生物可降解高分子
浅谈生物可降解高分子材料的研究与发展
![浅谈生物可降解高分子材料的研究与发展](https://img.taocdn.com/s3/m/ae6a922b15791711cc7931b765ce0508763275e4.png)
浅谈生物可降解高分子材料的研究与发展生物可降解高分子材料是一种以天然物质为原料制备而成的材料,其在使用过程中能被微生物、水、光、空气等自然环境中存在的条件降解,最终转化为二氧化碳、水和生物质等环境友好的物质。
这种材料具有良好的生物相容性和降解性能,在环保和可持续发展领域具有广泛的应用前景。
生物可降解高分子材料的研究与发展已经取得了显著的进展。
一些传统的塑料制品,如聚乙烯、聚丙烯等,由于长时间的存储和使用,造成了严重的环境污染。
而生物可降解高分子材料的出现,为解决这个问题提供了一种可行的途径。
生物可降解高分子材料在医疗领域具有广泛的应用前景。
传统的医疗材料,如钛合金、不锈钢等,由于其异物反应性大、生物相容性差等问题,限制了其在皮肤移植、血管修复等方面的应用。
而生物可降解高分子材料可以根据人体的生理需求进行设计和制备,具有优良的生物相容性和可降解性,在医疗器械、组织工程等方面具有广阔的应用前景。
生物可降解高分子材料在环保领域也具有重要意义。
传统的塑料制品在使用过程中会产生大量的废弃物,占据了土地资源并给环境造成了严重的污染。
而生物可降解高分子材料的降解过程是一个无毒、无害的过程,可以有效减少对环境的危害,并能循环利用资源。
生物可降解高分子材料在包装材料、农膜、塑料制品等方面有着广泛的应用前景。
生物可降解高分子材料的研究与发展仍面临一些挑战。
可降解速度和降解产物的安全性仍然是一个亟待解决的问题。
虽然生物可降解高分子材料能够降解为环境友好的物质,但降解过程可能过慢或不完全,导致无法实现预期的降解效果。
制备生物可降解高分子材料的工艺和方法还需要进一步优化,以提高制备效率和材料性能。
生物可降解高分子材料在环保和可持续发展领域具有广泛的应用前景。
通过不断加强研究和发展,优化材料性能和工艺方法,生物可降解高分子材料将为解决环境污染和推动可持续发展做出更大的贡献。
生物医用可降解材料
![生物医用可降解材料](https://img.taocdn.com/s3/m/47d93e7c27d3240c8447efc3.png)
生物医用可降解高分子材料1.引文近年来生物材料被广泛的应用于医学领域中,并在临床上取得了成功,为研制人工器官和一些医疗器具提供了物质基础。
在医疗过程中,有时需要一些暂时性的材料,如骨折内固定,这要求植入材料在创伤愈合或药物释放过程中生物可降解;在人体组织工程研究中,需要在一些合成材料上培养组织细胞,让其生长成组织器官,这要求材料在相当长的时间内生物缓慢降解。
因此开发高安全性的可降解生物材料,不断提高此材料的性能、完善材料的设计是我们急需解决的问题。
2. 定义可降解生物高分子材料是指在生物体内经水解、酶解等过程,逐渐降解成低分子量化合物或单体,降解产物能被排出体外或能参加体内正常新陈代谢而消失的材料[1]。
案例:ELLA-CS 鞣花酸-壳聚糖可降解肠道支架(郑州大学和北京大学研究所联名开发)[2]3. 特性生物医用可降解材料以医疗为目的,有些材料会长时间植入动物或人体内部,故而对该材料的要求会相对严苛。
目前对于生物医用高分子材料的要求有如下三个方面[3]:首先材料是其最基本属性,这就需要材料能够保证医疗过程的正常进行,不会因其机械强度、稳定性等物理化学方面的性能而影响医疗进程;(敷料——粘附性、力学性能)其二是生物医学方面,材料要能与生物体内的环境和谐相处,不影响生物体的正常生理反应、生理活动(生物相容性);另外是其可降解性,通过控制一定的条件(分子量、化学键数),来控制其降解时间,并确保最终材料可以通过人体的新陈代谢系统或者排泄系统安全排出体外。
(药物缓释+骨骼修复)与非可降解生物材料相比,可降解生物材料具有许多优势[4]:①更好的生物相容性。
生物相容性应包括:组织、血液和力学相容性,可降解生物材料一般会根据人体的环境特征而进行的材料设计与表面界面改性,可以有效地提高植入材料与组织间的相容性,同时保证材料应有的物理与力学性能。
②植入材料的物理和力学性能稳定可靠、易于加工成型、便于消毒灭菌、无毒无热源、不致癌不致畸等。
生物可降解高分子材料的制备和应用
![生物可降解高分子材料的制备和应用](https://img.taocdn.com/s3/m/13415b7d5627a5e9856a561252d380eb6294231e.png)
生物可降解高分子材料的制备和应用生物可降解高分子材料是具有一定环保性和可持续性的材料,近年来备受人们关注。
生物可降解高分子材料具有良好的代谢性和可降解性,可以被自然环境所分解,同时也可以通过生物分解的方式,转化为有用的资源。
因此,生物可降解高分子材料的制备和应用具有重要意义。
一、生物可降解高分子材料的制备生物可降解高分子材料的制备有多种方法,其中主要有生物法和化学法两种常见方法。
生物法是利用微生物代谢特定物质生产出生物可降解高分子材料。
它是一种常见的制备方法,比较具有环保性和可持续性。
例如,聚羟基脂肪酸酯(PHA)就是一种利用微生物发酵合成的生物可降解高分子材料。
化学法是通过化学反应制备生物可降解高分子材料。
这种方法功耗较大,但可以制备出多种复杂结构的生物可降解高分子材料。
例如,PLA(聚乳酸)就是利用化学合成方法制备出来的生物可降解高分子材料。
二、生物可降解高分子材料的应用1. 包装材料生物可降解高分子材料在包装材料方面的应用具有广泛性。
其被广泛应用于食品和医药品的包装材料中,改善产品的质量和保持期限。
通过将生物可降解高分子材料与其他材料相结合,可生产出高透明、高强度的包装材料。
2. 农业材料除了包装材料应用之外,生物可降解高分子材料在农业上的使用也比较广泛,例如固体肥料、灌溉管、坚固的农膜等。
这些应用不仅增加了生物可降解高分子材料的使用领域,而且也更好地满足了环境保护的需要。
3. 医疗材料生物可降解高分子材料在医学上的应用也十分重要。
它常用于手术用具、封闭物、制药、缝合线等方面。
生物可降解高分子材料可以完全代替传统的材料,它具有良好的生物相容性和可降解性,可以避免材料在人体内的存留问题。
四、发展现状和前景目前,生物可降解高分子材料的发展前景非常广阔。
国际上已有不少专业的科研机构和企业已经开始了大规模的生产,然而,真正广泛应用生物可降解高分子材料还需要时间和大力推广。
展望未来,生物可降解高分子材料将具有更广阔的应用领域,新型、更环保的材料将会被大量开发和应用。
生物可降解高分子材料的应用研究
![生物可降解高分子材料的应用研究](https://img.taocdn.com/s3/m/1af3df6442323968011ca300a6c30c225901f00b.png)
生物可降解高分子材料的应用研究一、综述随着环境问题的日益严重,生物可降解高分子材料的研究与应用受到了广泛关注。
生物可降解高分子材料是一类能够在自然环境中被生物分解为水、二氧化碳和生物质的高分子材料。
本文将对生物可降解高分子材料在各个领域的应用进行综述,包括环境保护、生物医学和包装材料等。
在环境保护方面,生物可降解高分子材料可以有效减少塑料垃圾的产生,降低其对环境的污染。
这类材料在废水处理和土壤改良中也发挥了一定的作用。
研究者们通过改变聚合物的结构、组成和功能基团等方法来优化生物可降解高分子材料的性能,以提高其在环境中的降解速率和效率。
在生物医学领域,生物可降解高分子材料具有良好的生物相容性和生物活性,可用于药物载体、组织工程和生物支架等方面。
聚乳酸(PLA)和聚己内酯(PCL)等生物相容性较好的聚合物已被广泛应用于药物传递和细胞培养中。
一些具有生物活性的高分子材料还可用于生物传感和生物成像等领域。
在包装材料方面,生物可降解高分子材料具有可降解性、可重复使用的优点,可以替代传统的塑料包装材料。
PLA和淀粉基聚合物等生物可降解高分子材料可用于食品包装、购物袋和快递包装等领域。
这些材料的使用不仅有利于减少塑料垃圾的产生,还有利于提高消费者的环保意识。
生物可降解高分子材料作为一种具有广阔应用前景的新型材料,对于解决当前的环境问题具有重要意义。
通过不断改进合成方法和改性手段,有望实现生物可降解高分子材料在更多领域的广泛应用。
1. 生物可降解高分子材料的重要性随着现代社会对环境保护意识的不断增强,生物可降解高分子材料在保护环境方面的作用逐渐引起了广泛关注。
与传统的高分子材料相比,生物可降解高分子材料因其具有可降解性而具有重要意义。
从资源利用的角度来看,生物可降解高分子材料具有可再生性。
它们来源于可再生的生物资源,如植物淀粉等,不仅来源广泛,而且生长周期短,可持续供应。
传统的高分子材料如石油化工产品等是不可再生的,其资源有限,使用过程中产生的废弃物难以处理,对环境的压力较大。
生物可降解高分子ppt
![生物可降解高分子ppt](https://img.taocdn.com/s3/m/5800122f6294dd88d1d26b92.png)
040102黄演 040108杨文丽
高分子降解性概念
ASTM(American Society for Testing and Materials)定义:
生物降解高分子材料是指通过自然界 微生物(细菌、真菌等)作用而发生降解 的高分子。
一般来说,生物降解高分子指的是在 生物或生物化学作用过程中或生物环境中 可以发生降解的高分子。
高分子比高熔点高分子易于生物降解。
▪
酯键、肽键易于生物降解,而酰胺键由于分子间的
氢键难以生物分解。
▪
亲水高分子比疏水高分子易于生物降解。聚合物的
亲水性和疏水性链段对生物降解性的影响也很大,研究
发现同时含有亲水性和疏水性的链段的聚合物比只有一
种链段结构聚合物更容易生物分解。
▪
环状化合物难降解。
▪
表面粗糙的材料易降解。
降解过程
▪ 生物化学作用 1) 高分子材料的表面被微生物黏附,微生物黏 附表面的方式受高分子材料表面张力表面结构多孔 性温度和湿度等环境的影响。 2) 高分子在微生物分泌的酶作用下,通过水解 和氧化的反应将高分子断裂成为低相对分子质量的 碎片。 3) 微生物吸收或消耗的碎片一般相对分子质量 低于500,经过代谢最终形成CO2、H2O等。
常见高分子主链的降解性
HOOC [
O C O CH2CH2 ]n OH
OH HOOC [ (CH2)4 C N (CH2)6 ]n NH2
聚对苯二甲酸乙二酯(涤纶树脂) 聚己二酰己二胺(尼龙—66)
OH H2N [ (CH2)6 C N ]n (CH2)6 COOH
HO OCN [ (CH2)6 N C O (CH2)4 ]n OH
可降解塑料作为高科技产品和环保产 品正成为当今世界瞩目的研究开发热点, 而其中生物降解塑料能保持塑料特性,即 使用中的稳定性、各种应用性、易处理性 以及经济性;在降解方面,利用生物系统 使塑料分子链的主要成分发生断裂,在塑 料材料领域中有着广阔的前景。
聚乳酸材料介绍
![聚乳酸材料介绍](https://img.taocdn.com/s3/m/15080413a4e9856a561252d380eb6294dd88223a.png)
聚乳酸材料介绍聚乳酸是一种生物可降解的高分子材料,其化学名称为聚乳酸酯(PLA),是由乳酸分子经过聚合反应而成。
它具有优异的物理、化学和机械性能,同时还具有良好的生物相容性和可降解性,被广泛应用于医疗、食品包装、纺织等领域。
聚乳酸材料的物理性质聚乳酸是一种无色透明的高分子材料,在常温下为固体。
它的密度约为1.25 g/cm³,熔点在165-175℃之间。
聚乳酸具有良好的耐热性和耐候性,在高温下也不易变形或变色。
此外,它还具有一定的透光性和柔软性。
聚乳酸材料的化学性质聚乳酸是一种相对稳定的高分子材料,在常规条件下不会发生明显的化学反应。
但在强碱或强酸环境下,聚乳酸会发生水解反应,并最终分解成二氧化碳和水。
这使得它成为一种非常环保的材料,可以有效地减少对环境的污染。
聚乳酸材料的机械性能聚乳酸具有较高的强度和硬度,可以用于制造各种机械零件和工业用品。
它还具有良好的抗拉伸性、弯曲性和冲击性能,在一定程度上可以代替一些传统材料。
此外,聚乳酸还具有较好的耐磨性和耐腐蚀性,可用于制造化学容器、医疗器械等。
聚乳酸材料的生物相容性由于聚乳酸是一种天然产物,因此它具有良好的生物相容性。
在人体内分解时,它会被分解成二氧化碳和水,并被人体代谢掉。
这使得聚乳酸成为一种理想的医疗材料,在制造缝合线、支架、修复组织等方面应用广泛。
聚乳酸材料的可降解性聚乳酸是一种生物可降解的高分子材料,在自然界中会被微生物分解成二氧化碳和水。
这使得它成为一种环保的材料,可以有效地减少对环境的污染。
此外,聚乳酸还可以通过物理方法(如加热)或化学方法(如水解)来分解,从而实现回收再利用。
聚乳酸材料的应用由于聚乳酸具有良好的物理、化学和机械性能,以及优异的生物相容性和可降解性,因此被广泛应用于医疗、食品包装、纺织等领域。
在医疗领域中,聚乳酸被广泛用于制造缝合线、支架、修复组织等医疗器械。
它具有良好的生物相容性和可降解性,在人体内不会产生任何不良反应。
生物可降解高分子材料的发展前景与挑战
![生物可降解高分子材料的发展前景与挑战](https://img.taocdn.com/s3/m/1f2011a0e109581b6bd97f19227916888486b9e3.png)
生物可降解高分子材料的发展前景与挑战随着全球环境污染和资源短缺问题日益凸显,生物可降解高分子材料作为一种环保、可持续的新型材料备受关注。
生物可降解高分子材料是指能够在自然环境中被微生物分解,最终转化为水、二氧化碳和生物质的高分子化合物。
其开发应用不仅可以有效减少塑料垃圾对环境的污染,还能降低对石油等化石能源的需求,具有巨大的经济和环保潜力。
生物可降解高分子材料的发展前景十分广阔。
首先,生物可降解高分子材料可以广泛应用于包装材料、农业膜、医疗器械等领域,取代传统的塑料制品,减少环境负担。
其次,生物可降解高分子材料具有可再生性和可降解性,可以降低对石油等非可再生资源的依赖,是实现循环经济的重要材料基础。
再者,生物可降解高分子材料的制备技术逐渐成熟,生产成本逐渐下降,市场前景广阔。
然而,生物可降解高分子材料的发展也面临一些挑战。
首先,虽然生物可降解高分子材料具有生物可降解性,但在实际应用中,其降解速率和降解产物对环境的影响仍存在争议,需要进一步深入研究。
其次,生物可降解高分子材料的性能和稳定性还有待提高,目前在一些领域的应用受到限制。
再者,生物可降解高分子材料的产业链还未形成完善的体系,需要加大政府支持和产业投入,推动产业化和市场化进程。
为了促进生物可降解高分子材料的发展,需要加强科研机构和企业之间的合作,加大创新力度,开展多方面的研究工作,提高生物可降解高分子材料的性能和稳定性,降低生产成本,拓展应用领域。
同时,政府应加大支持力度,出台相关政策,引导企业加大投入,推动生物可降解高分子材料产业的快速发展。
只有各方共同努力,才能实现生物可降解高分子材料的广泛应用,为建设资源节约型和环境友好型社会做出贡献。
总之,生物可降解高分子材料作为一种环保、可持续的新型材料,具有巨大的发展潜力和市场前景。
在未来的发展中,科研机构、政府和企业应加强合作,共同推动生物可降解高分子材料的研发和应用,为建设绿色环保的美丽家园作出积极贡献。
生物可降解高分子
![生物可降解高分子](https://img.taocdn.com/s3/m/207dbcd8a1c7aa00b52acb1f.png)
生物降解高分子
生物降解高分子材料是指在一定条件下,一定的时间内能被细菌、霉菌、藻类等微生物降解的高分子材料。
可降解高分子:脂肪族聚酯、聚酯醚、聚膦腈
降解速率:脂肪族酯键、肽键>氨基甲酸酯
定义
真正的生物降解高分子是在水存在的环境下,能被酶或微生物水解降解,从而高分子主链断裂,分子量逐渐变小,以致最终成为单体或代谢成二氧化碳和水。
影响
影响材料生物降解性能的因素有环境因素和材料的结构。
环境因素是指水、温度、PH值和氧浓度。
水是微生物生成的基本条件,只有在一定湿度下微生物才能侵蚀材料。
每一种微生物都有其适合生长的最佳温度。
并且一般来说,真菌宜生长在酸性环境中,而细菌适合生长在碱性条件下。
虽然很多环境因素影响材料的降解性能,但是材料的结构是决定其是否生物降解的根本因素。
结构
易降解高分子结构通常为直链、橡胶态玻璃态、脂肪族高分子,而且具有低相对分子量和良好的亲水性(含有羟基、羧基的生物降解性高分子,不仅因为其较强的亲水性,而且由于其本身的自催化作用,所以比较容易降解),此外,表面粗糙也可以促进材料的降解;难降解高分子则为交联的、结晶态、芳香族高分子,具有较高的相对分子量(由于低分子量聚合物的溶解或溶胀性能优于高分子量聚合物,因此对于同种高分子材料,分子量越大,降解速度越慢)和疏水性(在主链或侧链含有疏水长链烷基或芳基的高分子,降解性能往往较差),表面光滑。
化学结构的生物降解速率:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键>亚甲基。
常见的可降解高分子有脂肪族聚酯、聚酯醚、聚膦腈、聚原酸酯、聚碳酸酯、聚酸酐、聚氨基酸等。
浅析可降解生物医用高分子材料
![浅析可降解生物医用高分子材料](https://img.taocdn.com/s3/m/91fa6ca5846a561252d380eb6294dd88d1d23d7b.png)
浅析可降解生物医用高分子材料一、本文概述随着科技的进步和医疗领域的发展,可降解生物医用高分子材料作为一种新型的医用材料,正逐渐受到人们的关注。
本文旨在浅析可降解生物医用高分子材料的基本概念、特性、应用以及发展前景。
通过对这一领域的深入探讨,希望能够为医用材料的研究和应用提供一定的参考和启示。
可降解生物医用高分子材料是一类能够在生物体内或体外环境中,通过水解、酶解或生物代谢等方式逐渐降解的高分子材料。
它们具有良好的生物相容性和生物活性,能够在体内与生物组织进行良好的结合,且降解产物对生物体无害。
这些特性使得可降解生物医用高分子材料在医疗领域具有广泛的应用前景,如药物载体、组织工程、医疗器械等。
本文将从可降解生物医用高分子材料的分类、性质、制备方法、应用现状等方面进行详细阐述,并探讨其未来的发展趋势和挑战。
通过综合分析国内外相关研究成果,旨在为可降解生物医用高分子材料的研究和应用提供有益的参考和指导。
二、可降解生物医用高分子材料的分类天然高分子材料:这类材料主要来源于自然界,如多糖、蛋白质等。
多糖如纤维素、壳聚糖等,具有良好的生物相容性和降解性。
蛋白质如胶原蛋白、明胶等,在人体内能够被自然酶解。
这些天然高分子材料在生物医学领域有着广泛的应用,如药物载体、组织工程支架等。
合成高分子材料:合成高分子材料是通过化学合成方法制得的,如聚酯、聚乳酸(PLA)、聚己内酯(PCL)等。
这类材料具有良好的可加工性和机械性能,可以通过调整分子结构和合成条件来调控其降解速率。
合成高分子材料在生物医用领域的应用也非常广泛,如用于制作药物缓释系统、临时植入物等。
杂化高分子材料:杂化高分子材料是结合天然高分子和合成高分子优点的一种新型材料。
它们通常是通过将天然高分子与合成高分子进行化学或物理共混、交联等方式制备得到的。
杂化高分子材料不仅具有良好的生物相容性和降解性,还兼具了天然高分子和合成高分子的优点,如机械强度高、易于加工等。
生物可降解高分子材料
![生物可降解高分子材料](https://img.taocdn.com/s3/m/e087ebc7988fcc22bcd126fff705cc1755275f83.png)
生物可降解高分子材料
生物可降解高分子材料是一种在多年的发展中被越来越多地采用的材料,它具有良好
的可降解性能,而且没有环境污染。
生物可降解材料一般都是指通过有机物质,如细菌、
酵母等,用生物酶受体产生和降解可生物降解的高分子材料。
生物可降解高分子材料的主要原料可以分为葡萄糖类和植物油脂类两大类,葡萄糖类
材料主要来源于玉米、大豆等蛋白质类植物,如羟基玉米淀粉;植物油脂类材料主要来源
于油料豆类植物,如棉籽、玉米籽等。
生物可降解高分子材料可以通过有机物质,如细菌、酵母等,催化发生降解,产生CO2和H2O,不会产生废料污染环境。
今天,生物可降解高分子材料主要应用于食品包装、医疗、地膜、种植培养板、耕作
层及各种收集装置。
聚乳酸(PLA)是一种绿色、可降解和可生物降解的高分子材料,是
生物可降解高分子材料中最经典的材料之一。
同时,由于它具有乳白色、柔软的性能、抗
静电的性能以及耐温性,因此也可以用于汽车内饰,电子产品和家具等方面的应用。
总之,随着我们对环境及社会的日益重视,生物可降解高分子材料的使用将越来越多,取得越来越好的结果。
它可以有效地帮助我们去减少环境污染,保护我们的环境,提高我
们生活的品质。
生物可降解高分子材料研究论文
![生物可降解高分子材料研究论文](https://img.taocdn.com/s3/m/9bbcb6d9f12d2af90342e61f.png)
生物可降解高分子材料的研究【摘要】生物可降解高分子材料作为一种环保型高分子材料引起了广泛关注。
生物可降解高分子材料指在特定条件下能够在微生物分泌酶的作用下被分解成小分子的材料。
本文笔者从生物可降解高分子的机理、应用领域、影响因素与发展前景等发面对生物可降解高分子进行分析与阐述。
【关键字】生物降解;高分子;材料随着经济的不断发展,人们生活水平的不断提高,大量的高分子材料在各个领域发挥重要作用,而废弃的高分子材料对环境的污染也日益严重。
废弃塑料的处理方法主要分为掩埋和焚烧,这两种方法都会产生新的污染物污染环境。
针对这一问题,许多国家实行了3R工程,3R指的是减少使用(Reduction)、重复使用(Reuse)、循环回收(Recycle)。
但这只是减少了废弃塑料的使用,没有从根本上解决问题。
如今,各种存在的处理废弃塑料的方法都会造成污染,因此研究与开发环境可接受的降解性高分子材料是解决环境污染的重要方法。
1生物可降解高分子材料的用途生物可降解高分子材料也被称为“绿色生态高分子材料”,它在环境日益污染的今天发挥着重要的作用,主要分为以下几个部分。
1.1解决环境污染问题利用生物可降解高分子的生物可降解性有效解决环境污染问题。
据统计,目前世界的高分子材料的产量已经超过1.2亿吨,这些高分子材料在被使用后产生了大量废弃物,这些废弃物变成污染源,造成地下水与土壤的严重污染,进一步危害动植物的生长,对人类更是极其不利。
20世纪90年代初期,在可以用来处理固体废物垃圾填埋的场地用完以后,一些发达国家开始向落后国家出口垃圾,这一行为对发展中国家的影响是巨大的。
一系列环境危机引发了人类的觉醒,发展可降解的环境友好型的材料成了科学家们的主要研究的方向,生物可降解高分子材料的出现为人类解决了这一难题,它能在一定条件下,利用微生物分泌酶的作用进行分解,大大减少了对环境的污染。
1.2生物可降解高分子在医疗器材中的使用利用生物可降解高分子的特性可以制作生物医用材料。
生物可降解高分子材料
![生物可降解高分子材料](https://img.taocdn.com/s3/m/ff4d74ba951ea76e58fafab069dc5022aaea46a7.png)
生物可降解高分子材料生物可降解高分子材料,是指以天然有机物为主要原料制备的高分子材料,经过特殊处理后能够在自然环境中被微生物或其他生物降解,最终转化成二氧化碳、水和生物质等无害物质的材料。
与传统的合成塑料相比,生物可降解高分子材料具有许多优势,如低碳排放、资源可再生、对环境友好等。
生物可降解高分子材料的原料主要来自于可再生的植物和动物资源,如淀粉、纤维素、蛋白质等。
它们通过特殊的加工技术,如酯交换反应、水解反应等,转化成生物可降解高分子材料。
这些材料在使用过程中通常不会对环境造成污染,因为它们可以被微生物分解并与自然界无害物质循环。
生物可降解高分子材料具有许多优点。
首先,它们能够显著减少对环境的污染。
传统塑料制品通常需要数百年才能被降解,对环境造成严重威胁。
而生物可降解高分子材料的降解速度远远快于传统塑料,减少了对土壤和水源的污染。
其次,生物可降解高分子材料可以降低碳排放。
生产生物可降解高分子材料的过程中,相对于传统塑料,其二氧化碳排放量更低,对气候变化的影响更小。
此外,生物可降解高分子材料可以有效利用可再生资源,不会对非可再生资源造成枯竭。
与此同时,生物可降解高分子材料本身也能作为良好的土壤改良剂和植物营养源,促进土壤生态系统健康发展。
然而,生物可降解高分子材料也存在一些挑战和限制。
首先,由于生物可降解高分子材料通常比传统塑料价格更高,其成本仍然是一个制约因素。
其次,目前的生物可降解高分子材料在性能上还无法完全替代传统塑料。
例如,在机械性能、热稳定性和耐化学性等方面,生物可降解高分子材料仍然存在一定差距,不能满足一些特殊行业的需求。
此外,生物可降解高分子材料的降解速度也需要控制,否则可能会造成不必要的资源浪费。
为了推动生物可降解高分子材料的广泛应用,需要加强相关技术的研究和开发。
首先,需要提高生物可降解高分子材料的性能,使其能够满足广泛的应用需求。
这可以通过改进材料配方、加强材料加工和改良材料结构等方式来实现。
可降解高分子材料
![可降解高分子材料](https://img.taocdn.com/s3/m/22bd4cec81eb6294dd88d0d233d4b14e85243ebf.png)
可降解高分子材料可降解高分子材料(也称为可生物降解高分子材料)是指能够在自然环境下被微生物降解、分解的高分子材料。
随着环境保护意识的增强以及对塑料垃圾影响的关注,可降解高分子材料得到了广泛关注和应用。
可降解高分子材料根据其来源可分为天然的和合成的两类。
天然的可降解高分子材料主要来源于动植物,如淀粉、纤维素、蛋白质等。
合成的可降解高分子材料则是通过化学合成得到的,常见的有聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)、聚己内酰胺(PHB)等。
可降解高分子材料的应用范围十分广泛。
在包装行业中,可降解高分子材料可以替代传统的塑料包装材料,减少塑料垃圾的产生,对环境友好。
在农业领域,可降解高分子材料可以用于农膜、肥料包袋等农业用品的生产,减少对土壤的污染。
在医疗领域,可降解高分子材料可以用于制造缝合线、修复器械等,避免二次手术取出缝线的需求,减轻患者的痛苦。
可降解高分子材料具有许多优点。
首先,它们可以被微生物降解,无需进行特殊的处理。
其次,它们与传统塑料相比具有更快的降解速度,不会给环境带来长期的污染。
第三,可降解高分子材料可以根据需要进行调节,在强度、降解速度等方面进行优化。
此外,可降解高分子材料还具备良好的生物相容性,不会对人体或其他生物产生不良影响。
然而,可降解高分子材料也存在一些挑战。
首先,目前很多可降解高分子材料的生产成本较高,使得其在一些领域的应用受到限制。
其次,降解速度可能会受到环境条件的影响,造成降解时间的不确定性。
另外,可降解高分子材料的性能与传统塑料相比仍有一定差距,需要进一步的研发和改进。
综上所述,可降解高分子材料具有广泛的应用前景,可以帮助减少塑料垃圾的产生,保护环境。
随着技术的发展和成本的下降,相信可降解高分子材料将在各个领域得到更广泛的应用。
可生物降解高分子材料的分类及应用
![可生物降解高分子材料的分类及应用](https://img.taocdn.com/s3/m/824b24ab6aec0975f46527d3240c844769eaa019.png)
可生物降解高分子材料的分类及应用可生物降解高分子材料是一类具有生物降解性能的高分子材料,它们能够在自然环境中通过微生物的作用或物理化学变化而分解降解,对环境影响较小。
下面将介绍可生物降解高分子材料的分类及应用。
一、分类:1. 天然高分子材料:包括纤维素、淀粉、蛋白质和天然胶等,这些材料具有良好的生物降解性能,并且可以再生、可持续利用。
2. 生物可降解聚合物:包括可降解聚酯、可降解聚乳酸、可降解聚酰胺等,这些材料是通过合成聚合物的方法制备而成,具有良好的生物降解性能,并可用于替代传统塑料制品。
3. 生物塑料:这是一类以可再生材料为原料制备的可降解高分子材料,如玉米淀粉、蔗糖等。
它们可以在一定条件下通过微生物的作用降解分解,对环境影响较小。
二、应用:1. 包装材料:可生物降解高分子材料可以广泛应用于包装领域,用于制备食品包装袋、包装盒等。
这些材料具有较好的可降解性能,降低了对环境的污染。
2. 农业与园艺:可生物降解高分子材料可以制备农膜和园艺覆盖膜,用于农业和园艺领域。
这些材料具有良好的降解性能,可避免农膜残留对土壤和植物造成的污染。
3. 医疗器械与生物医学材料:可生物降解高分子材料在医疗器械和生物医学材料领域具有广泛的应用。
例如可降解聚酸乳酸制备的缝合线、骨修复材料等,这些材料可以在体内发挥作用一定时间后降解,无需二次手术取出。
4. 纺织品:将可生物降解高分子材料应用于纺织品中,可以制备出具有良好降解性能的纺织品,如环保袋、生物降解纤维等。
这些纺织品可以在使用结束后通过自然环境的作用得到降解分解。
5. 环境修复:可生物降解高分子材料还可以应用于环境修复领域,例如用于污水处理、油污修复等。
这些材料具有良好的吸附性能和降解性能,可以对环境中的污染物起到清除和降解的作用。
可生物降解高分子材料具有良好的降解性能,对环境影响较小。
在包装、农业、医疗、纺织品和环境修复等领域具有广泛的应用前景。
随着环保意识的不断提高,可生物降解高分子材料将成为一种重要的替代材料,并推动可持续发展的进程。
浅谈生物可降解高分子材料的研究与发展
![浅谈生物可降解高分子材料的研究与发展](https://img.taocdn.com/s3/m/f6db404d7dd184254b35eefdc8d376eeafaa175e.png)
浅谈生物可降解高分子材料的研究与发展生物可降解高分子材料是一种能够在自然环境中被微生物降解而不会对环境造成污染的新型材料。
随着人们对环境保护意识的提高,生物可降解高分子材料的研究与发展备受关注。
本文将从生物可降解高分子材料的定义、特点、研究现状以及发展前景等方面进行浅谈。
二、生物可降解高分子材料的特点1. 可降解性:生物可降解高分子材料可以在自然环境中被微生物降解,不会对环境造成污染,符合环保要求。
2. 天然原料:生物可降解高分子材料通常以天然物质为原料,制备工艺简单,成本低廉。
3. 可塑性:生物可降解高分子材料具有一定的可塑性,可以根据需要进行成型加工,适用于各种场合的使用。
三、生物可降解高分子材料的研究现状目前,生物可降解高分子材料的研究正在逐渐深入,包括材料的原料选择、制备工艺、性能测试等方面。
在原料选择方面,研究人员正致力于寻找更多的天然原料,以满足不同需求的生物可降解高分子材料的制备。
在制备工艺方面,研究人员也在不断寻求新的技术手段,以提高生物可降解高分子材料的制备效率和品质。
在性能测试方面,研究人员重点关注生物可降解高分子材料的力学性能、热性能、降解速度等指标,以确保其在实际应用中的可靠性和稳定性。
四、生物可降解高分子材料的发展前景随着人们对环境保护意识的提高,生物可降解高分子材料的应用领域将会得到进一步拓展。
在食品包装领域,生物可降解高分子材料可以替代传统的塑料包装材料,减少对环境的影响;在医疗器械领域,生物可降解高分子材料可以用于制备可降解的缝线、支架等,减少对人体的刺激和排斥。
在垃圾处理领域,生物可降解高分子材料还可以用于制备生物降解袋,方便垃圾分类和处理。
生物可降解高分子材料有着广阔的应用前景,对环境保护和可持续发展具有积极的促进作用。
生物可降解高分子材料是一种环保、可持续发展的新型材料,其研究与发展备受关注。
在未来的发展中,我们可以预见,生物可降解高分子材料将会在各个领域得到广泛应用,为环保事业做出更大的贡献。
生物可降解高分子材料
![生物可降解高分子材料](https://img.taocdn.com/s3/m/f513b6d46bec0975f465e296.png)
4.体液的影响:
人体不同组织,不同器官的pH值,酶及其它成分不同,同一种材料在人体 不同位置的降解速度也不同。(肠溶制剂设计原理)
五、可降解材料的应用
生物降解材料 的应用范围
生物可降解高分子材料
目录
基本概念 高分子在生物体内的降解机理 聚合物降解的种类和化学结构 影响聚合物降解速率的因素 可降解材料的应用
一、基本概念
1、概念
在特定的环境下,其化学结构发生显著的变化并造成某些性能 下降被生物体侵蚀或代谢而降解的高分子材料。
2、降解的过程 a)高分子材料的表面被微生物粘附,产生一些水溶性的中间
(heterogeneousdegradation) 2.本体降解(bulk degradation)—聚合物内部与外部
以同样 的速率发生降解, 又称均一降解 (homogeneousdegradation • 表面降解和本体降解是聚合物降解的两种基本形式
• 实际情况一般是两种降解机制兼而有之,只是某种 机制占优势而已.
环保领域
水资源环境领域
食品容器和包装 行业
农林业方面
医学领域
外科手术缝合线 药物缓释剂 骨固定材料 人造皮肤
五、可降解材料的应用
目前使用较多的就是现有包 装材料(聚乙烯、聚丙烯) 中加入淀粉等生物降解剂使 其容易降解
容器包装材料
可降解自由树脂的塑料,放
在600℃热水中软化成一团,
可以加工成各种形状的玩具,
产物。
b)微生物分泌的一些酶类,吸附于表面并消解聚合物链,通 过水解和氧化等反应将高分子材料降解为低分子量的单体及碎 片。
可生物降解聚合物名词解释
![可生物降解聚合物名词解释](https://img.taocdn.com/s3/m/3999a74c9a6648d7c1c708a1284ac850ad020423.png)
可生物降解聚合物名词解释
生物降解聚合物(也称生物降解高分子)是指在使用之后,可降解的聚合物。
在降解过程中,它的主要产物是气体(如二氧化碳CO₂、
氮气N₂),水,生物质和无机盐。
生物降解聚合物可由天然形成或人工合成。
它们主要由酯、酰胺和醚官能团组成。
生物降解聚合物的特定结构决定了其特性和机理。
这些聚合物一般通过缩合反应、开环聚合和金属催化剂等方式合成。
生物可降解聚合物按来源可分为天然和合成两大类。
天然可降解聚合物包括淀粉、纤维素、聚糖、甲壳素、壳聚糖及其衍生物等;合成可降解聚合物分为人工和细菌合成两大类,细菌合成的可降解聚合物包括聚羟基烷基醇酯(PHAs)、聚( 苹果酸酯),人工合成的可降解聚合物包括聚羟基酸酯类、聚己内酯(PCL)、聚氰基丙烯酸酯(PACA)等。
高分子材料在生物医学领域的应用研究
![高分子材料在生物医学领域的应用研究](https://img.taocdn.com/s3/m/6322674af02d2af90242a8956bec0975f565a470.png)
高分子材料在生物医学领域的应用研究引言高分子材料是一类由聚合物构成的材料,具有广泛的应用领域。
在生物医学领域,高分子材料正发挥着重要的作用。
本文将重点探讨高分子材料在生物医学领域的应用研究,并按照材料的不同类别进行划分。
一、生物可降解高分子材料生物可降解高分子材料是指能够自然降解并被生物体代谢排出体外的材料。
这种材料在生物医学领域具有重要的应用潜力。
例如,聚乳酸和聚羟基酸等生物可降解高分子材料可用于制造缝合线、修复组织或器官,因其良好的生物相容性和可降解性能,可以减少二次手术和组织反应。
二、生物仿生材料生物仿生材料是指模仿生物体的结构和功能设计的一类材料。
在生物医学领域,生物仿生材料的应用非常广泛。
例如,聚脲酯和聚乙烯醇等材料可用于制造人工血管,具有良好的生物相容性和柔软度,能够模拟真实血管的形态和功能,对心脑血管疾病的治疗具有重要意义。
三、生物传感材料生物传感材料是指能够检测和传递生物体内外信息的一类材料。
在生物医学领域,生物传感材料的应用也是非常重要的。
例如,聚丙烯酸和聚乙烯吡咯烷酮等材料可用于制造生物传感器,可以检测血糖、血压、体温等生理指标,并实时传递给医生和患者,提供准确的实时监测和诊断。
四、生物组织工程材料生物组织工程材料是指能够促进组织修复和再生的一类材料。
在生物医学领域,生物组织工程材料的应用非常广泛。
例如,聚合甲基丙烯酸甲酯和聚对苯二甲酸酯等材料可用于制造人工骨骼和软骨,能够促进骨骼和软骨的再生和修复,对于骨折和关节疾病的治疗具有重要作用。
五、生物控释材料生物控释材料是指能够控制药物释放速率的材料。
在生物医学领域,生物控释材料的应用非常重要。
例如,聚乳酸-羟基乙酸聚合物和胶原蛋白等材料可用于制造药物控释微球,能够持续释放药物,提高药物的效果和降低副作用,对于治疗肿瘤和炎症等疾病具有重要意义。
结论高分子材料在生物医学领域的应用研究具有广阔的前景。
生物可降解材料、生物仿生材料、生物传感材料、生物组织工程材料和生物控释材料等不同类型的高分子材料在生物医学领域发挥着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中山大学研究生学刊(自然科学、医学版)第33卷第1期JOURNAL OF THE GRADUATES VOL.33ɴ12012SUN YAT-SEN UNIVERSITY(NATURAL SCIENCES、MEDICINE)2012生物可降解高分子材料研究综述*封硕(中山大学化学与化学工程学院高分子研究所,广州510275)【内容提要】简要说明了生物可降解材料的含义、降解原理,介绍了目前较为成功的生物可降解材料的种类、结构、性能及制备方法。
阐述了高分子材料生物降解性的影响因素。
对生物降解高分子材料的未来进行简单展望。
【关键词】生物降解;高分子材料;环境保护引言化学家与化学工程师们渴望认识地球。
作为一个社会群体,我们希望能够确信我们所使用的产品对我们自身和我们生活的环境是无害的———并且确定这些产品的生产不会对我们的后代以及我们的环境产生有害性的影响。
绿色化学作为一个重要的提议最先在美国发起,目的是从根源上减少污染。
在我国,绿色化学的概念同样被政府和化学家们重视。
环境保护是我国的一项基本国策。
生物降解高分子材料作为一种新型环境材料,能够有效地解决塑料制品对人类生存环境的污染。
在我国环境保护的系统工程中,开发新型环境材料是从根本上治理环境污染的一种有效的技术途径。
近年来随着社会经济的高速发展,传统高分子塑料和纤维制品得到了极大地发展。
但同时大量高分子材料废弃物也给地球带来了十分严重的污染,到处可见的一次性PE 快餐盒随风飘舞所造成的“白色污染”只是其中一个浅显的事例而已。
随着人们的环保意识的进一步增强,认识到环境污染将威胁人类的生存,生物可降解高分子材料的开发和应用日益受到重视。
1生物可降解高分子含义生物降解高分子是指高分子塑料使用性能优良,废弃时在自然界中被微生物作用而降解,最终变成水和二氧化碳等无害的分子物质,从而进入自然界良性循环的塑料及其制品。
*收稿日期:2012-03-04作者简介:封硕,博士研究生,目前就读于中山大学化学与化学工程学院高分子研究生。
中山大学研究生学刊(自然科学、医学版)二○一二年第一期2降解原理目前,生物降解的机理尚未完全研究透彻。
一般认为[1],高分子材料的生物降解是经过两个过程进行的。
首先,微生物向体外分泌水解酶,和材料表面结合,通过水解切断高分子链,生成分子量小于500g/mol以下的小分子量的化合物(有机酸、糖等);然后,降解的生成物被微生物摄入体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。
这种降解具有生物物理、生物化学效应,同时还伴有其它物化作用,如水解、氧化等,是一个非常复杂的过程,它主要取决于高分子的大小和结构,微生物的种类及温度、湿度等环境因素。
高分子材料的化学结构直接影响着生物可降解能力的强弱,一般情况下[2]:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键>亚甲基。
此外,分子量大、分子排列规整、疏水性大的高分子材料不利于微生物的侵蚀和生长,不利于生物降解。
通过各种研究表明,降解产生的碎片长度与高分子材料单晶晶层厚度成正比,极性越小的共聚酯越易于被真菌降解,细菌对a-氨基含量高的高分子材料的降解作用十分明显。
高分子材料的生物降解通常情况下需要满足以下几个条件[3]:(1)存在能降解高分子材料的微生物;(2)有足够的氧气、潮气和矿物质养分;(3)要有一定的温度条件;⑷pH值大约在5 8之间。
生物降解高分子材料的研究途径主要有两种,一种是合成具有可以被微生物或酶降解的化学结构的大分子;另一种是培养专门用于降解通用高分子材料的微生物。
目前的研究方向以前一种为主,人们已经成功地合成了一系列生物可降解高分子材料。
3生物可降解高分子的结构和制备方法生物可降解高分子的结构与制备方法息息相关。
根据制备方法,生物可降解高分子材料可分为“微生物合成体系、化学合成体系和利用天然高分子体系”三大类[4 5]。
3.1微生物合成体系用微生物产生的酶将聚合物(聚酯类)解聚水解,再吸收合成高分子。
这些化合物含微生物聚酯和微生物多糖。
起代表产品[6]为聚羟基丁酯均聚物(PHB)、聚羟基丁酯戊酯共聚物(PHBV)、生物纤维束、聚氨基酸。
以PHBV为例,英国ICI公司首先以丙酸、葡萄糖为碳源食物,通过发酵法成功地开发出有实用价值的生物降解性3-羟基丁酸-3-羟基戊酸共聚物(PHBV),商品名称为Biopol,是分子量50-60万的结晶性热塑性聚酯。
其化学结构为:其微生物有[6]Actinomycetes放线菌、Alcaligenes产碱杆菌、Bacillus孢芽杆菌等。
其碳源有葡萄糖、有机酸、醇、石油、二氧化碳等。
其制备流程:原料准备->微生物发酵->聚合物提取->聚合物干燥->造粒-03生物可降解高分子材料研究综述>降解塑料。
此工艺操作中,戊酸酯含量必须严控在5%-20%(戊酸酯含量上升导致结晶度、柔性和熔点下降)。
这种共聚物的机械特性好,耐热性优良(可在热水中使用,HDT相当于PP),耐油性、耐水性、耐候性、耐药性和气体屏障性也很好。
PHBV在空气中是稳定的,当聚合物置于微生物活性强的环境,如土壤,下水道和海水中时,就发生生物降解,最后分解为水和二氧化碳消失。
3.2化学合成体系用化学合成方法生产的生物可降解高分子材料主要为脂肪族聚酯,常见的有聚丁二酸酯(PBS)、聚乳酸(PLA)、聚已内酯等[7]。
3.2.1聚丁二酸酯由二醇和二酸脱水聚合制得,其化学结构如下:PBS是目前世界公认的综合性能最好的生物降解塑料。
它同样可以进行完全降解。
PBS聚合物有优良的机械性能和成型加工性能,可以直接用于纺丝或注塑。
其密度和熔融指数略大于PP,力学温度全部略低于PP。
3.2.2聚乳酸聚乳酸(PLA)是一种生物原料制品,具有很好的生物降解性、生物相容性和生物可吸收性,在降解后不会遗留任何环保问题。
PLA的聚合方法一般有两种,一种是以谷物为原料,在溶液中直接由乳酸聚合,另一种是经过环状二单体丙交酯聚合而成。
其化学结构如下:PLA聚合物有足够的强度、热稳定性和热塑性能,可以熔融纺丝,其长丝的性能介于PA6和PET之间。
3.2.3聚己内酯以ε-已内酯为单体经开环聚合可制得分子量在10000以上的聚已内酯,其化学结构为:聚已内酯是高结晶性脂肪族聚酯,玻璃化温度为-60ħ,柔软程度、抗张强度与尼龙相似。
因为熔点低,很少单独使用,通常将它与其它树脂或填充物复合,以提高它的实用耐热性,例如可以与聚β—羟基丁酸共混熔纺[8]。
13中山大学研究生学刊(自然科学、医学版)二○一二年第一期3.3利用天然高分子体系目前主要是利用具有生物降解性的淀粉和纤维素等天然高分子。
这里以甲壳素生产生物降解塑料为例。
甲壳素又名壳聚糖,由N-2酰基-D-葡胺糖-β(1,4)苷键连接而成的大分子直链状碱性多糖。
广泛分布于虾、贝等海产品和甲壳类昆虫的皮壳中,也存在于菌类(地衣)等的细胞膜中。
其微生物分解酶为壳质酶、溶菌酶。
4高分子材料生物降解性的影响因素[3]化学结构对聚合物的生物降解性具有决定性影响。
4.1分子主链结构对高分子材料生物降解性的影响对于大部分以C-C键为主链的聚合物,一般都不显示明显的生物降解性。
作为四大通用塑料的聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)和聚苯乙烯(PS)都具有C-C主链结构,它们对微生物的阻抗性都很高。
当聚合物主链上含有C-O和C-N 键时,它们对生物降解的敏感性往往要大于完全为C-C主链的聚合物。
根据共聚原理,在合成高分子中引入易生物降解的化学键,是制备生物降解塑料的重要方法。
4.2支化对高分子材料生物降解性的影响支化结构对聚合物的生物降解性也有一定的影响。
国外资料通过实验比较了分子量范围为170 620的线性和支链型碳氢聚合物的生物降解性,发现支链型聚合物的真菌生长速度明显小于线性聚合物。
4.3分子量对高分子材料生物降解性的影响分子量对高聚物的生物降解性有很大影响。
当PS、PE、聚丁二烯及聚异丁烯的分子量小于一定值时,就能被一定的菌种所降解,其中PS的临界分子量为200 300,PE 的临界分子量为8600。
4.4添加剂在塑料制品生产中,一般都要添加其它助剂,而添加剂也可对塑料的生物降解性产生影响。
典型的例子是添加增塑剂的软质PVC的生物降解性一般要大于不加增塑剂的硬质PVC。
此外一些外部环境条件(如微生物的特性、温度、PH值、湿度等)也会影响塑料的生物降解性。
5发展前景开发和应有生物可降解高分子材料,目前存在的主要问题是价格偏高,生产技术不23生物可降解高分子材料研究综述够成熟,使其使用领域受到限制。
但随着有关研究的进一步深入,生产技术的进一步提高以及环保呼声的日益高涨,生物可降解高分子材料在21世纪必将实现工业化,进入人们的日常生活,在各种领域得到广泛。
参考文献:[1]赵育.日本的生物降解塑料[J].化工新型材料,1999,(2):3 5.[2]俞昊.生物可降解聚酯纤维进展[J].合成纤维,1999,(2):16 29.[3]姜浩然.生物可降解材料的开发[J].盐城工学院学报(自然科学版),2002,(3):36 37.[4]刘志伟.国内外生物降解塑料标准化现状和动向[J].中国塑料,1999,(2):7 11.[5]王身国.可生物降解的高分子类型、合成和应用[J].化学通报,1999,(2):31 35.[6]杨东杰.生物降解塑料技术发展现状[J].程度纺织高等专科学校学报,2000,(2):48 49.[7]卓玉国.绿色高分子及其发展现状[J].中国环境管理干部学院学报,2004,(9):41 42.[8]裘淑媛.生物降解塑料盒环境保护[J].安庆师范学院学报,1998,(10):46 47.Research and development of biodegradable polymer materialsFeng Shuo(Institute of Polymer Science,School of Chemistry and Chemical Engineering,Sun Yat-sen University,Guangzhou510275,China)【Abstract】A brief description of the biodegradable material implication,degradation principle has been proposed,we introduce some successful biodegradable materials,structures,properties and preparation methods.We also elaborate the polymer biodegradation influence factors.In the end,biodegradable polymer materials in the future are under simple forecast.【Keywords】biodegradation;polymer material;environment protection【责任编辑:施信波】33。