.在ABCC∠=︒.∆中,90⑴已知6BC=.求AB的长AC=,8⑵已知17AC=,求BC的长AB=,15变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC是等腰三角形。

变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗?题型二:利用勾股定理测量长度例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.题型三:勾股定理和逆定理并用例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41那么 △DEF 是直角三角形吗?为什么题型四:旋转中的勾股定理的运用:例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。

变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形.题型五:翻折问题例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式:如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 好落在BC 边上的点F ,求CE 的长.PAPCBCA BD E 1015题型6:勾股定理在实际中的应用:例6、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到 公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉 机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响, 已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?变式:如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处, 它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不 引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行 突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路 程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是( ) A.5,12,13 B.4,5,7 C.2,3,5 D.1,2,32.在Rt △ABC 中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( )A.5、4、3B.13、12、5C.10、8、6D.26、24、103.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( ) A 、5组; B 、4组; C 、3组; D 、2组 4.下列结论错误的是( )A 、三个角度之比为1∶2∶3的三角形是直角三角形;B 、三条边长之比为3∶4∶5的三角形是直角三角形;C 、三条边长之比为8∶16∶17的三角形是直角三角形;D 、三个角度之比为1∶1∶2的三角形是直角三角形。

《勾股定理》专题复习(含答案)

《勾股定理》专题复习(含答案)

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180—60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E 1E1D 1C 1B 4C 3C 2C图3122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C)222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7。

(完整版)勾股定理典型例题详解及练习(附答案)

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF 、GH 四条线段, 其中能构成一个直角三角形三边的线段是( )1) 题意分析:本题考查勾照定理及勾股定理的逆定理./2) 解题思踏;可利用勾照定理直接求出各也长,再进行判断.卜 解答过程:#ai^AEAF 中,AF=h AE=2,根据勾股定理,得。

跻=J 招己'十』十F = 姊同理 = 2思* QH. = 1 CD = 2^5计算发现(右尸十0招”=(雁沪t 即/费+寥=奇,根据 勾股定理的迎定理得到以AE 、EF 、GH 为也的三角形是直角三角形.故选 B. *解题后B0思考、1.勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形. 因此,解跑时一定要认真分析题目所蛤条件,看是否可用勾股定理来解n ,L 在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认为 七”就是斜诳而.固执"地运用公式"二/十舛 其实,同样是四"6 NC 不一定就等于叩幻I 不一定就是斜遮,A ABC 不一定就是直角三痢 形.卜A. CD 、EF 、GH C. AB 、CD GHB. AB 、EF 、GHD. AB 、CD EF3.直角三角形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从"形胡(一个三角形是直角三角形)到板'3’ =疽十瑟)的辿程,而直角三角形的判定是一个从W〔一个三角形的三满是L = ^+广的条件)到胃形'这个三弟形是直急三甬形)的过程.甘1在应用勾股定理解题时,要全面地毒虑问题.注意m题中存在的多种可能性,避免漏解。

/例2-如图'有一块直角三角形舐板幽G两直角边ACMkm, BWg 现博直甬边AC沿直线AD折叠,庾它落在斜辿AB上,且点C落到点E处, 则CD等于(EC 。

A. 2cmB. 3cm C 4an D 5cm*" iiEMraZJ VI :『n暴意分析,本题考查勾股定理的应用,:)解题思路;本题若直接在△XOQ中运用勾股定理是无法求得® ffi 长的,因为只知道一条迫应。

勾股定理典型例题

勾股定理典型例题

勾股定理典型例题类型一:勾股定理的直接用法1、在 Rt△ABC中, ∠C=90°思路点拨:写解的过程中, 一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析: (1)在△ABC中, ∠C −90∘,a −6,c =10,b =√c 2−a 2=8 (2) 在△ABC中, ∠C =90∘,a =40,b =9,c =√a 2+b 2=41 (3)在△ABC中. ∠C =90∘,c =25,b =15,a =√c 2−b 2=20举一反三∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB²=AC²-BC²-5²-3²-16∴AB=4∴AB的长是4. 类型二:勾股定理的构造应用2、如图, 已知:在△ABC中,∠B=60°, AC=70, AB=30,求: BC 的长.那么它所对的直角边等于斜边的一半).根据勾股定理, 在 Rt△ABD中. AD =√AB 2−BD 2=√302−152=15√3根据勾股定理,在R△ACD中,CD =√AC 2−AD 2=√702−152×3=65【答案】∵∠ACD=90°AD=13,CD-12∴AC²=AD²-CD²=13²-12²=25思路点拨:由条件∠B=60°, 想到构造含30°角的直角三角形,为此作AD⊥BC于D ,则有 ∠BAD =30∘,BD =12AB =15,再由勾股定理计算出AD 、DC 的长,进而求出BC 的长. 解析:作AD⊥BC于D,则因∠B=60°.∴∠BAD=90°-60°=30°(R△ 的两个锐角互余): BD =12AB =15(在RZ△中,如果一个锐角等于30°,。

(完整版)勾股定理经典题目及答案

(完整版)勾股定理经典题目及答案

勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。

②如果k 是大于1的奇数,那么k, ,是一组勾股数。

212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。

122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。

典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。

勾股定理典型例题【含答案】免费

勾股定理典型例题【含答案】免费

勾股定理复习一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2-a2 。

勾股定理在西方叫毕达哥拉斯定理,也叫百牛定理。

它是直角三角形的一条重要性质,揭示的是三边之间的数量关系。

它的主要作用是已知直角三角形的两边求第三边。

勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,是数形结合的纽带之一。

2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

4、最短距离问题:主要运用的依据是两点之间线段最短。

二、知识结构:三、考点剖析考点一:利用勾股定理求面积求:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.考点二:在直角三角形中,已知两边求第三边例如图2,已知△ABC中,AB=17,AC=10,BC边上的高,AD=8,则边BC的长为()A.21 B.15 C.6 D.以上答案都不对【强化训练】:1.在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为.2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长分别为5和12,求斜边上的高.(结论:直角三角形的两条直角边的积等于斜边与其高的积,ab=ch)考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:应用勾股定理解决楼梯上铺地毯问题例、某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为.分析:如何利用所学知识,把折线问题转化成直线问题,是问题解决的关键。

典型题目精选:勾股定理

典型题目精选:勾股定理

典型题目精选:勾股定理11.(2012•威海)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为()A.25°B.65°C.70°D.75°2.(2012•广安)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为()A.45°B.75°C.45°或75°或15° D.60°3.(2012•毕节地区)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是()A.2B.2C.4D.44.(2011•济宁)如图是某几何体的三视图及相关数据,则判断正确的是()A.a>c B.b>c C.4a2+b2=c2D.a2+b2=c25.已知a、b、c是△ABC的三边长,且满足|c2﹣a2﹣b2|+(a﹣b)2=0,则△ABC的形状是_________.6.若a,b,c分别是△ABC的三条边长,且a2﹣6a+b2﹣10c+c2=8b﹣50,则这个三角形的形状是_________.1.观察下列一类勾股数:3,4,5;5,12,13;7,24,25;…请你根据规律写出第4组勾股数为_________.2.(2002•南宁)如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3 B.S l+S2<S3 C.S1+S2=S3 D.S12+S22=S323.在下列各组数中,是勾股数的是()A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、64.下列各组数中能作为直角三角形三边长的是()A.8,8,15 B.6,6,6 C.7,24,25 D.6,24,255.如图,小方格的面积是1,则图中以格点为端点且长度为5的线段有()A.4条B.3条C.2条D.1条6.(2010•厦门)如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依此类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为_________厘米.7.(2012•邯郸一模)如图,将一副三角板如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_________cm2.1.(2013•安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米2.(2002•湛江)如图,小红从A地向北偏东30°,方向走100米到B地,再从B地向西走200米到C地,这时小红距A地()A.150米B.100米C.100米D.50米3.(2011•牡丹江)腰长为5,一条高为4的等腰三角形的底边长为_________.4.(2009•宜宾)已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为_________.5.(2008•莆田)如图,Rt△ABC的两直角边分别为1,2,以Rt△ABC的斜边AC为一直角边,另一直角边为1画第二个△ACD;在以△ACD的斜边AD为一直角边,另一直角边长为1画第三个△ADE;…,依此类推,第n个直角三角形的斜边长是_________.1.如图有一个透明的直圆柱状的玻璃杯,现测得其内径CD=6cm,高BC=8cm,今有一支长12cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为_________cm.2.如图,在一块四边形ABCD空地中植草皮,测得AB=3m,BC=4m,DA=13m,CD=12m,且∠ABC=90°.若每平方米草皮需要200元,则需要()元投入.A.16800 B.7200 C.5100 D.无法确定3.(2009•乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为()A.B.2C.3D.34.请根据我国古代数学家赵爽的弦图(如图),说明勾股定理.5.如图,已知AD=4,CD=3,∠ADC=90°,AB=13,BC=12,求四边形ABCD的面积.1.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25 C.10+5D.352.(2007•怀化)如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是_________.(结果保留根号)3.(2006•茂名)如图,点A、B分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A沿其表面爬到点B的最短路程是_________.4.如图,在四边形ABCD中,AD=4cm,CD=3cm,AD⊥CD,AB=13cm,BC=12cm,求四边形的面积.1.如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是_________.2.等边三角形的边长为4,则其面积为_________.3.(2011•牡丹江)在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.。

勾股定理题型(很全面)

勾股定理题型(很全面)

1典型例题:一、利用勾股定理解决实际问题 例题:水中芦苇 梯子滑动1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?3、如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以每小时6.4海里的速度偷偷向我领海开来,便立即通知正在MN 在线巡逻的我国反走私艇B 密切注意,反走私A 艇通知反走私艇B 时,A 和C 两艇的距离是20海里,A 、B 两艇的距离是12海里,反走私艇B 测得距离C 是16海里,若走私艇C 的速度不变,最早会在什么时间进入我国领海?二、与勾股定理有关的图形问题1. 已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .2.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是____ _____.A BC DEFG2FE DAB C3.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______ ___.4.如图,△ABC 中,∠C =90°,(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S 1+S 2与S 3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S 1+S 2与S 3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S 2与S 3的关系.图① 图② 图③5.如图,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…,记正方形ABCD 的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an ,根据上述规律,则第n 个正方形的边长an =___ _____记正方形AB -CD 的面积S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,……,S n (n 为正整数),那么S n =____ ____.6、如图,Rt △ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为 .三、关于翻折问题1、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F.(1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.3、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=,求BF 的长.G A 1D ABC DA3A B C D E G FF4、如图,一张矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝。

勾股定理典型例题

勾股定理典型例题

勾股定理典型例题11.以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,40 2.下列各组数据中的三个数,可作为三边长构成直角三角形的是( )(A )1、2、3 (B )2223,4,5 (C )1,2,3 (D )3,4,53.在△ABC 中,,,A B C ∠∠∠的对边分别为,,a b c ,且2()()a b a b c +-=,则( )(A )A ∠为直角 (B )C ∠为直角 (C )B ∠为直角 (D )不是直角三角形4.如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。

他们仅仅少走了__________步路(假设2步为1m ),却踩伤了花草。

5.已知直角三角形的两边长分别为3、4,则第三边长为 .6.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( ) A .30厘米 B .40厘米 C .50厘米 D .以上都不对7.图中字母A 所在的正方形的面积是 .8.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,正方形A 、B 、C 、D 的面积的和是64cm 2,则最大的正方形的边长为 cm .9.如图,一棵大树在一次强台风中于离地面3m 处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为 ( )m .第8题图第9题图10.如图,分别以直角三角形三边向外作三个半圆,若S1=30,S2=40,则S3=.11,如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm12.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是cm.13.如图,已知:在中,,,. 求:BC的长.14.已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

《勾股定理》典型题目

《勾股定理》典型题目

《勾股定理》典例汇总应用举例:1、如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积为多少?典型题目一.折叠问题1.一张直角三角形的纸片,如图所示折叠,使两个锐角的顶点A 、B 重合,若AC=6,BC=8,求DC 的长。

2.如图所示,将长方形纸片ABCD 的一边AD 向下折叠,点D 落在BC 边的F 处。

已知AB=CD=8cm ,BC=AD=10cm ,求EC 的长。

3.如图,矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?4.如图,在长方形ABCD 中,将∆ABC 沿AC 对折至∆AEC 位置,CE 与AD 交于点F 。

(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长二.最短问题1. 如图是一个三级台阶,它的每一级的长,宽和高分别为50寸,30寸和10寸,A 和B 是这个台阶的两个相对端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长是多少?E F D C B A2.如图,一圆柱体的底面周长为16,高AB 为15,BC 是上底面的直径.一只昆虫从点A 出发,沿着圆柱的侧面爬行到点C ,则昆虫爬行的最短路程为多少?3. 如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B,需要爬行的最短距离是多少?4. 如图所示,有一根高为2m 的木柱,它的底面周长为0.3m ,为了营造喜庆的气氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕圈,一直缠到起点的正上方为止,问:小明至少需要准备多长的一根彩带?三.梯子问题1.如图,两墙之间的距离BC=22米,当云梯靠在西墙的时候,此时可以达到的高度AB=24米;若云梯底部O 不动,使云梯靠在东墙上,此时云梯可以达到的高度DC=20米,试求BO 的距离。

勾股定理典型例题详解及练习(附答案)

勾股定理典型例题详解及练习(附答案)

典范【2 】例题常识点一.直策应用勾股定理或勾股定理逆定理例1:如图,在单位正方形构成的网格图中标有AB.CD.EF.GH四条线段,个中能构成一个直角三角形三边的线段是()A. CD.EF.GHB. AB.EF.GHC. AB.CD.GH D. AB.CD.EF勾股定理说到底是一个等式,而含有未知数的等式就是方程.所以,在应用勾股定理求线段的长时常经由过程解方程来解决.勾股定理表达式中有三个量,假如前提中只有一个已知量,必须设法求出另一个量或求出别的两个量之间的关系,这一点是应用勾股定理求线段长时须要明白的思绪.方程的思惟:经由过程列方程(组)解决问题,如:应用勾股定理及其逆定理求线段的长度或解决现实问题时,经常应用勾股定理中的等量关系列出方程来解决问题等.例3:一场罕有的大风事后,黉舍那棵老杨树折断在地,此刻,张先生正和占明.清华.绣亚.冠华在楼上凭栏远眺.清华启齿说道:“先生,那棵树看起来挺高的.”“是啊,有10米高呢,如今被风拦腰刮断,惋惜呀!”“但站立的一段似乎也不矮,有四五米高吧.”冠华兴趣勃勃地说.张先生心有所动,他说:“适才我跑过时用脚步量了一下,发明树尖距离树根正好3米,你们能求出杨树站立的那一段的高度吗?”占明想了想说:“树根.树尖.折断处三点依次相连后构成一个直角三角形.”“勾股定理必定是要用的,并且不动笔墨生怕是不行的.”绣亚补充说.几位男孩子走进教室,绘图.盘算,不一会就得出了答案.同窗们,你算出来了吗?思绪剖析:1)题意剖析:本题考核勾股定理的应用2)解题思绪:本题症结是卖力审题抓住问题的本质进行剖析才能得出准确的解答常经由过程作帮助线结构直角三角形将它们转化为直角三角形问题等.解题后的思虑:分类评论辩论思惟是解题时常用的一种思惟办法,同窗们假如控制了这种办法,可以使思维的层次性.周密性.灵巧性得到造就,才能在解题中真正做到不重不漏.常识点三.勾股定理及其逆定理的正逆混用例6:(1)图甲是由四个雷同的直角三角形与中央的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两条直角边的和是5,求中央小正方形的面积.(2)现有一张长为6.5cm.宽为2cm的纸片,如图乙,请你将它朋分成6块,再拼合成一个正方形.(请求:先在图乙中画出朋分线,再画出拼成的正方形并标明响应数据)。

八年级勾股定理十道典型题

八年级勾股定理十道典型题

1、直角三角形中,一直角边长为3,斜边长为5,则另一直角边长为:A. 2B. 3C. 4D. 6(答案)C2、若等腰直角三角形的腰长为a,则其斜边长为:A. a2B. 2aC. a√2D. a/√2(答案)C3、在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为:A. 3+4B. 5C. 7D. √(32+42)(答案)D(但实际计算结果为5,与B相同,此处考察的是勾股定理的应用过程)4、一个直角三角形的两条直角边分别增加20%和30%,那么斜边增加的百分比最接近:A. 20%B. 25%C. 30%D. 50%(答案)B(实际增加百分比需通过计算得出,但接近25%)5、已知直角三角形的一直角边长为5,斜边与另一直角边之差为2,则斜边长为:A. 6B. 7C. 8D. 9(答案)D6、设直角三角形两直角边分别为a和b,斜边为c,若a+b=10,c=8,则ab的值为:A. 18B. 36C. 50D. 64(答案)B(利用勾股定理a2+b2=c2和(a+b)2=a2+2ab+b2求解)7、一个直角三角形的斜边长为10,一直角边与斜边之比为3:5,则另一直角边长为:A. 4B. 5C. 6D. 8(答案)A(利用比例关系和勾股定理求解)8、直角三角形中,若斜边长为斜边上的高的5倍,则较小的锐角为:A. 15°B. 30°C. 45°D. 60°(答案)B(利用三角函数和勾股定理求解)9、在直角三角形中,若一直角边长为6,斜边上的高为4,则斜边长为:A. 8B. 9C. 10D. 12(答案)C(利用直角三角形的面积公式和勾股定理求解)10、已知直角三角形的两直角边a和b满足a+2b=10,且斜边c为整数,则c的可能取值为:A. 4或5B. 5或6C. 6或7D. 7或8(答案)B(通过枚举和勾股定理验证)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。

4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =,b,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边。

① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;② 若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ③ 定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)cbaHG F EDCBAbacbac cabcab a bc c baE D CBA7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:AB C30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

二、经典例题精讲题型一:直接考查勾股定理例题1例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长:题型二:利用勾股定理测量长度例题2 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例题3 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.C BD A题型三:勾股定理和逆定理并用——例题4 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41那么△DEF 是直角三角形吗?为什么?例题5 如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.题型五:利用勾股定理逆定理判断垂直——例题6如图5,王师傅想要检测桌子的表面AD 边是否垂直与AB 边和CD 边,他测得AD=80cm ,AB=60cm ,BD=100cm ,AD 边与AB 边垂直吗?怎样去验证AD 边与CD 边是否垂直?例题7有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?题型六:旋转问题:变式1:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.变式2、如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45 试探究222BE CF EF 、、间的关系,并说明理由.题型七:关于翻折问题例1、如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长. 变式:如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长. 题型八:关于勾股定理在实际中的应用: 例1、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?题型九:关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟?一、选择题1.下列各数组中,不能作为直角三角形三边长的是 ( )A. 9,12,15B.5,12,13C. 6,8,10D. 3,5,73.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形 ( )A.可能是锐角三角形B.不可能是直角三角形C.仍然是直角三角形D.可能是钝角三角形4.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m) ( )A.20mB.25mC.30mD.35m5.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为 ( )A. 12cmB.C.D.6.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是()A.52B.3C.3+2D.332二、填空题7.如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是 _______ .(第5题) (第6题)_8.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.9.已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距 .10.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为 .11.以直角三角形的三边为边向形外作正方形P、Q、K,若S P=4,S Q=9,则S k= .12.直角三角形两条直角边的长分别为5、12,则斜边上的高为 .13.在△ABC中,AB=8cm,BC=15cm,要使∠B=90°,则AC的长必为______cm.三、解答题11.P为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP=a.求:以PE 为边长的正方形的面积.12.已知:如图13,△ABC 中,AB=10,BC=9,AC=17.求BC 边上的高.13.从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?13.如下图,一个牧童在小河的南4km 的A 处牧马,而他的小屋位于他的南7km 东8km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?1、如图,∠C=90°,AC=3,BC=4,AD=12,BD=13, 判断△ABD 的形状,并说明理由。

2、已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.3、(10分)已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.4、已知:在△ABC 中,∠C=90°,AD 为∠BAC 的角平分线,CD=6cmBD=10cm ,求AC 的长?5、已知:在△ABC 中,AB=13cm ,AC=5cm ,边上的中线AD=6cm ,求BC 的长?6、 已知:在△ABC 中,∠C=90°,BD 、AE 分别是AC 、BC 边的中线,AE=73 52 求AB 边的长?A B 小河北 牧童 小屋。

相关文档
最新文档