电流互感器伏安特性及试验

合集下载

(完整版)电流互感器伏安特性试验

(完整版)电流互感器伏安特性试验

电流互感器伏安特性试验阿德一试验目的CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。

试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二试验方法试验接线如图所示:SVERKER650二次接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。

(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读取电压而无需另接PT。

)试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。

试验后,根据试验数据绘出伏安特性曲线。

三注意事项1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在匝间短路。

当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。

3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。

四典型U-I特性曲线相关主题:1. 用交流注流法测量电流互感器极性2. 慎用自耦变直接给电柜内回路加电流(电压)量3.电流互感器铁芯剩磁的影响与如何使退磁慎用自耦变直接给电柜内回路加电流(电压)量阿德在现场进行装置试验时,可能由于试验设备欠缺、条件有限,需要用自耦变进行各种试验,此时一定切记将所加量的回路中的接地线断开或在自耦变后串接隔离变压器;否则,可能造成交流220V短路,损坏试验设备。

电流互感器伏安特性、变比、极性实验记录

电流互感器伏安特性、变比、极性实验记录

电流(A) 3S1,3S2
电压(V)
结论 调试人员
审 批
日期
电流互感器伏安特性、变比、极性实验记录
中国十五冶二公司(电)表
工程名称 贵冶2007年修电解高配改造 安装地址 母联
用途


施工图号
产品型号 LZZBJ9-10A1
额定电压 12KV
额定频率 50HZ
准确级 0.5级
电流比 1000:5 设备种类
100
200
200
300
300
200
R60" 100000 100000 100000 100000 100000 100000
耐压后
R15"
200
200
300
200
200
300
耐压实验
互感器经工频耐压27KV,一分钟无击穿闪络.
A

B

C

极性测试
测量极性
同相
同相
同相
保护极性
同相
同相
同相
A

B

C
A相
出厂 编号
B相
C相
710187 710186 710184
工厂号 A相
出厂日期 B相 C相
2007.1 2007.1
A-D
B-D
C-D
单位(MΩ)
R60"
100000
绝缘电阻
R15"
200
100000 100000 100000 100000 100000
耐压前
200
150
230
200
250
R60" 100000 100000 R15"

电流互感器伏安特性试验与误差曲线详解-伏安特性测试仪

电流互感器伏安特性试验与误差曲线详解-伏安特性测试仪

电流互感器伏安特性试验与误差曲线详解王兰芳武汉市华英电力科技有限公司1 概述在电力系统中针对于保护用电流互感器最常见的试验项目是伏安特性试验,在很多地方电力部门还要求对保护用电流互感器绘制误差曲线,并将误差曲线数据上报至相关的管理部门。

伏安特性试验对应于国家标准和IEC标准的准确称呼是励磁特性试验,执行励磁特性试验的目的是获取电流互感器励磁特性曲线,并根据励磁特性曲线计算电流互感器的相关参数以判断电流互感器是否能达到要求。

误差曲线是根据励磁特性曲线和电流互感器二次线圈电阻计算而来的曲线,误差曲线建立了电流互感器最大允许误差和所连接二次负荷的关系,只要确保电流互感器所在系统的短路电流和所接二次负荷落在误差曲线的允许区间内,保护用电流互感器就能正常工作,否则电流互感器则可能发生磁饱和而失效2 励磁特性试验2.1 励磁曲线的定义图1 HYVA-405测量的电流互感器励磁特性曲线在不同的标准中,电流互感器励磁曲线的绘制要求也不同,在IEC60044-1/GB1208中励磁曲线的Y轴是电流互感器二次端电压有效值,X轴是电流互感器二次端电流有效值;在IEC60044-6/GB16847电流互感器励磁特性试验的Y轴是电流互感器二次电动势有效值,X轴是电流互感器的二次电流的峰值;在IEEE C57.13中电流互感器励磁特性试验的Y轴是电流互感器二次电动势有效值,X轴是电流互感器二次电流有效值取对数后的值。

因此针对不同标准的电流互感器,其励磁特性曲线的绘制方法也不同,由于我国的标准遵从与IEC 体系,因此针对我国的保护用电流互感器励磁特性曲线主要有IEC60044-1/GB1208和IEC60044-6.GB16847两种。

在完成励磁特性曲线后通常要计算励磁特性曲线的拐点电压,拐点电压反映的是电流互感器进入磁饱和区域的阈值,拐点电压以后电流互感器进入深度磁饱和状态,如果电流互感器运行时其二次端电压达到或超过拐点电压,则互感器进入磁饱和状态而失效。

【国家电网 培训课件】电流互感器伏安特性校验

【国家电网 培训课件】电流互感器伏安特性校验
e 非线性励磁阻抗2Zm
伏安特性试验
φ1
两者满足: e2 = dNφ1/dt
因此通过测量励磁电流和e2的 关系,表征电流互感器的抗饱 和能力,并为误差分析提供理 论依据。
知识点二
为何要进行伏安特性校验 如何进行伏安特性校验 伏安特性校验结果分析
试验接线
电流表 串联在 回路中
V
A
电源
电压表 并联在 二次绕 组两端
试验数据及曲线
e2 V
100 80 60 40
20
0
50 100 150 200 500
磁通变化 已趋近最 大值。
Im
2000 mA
横坐标所对应的 点,饱和前3点, 饱和后3点
(5mA, 8V) (25mA, 25V) (50mA, 50V) (100mA, 90V) (150mA, 97V) (500mA, 98V) (2000mA, 100V)
若二次负载为3欧姆,其变比误差是否能满足规程要求?
若二次负载不变,其一次侧通过的最大短路电流为15kA , 其变比误差是否能满足规程要求?
若以满足10%变比误差为条件,以最 大短路电流纵坐标和二次负载为横坐 标,得到的一组曲线是什么?
欢迎指正 谢谢
本节内容结束
值得注意的几个问题
e2
V
A
电源
1.选择合适试验设备 注意电源的容量、电流、 电压表的档位
电源的容量尽可能大、电流档 位保证灵敏度、电压表的档位尽可 能大
2.电源加在二次侧,能否 在一次侧加电源?
二次侧线圈匝数较大,相同的 磁通变化,所需的电流较小。
3.励磁电流不可上升太快, 有磁滞效应,应让铁芯被 充分励磁。
e2
I2

电流互感器伏安特性试验

电流互感器伏安特性试验

电流互感器伏安特性试验阿德一试验目的CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二试验方法试验接线如图所示:SVERKER650二次接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须电流互感器二次侧额定电流)升压和一个PT读取电压。

(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止三注意事项1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。

四典型U-I特性曲线相关主题:1. 用交流注流法测量电流互感器极性2. 慎用自耦变直接给电柜内回路加电流(电压)量3.电流互感器铁芯剩磁的影响与如何使退磁慎用自耦变直接给电柜内回路加电流(电压)量阿德在现场进行装置试验时,可能由于试验设备欠缺、条件有限,需要用自耦变进行各种试验,此时一定切记将所加量离变压器;否则,可能造成交流220V短路,损坏试验设备。

原因解释可能碰到的错误接线方式:坛子岭变电站2B(1B)主变压器高压侧方向过流回路无电流2004年2月19日☐☐ 现象在坛子岭变电站2#主变压器(2B )35kv 高压侧后备保护(SEL351A )装置上,显示高压侧一次电流为0,但现场该变压器高压侧实际有20A 负荷。

电流互感器伏安特性试验

电流互感器伏安特性试验

电流互感器伏安特性试验目的及试验方法一、试验目的CT 伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。

试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二、试验方法试验接线如图所示:接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个 PT 读取电压。

试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。

试验后,根据试验数据绘出伏安特性曲线。

三、注意事项1、电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2、测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在匝间短路。

当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线 2、3 所示(指保护 CT 有匝间短路,曲线 2 为短路 1 匝,曲线 3 为短路 2 匝),因此,在进行测试时,在开始部分应多测几点。

3、电流表宜采用内接法。

4、为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到 0,然后逐点升压典型的 U-I 特性曲线。

附:电力设备预防性试验规程(DL/T 596-1996)中关于CT 二次保护绕组的伏安发生的规定:与同类型互感器特性曲线或制造厂提供的特性曲线比较,就无明显差别。

电流互感器伏安特性和 10%误差曲线 的原理和分析方法

电流互感器伏安特性和 10%误差曲线 的原理和分析方法

电流互感器伏安特性和10%误差曲线的原理和分析方法一、电流互感器的工作原理电流互感器(CT)是变换电流的电气设备,它的主要功能是向二次系统提供电流信号以反映一次系统的工作情况。

目前,电力系统应用比较广泛的是带铁芯的无气隙式电流互感器,其基本结构与变压器相同并按照变压器工作原理工作。

(如下图)K1K2图1图2 CT一次侧绕组串接于电网,二次侧绕组与测量仪表或继电器的电流线圈相串联。

图中L1、L2和K1、K2表示电流互感器一次、二次绕组。

此为一般CT 的简单原理图。

CT的额定变比K=I1/I2=N2/N1,为原方与付方的匝数比。

对于理想CT:I1×N1=I2×N2,I1:I2=N2:N1当原方I1为1个电流时,付方产生I2=(I1×N1/N2)个电流。

但在理论计算中常将付方电流I2进行归一化,即将I2归一化为归算电流I2’:I2’=I2×K=I2×N2/N1这样当原方电流I1为1个电流时,付方I2’也为1个电流,这样可以将CT简化为图2所示的T型网路等效电路用于计算。

下面为了描述方便归算电流I2’用符号I2来表示。

二、电流互感器的磁饱和特性带铁芯的电流互感器的结构形式是原方绕组和副方绕组通过一个共同的铁芯进行互感耦合。

正常工作时铁芯的磁通密度B很低,激磁电流Ij很小,故I2=I1-Ij≈I1,I2与I1的误差极小。

当发生短路时原方短路电流将变得很大,使磁通密度B大大增加,Ij也相应增加。

在磁通密度B不很大时,Ij基本与B成线性增长,但B增加到一定程度后将出现饱和现象,磁通增加将变得困难,这时增加Ij并不能使磁通成线性增加,而是增加Ij时B增加越来越少。

磁通密度B与激磁电流Ij的关系曲线如图3,当B增加到一定程度后将出现饱和,这时Ij将急剧增大,于是I2=I1-Ij就会出现较大误差。

这就是铁心饱和导致互感器出现大的传导误差的原理。

图3大的激磁电流Ij将会产生很大的功率Ij×U1,这个功率会使CT产生高的热量,达到一定程度还可能烧毁电流互感器;磁场由小变大产生的磁场交变引起大的磁力,从而导致铁心和硅钢片震动,所以我们经常能听到CT发出嗡嗡的声音。

电流互感器的试验

电流互感器的试验

电流互感器的试验电流互感器的极性检查一,极性检查的意义极性检查是为了验证电流互感器极性是否正确,如极性错误会使计量仪表指示错误,更严重的是使带有方向性的继电保护误动作。

二,极性检查的方法电流互感器的一,二次绕组为减极性,极性检查一般采用直流法。

试验时电源加在互感器的一次侧,测量仪表接在互感器的二次侧。

电流互感器的励磁特性试验一,励磁特性定义互感器的励磁特性(伏安特性)是指互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线。

二,励磁特性试验的目的励磁特性试验的主要目的是校核用于继电保护的电流互感器特性是否符合主要要求,并从励磁特性曲线发现一次绕组有无匝间短路。

三,励磁特性试验的主要方法按要求接好电流互感器的励磁特性的接线。

实验前,应将电流互感器的二次绕组引线和接地线均拆除。

试验时,一次侧开路,从二次侧施加电压,升压时以电流为基准,读取电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电流增大而电压变化不大时,说明铁芯已饱和,应停止试验。

试验后,根据实验数据绘出励磁特性曲线及伏安特性曲线。

电流互感器的铁芯退磁一,铁芯剩磁的产生原因电流互感器在大电流下切断电源或在运行中发生二次开路时,通过短路电路或采用直流电源的试验后,都有可能在电流互感器的铁芯中留下剩磁,剩磁使电流互感器的比差尤其是角差增大,因此应对电流互感器铁芯进行退磁。

二,铁芯退磁的方法将电流互感器一次绕组开路,二次绕组通入50Hz交流电,然后使电流从最大值均匀降到零(时间不少于10S),并在切断电源前将二次绕组短路。

如此重复2-3次,即可退去电流互感器铁芯中的剩磁。

电流互感器伏安特性测试及其意义

电流互感器伏安特性测试及其意义

电流互感器伏安特性测试及其意义电流互感器(通常简称CT或TA)是电力系统常用的测量元件之一,在从400V以下的低压系统到10kV、35kV、110kV、220kV乃至750kV、1000kV级别的超高压、特高压电力系统中广泛采用,是可靠隔离高电压,并将一次回路的大电流转换为二次侧可供继电保护、二次仪表测量所需要的安全级别标准小电流所必需的设备之一。

其重要性不亚于电力变压器、高压断路器、避雷器、电压互感器等电力系统元件。

其二次电流通常有1A、5A两种规格。

一次电流可从通常的100A~5000A直到上万A的级别,通常400V以内的低压系统常用的电流互感器一次电流不超过3000A。

电流互感器的二次侧在运行时严禁开路,并需有一点可靠接地。

电流互感器的伏安特性(也称励磁特性)是电流互感器最重要的交接性试验之一,其与电流互感器的变比、角差、10%误差测试、一次和二次绕组直流电阻、工频耐压试验等项目同样列为GB50150-2016国标要求的必需试验项目。

为一典型的电流互感器的伏安特性曲线,可以看到曲线有明显的拐点,从数学角度看,拐点前后的斜率变化很明显。

电流互感器的伏安特性指的是互感器二次绕组的电压与电流之间的关系。

试验时在二次绕组施加交流电压,一次绕组开路,从小到大依次调整电压,记录所加电压对应的每一个电流值,并画在同一个直角座标系中,以电压为纵座标,电流为横座标,各点所连成的曲线称为伏安特性曲线(样条法或拟合法)。

试验时电压从零向上依次递升,以电流为基准,读取电压值,直至额定电流。

若对特性曲线有特殊要求而需要继续增加电流时,应迅速读数,以免二次绕组过热。

电流互感器励磁特性测试的目的有以下几点:1、检测电流互感器铁芯的磁性能:饱和点、饱和点之前的B-H线性程度,也可测试其磁滞回线;测量时,需要测出互感器励磁电压、电流的对应关系,以及饱和点(拐点)处的电压、电流值。

下图所示为电流互感器铁芯的磁滞回线曲线:2、伏安特性是检测CT饱和点的试验,对于继电保护专用的CT,在电网短路故障状态下的大电流极限状态下工作时,对其线性输出有较高要求,要求其尽量延后饱和;而测量绕组或计量绕组就不需要考虑大电流情形下的工作条件,只需在额定电流范围附近(额定电流1.2倍以内),输出精度满足需要即可。

电流互感器伏安特性和 10%误差曲线 的原理和分析方法

电流互感器伏安特性和 10%误差曲线 的原理和分析方法

电流互感器伏安特性和10%误差曲线的原理和分析方法一、电流互感器的工作原理电流互感器(CT)是变换电流的电气设备,它的主要功能是向二次系统提供电流信号以反映一次系统的工作情况。

目前,电力系统应用比较广泛的是带铁芯的无气隙式电流互感器,其基本结构与变压器相同并按照变压器工作原理工作。

(如下图)K1K2图1图2 CT一次侧绕组串接于电网,二次侧绕组与测量仪表或继电器的电流线圈相串联。

图中L1、L2和K1、K2表示电流互感器一次、二次绕组。

此为一般CT 的简单原理图。

CT的额定变比K=I1/I2=N2/N1,为原方与付方的匝数比。

对于理想CT:I1×N1=I2×N2,I1:I2=N2:N1当原方I1为1个电流时,付方产生I2=(I1×N1/N2)个电流。

但在理论计算中常将付方电流I2进行归一化,即将I2归一化为归算电流I2’:I2’=I2×K=I2×N2/N1这样当原方电流I1为1个电流时,付方I2’也为1个电流,这样可以将CT简化为图2所示的T型网路等效电路用于计算。

下面为了描述方便归算电流I2’用符号I2来表示。

二、电流互感器的磁饱和特性带铁芯的电流互感器的结构形式是原方绕组和副方绕组通过一个共同的铁芯进行互感耦合。

正常工作时铁芯的磁通密度B很低,激磁电流Ij很小,故I2=I1-Ij≈I1,I2与I1的误差极小。

当发生短路时原方短路电流将变得很大,使磁通密度B大大增加,Ij也相应增加。

在磁通密度B不很大时,Ij基本与B成线性增长,但B增加到一定程度后将出现饱和现象,磁通增加将变得困难,这时增加Ij并不能使磁通成线性增加,而是增加Ij时B增加越来越少。

磁通密度B与激磁电流Ij的关系曲线如图3,当B增加到一定程度后将出现饱和,这时Ij将急剧增大,于是I2=I1-Ij就会出现较大误差。

这就是铁心饱和导致互感器出现大的传导误差的原理。

图3大的激磁电流Ij将会产生很大的功率Ij×U1,这个功率会使CT产生高的热量,达到一定程度还可能烧毁电流互感器;磁场由小变大产生的磁场交变引起大的磁力,从而导致铁心和硅钢片震动,所以我们经常能听到CT发出嗡嗡的声音。

电流互感器伏安特性试验及数据分析

电流互感器伏安特性试验及数据分析

电流互感器伏安特性试验及数据分析一、CT伏安特性试验概述CT伏安特性:是指在电流互感器一次侧开路的情况下,电流互感器二次侧励磁电流与电流互感器二次侧所加电压的关系曲线,实际上就是铁芯的磁化曲线,即该曲线在初始阶段表现为线性,当铁芯磁化饱和拐点出现时,该曲线表现为非线性。

试验的主要目的:一是检查新投产互感器的铁芯质量,留下CT原始实验数据;二是运行CT停运检验维护时(通常配合机组大修时进行)通过鉴别磁化曲线的饱和程度即拐点位置,以判断运行一定时期后互感器的绕组有无匝间短路等缺陷,以便及时发现设备缺陷,确保设备安全运行。

三是对差动保护CT 精度有要求的进行10%误差曲线校核。

二、原理接线(1)通常情况下电流互感器的电流加到额定值时,电压已达400V以上,用传统试验设备试验时,调压器无法将220V电源升到试验电压,必须使用一个升压变(其高压侧输出电流需大于电流互感器二次侧额定电流)升压,一个PT或万用表读取电压。

由于万用表可测最高交流电压为5000V,故可用它直接读取电压而无需另接PT。

(2)利用CT伏特性测试仪试验时,CT伏安特性测试仪一般电压可升至2500V,且具备数字电压、电流显示功能,部分测试仪具备数据处理功能,可直接打印出CT特性曲线。

三试验过程及注意事项(1)试验前,应将电流互感器二次绕组引线和CT接地线均应拆除,做好防止接地的可靠安全措施,即保证试验时CT各相别可靠独立于应用设备,否则可能造成设备的损坏。

(2)试验时,一次侧可靠开路,从CT二次侧施加电压,参考CT额定电流预先选取几个电流点,一般取10个电流点,即每10%额定电流为一个电流点,逐点读取记录或储存相应电压值、电流值,每个点必须从零开始升压升流,以消除互感器内的剩磁,保证测量数据的准确性。

(3)通入的电流或电压以不超过制造厂技术条件的规定为准,电压应不得高于CT匝间绝缘要求电压。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验,该点即为拐点电压。

电流互感器的伏安特性及测量方法图解

电流互感器的伏安特性及测量方法图解

电流互感器的伏安特性及测量⽅法图解
互感器的伏安特性其实就是指铁芯的励磁特性,互感器使⽤时电流与电压的关系,测量所施加的电压与电流的关系曲线,曲线即是互感器的伏安特性曲线。

理论上电流在额定范围内(容量在额定范围内),电压时不会改变的,实际使⽤中会有所偏差。

伏安特性测量⽅法
⾸先我们选择⽤CT伏安特性综合测试仪,进⾏参数设置:
励磁电流:设置范围(0—20A)为仪器输出的最⾼设置电流,如果实验中电流达到设定值,将会⾃动停⽌升流,以免损坏设备。

通常电流设置值⼤于等于1A,就可以测试到拐点值。

励磁电压:设置范围(0—1000V)为仪器输出的最⾼设置电压,通常电压设置值稍⼤于拐点电压,这样可以使曲线显⽰的⽐例更加协调,电压设置过⾼,曲线贴近Y轴,电压设置过低,曲线贴近X轴。

如果实验中电压达到设定值,将会⾃动停⽌升压,以免损坏设备。

接线⽅法:通常让⼀次绕组开路,从⼆次绕组施加额定频率的交流电压,所加电压最⼤值按相关规程要求。

接线⽅法如上图,测试仪的K1、K2为电压输出端,试验时将K1、K2分别接互感器的S1、S2(互感器的所有端⼦的连线都应断开)。

接线⽆误后⽅可测量。

试验时,可预先选取⼏个电流点,逐点测量相应的电压值。

通⼊的电流或电压不超过制造⼚的规定。

当电压稍微增加⼀点⼉电流增⼤很多时,说明铁芯以接近饱和,应极其缓慢的升压或停⽌试验。

根据试验数据绘制伏安特性曲线(如下图)。

测量伏安特性主要是检查CT的铁芯质量,通过鉴别铁芯磁化的饱和程度来判断互感器的绕组有⽆匝间短路等缺陷。

来源:电⼯电⽓学习。

电 流 互 感 器 实 验 报 告

电 流 互 感 器 实 验 报 告

产品型号:额定电压:额定变比:级次组合:额定频率:极性:安装类别:出厂编号:出厂日期:盘柜编号:盘柜名称:
结论:
实验人员:审核:
产品型号:LZZBJ9-10A 额定电压:10KV
额定变比:1000/1A 级次组合:0.5/10P10/10P10
额定频率:50HZ 极性:减
安装类别:户内出厂编号:A:52623/B:52609/C:52607 出厂日期:A:05-3-30/B:05-3-30/C:05-3-30 盘柜编号:303 AH2
盘柜名称:
结论:
备注:电流互感器1-4项实验内容中有任何一项不合格结论均为不合格,零序互感器实验内容中任何一项不合格结论为不合格。

“□”中打钩表示合格。

实验人员:审核:
使用单位:华兴华工日期:
产品型号:LZZBJ9-10A 额定电压:10KV
额定变比:50/1A 级次组合:0.5/10P10
额定频率:50HZ 极性:减
安装类别:户内出厂编号:A:52596/B:52601
出厂日期:A:05-3-26/B:05-3-29 盘柜编号:303 AH4
盘柜名称:
结论:
备注:电流互感器1-4项实验内容中有任何一项不合格结论均为不合格,零序互感器实验内容中任何一项不合格结论为不合格。

“□”中打钩表示合格。

实验人员:审核:。

为什么要测量电流互感器的伏安特性,怎么测量

为什么要测量电流互感器的伏安特性,怎么测量

试验目的电流互感器的伏安特性(又称励磁特性曲线)是指一次开路,二次侧电流与所加电压的关系试验,实际上就是铁芯的磁化曲线试验,因此,伏安特性又称励磁特性曲线。

进行这样试验的主要目的主要是检查电流互感器二次绕组是否有层间短路,并为继电保护提供数据。

检查对象在继电保护有要求时对P级绕组进行;对0.2、0.5级测量绕组一般不进行此项试验;对TPY级暂态保护绕组,由于其励磁特性曲线饱和点电压一般很高,现场检查时如进行工频试验,则在电压不超过2kV时进行检查性比较,建议创造条件进行降低频率的试验。

多抽头的绕组可在使用抽头或最大抽头测量。

使用仪器设备伏安特性测试仪、调压器、交流电压表(1级以上)、交流电流表(1级以上)、毫安表(1级以上),有些参数的电流互感器试验时还需要小型试验变压器及测量用电流互感器。

试验前根据该电流互感器出厂报告数据或参数计算出本试验所需电压、电流,选择适当量程的试验设备和测量仪器。

试验方法各二次绕组分别进行;待检电流互感器一次及所有二次绕组均开路,将调压器或试验变压器的电压输出高压端接至待检二次绕组的一端,待检二次绕组另一端通过电流表(或毫安表,视量程需要)接地、试验变压器的高压尾接地,接好测量用电流互感器、电压表,缓慢升压,同时读出并记录各测量点的电压、电流值。

结果判别与同类型电流互感器励磁特性曲线、制造厂的特性曲线以及自身的历史数据比较,应无明显差异。

注意事项试验时待检电流互感器一次及所有二次绕组均开路;试验时应先去磁,然后将电压逐渐升至励磁特性曲线的饱和点即可停止,如果该绕组励磁特性的饱和电压高于2 kV,则现场试验时所施加的电压一般应在2 kV截止,避免二次绕组绝缘承受过高电压。

试验时记录点的选择应便于计算饱和点、便于与出厂数据及历史数据进行比较,一般不应少于5个记录点。

电流互感器伏安特性试验96692说课讲解

电流互感器伏安特性试验96692说课讲解

电流互感器伏安特性试验阿德一试验目的CT伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。

试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二试验方法试验接线如图所示:SVERKER650二次接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个PT读取电压。

(如果有FLUKE87型万用表,由于其可测最高交流电压为4000V,可用它直接读取电压而无需另接PT。

)试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。

试验后,根据试验数据绘出伏安特性曲线。

三注意事项1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在匝间短路。

当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线2、3所示(指保护CT有匝间短路,曲线2为短路1匝,曲线3为短路2匝),因此,在进行测试时,在开始部分应多测几点。

仅供学习与参考3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到0,然后逐点升压。

四典型U-I特性曲线相关主题:1. 用交流注流法测量电流互感器极性2. 慎用自耦变直接给电柜内回路加电流(电压)量3.电流互感器铁芯剩磁的影响与如何使退磁慎用自耦变直接给电柜内回路加电流(电压)量阿德在现场进行装置试验时,可能由于试验设备欠缺、条件有限,需要用自耦变进行各种试验,此时一定切记将所加量的回路中的接地线断开或在自耦变后串接隔离变压器;否则,可能造成交流220V短路,损坏试验设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流互感器伏安特性及试验
伏安特性中的“伏”就是电压,“安”就是电流,从字面解释,伏安特性就是电流互感器二次绕组的电压与电流之间的关系。

如果从小到大调整电压,将所加电压对应的每一个电流画在一个座标系中(电压为纵坐标,电流为横坐标),所组成的曲线就称为伏安特性曲线。

由于电流互感器铁心具有逐渐饱和的特性,在短路电流下,电流互感器的铁心趋于饱和,励磁电流急剧上升,励磁电流在一次电流中所占的比例大为增加,使比差逐渐移向负值并迅速增大。

由于继电器的动作电流一般比额定电流大好几倍,所以作为继电保护用的电流互感器应该保证在比额定电流大好几倍的短路电流下能够使继电器可靠动作。

FA-102 CT伏安特性测试仪可以完成的试验包括: CT伏安特性试验、CT极性试验、CT 变比极性试验。

仪器能自动计算CT的任意点误差曲线,CT变比比差等结果参数。

电流互感器伏安特性试验
一、试验目的
CT 伏安特性是指电流互感器一次侧开路,二次侧励磁电流与所加电压的关系曲线,实际上就是铁芯的磁化曲线,因此也叫励磁特性。

试验的主要目的是检查互感器的铁芯质量,通过鉴别磁化曲线的饱和程度,计算10%误差曲线,并用以判断互感器的二次绕组有无匝间短路。

二、试验方法
试验接线如图所示:
接线比较复杂,因为一般的电流互感器电流加到额定值时,电压已达 400V以上,单用调压器无法升到试验电压,所以还必须再接一个升压变(其高压侧输出电流需大于或等于电流互感器二次侧额定电流)升压和一个 PT 读取电压。

试验前应将电流互感器二次绕组引线和接地线均拆除。

试验时,一次侧开路,从电流互感器本体二次侧施加电压,可预先选取几个电流点,逐点读取相应电压值。

通入的电流或电压以不超过制造厂技术条件的规定为准。

当电压稍微增加一点而电流增大很多时,说明铁芯已接近饱和,应极其缓慢地升压或停止试验。

试验后,根据试验数据绘出伏安特性曲线。

三、注意事项
1.电流互感器的伏安特性试验,只对继电保护有要求的二次绕组进行。

2.测得的伏安特性曲线与过去或出厂的伏安特性曲线比较,电压不应有显著降低。

若有显著降低,应检查二次绕组是否存在匝间短路。

当有匝间短路时,其曲线开始部分电流较正常的略低,如图中曲线 2、3 所示(指保护 CT 有匝间短路,曲线 2 为短路 1 匝,曲线 3 为短路 2 匝),因此,在进行测试时,在开始部分应多测几点。

3.电流表宜采用内接法。

4.为使测量准确,可先对电流互感器进行退磁,即先升至额定电流值,再降到 0,然后逐点升压典型的 U-I 特性曲线
根据大二互提供的LZZBJ9-10C5误差试验,1S1-1S2,进行了二次Ie电流5%,20%,100%,120%情况的测量误差;2S1-2S2进行了100%二次Ie电流情况下的测量误差。

伏安特性试验,2S1-2S2进行了420V,0.1Ie;420V,0.1Ie;450V,0.5Ie;480V,0.3Ie;500V,0.5Ie;420V,0.75Ie。

汇制成.dwg图纸。

相关文档
最新文档