线性规划问题的图解法
合集下载
运筹学线性规划图解法
引理1.线性规划问题的可行解X为基本可行解的充分 必要条件是X的正分量所对应的系数列向量是线性独立的. 证明:
必要性:已知X为线性规划的基本可行解,要证X的 正分量所对应的系数列向量线性独立。
因为X为基本解,由定义,其非零分量所对应的系数 列向量线性独立;又因为X还是可行解,从而其非零分量 全为正。
•有唯一解
例1: max z=2x1+ 3x2 s.t. x1+2x2≤8 4x1≤16 x1,x2≥0
画图步骤: 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值
x2
可行域
(4,2) z=14
目标函数 等值线
x1
•有无穷多解
例2 max z =2x1+4x2 s.t. x1+2x2≤8 4x2 ≤ 12 3x1 ≤12 x1, x2 ≥0
X(0)=Σ α iX(i) α i0,Σ α i=1 记X(1),X(2), …,X(k)中满足max CX(i)的顶点为X(m)。于是,
k
k
CX (0) Ci X (i) Ci X (m) CX (m)
i 1
i 1
由假设CX(0)为最优解,所以CX(0)=CX(m),即最优解可在顶点
充分性:已知可行解X的正分量所对应的系数列向量 线性独立,欲证X是线性规划的基本可行解。
若向量P1, P2,…, Pk线性独立,则必有k≤m;当k=m时, 它们恰构成一个基,从而X=(x1,x2,…,xk,0…0)为相 应的基可行解。K〈m时,则一定可以从其余的系数列向量 中取出m-k个与P1, P2,…, Pk构成最大的线性独立向量组, 其对应的解恰为X,所以根据定义它是基可行解。
§2 线性规划图解法
线性规划(图解法)
D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10
第1.2节 线性规划问题的图解法
x1 20 * x 2 100
* * z 1240
27
2 规划问题求解的几种可能结果
2)无穷多最优解
max z 12 x1 8 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x x2 40 1 3 3 3 x1 2 x2 260 x1 , x2 0
23
x2 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
max z 12 x1 10 x2 2 x1 x2 160 1 1 x1 x2 40 3 3 3 x1 2 x2 260 x1 , x2 0
工序 花瓶种类 占用材料 (盎司) 艺术加工 (小时) 储存空间 (一单位) 利润值 (元)
大花瓶
1/3x1+1/3x2=40 (60,40)
x1
22
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 图1 花瓶问题的图解法
图解法的基本步骤:
(4)确定最优解。最优解是可行域中使目标
函数值达到最优的点,当目标函数直线由原点 开始沿法线方向向右上方移动时,z 值开始增 大,一直移到目标函数直线与可行域相切时为 止,切点即为最优解。
18
图解法的基本步骤:
(3)作出目标函数。由于
z 是一个待求的目 标函数值,所以目标函数常用一组平行虚线表 示,离坐标原点越远的虚线表示的目标函数值 越大。
管理运筹学_第二章_线性规划的图解法
线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的
§1.2图解法
试用图解法分析,问题最优解随( 试用图解法分析,问题最优解随(-∞<c<∞)变化的情况 变化的情况
注:本问题有可行解,但无最优解。 本问题有可行解,但无最优解。
例4
max z = 3 x1 + x2
x1 − x 2 ≤ − 1 x1 + x 2 ≤ − 1 x , x ≥ 0 1 2
该问题的可行域是空的,即无可行解( 解 该问题的可行域是空的,即无可行解(
x2
x1-x2=-1
本问题只有唯一最优解。 注:本问题只有唯一最优解。
例1的最优生产方案为: 生产产品甲为2件, 的最优生产方案为: 生产产品甲为2 生产产品乙6 生产产品乙6件,最大利润为36万元。 最大利润为36万元 万元。
注: 问题的可行域是一个有界的凸多边形, 其边界由5条直线所围成: 其边界由 条直线所围成: 条直线所围成
解
该线性规划问题的可行域见图1 该线性规划问题的可行域见图1-1。
x2 8
Q1(0,6)
Q2(2,6)
图1-1 图解法解题过程 x1=4 2 x 2 = 12 3x1+5x2=z=36
6
4 Q 2
Q3(4,3)
3x1+2x2=18
Q4(4,0)
0
Q0(0,0)
2
4
6
8
x1 3x1+5x2=z=20
1 3 , 10 10
如图: 解 该问题的可行域 Q 如图
x2 x1+x2=5 6x1+2x2=21 -x1+x2=0
A(11/4,9/4)
B(21/6,0) 3x 1 + x 2 = z =0 3x 1 + x 2 = z =6
注:本问题有可行解,但无最优解。 本问题有可行解,但无最优解。
例4
max z = 3 x1 + x2
x1 − x 2 ≤ − 1 x1 + x 2 ≤ − 1 x , x ≥ 0 1 2
该问题的可行域是空的,即无可行解( 解 该问题的可行域是空的,即无可行解(
x2
x1-x2=-1
本问题只有唯一最优解。 注:本问题只有唯一最优解。
例1的最优生产方案为: 生产产品甲为2件, 的最优生产方案为: 生产产品甲为2 生产产品乙6 生产产品乙6件,最大利润为36万元。 最大利润为36万元 万元。
注: 问题的可行域是一个有界的凸多边形, 其边界由5条直线所围成: 其边界由 条直线所围成: 条直线所围成
解
该线性规划问题的可行域见图1 该线性规划问题的可行域见图1-1。
x2 8
Q1(0,6)
Q2(2,6)
图1-1 图解法解题过程 x1=4 2 x 2 = 12 3x1+5x2=z=36
6
4 Q 2
Q3(4,3)
3x1+2x2=18
Q4(4,0)
0
Q0(0,0)
2
4
6
8
x1 3x1+5x2=z=20
1 3 , 10 10
如图: 解 该问题的可行域 Q 如图
x2 x1+x2=5 6x1+2x2=21 -x1+x2=0
A(11/4,9/4)
B(21/6,0) 3x 1 + x 2 = z =0 3x 1 + x 2 = z =6
线性规划的标准化及图解法
2
线性规划的问题
• 某工厂生产两种型号的电机(记为A和B),每台 A型电机需用原料2个单位,4个工时,每台B型电 机需用原料3个单位,2个工时,工厂共有原料 100个单位,120个工时,A、B型电机的每台利 润分别为600元和400元,问两种电机各生产多少 可使利润最大?
设A、B型电机各生产x1,x2台,x1,x2称为决策变量。
解:第一个约束引入松弛变量x4, 第二个约束引入剩余变量x5
18
将线性规划化成标准形式
于是,我们可以得到以下标准形式的线性 规划问题:
19
将线性规划化成标准形式
3. 变量无符号限制的问题:
在标准形式中,必须每一个变量均有非负 约束。当某一个变量xj没有非负约束时, 可以令 xj = xj’- xj” 其中 xj’≥0,xj”≥0 即用两个非负变量之差来表示一个无符号 限制的变量,当然xj的符号取决于xj’和xj” 的大小。
3 . Min
S x1 x 2
4 . Min
S 2 x1 3 x 2
x1 x 2 1 s .t . x2 2 x , x 0 1 2
x1 2 x 2 2 2 x x 3 1 2 s .t . x2 4 x1 , x 2 0
该问题可推广到m个产地,n个销地的运输 问题。
7
线性规划的应用模型
某饲养场使用甲,乙,丙,丁四种饲料,每种饲料的 的维生素A,B,C含量及单位价格和所需的维生素 如下表,要求配制一个混合饲料,每单位混合饲料 的维生素A、B、C的需要量为3,5,10. 甲 A B C 单价 0.2 0.8 1.2 5 乙 0.8 0.3 0.9 6 丙 1.2 0.9 0.7 6 丁 0.6 0.7 1.5 7 需要量 3 5 10
线性规划问题的图解法
20 40
.
即B点坐标为20 ,40,代入目标函数可得最优值Smax 50 20 30 40 2 200 .
线性规划问题的图解法
例2
解
1. 求可行域(如图7 - 2所示)
(1)建立直角坐标系Ox1x2 . (2)满足条件 x1 x2 2 的所有点均落在直线 x2 2 x1 的右下半平面内; (3)满足条件 x1 x2 2 的所有点均落在直线 x2 2 x1 的右上半平面内. 由约束条件可知,无界区域ABCD是其可行域 .
3 截距最大的点即为最优解,其对应的S值就是最优值 .因此,我们可以把过原点且斜率 5的直
3 线作为参照直线,然后在可行域里进行平移,直到找到最优解 .
显然,斜率为 5的直线在可行域里平移时过B点的纵截距最大,求B点的坐标,联立 3
方程
x2 x2
Hale Waihona Puke 80 2x1 40,解得
x1 x2
图7-2
线性规划问题的图解法
2. 求最优解 把目标函数 S x1 2x2 中的S看作参数,当S 0时,目标函数S x1 2x2是一条过原点 的直线,在坐标系内画出这样的直线(用虚线表示),然后再将该直线向可行域内平移 . 在平移
时,7-2中B点是满足该约束条件的S最小值,其坐标为2 ,0,于是得到该线性规划问题的最
于是从约束条件知,由l1 ,l2 ,l3以及x1轴围成的区域 ABCD是该线性规划问题的可行域,如图7-1所示 .
图7-1
线性规划问题的图解法
2.求最优解 可行域的点满足约束条件,但并非使得目标函数 max S 50x1 30x2 取得最大值的解, 且该目标函数对应的图象也是一条直线,其斜率为 5,可行域里能使该直线与y轴的纵
19.3线性规划问题的图解法
例1:已知线性约束条件为 x y 1 0
例
2
x
y
5
0
题
x 4 y 1 1 0
解 求线性目标函数z=x+2y满足线性约束条件的最优解及最大值、最小值。
析 解:(1)在直角坐标系中,画出可行域。 y
x-y-1=0
(2)将目标函数变形为 y 1 x z
22
B
当z/2取得最大值时,z取得最大值;
3.将z看成常数,这是一条直
y=3 ● M X+2y-8=0
线,当z变化时,可以得到一
组平行的直线;
O
x
4.当直线 y 2 x z 经过
X=4
33
不等式组①表示的平面区域内一个点时,
z 3
被唯一确定;当
z 3
取最大值时,z取最大值,当
z 3
取最小值时,z取最小值。
5.令z=0,画出直线2x+3y=0,然后平移这条直线,如图可知当经过点M(4,2)时
19.3线性规划问题的 图解法
提出问题
在19.1的问举例中线性目标函数z=2x+3y
线性约束条件为
x 2y 8
4 4
x y
1 1
6 2
x
0
①
y 0
当x,y满足不等式①且为整数时,如何求z的最大值呢?
问题探究
y
1.首先,画出①表示的平面区域;
2.把z=2x+3y变形为 y 2 x z 33
并找出整数点。 (2)将目标函数变形为
y1x z
24
当z/4取得最大值时,z取得最大值;
A ● ●
●
●
●
x
2x+y-8=0
线性规划的图解法
s.t.
32xx11'' 3x1'
+ + +
2
x2 x2 x2
+ x3' − x3'' + 2x3' − 2x3'' + 3x3' − 3x3''
+
x4
−
x5
= 9 = 4 = 6
x1'
,
2
x2
,
x3' ,
x3'' ,
x4 ,
x5
≥
0
2.1问题的提出
例7 将以下线性规划问题转化为标准形式。
min f =−3x1 + 5x2 + 8x3 − 7x4
x5
≥
20
x5 xj
+ ≥
x6 0,
≥ 30 j = 1, 2, ,
6
2.1问题的提出
所谓线性规划问题
就是求一组变量 (x1,x2,…,xn)的值,它们在满足一组线 性等式或不等式的限制条件下,使某一线性函数的值达到 极大或极小。而线性规划就是研究并解决这类问题的一门 理论和方法。
线性规划模型是由决策变量、目标函数和约束条件三要素 组成。
例2 某昼夜服务的公交线路每天各时间区段内所需的工
作人员数量如下:
时段
时间
所需人数
1
6:00~10:00
60
2
10:00~14:00
70
3
14:00~18:00
60
4
18:00~22:00
50
5
22:00~2:00
20
线性规划问题的图解法
第二步:对约束条件加以图解。
第三步:画出目标函数等值线,结合目标函数 的要求求出最优解:最优生产方案。
第四步:最优解带入目标函数,得出最优值。
4
约束条件的图解:
每一个约束不等式在平面直角坐标系中 都代表一个半平面,只要先画出该半平面的 边界,然后确定是哪个半平面。
怎麽画边界
?
怎麽确定 半平面
以第一个约束条件: x1 2x2 ≤8 为例, 说明图解过程。
结果表明,该线性规划有无穷多个 最优解--线段AB上的所有点都是最优
点,它们都使目标函数取得相同的最大值 Zmax=14。
17
无界解
max Z x1 x2
x12x1x2
x2 ≤
≤ 2
4
x1, x2 ≥ 0
x2
6
4
2 x1
0
1
2
3
4
5
18
如图中可行域是一个无界区域,如阴影区所示。 虚线为目表函数等值线,沿着箭头指的方向平移可 以使目标函数值无限制地增大,但是找不到最优解。
12
max Z 2x1 3x2
x1 2x2 ≤ 8
4 4
x1 x2
≤16 ≤12
x1, x2 ≥ 0
x2 B 4x1 16
3E F
2
1
4x2 12
C
最优点
x1 2x2 8
A
D
x1
0
1 2345 678
13
结果
有唯一最优解 可行域是一个非空有界区域
可行域有几种可能 ? 讨论
解有几种可能 ?
这种情况通常称为无“有限最优解” 或“最优 解无界”。
如果一个实际问题抽象成像例1-4这样的线性规划 模型,比如是一个生产计划问题,其经济含义就是某 些资源是无限的,产品的产量可以无限大。此时应重 新检查和修改模型,否则就没有实际意义。
第三步:画出目标函数等值线,结合目标函数 的要求求出最优解:最优生产方案。
第四步:最优解带入目标函数,得出最优值。
4
约束条件的图解:
每一个约束不等式在平面直角坐标系中 都代表一个半平面,只要先画出该半平面的 边界,然后确定是哪个半平面。
怎麽画边界
?
怎麽确定 半平面
以第一个约束条件: x1 2x2 ≤8 为例, 说明图解过程。
结果表明,该线性规划有无穷多个 最优解--线段AB上的所有点都是最优
点,它们都使目标函数取得相同的最大值 Zmax=14。
17
无界解
max Z x1 x2
x12x1x2
x2 ≤
≤ 2
4
x1, x2 ≥ 0
x2
6
4
2 x1
0
1
2
3
4
5
18
如图中可行域是一个无界区域,如阴影区所示。 虚线为目表函数等值线,沿着箭头指的方向平移可 以使目标函数值无限制地增大,但是找不到最优解。
12
max Z 2x1 3x2
x1 2x2 ≤ 8
4 4
x1 x2
≤16 ≤12
x1, x2 ≥ 0
x2 B 4x1 16
3E F
2
1
4x2 12
C
最优点
x1 2x2 8
A
D
x1
0
1 2345 678
13
结果
有唯一最优解 可行域是一个非空有界区域
可行域有几种可能 ? 讨论
解有几种可能 ?
这种情况通常称为无“有限最优解” 或“最优 解无界”。
如果一个实际问题抽象成像例1-4这样的线性规划 模型,比如是一个生产计划问题,其经济含义就是某 些资源是无限的,产品的产量可以无限大。此时应重 新检查和修改模型,否则就没有实际意义。
第二章 线性规划的图解法(简)
第二节 图解法
在线性规划中,对一个约束条件中没使用的资源或能力的大小称 之为松弛量。记为Si。
第二节 图解法
像这样把所有的约束条件都写成等式 ,称为线性规划模型的标准化,所得结果 称为线性规划的标准形式。
第二节 图解法
同样对于≥约束条件中,可以增加一些代表
最低限约束的超过量,称之为剩余变量,把≥约
第二章 线性规划的图解法
主要内容:
§1 问题的提出 (什么是线性规划) §2 图解法 §3 图解法的灵敏度分析
重点和难点
重点: (1)线性规划问题的主要概念 (2)线性规划问题的数学模型 (3)线性规划图解法的过程 (4)阴影价格的定义和灵敏度分析 难点: 灵敏度分析
第一节 问题的提出
约束条件对偶价格小于零时,约束条件
右边常数增加一个单位,就使得最优目
标函数值减少一个其对偶价格。
第三节 图解法的灵敏度分析
对目标函数值求最小值的情况下, 当对偶价格大于零时,约束条件右边常数增加 一个单位就使其最优目标函数值减少一个其对 偶价格; 当对偶价格等于零时,约束条件右边常数增加 一个单位,并不影响其最优目标函数值; 当对偶价格小于零时,约束条件右边常数增加 一个单位,就使得其最忧目标函数值增加一个 其对偶价格。
具有上述3个特征的问题为线性规划问题。
第一节 问题的提出
我们的仸务就是要选择一组或多组方案,使目
标函数值最大或最小。从选择方案的角度说,
这是规划问题。从使目标函数值最大或最小的
角度说,就是优化问题。
线性规划数学模型的一般表示方式
max(min) f ( x) c1 x1 c2 x2 cn xn a11 x1 a12 x2 a1n xn a x a x a x 21 1 22 2 2n n s.t. a x a x a x m2 2 mn n m1 1 x1 , x2 , , xn n : 变量个数 ; m : 约束行数 ; n m : 线性规划问题的规模 c j : 价值系数 ; b j : 右端项; aij : 技术系数 (, )b1 (, )b2 (, )bm 0
第二章 线性规划的图解法
x2
AB
z
C
D
z=0=50x1+100x2
E
x1
图2-2
12
❖ 目标函数:Maxz = 50 x1 + 100 x2
❖ 约束条件:s.t. x1 + x2 ≤ 300
❖
2 x1 + x2 ≤ 400
❖
x2 ≤ 250
❖
x1 , x2 ≥ 0
❖最优解: x1 =50 x2 = 250
❖例2:某工厂在计划期内要安排生产Ⅰ、Ⅱ 两种产品,已知生产单位产品所需的设备台
- (c1 / c2 ) , 当 -1 - (c1 / c2 ) 0 (*) 时,原最优解仍是最优解。
❖假设产品Ⅱ的利润100元不变,即 c2 = 100,代到式(*)并整理得 0 c1 100
❖假设产品Ⅰ的利润 50 元不变,即 c1 = 50 ,代到式(*)并整理得 50 c2 +
▪ 4.无可行解。若在例1的数学模型中 再增加一个约束条件4x1+3x2≥1200, 则可行域为空域,不存在满足约束条 件的解,当然也就不存在最优解了。
例3.某公司由于生产需要,共需要A,B两种原料至 少350吨(A,B两种材料有一定替代性),其中A原 料至少购进125吨。但由于A,B两种原料的规格不同 ,各自所需的加工时间也是不同的,加工每吨A原料 需要2个小时,加工每吨B原料需要1小时,而公司总 共有600个加工小时。又知道每吨A原料的价格为2万 元,每吨B原料的价格为3万元,试问在满足生产需 要的前提下,在公司加工能力的范围内,如何购买A ,B两种原料,使得购进成本最低?
❖-ai1 x1-ai2 x2- … -ain xn = -bi。
AB
z
C
D
z=0=50x1+100x2
E
x1
图2-2
12
❖ 目标函数:Maxz = 50 x1 + 100 x2
❖ 约束条件:s.t. x1 + x2 ≤ 300
❖
2 x1 + x2 ≤ 400
❖
x2 ≤ 250
❖
x1 , x2 ≥ 0
❖最优解: x1 =50 x2 = 250
❖例2:某工厂在计划期内要安排生产Ⅰ、Ⅱ 两种产品,已知生产单位产品所需的设备台
- (c1 / c2 ) , 当 -1 - (c1 / c2 ) 0 (*) 时,原最优解仍是最优解。
❖假设产品Ⅱ的利润100元不变,即 c2 = 100,代到式(*)并整理得 0 c1 100
❖假设产品Ⅰ的利润 50 元不变,即 c1 = 50 ,代到式(*)并整理得 50 c2 +
▪ 4.无可行解。若在例1的数学模型中 再增加一个约束条件4x1+3x2≥1200, 则可行域为空域,不存在满足约束条 件的解,当然也就不存在最优解了。
例3.某公司由于生产需要,共需要A,B两种原料至 少350吨(A,B两种材料有一定替代性),其中A原 料至少购进125吨。但由于A,B两种原料的规格不同 ,各自所需的加工时间也是不同的,加工每吨A原料 需要2个小时,加工每吨B原料需要1小时,而公司总 共有600个加工小时。又知道每吨A原料的价格为2万 元,每吨B原料的价格为3万元,试问在满足生产需 要的前提下,在公司加工能力的范围内,如何购买A ,B两种原料,使得购进成本最低?
❖-ai1 x1-ai2 x2- … -ain xn = -bi。
双变量线性规划问题的图解法
线性规划问题广泛应用于经济、金融、工程、管理等领域。
图解法简介
01
图解法是一种通过图形表示和直观观察来解决双变量线性规划 问题的方法。
02
该方法利用平面直角坐标系,将约束条件和目标函数表示为直
线或平面区域,从而直观地找出最优解。
图解法具有直观、易理解的特点,特别适用于包含两个决策变
03
量的线性规划问题。
图解法在双变量线性规划问题中的应用价值
直观性
图解法通过绘制约束条件和目标 函数的图形,使决策者能够直观 地了解问题的可行域和最优解的 位置,有助于加深对问题的理解。
易于操作
相比于其他方法,图解法在操作 上相对简单,只需要掌握基本的 绘图技巧即可,不需要复杂的数 学计算,降低了求解难度。
适用性广
图解法不仅适用于标准形式的线 性规划问题,对于非标准形式的 问题也可以通过变换转化为标准 形式进行求解,拓宽了其应用范 围。
目标函数在可行域上的最优解一定在可行域的边界上达到。
通过比较目标函数在可行域边界上的函数值,找到使目标函数取得最大值或最小值的点,即为最优解 。
04
图解法实例分析
实例一:生产计划问题
问题描述
变量设置
约束条件
目标函数
图解法求解
某工厂生产A、B两种产 品,每种产品都需要消 耗一定的资源和时间, 且产品的售价和成本已 知。工厂需要确定生产A 、B两种产品的数量,以 最大化总利润。
双变量线性规划问题的图 解法
• 引言 • 双变量线性规划问题建模 • 图解法求解步骤 • 图解法实例分析 • 图解法优缺点及适用场景 • 总结与展望
01
引言
线性规划问题概述
线性规划问题是一类优化问题,旨在在一组线性约束条件下最大化或最小化一个线 性目标函数。
图解法简介
01
图解法是一种通过图形表示和直观观察来解决双变量线性规划 问题的方法。
02
该方法利用平面直角坐标系,将约束条件和目标函数表示为直
线或平面区域,从而直观地找出最优解。
图解法具有直观、易理解的特点,特别适用于包含两个决策变
03
量的线性规划问题。
图解法在双变量线性规划问题中的应用价值
直观性
图解法通过绘制约束条件和目标 函数的图形,使决策者能够直观 地了解问题的可行域和最优解的 位置,有助于加深对问题的理解。
易于操作
相比于其他方法,图解法在操作 上相对简单,只需要掌握基本的 绘图技巧即可,不需要复杂的数 学计算,降低了求解难度。
适用性广
图解法不仅适用于标准形式的线 性规划问题,对于非标准形式的 问题也可以通过变换转化为标准 形式进行求解,拓宽了其应用范 围。
目标函数在可行域上的最优解一定在可行域的边界上达到。
通过比较目标函数在可行域边界上的函数值,找到使目标函数取得最大值或最小值的点,即为最优解 。
04
图解法实例分析
实例一:生产计划问题
问题描述
变量设置
约束条件
目标函数
图解法求解
某工厂生产A、B两种产 品,每种产品都需要消 耗一定的资源和时间, 且产品的售价和成本已 知。工厂需要确定生产A 、B两种产品的数量,以 最大化总利润。
双变量线性规划问题的图 解法
• 引言 • 双变量线性规划问题建模 • 图解法求解步骤 • 图解法实例分析 • 图解法优缺点及适用场景 • 总结与展望
01
引言
线性规划问题概述
线性规划问题是一类优化问题,旨在在一组线性约束条件下最大化或最小化一个线 性目标函数。
线性规划问题的图解法
x1、 x2 0 第19页/共20页
4 4
x1 x2
≤16 ≤12
x1, x2 ≥ 0
第3页/共20页
❖图解法
x2
9— 8— 7—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
6—
5—
(0, 4)
4—
3—
2—
4x1 16
4 x2 12 x1 + 2x2 8
三、 线性规划的图解法
第1页/共20页
图解法的一般步骤:
先将约束条件和非负条件加以图解, 画出可行域;
再画目标函数等值线(令Z为某一常 数c);
最后,结合目标函数的要求,平移目 标函数的等值线,从可行域中找出最优
解。
第2页/共20页
图解法举例
例1-1
max Z 2x1 3x2
x1 2x2 ≤ 8
0 || | 12 3
4 x2 16 x1 + 2x2 8
||| ||| 456 789
x1
第5页/共20页
❖图解法
x2
9—
8—
7—
6—
5—
4 —B
C
3—
2—
1 — 可行域
0 || |
A
12 3
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
第18页/共20页
线性规划问题求解的 几种可能结果
x2
该问题可行域 为空集,即无 可行解,也不 存在最优解。
线性规划的图解法
设备能力(h)
3 2 0 1500
65 40 75
2.2.1 线性规划的图解法
问题:工厂应如何安排生产可获得最大的 总利润?用图解法求解。
解:设变量xi 为第i种(甲、乙)产品的生 产件数(i=1,2)。根据前面分析,可 以建立如下的线性规划模型: Max z = 1500 x1 + 2500 x2
2.2.1 线性规划的图解法
(1)建立直角坐标系: 分别取决策变量x1 ,x2 为坐标 向量,建立平面直角坐标系。
2.2.1 线性规划的图解法
(2)绘制可行域: 对每个约束(包括非负约束)条 件,作出其约束半平面(不等式)或 约束直线(等式)。
各半平面与直线交出来的区域若 存在,其中的点为此线性规划的可行 解。称这个区域为可行集或可行域。 然后进行下步。否则若交为空,那么 该线性规划问题无可行解。
线性规划的图解法
2.2.1 线性规划的图解法
对于只有两个决策变量的线性 规划问题,可以二维直角坐标平 面上作图表示线性规划问题的有 关概念,并求解。 图解法求解线性规划问题的步 骤如下:
例题
目标函数 Max z =1500x1+2500x2
约束条件 s.t. 3x1 + 2x2 ≤ 65 2x1 + x2 ≤ 40 3x2 ≤ 75 x1 ,x2 ≥ 0
2.2.1 线性规划的图解法
(3) 绘制目标函数等值线,并移动求解:
目标函数随着取值不同,为一族相 互平行的直线。 首先,任意给定目标函数一个值, 可作出一条目标函数的等值线(直线); 然后,确定该直线平移使函数值增 加的方向; 最后,依照目标的要求平移此直线。
2.2.1 线性规划的图解法
结果
若目标函数等值线能够移动到 既与可行域有交点又达到最优的位 置,此目标函数等值线与可行域的 交点即最优解(一个或多个),此 目标函数的值即最优值。 否则,目标函数等值线与可行 域将交于无穷远处,此时称无有限 最优解。
图解法求解简单线性规划问题
x-4y≤-3 3x+5y≤25 x≥1
y x=1
C
在该平面区域上
问题 1:x有无最大(小)值? 问题2:y有无最大(小)值? 问题3:2x+y有无最大(小)值?
B
o
A
第2页/共10页
x-4y=-3
3x+5y=25
x
设z=2x+y,式中变量x、y满足下列条件
求z的最大值和最小值。
y x=1
x-4y≤-3 3x+5y≤25,
可行域:所有可行解组成的集合。 最优解:使目标函数达到最大值
y
或 最小值 的可 行 解。
C
设Z=2x+y,式中变量x、y
x-4y≤-3
满足下列条件 3x+5y≤25 ,
B
x≥1
o
x-4y=-3
A
3x+5y=25
x
求z的最大值和最小值。 第5页-3
例1:设z=2x-y,式中变量x、y满足下列条件 3x+5y≤25
x≥1
C
B
o
x-4y=-3
A
3x+5y=25
x
第3页/共10页
x-4y≤-3
设z=2x+y,式中变量x、y满足下列条件 3x+5y≤25 ,
求z的最大值和最小值。
x≥1
问题 1: 将z=2x+y变形?
y=-2x+ z
问题 2: z几何意义是__斜__率__为__-2_的__直__线__在__y_轴__上__的__截__距___。
有关概念
约束条件:由x、y的不等式(方程)构成的不等式组。
线性约束条件:约束条件中均为关于x、y的一次不等式或方程。
y x=1
C
在该平面区域上
问题 1:x有无最大(小)值? 问题2:y有无最大(小)值? 问题3:2x+y有无最大(小)值?
B
o
A
第2页/共10页
x-4y=-3
3x+5y=25
x
设z=2x+y,式中变量x、y满足下列条件
求z的最大值和最小值。
y x=1
x-4y≤-3 3x+5y≤25,
可行域:所有可行解组成的集合。 最优解:使目标函数达到最大值
y
或 最小值 的可 行 解。
C
设Z=2x+y,式中变量x、y
x-4y≤-3
满足下列条件 3x+5y≤25 ,
B
x≥1
o
x-4y=-3
A
3x+5y=25
x
求z的最大值和最小值。 第5页-3
例1:设z=2x-y,式中变量x、y满足下列条件 3x+5y≤25
x≥1
C
B
o
x-4y=-3
A
3x+5y=25
x
第3页/共10页
x-4y≤-3
设z=2x+y,式中变量x、y满足下列条件 3x+5y≤25 ,
求z的最大值和最小值。
x≥1
问题 1: 将z=2x+y变形?
y=-2x+ z
问题 2: z几何意义是__斜__率__为__-2_的__直__线__在__y_轴__上__的__截__距___。
有关概念
约束条件:由x、y的不等式(方程)构成的不等式组。
线性约束条件:约束条件中均为关于x、y的一次不等式或方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bm 0 1 am ,m 1 amn m
j
0 0 j c j c i a ij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
A
0
E
| 5
| 6
| 7
| 8
| 9
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
D
| 1 | 2 | 3 | 4
4—
3— 2— 1— 0
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16 4 x2 12 x1 + 2x2 8
4—
3— 2— 1— 0
可行域
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 ( 0, 2)
D
43=5X1+4X2
可行域
max Z
min Z
X1 + 1.9X2 = 3.8(≥)
X1 - 1.9X2 = 3.8 (≤)
o
L0: 0=5X1+4X2
x1
图解法---无穷多最优解
max Z=3X1+5.7X2
图解法
线性规划问题的求解方法 一般有 两种方法 两个变量、直角坐标 三个变量、立体坐标 适用于任意变量、但必需将 一般形式变成标准形式
图解法
单纯形法
下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。
② 确定换出变量。根据下式计算并选择θ ,选最小的θ对应基
单纯形法的计算步骤
③
用换入变量xk替换基变量中的换出变量,得到一个新的基。 对应新的基可以找出一个新的基可行解,并相应地可以画出 一个新的单纯形表。
5)重复3)、4)步直到计算结束为止。
单纯形法的计算步骤
换入列
将3化为1
cj cB 0 0 0 基变量 x3 b 40 30 3 x1 2 1 3 x3 4 x2 1 3 4 0 x3 1 0 0
4
2
max Z
min Z
x1+x2=4(≥)
无界解(无最优解)
x1+3x2=6(≥)
2
4
6
x1
x ---无可行解 图解法
2
50
例1.7
40
max Z=3x1+4x2
2 x 1 x 2 40 x 1 1.5 x 2 30 x 1 x 2 50 x 1 0, x 2 0
bi /ai2,ai2>0
0 x4 0 1 0 θi
j j
x4
40 10
换 出 行
乘 以 1/3 后 得 到
4
x2
x1
30 10
18 4
3 4
j
x2
5/3 1/3 5/3 1 0 0
0 1 0 0 1 0
1 0 0 3/5 -1/5 -1
-1/3 1/3 -4/3 -1/5 2/5 -1
18 30
4 —B
3— 2— 1—
最优解 (4, 2)
D
x1 + 2x2 8
| 6 | 7 | 8 | 9 | 4
A
0
| 1
| 2
| 3
E
| 5
x1
图解法求解步骤
1.由全部约束条件作图求出可行域; 2.作目标函数等值线,确定使目标函数 最优的移动方向; 3.平移目标函数的等值线,找出最优点 ,算出最优值。
单纯形法的计算步骤
例1.9 用单纯形法求解
max Z x 1 2 x 2 x 3 2 x 1 3 x 2 2 x 3 15 1 s .t x 1 x 2 5 x 3 20 3 x 1、 x 2、 x 3 0
解:将数学模型化为标准形式:
① 确定换入基的变量。选择 j 0 ,对应的变量xj作为换入变
量,当有一个以上检验数大于0时,一般选择最大的一个检 验数,即: k max{ j | j 0} ,其对应的xk作为换入变 量。 变量作为换出变量。 bi L min a ik 0 a ik
s.t.
X1 + 1.9X2 ≥ 3.8 X1 - 1.9X2 ≤ 3.8 X1 + 1.9X2 ≤11.4 X1 - 1.9X2 ≥ -3.8 X 1 ,X 2 ≥ 0
X1 - 1.9X2 = -3.8 (≥)
x2
4 = 2X1 + X2
X1 + 1.9X2 = 11.4(≤) 11 = 2X1 + X2
X1 - 1.9X2 = -3.8(≥)
x2
X1 + 1.9X2 = 11.4 (≤)
(3.8,4)
D
max Z
蓝色线段上的所有点都是最 优解这种情形为有无穷多最 优解,但是最优目标函数值 max Z=34.2是唯一的。
可行域
(7.6,2)
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥)
(由图解法得到的启示)
可行域是有界或无界的凸多边形。 若线性规划问题存在最优解,它一定可以在可 行域的顶点得到。 若两个顶点同时得到最优解,则其连线上的所 有点都是最优解。 解题思路:找出凸集的顶点,计算其目标函数 值,比较即得。
练习:
设
z 2x y
式中变量 x, y 满足下列条件 y
cj cB 0 基 x3 b 40 3 x1 2 4 x2 1 0 x3 1 0 x4 0
θi
0
j
x4
30
1
3
3
4
0
0
1
0
检验数
1 c1 (c3a11 c4a21 ) 3 (0 2 0 1) 3
单纯形法的计算步骤
3)进行最优性检验 如果表中所有检验数 0 ,则表中的基可行解就是问题 j 的最优解,计算停止。否则继续下一步。 4)从一个基可行解转换到另一个目标值更大的基可行解, 列出新的单纯形表
解:1)将问题化为标准型,加入松驰变量x3、x4则标准型为:
max Z 3 x 1 4 x 2 2 x 1 x 2 x 3 40 x 1 3 x 2 x 4 30 x , x , x , x 0 1 2 3 4
单纯形法的计算步骤
2)求出线性规划的初始基可行解,列出初始单纯形表。
求 z 的最大值和最小值
zmax 12 zmin 3
3x+5y-25=0
O
l0
l1
l
x
l2
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16 x1 + 2x2 8
4 —B
3— 2— 1—
D
可行域
| 1 | 2 | 3 | 4
17.2 = 2X1 + X2
20 = 2X1 + X2
此点是唯一最优解, 且最优目标函数值 max Z=17.2
D
max Z
可行域
(7.6,2)
X1 + 1.9X2 = 3.8(≥)
min Z
o
Lo: 0 = 2X1 + X2
X1 - 1.9X2 = 3.8(≤)
x1
图解法---唯一最优解
min Z=5X1+4X2
线 性 规 划 问 题 的 几 何 意 义
设 k是 n维欧氏空间的一点集, 对 X
( 1)
K, X
( 2)
K
连线上的一切点 αX ( 1 α ) X K, ( 0 α 1 ),则 K为凸集。
( 1) ( 2)
凸集
凹集
顶点: 若K是凸集,X∈K;若X不能用不同
的两点的线性组合表示为:
单纯形法的计算步骤
单纯形法的思路 找出一个初始可行解
是否最优 循 环 否
是
最优解 结束
转移到另一个基本可行解 (找出更大的目标函数值) 核心是:变量迭代
单纯形法的计算步骤
单纯形表
cj
cB
XB
c1 cm
x1 xm
c1 c m c m 1 c n i b x1 x m x m 1 x n 1 0 a1,m 1 a1n 1 b 1
j
0 0 j c j c i a ij
bi 其中: i a kj 0 a kj
单纯形法的计算步骤
例1.8 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
A
0
E
| 5
| 6
| 7
| 8
| 9
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
D
| 1 | 2 | 3 | 4
4—
3— 2— 1— 0
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16 4 x2 12 x1 + 2x2 8
4—
3— 2— 1— 0
可行域
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
x2
X1 + 1.9X2 = 11.4 (≤)
8=5X1+4X2 此点是唯一最优解 ( 0, 2)
D
43=5X1+4X2
可行域
max Z
min Z
X1 + 1.9X2 = 3.8(≥)
X1 - 1.9X2 = 3.8 (≤)
o
L0: 0=5X1+4X2
x1
图解法---无穷多最优解
max Z=3X1+5.7X2
图解法
线性规划问题的求解方法 一般有 两种方法 两个变量、直角坐标 三个变量、立体坐标 适用于任意变量、但必需将 一般形式变成标准形式
图解法
单纯形法
下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。
② 确定换出变量。根据下式计算并选择θ ,选最小的θ对应基
单纯形法的计算步骤
③
用换入变量xk替换基变量中的换出变量,得到一个新的基。 对应新的基可以找出一个新的基可行解,并相应地可以画出 一个新的单纯形表。
5)重复3)、4)步直到计算结束为止。
单纯形法的计算步骤
换入列
将3化为1
cj cB 0 0 0 基变量 x3 b 40 30 3 x1 2 1 3 x3 4 x2 1 3 4 0 x3 1 0 0
4
2
max Z
min Z
x1+x2=4(≥)
无界解(无最优解)
x1+3x2=6(≥)
2
4
6
x1
x ---无可行解 图解法
2
50
例1.7
40
max Z=3x1+4x2
2 x 1 x 2 40 x 1 1.5 x 2 30 x 1 x 2 50 x 1 0, x 2 0
bi /ai2,ai2>0
0 x4 0 1 0 θi
j j
x4
40 10
换 出 行
乘 以 1/3 后 得 到
4
x2
x1
30 10
18 4
3 4
j
x2
5/3 1/3 5/3 1 0 0
0 1 0 0 1 0
1 0 0 3/5 -1/5 -1
-1/3 1/3 -4/3 -1/5 2/5 -1
18 30
4 —B
3— 2— 1—
最优解 (4, 2)
D
x1 + 2x2 8
| 6 | 7 | 8 | 9 | 4
A
0
| 1
| 2
| 3
E
| 5
x1
图解法求解步骤
1.由全部约束条件作图求出可行域; 2.作目标函数等值线,确定使目标函数 最优的移动方向; 3.平移目标函数的等值线,找出最优点 ,算出最优值。
单纯形法的计算步骤
例1.9 用单纯形法求解
max Z x 1 2 x 2 x 3 2 x 1 3 x 2 2 x 3 15 1 s .t x 1 x 2 5 x 3 20 3 x 1、 x 2、 x 3 0
解:将数学模型化为标准形式:
① 确定换入基的变量。选择 j 0 ,对应的变量xj作为换入变
量,当有一个以上检验数大于0时,一般选择最大的一个检 验数,即: k max{ j | j 0} ,其对应的xk作为换入变 量。 变量作为换出变量。 bi L min a ik 0 a ik
s.t.
X1 + 1.9X2 ≥ 3.8 X1 - 1.9X2 ≤ 3.8 X1 + 1.9X2 ≤11.4 X1 - 1.9X2 ≥ -3.8 X 1 ,X 2 ≥ 0
X1 - 1.9X2 = -3.8 (≥)
x2
4 = 2X1 + X2
X1 + 1.9X2 = 11.4(≤) 11 = 2X1 + X2
X1 - 1.9X2 = -3.8(≥)
x2
X1 + 1.9X2 = 11.4 (≤)
(3.8,4)
D
max Z
蓝色线段上的所有点都是最 优解这种情形为有无穷多最 优解,但是最优目标函数值 max Z=34.2是唯一的。
可行域
(7.6,2)
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥)
(由图解法得到的启示)
可行域是有界或无界的凸多边形。 若线性规划问题存在最优解,它一定可以在可 行域的顶点得到。 若两个顶点同时得到最优解,则其连线上的所 有点都是最优解。 解题思路:找出凸集的顶点,计算其目标函数 值,比较即得。
练习:
设
z 2x y
式中变量 x, y 满足下列条件 y
cj cB 0 基 x3 b 40 3 x1 2 4 x2 1 0 x3 1 0 x4 0
θi
0
j
x4
30
1
3
3
4
0
0
1
0
检验数
1 c1 (c3a11 c4a21 ) 3 (0 2 0 1) 3
单纯形法的计算步骤
3)进行最优性检验 如果表中所有检验数 0 ,则表中的基可行解就是问题 j 的最优解,计算停止。否则继续下一步。 4)从一个基可行解转换到另一个目标值更大的基可行解, 列出新的单纯形表
解:1)将问题化为标准型,加入松驰变量x3、x4则标准型为:
max Z 3 x 1 4 x 2 2 x 1 x 2 x 3 40 x 1 3 x 2 x 4 30 x , x , x , x 0 1 2 3 4
单纯形法的计算步骤
2)求出线性规划的初始基可行解,列出初始单纯形表。
求 z 的最大值和最小值
zmax 12 zmin 3
3x+5y-25=0
O
l0
l1
l
x
l2
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
x1
图解法
9— 8—
目标函数 Max Z = 2x1 + 3x2
约束条件 x1 + 2x2 8
4x1 16 4x2 12 x1、 x2 0
x2
7—
6— 5—
4x1 16
C 4 x2 16 x1 + 2x2 8
4 —B
3— 2— 1—
D
可行域
| 1 | 2 | 3 | 4
17.2 = 2X1 + X2
20 = 2X1 + X2
此点是唯一最优解, 且最优目标函数值 max Z=17.2
D
max Z
可行域
(7.6,2)
X1 + 1.9X2 = 3.8(≥)
min Z
o
Lo: 0 = 2X1 + X2
X1 - 1.9X2 = 3.8(≤)
x1
图解法---唯一最优解
min Z=5X1+4X2
线 性 规 划 问 题 的 几 何 意 义
设 k是 n维欧氏空间的一点集, 对 X
( 1)
K, X
( 2)
K
连线上的一切点 αX ( 1 α ) X K, ( 0 α 1 ),则 K为凸集。
( 1) ( 2)
凸集
凹集
顶点: 若K是凸集,X∈K;若X不能用不同
的两点的线性组合表示为:
单纯形法的计算步骤
单纯形法的思路 找出一个初始可行解
是否最优 循 环 否
是
最优解 结束
转移到另一个基本可行解 (找出更大的目标函数值) 核心是:变量迭代
单纯形法的计算步骤
单纯形表
cj
cB
XB
c1 cm
x1 xm
c1 c m c m 1 c n i b x1 x m x m 1 x n 1 0 a1,m 1 a1n 1 b 1