第六章-树和二叉树-作业
数据结构-6 树和二叉树
![数据结构-6 树和二叉树](https://img.taocdn.com/s3/m/5d1c84b581c758f5f71f672c.png)
第六章树和二叉树一.选择题1. 以下说法错误的是。
A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构2. 如图6-2所示的4 棵二叉树中,不是完全二叉树。
图6-2 4 棵二叉树3. 在线索化二叉树中,t 所指结点没有左子树的充要条件是。
A. t->left == NULLB. t->ltag==1C. t->ltag==1 且t->left==NULL D .以上都不对4. 以下说法错误的是。
A.二叉树可以是空集B.二叉树的任一结点最多有两棵子树C.二叉树不是一种树D.二叉树中任一结点的两棵子树有次序之分5. 以下说法错误的是。
A.完全二叉树上结点之间的父子关系可由它们编号之间的关系来表达B.在三叉链表上,二叉树的求双亲运算很容易实现C.在二叉链表上,求根,求左、右孩子等很容易实现D.在二叉链表上,求双亲运算的时间性能很好6. 如图6-3所示的4 棵二叉树,是平衡二叉树。
图6-3 4 棵二叉树7. 如图6-4所示二叉树的中序遍历序列是。
A. abcdgefB. dfebagcC. dbaefcgD. defbagc图6-4 1 棵二叉树8. 已知某二叉树的后序遍历序列是dabec,中序遍历序列是debac,它的前序遍历序列是。
A. acbedB. decabC. deabcD. cedba9. 如果T2 是由有序树T 转换而来的二叉树,那么T 中结点的前序就是T2 中结点的。
A. 前序B.中序C. 后序D. 层次序10. 某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是dgbaechf,则其后序遍历的结点访问顺序是。
A. bdgcefhaB. gdbecfhaC. bdgaechfD. gdbehfca11. 将含有83个结点的完全二叉树从根结点开始编号,根为1号,后面按从上到下、从左到右的顺序对结点编号,那么编号为41的双亲结点编号为。
数据结构-习题-第六章-树
![数据结构-习题-第六章-树](https://img.taocdn.com/s3/m/4e1c7894240c844769eaeec4.png)
数据结构-习题-第六章-树和二叉树E F D G A B / + + * - C * 第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/EC .-+*ABC/DE D. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D .abcde*/++ 3. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( )【南京理工大学1999 一、20(2分)】A. A*B+C/(D*E)+(F-G)B.(A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D.A*B+C/D*E+F-G4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D.8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是()【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2;③二叉树的左右子树可任意交换;④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A.①②③ B.②③④ C.②④ D.①④6. 设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不足,无法确定【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T。
其余结点分成为m(m>0)个((2))的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。
第六章 树和二叉树 作业
![第六章 树和二叉树 作业](https://img.taocdn.com/s3/m/87029a69011ca300a6c39037.png)
以数据集{2 以数据集{2,5,7,9,13}为权值构造一棵 {2, 13}为权值构造一棵 huffman树 并计算其带权路径长度。 huffman树,并计算其带权路径长度。
2 5 7 9 36 14 22 13
7
7
9
13
2
5
WPL=(2+5)*3+(7+9+13)*2=79
t)
//释放左子树 //释放左子树 //释放右子树 //释放右子树 //释放根节点 //释放根节点
已知一棵二叉树的中序序列为cbedahgijf, 已知一棵二叉树的中序序列为cbedahgijf,后序 序列为cedbhjigfa, 序列为cedbhjigfa,画出该二叉树的先序线索二 叉树。 叉树。 a 中序:c 中序:c b e d a h g i j f 后序:c 后序:c e d b h j i g f a 先序:abcdefghij 先序:abcdefghij
编写一个将二叉树中每个结点的左右孩子交换的算法 分析:采用递归的方式求解。当二叉树的左右孩子之一 分析:采用递归的方式求解。 不空时,将左右孩子交换, 不空时,将左右孩子交换,然后再分别递归处理左右 子树。 子树。
void exchange( BiTree &t) { BiTree m ; if ( !t->lchild||!t->rchild) !t->lchild||!t{ m=tm=t->lchild ; t->lchild =t->rchild; t=tt->rchild=m; exchange(texchange(t->lchild) ; exchange(texchange(t->rchild) ; } }
数据结构课后习题答案及解析第六章
![数据结构课后习题答案及解析第六章](https://img.taocdn.com/s3/m/d26ed12ebed5b9f3f90f1ca7.png)
第六章树和二叉树(下载后用阅读版式视图或web版式可以看清)习题一、选择题1.有一“遗传”关系:设x是y的父亲,则x可以把它的属性遗传给y。
表示该遗传关系最适合的数据结构为( )。
A.向量B.树 C图 D.二叉树2.树最合适用来表示( )。
A.有序数据元素 B元素之间具有分支层次关系的数据C无序数据元素 D.元素之间无联系的数据3.树B的层号表示为la,2b,3d,3e,2c,对应于下面选择的( )。
A. la (2b (3d,3e),2c)B. a(b(D,e),c)C. a(b(d,e),c)D. a(b,d(e),c)4.高度为h的完全二叉树至少有( )个结点,至多有( )个结点。
A. 2h_lB.h C.2h-1 D. 2h5.在一棵完全二叉树中,若编号为f的结点存在右孩子,则右子结点的编号为( )。
A. 2iB. 2i-lC. 2i+lD. 2i+26.一棵二叉树的广义表表示为a(b(c),d(e(,g(h)),f)),则该二叉树的高度为 ( )。
A.3B.4C.5D.67.深度为5的二叉树至多有( )个结点。
A. 31B. 32C. 16D. 108.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结点数为( )个。
A. 15B. 16C. 17D. 479.题图6-1中,( )是完全二叉树,( )是满二叉树。
..专业知识编辑整理..10.在题图6-2所示的二叉树中:(1)A结点是A.叶结点 B根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(2)J结点是A.叶结点 B.根结点但不是分支结点 C根结点也是分支结点 D.分支结点但不是根结点(3)F结点的兄弟结点是A.EB.D C.空 D.I(4)F结点的双亲结点是A.AB.BC.CD.D(5)树的深度为A.1B.2C.3D.4(6)B结点的深度为A.1B.2C.3D.4(7)A结点所在的层是A.1B.2C.3D.4..专业知识编辑整理..11.在一棵具有35个结点的完全二叉树中,该树的深度为( )。
数据结构习题第6章
![数据结构习题第6章](https://img.taocdn.com/s3/m/ab2401f3941ea76e58fa04ed.png)
第6章树和二叉树一、选择题1.不含任何结点的空树()。
A. 是一棵树B. 是一棵二叉树C. 是一棵树也是一棵二叉树;D. 既不是树也不是二叉树2. 一棵有n个结点的树的所有结点的度数之和为()。
A. n-1B. nC. n+1D. 2n3. 在二叉树中某一个结点的深度为3,高度为4,则该树的高度是()。
A. 5B. 6C. 7D. 84. 设高度为h的二叉树中只有度为0和度为2的结点,则该树的结点数至多为()。
A. 2h-1B. 2h+1C. 2h-1D. 2h+15. 设高度为h的二叉树中只有度为0和度为2的结点,则该树的结点数至少为()。
A. 2h-1B. 2h+1C. 2h-1D. 2h+16. 高度为h的满二叉树中有n个结点,其中有m个叶结点,则正确的等式是()。
A. h+m=nB. h+m=2nC. m=h-1D. n=2h-17.二叉树是非线性数据结构,所以()。
A. 它不能用顺序存储结构存储B. 它不能用链式存储结构存储C. 顺序存储结构和链式存储结构都能存储D. 顺序存储结构和链式存储结构都不能使用8. 一棵完全二叉树有25个叶结点,则该树最少有()个结点。
A. 48B. 49C. 50D. 519. 假设一个三叉树的结点数为36,则该树的最小高度为()。
A. 2B. 3C. 4D. 510. 设二叉树有n个结点,则二叉链表中非空指针数为()。
A. n-1B. nC. n+1D. 2n11. 先序序列和中序序列正好相反的二叉树是()。
A. 完全二叉树B. 满二叉树C. 左单枝树D. 右单枝树12. 后序序列和中序序列正好相反的二叉树是()。
A. 完全二叉树B. 满二叉树C. 左单枝树D. 右单枝树13.把一棵树转换为二叉树后,这棵二叉树的形态是()。
A. 唯一的B. 有多种C. 有多种,但根结点都没有左孩子D. 有多种,但根结点都没有右孩子14. 将一棵树T转换为孩子—兄弟链表表示的二叉树H,则T的后根序遍历是H 的()。
第6章树和二叉树习题
![第6章树和二叉树习题](https://img.taocdn.com/s3/m/ee206b4651e79b8969022633.png)
第六章 树和二叉树一、选择题1.算术表达式a+b*(c+d/e )转为后缀表达式后为( B )A .ab+cde/*B .abcde/+*+C .abcde/*++ 2. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( C )A. A*B+C/(D*E)+(F-G)B. (A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D. A*B+C/D*E+F-G3. 设树T 的度为4,其中度为1,2,3和4的结点个数别离为4,2,1,1 则T 中的叶子数为( D )A .5B .6C .7D .84. 在下述结论中,正确的是( D )①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意互换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④5. 设丛林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,丛林F 中第一棵树的结点个数是( A )A .m-nB .m-n-1C .n+1D .条件不足,无法确信6.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是( B )A .9B .11C .15D .不确信7.设丛林F 中有三棵树,第一,第二,第三棵树的结点个数别离为M1,M2和M3。
与丛林F 对应的二叉树根结点的右子树上的结点个数是( D )。
A .M1B .M1+M2C .M3D .M2+M38.一棵完全二叉树上有1001个结点,其中叶子结点的个数是( E )A.250 B.500 C.254 D.505 E.以上答案都不对9. 有关二叉树下列说法正确的是( B )A.二叉树的度为2 B.一棵二叉树的度能够小于2C.二叉树中至少有一个结点的度为2 D.二叉树中任何一个结点的度都为210.二叉树的第I层上最多含有结点数为(C )A.2I B.2I-1-1 C.2I-1D.2I -111. 一个具有1025个结点的二叉树的高h为( C )A.11 B.10 C.11至1025之间D.10至1024之间12.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( B )结点A.2h B.2h-1 C.2h+1 D.h+113. 一棵树高为K的完全二叉树至少有( C )个结点A.2k–1 B. 2k-1–1 C. 2k-1 D. 2k14.对二叉树的结点从1开始进行持续编号,要求每一个结点的编号大于其左、右小孩的编号,同一结点的左右小孩中,其左小孩的编号小于其右小孩的编号,可采纳( C )顺序的遍历实现编号。
第章树和二叉树自测题
![第章树和二叉树自测题](https://img.taocdn.com/s3/m/30ed80d01ed9ad51f11df297.png)
第6章树和二叉树自测题一、填空题1.树是一种________结构。
在树结构中,________结点没有直接前趋。
(层次,根)2.一棵树上的任何结点(不包括根本身)称为根的________。
若B是A的子孙,则称A是B的________。
(子孙结点,祖先)3.二叉树有______二叉树、______的二叉树、只有______的二叉树、只有______的二叉树、同时有______的二叉树五种基本形态。
(空、只有根结点、根和根的左子树、根和根的右子树、根和根的左右子树)4.树在计算机内的表示方式有_______、_______、_________。
(双亲表示法、孩子表示法、双亲孩子表示法)5.对任何二叉树,若度为2的节点数为n,则叶子数n=______。
(n=n+1)2002k-1)个结点。
(2______6. 高度为k(k>=1)的二叉树至多有i-1)(2______个结点。
7. 二叉树第i(i>=1)层上至多有8. 满二叉树上各层的结点数已达到了二叉树可以容纳的______。
满二叉树也是______二叉树,但反之不然。
(最大值,完全二叉树)9.具有n个结点的完全二叉树的高度为______。
(logn)210. 如果将一棵有n个结点的完全二叉树按层编号,则对任一编号为i(1<=i<=n)的结点X有:(1)若i=1,则结点X是______;若i〉1,则X的双亲PARENT(X)的编号为______。
(根结点,[i/2])的编号LCHILD(X)的左孩子X;否则,______且无______无X,则结点2i>n若(2) 为______。
(左孩子,右孩子,2i)(3)若2i+1>n,则结点X无______;否则,X的右孩子RCHILD(X)的编号为______。
)(右孩子,2i+111. 二叉树通常有______存储结构和______存储结构两类存储结构。
(顺序,链接) 12.具有n个结点的二叉链表中,一共有________个指针域,其中只有________个用来指向结点的左右孩子,其余的________个指针域为NULL。
数据结构 第六章 树和二叉树作业及答案
![数据结构 第六章 树和二叉树作业及答案](https://img.taocdn.com/s3/m/58679b303c1ec5da50e270d1.png)
第六章树和二叉树作业一、选择题(每题2分,共24分)。
1. 一棵二叉树的顺序存储情况如下:树中,度为2的结点数为( C )。
A.1 B.2 C.3 D.42. 一棵“完全二叉树”结点数为25,高度为(B )。
A.4 B.5 C.6 D.不确定3.下列说法中,(B )是正确的。
A. 二叉树就是度为2的树B. 二叉树中不存在度大于2的结点C. 二叉树是有序树D. 二叉树中每个结点的度均为24.一棵二叉树的前序遍历序列为ABCDEFG,它的中序遍历序列可能是(B )。
A. CABDEFGB. BCDAEFGC. DACEFBGD. ADBCFEG5.线索二叉树中的线索指的是(C )。
A.左孩子 B.遍历 C.指针 D.标志6. 建立线索二叉树的目的是(A )。
A. 方便查找某结点的前驱或后继B. 方便二叉树的插入与删除C. 方便查找某结点的双亲D. 使二叉树的遍历结果唯一7. 有 D )示意。
A.B.C.D.8. 一颗有2046个结点的完全二叉树的第10层上共有(B )个结点。
A. 511B. 512C. 1023D. 10249. 一棵完全二叉树一定是一棵(A )。
A. 平衡二叉树B. 二叉排序树C. 堆D. 哈夫曼树10.某二叉树的中序遍历序列和后序遍历序列正好相反,则该二叉树一定是( C )的二叉树。
A .空或只有一个结点B .高度等于其结点数C .任一结点无左孩子D .任一结点无右孩子11.一棵二叉树的顺序存储情况如下:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15A B C D E 0 F 0 0 G H 0 0 0 X结点D 的左孩子结点为( D )。
A .EB .C C .FD .没有12.一棵“完全二叉树”结点数为25,高度为( B )。
A .4B .5C .6D .不确定二、填空题(每空3分,共18分)。
1. 树的路径长度:是从树根到每个结点的路径长度之和。
对结点数相同的树来说,路径长度最短的是 完全 二叉树。
数据结构课后习题(第6章)
![数据结构课后习题(第6章)](https://img.taocdn.com/s3/m/3c5471e99b89680203d825de.png)
【课后习题】第6章树和二叉树网络工程2010级()班学号:姓名:一、填空题(每空1分,共16分)1.从逻辑结构看,树是典型的。
2.设一棵完全二叉树具有999个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个度为1的结点。
3.由n个权值构成的哈夫曼树共有个结点。
4.在线索化二叉树中,T所指结点没有左子树的充要条件是。
5.在非空树上,_____没有直接前趋。
6.深度为k的二叉树最多有结点,最少有个结点。
7.若按层次顺序将一棵有n个结点的完全二叉树的所有结点从1到n编号,那么当i为且小于n时,结点i的右兄弟是结点,否则结点i没有右兄弟。
8.N个结点的二叉树采用二叉链表存放,共有空链域个数为。
9.一棵深度为7的满二叉树有___ ___个非终端结点。
10.将一棵树转换为二叉树表示后,该二叉树的根结点没有。
11.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的遍历结果是一样的。
12.一棵Huffman树是带权路径长度最短的二叉树,权值的外结点离根较远。
二、判断题(如果正确,在对应位置打“√”,否则打“⨯”。
每题0.5分,共5分)1.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i-1个结点。
2.二叉树的前序遍历并不能唯一确定这棵树,但是,如果我们还知道该二叉树的根结点是那一个,则可以确定这棵二叉树。
3.一棵树中的叶子结点数一定等于与其对应的二叉树中的叶子结点数。
4.度≤2的树就是二叉树。
5.一棵Huffman树是带权路径长度最短的二叉树,权值较大的外结点离根较远。
6.采用二叉树来表示树时,树的先根次序遍历结果与其对应的二叉树的前序遍历结果是一样的。
7.不存在有偶数个结点的满二叉树。
8.满二叉树一定是完全二叉树,而完全二叉树不一定是满二叉树。
9.已知二叉树的前序遍历顺序和中序遍历顺序,可以惟一确定一棵二叉树;10.已知二叉树的前序遍历顺序和后序遍历顺序,不能惟一确定一棵二叉树;三、单项选择(请将正确答案的代号填写在下表对应题号下面。
数据结构习题第六章树和二叉树
![数据结构习题第六章树和二叉树](https://img.taocdn.com/s3/m/1d2d3c133b3567ec102d8ab2.png)
第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D.-+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D 3. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( ) 【南京理工大学1999 一、20(2分)】 A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是( )【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④6. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( )A .m-nB .m-n-1C .n+1D .条件不足,无法确定 【南京理工大学2000一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T 。
其余结点分成为m (m>0)个((2))的集合T1,T2, …,Tm ,每个集合又都是树,此时结点T 称为Ti 的父结点,Ti 称为T的子结点(1≤i ≤m )。
第6章树和二叉树
![第6章树和二叉树](https://img.taocdn.com/s3/m/b7fe5e80f5335a8103d220b2.png)
第6章树和二叉树第 6 章树和二叉树6.1 已知一棵树如图所示,回答下列问题:(1) 哪个是根结点?(2) 哪些是叶子结点?(3) 哪个是结点 G 的双亲?(4) 哪些是结点 G 的祖先?(5) 哪些是结点 B 的孩子?(6) 哪些是结点B的子孙?(7) 哪些是结点 E 的兄弟?(8) 结点 B 和 H 的层次号分别是什么 ?(9) 树的深度是多少?(10) 以结点 C 为根的子树的深度是多少? 【6.1 解】:(1) A(2) K, F,G,H,I,J(3) B(4) B,A(5) E,F,G(6) E,F,G,K(7) F,G(8) 2, 3(9) 4(10) 26.2 在结点个数为n(n>1)的各棵树中,最小的高度是多少?它有多少个叶结点?多少个分支结点?最大的高度树是多少?它有多少个叶结点?多少个分去结点?【6.2解】结点个数为n时,高度最小的树高度为1,有2层;它有n-1个叶结点,1个分支结点;高度最大的树的高度为n-1,有n层;它有1个叶结点,n-1个分支结点。
6.3简述树与二叉树的区别?【6.3解】二叉树的度最大为2,而树的度可以大于2;二叉树的每个结点的孩子有左、右之分,而树中结点的孩子无左右之分。
6.4 n(n>1)个结点的各棵二叉树中,最小的高度(h≥1)多少?最大的高度是多少?【6.4解】最小高度为:⎣⎦n2log+1,此时树为完全二叉树;最大高度为n,比如一棵斜二叉树。
6.5如果一棵树有n1个度为1的结点,有n2个度为2的结点,…,n m个度为m的结点,试问有多少个度为0的结点?试推导之。
【6.5解】设叶子结点数为n0,则树中结点数和总度数分别为: 结点数=n0+n1+n2+...+n m总度数=n1+2n2+...+m×n m结点数等于总度数加1,所以得到:n0=∑=+-miini21))1((6.6如果已知一棵二叉树有20个叶子结点,有10个结点仅有左孩子,15个结点仅有右孩子,求出该二叉树的结点数目。
《数据结构》习题集:第6章 树和二叉树
![《数据结构》习题集:第6章 树和二叉树](https://img.taocdn.com/s3/m/3864ab80bceb19e8b8f6babc.png)
第6章树和二叉树一、选择题1.有一“遗传”关系,设x是y的父亲,则x可以把它的属性遗传给y,表示该遗传关系最适合的数据结构是( D )A、向量B、树C、图D、二叉树2.树最适合用来表示( B )A、有序数据元素B、元素之间具有分支层次关系的数据C、无序数据元素D、元素之间无联系的数据3.树B 的层号表示为1a,2b,3d,3e,2c,对应于下面选择的( C )A、1a(2b(3d,3e),2c)B、a(b(D,e),c)C、a(b(d,e),c)D、a(b,d(e),c)4.对二叉树的结点从1 开始连续编号,要求每个结点的编号大于其左、右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,则可采用( B )次序的遍历实现二叉树的结点编号。
A、先序B、中序C、后序D、从根开始按层次遍历5.按照二叉树的定义,具有3 个结点的二叉树有(C )种。
A、3B、4C、5D、66.在一棵有n个结点的二叉树中,若度为2的结点数为n2,度为1的结点数为n1,度为0的结点数为n0,则树的最大高度为(),其叶结点数为();树的最小高度为(),其叶结点数为();若采用链表存储结构,则有()个空链域。
log+1 C、log2n D、nA、n/2B、⎣⎦n2E、n0+n1+n2F、n1+n2G、n2+1H、1I、n+1 J、n1K、n2L、n1+17.对一棵满二叉树,m 个树叶,n 个结点,深度为h,则( D )A、n=m+hB、h+m=2nC、m=h-1D、n=2h-18.设高度为h 的二叉树中只有度为0 和度为2 的结点,则此类二叉树中所包含的结点数至少为( A ),至多为(D )。
A、2hB、2h-1C、2h-1D、2h-19.在一棵二叉树上第5 层的结点数最多为(B)(假设根结点的层数为1)A、8B、16C、15D、3210.深度为5 的二叉树至多有( C )个结点。
A、16B、32C、31D、1011.一棵有124 个叶结点的完全二叉树,最多有(B )个结点A、247B、248C、249D、25012.含有129 个叶子结点的完全二叉树,最少有( B )个结点A、254B、255C、256D、25713.假定有一棵二叉树,双分支结点数为15,单分支结点数为30,则叶子结点数为( D )个。
数据结构与算法第六章课后答案第六章 树和二叉树
![数据结构与算法第六章课后答案第六章 树和二叉树](https://img.taocdn.com/s3/m/3bad98ceda38376baf1faeca.png)
第6章 树和二叉树(参考答案)6.1(1)根结点a6.2三个结点的树的形态: 三个结点的二叉树的形态:(1) (1) (2) (4) (5)6.3 设树的结点数是n ,则n=n0+n1+n2+……+nm+ (1)设树的分支数为B ,有n=B+1n=1n1+2n2+……+mnm+1 (2)由(1)和(2)有:n0=n2+2n3+……+(m-1)nm+16.4(1) k i-1 (i 为层数)(2) (n-2)/k+1(3) (n-1)*k+i+1(4) (n-1)%k !=0; 其右兄弟的编号 n+16.5(1)顺序存储结构注:#为空结点6.6(1) 前序 ABDGCEFH(2) 中序 DGBAECHF(3) 后序 GDBEHFCA6.7(1) 空二叉树或任何结点均无左子树的非空二叉树(2) 空二叉树或任何结点均无右子树的非空二叉树(3) 空二叉树或只有根结点的二叉树6.8int height(bitree bt)// bt是以二叉链表为存储结构的二叉树,本算法求二叉树bt的高度{ int bl,br; // 局部变量,分别表示二叉树左、右子树的高度if (bt==null) return(0);else { bl=height(bt->lchild);br=height(bt->rchild);return(bl>br? bl+1: br+1); // 左右子树高度的大者加1(根) }}// 算法结束6.9void preorder(cbt[],int n,int i);// cbt是以完全二叉树形式存储的n个结点的二叉树,i是数// 组下标,初始调用时为1。
本算法以非递归形式前序遍历该二叉树{ int i=1,s[],top=0; // s是栈,栈中元素是二叉树结点在cbt中的序号 // top是栈顶指针,栈空时top=0if (n<=0) { printf(“输入错误”);exit(0);}while (i<=n ||top>0){ while(i<=n){visit(cbt[i]); // 访问根结点if (2*i+1<=n) s[++top]=2*i+1; //若右子树非空,其编号进栈i=2*i;// 先序访问左子树}if (top>0) i=s[top--]; // 退栈,先序访问右子树} // END OF while (i<=n ||top>0)}// 算法结束//以下是非完全二叉树顺序存储时的递归遍历算法,“虚结点”用‘*’表示void preorder(bt[],int n,int i);// bt是以完全二叉树形式存储的一维数组,n是数组元素个数。
数据结构第六章作业及答案
![数据结构第六章作业及答案](https://img.taocdn.com/s3/m/2b1913ec0242a8956bece44f.png)
3、试分别画出具有3个结点的树和3个结点的二叉树 的所有不同形态。 4、对右图所示的二叉树求出 A 以下的遍历序列: B C (1)先序序列 D E F (2)中序序列 (3)后序序列 G H 5、假设一棵二叉树的先序序列为 EBADCFHGIKJ 和 中序序列为 ABCDEFGHIJK。请画出该树,并给 出后序序列。 6、假设一棵二叉树的中序序列为 DCBGEAHFIJK和 后序序列为 DCEGBFHKJIA 。请画出该树,并给 出先序序列。
2
7、将以下森林转换成二叉树。
A
B
C
D
E F G J I
H
L K
3
8、画出和下列二叉树相应的森林。
(a)
A
(b) (c)
A B C
(d)
A B C B C D B
(e)
A
C E F
A
G
J
H
K M
I
4
第六章作业解答 1、(1) M、N、D、L、F、J、K是叶子结点
(2) C是结点G的双亲 (3) A、C是结点G的祖先 (4) I、M、N是结点E的子孙 (5) 树的深度是5 2、(1)二叉树与树的区别: 二叉树的一个结点至多有2个子树,树则不然; 二叉树的一个结点有左、右之分,而树则没有此要求 (2)一棵度为2的树有2个分支,没有左、右之分, 一棵二叉树也可以有2个分支,但有左、右之分, 且左、右不能交换。 3、具有3个结点的树的形态为:
C D
E
F
K
7
7、解:转换后的二叉树为:
A B C D E F G J K I L H
8
8、解:转换后的森林为: (a) (b) (c)
A A B A B C
第6章 树和二叉树的作业
![第6章 树和二叉树的作业](https://img.taocdn.com/s3/m/3e26285c804d2b160b4ec017.png)
第6章树和二叉树
一、基础知识题
1.在结点个数为n(n>1)的各棵树中,高度最小的树的高度是多少?它有多少个叶结点?多少个分支结点?高度最大的树的高度是多少?它有多少个叶结点?多少个分支结点?
2.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
3.如果一棵树有n1个度为1的结点,有n2个度为2的结点,…,n m个度为m 的结点,试问有多少个度为0的结点?试推导之。
4.试分别找出满足以下条件的所有二叉树:
(1)二叉树的前序序列与中序序列相同;
(2)二叉树的中序序列与后序序列相同;
(3)二叉树的前序序列与后序序列相同。
5.填空题
(1)对于一棵具有n个结点的树,该树中所有结点的度数之和为。
(2)假定一棵三叉树的结点个数为50,则它的最小高度为,最大高度为。
(3)一棵高度为h的四叉树中,最多含有结点。
(4)在一棵三叉树中,度为3的结点数有2个,度为2的结点数有1个,度为1的结点数为2个,那么度为0的结点数有个。
(5)一棵高度为5的满二叉树中的结点数为个,一棵高度为3的满四叉树中的结点数为个。
(6)在一棵二叉树中,假定度为2的结点有5个,度为1的结点有6个,则叶子结点数有个。
(7)对于一棵含有40个结点的理想平衡树,它的高度为。
(8)若对一棵二叉树从0开始进行结点编号,并按此编号把它顺序存储到一堆数组a中,即编号为0的结点存储到a[0]中,其余类推,则a[i]元素的左子女结点为,右子女结点为,双亲结点(i≥1)为。
数据结构第六章树和二叉树习题及答案
![数据结构第六章树和二叉树习题及答案](https://img.taocdn.com/s3/m/82b48b1b7cd184254b3535bc.png)
习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F 对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。
A.指向最左孩子 B.指向最右孩子 C.空 D.非空12.已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章树和二叉树
一、应用题
1.已知完全二叉树的第七层有10个叶子结点,则整个二叉树的结点数最多是多少?
2.高度为10的二叉树,其结点最多可能为多少?
3.任意一个有n个结点的二叉树,已知它有m个叶子结点,试证明非叶子结点有(m-1)个度为2,其余度为1。
4. 已知A[1..N]是一棵顺序存储的完全二叉树,如何求出A[i]和A[j]的最近的共同祖先?
5.已知一棵满二叉树的结点个数为20到40之间的素数,此二叉树的叶子结点有多少个?
6.一棵共有n个结点的树,其中所有分支结点的度均为K,求该树中叶子结点的个数。
7.设T是具有n个内结点的扩充二叉树,I是它的内路径长度,E是它的外路径长度。
试利用归纳法证明E=I+2n, n>=0.
8.试证明:同一棵二叉树的所有叶子结点,在前序序列、中序序列以及后序序列中都按相同的相对位置出现(即先后顺序相同),例如前序abc,后序bca,对称序bac。
9. 由二叉树的中序序列及前序序列能唯一的建立二叉树,试问中序序列及后序序列是否也能唯一的建立二叉树,不能则说明理由,若能对中序序列DBEAFGC 和后序序列DEBGFCA构造二叉树。
10. 由一棵二叉树的前序序列和中序序列可唯一确定这棵二叉树。
设一棵二叉树的前序序列为ABDGECFH,中序序列为:DGBEAFHC 。
试画出该二叉树。
二、算法设计题
1. 给出算法将二叉树表示的表达式二叉树按中缀表达式输出,并加上相应的括号。
2.编程求以孩子—兄弟表示法存储的森林的叶子结点数。
3.要求二叉树按二叉链表形式存储,
(1)写一个建立二叉树的算法。
(2)写一个判别给定的二叉树是否是完全二叉树的算法。
完全二叉树定义为:深度为K,具有N个结点的二叉树的每个结点都与深度为K 的满二叉树中编号从1至N的结点一一对应。
此题以此定义为准。
4.假设以双亲表示法作树的存储结构,写出双亲表示的类型说明,并编写求给定的树的深度的算法。
(注:已知树中结点数)
5.二叉树采用二叉链表存储:
(1)编写计算整个二叉树高度的算法(二叉树的高度也叫二叉树的深度)。
(2)编写计算二叉树最大宽度的算法(二叉树的最大宽度是指二叉树所有层中结点个数的最大值)。