冷凝器计算
冷凝器热量及面积计算公式
冷凝器热量及面积计算公式冷凝器是一种将气体或蒸汽通过冷却转化为液体的设备。
在工业领域中,冷凝器通常用于冷却和凝结过程中的热量交换。
冷凝器的热量和面积计算公式是根据热传导和传热理论得到的,并且可以根据具体的设计参数进行调整。
以下是冷凝器热量和面积计算的一般公式及步骤。
1.冷凝器热量计算:冷凝器的热量计算需要考虑到两部分:冷凝器进口的热量和冷凝器出口的热量。
冷凝器进口热量计算公式:Q_in = m * c * (T_in - T_sat)其中,Q_in 是冷凝器进口的热量(单位为瓦特),m 是冷凝器进口的质量流量(单位为千克/秒),c 是流体的比热容(单位为焦耳/千克·摄氏度),T_in 是冷凝器进口的温度(单位为摄氏度),T_sat 是冷凝温度(单位为摄氏度)。
冷凝器出口热量计算公式:Q_out = m * c * (T_out - T_sat)其中,Q_out 是冷凝器出口的热量(单位为瓦特),T_out 是冷凝器出口的温度(单位为摄氏度)。
冷凝器的总热量可以通过将进口热量与出口热量相加得到:Q_total = Q_in + Q_out2.冷凝器面积计算:冷凝器的面积计算需要考虑到热传导和传热系数。
冷凝器面积计算公式:A = Q_total / (U * ΔT_lm)其中,A 是冷凝器的表面积(单位为平方米),U 是总传热系数(单位为瓦特/平方米·摄氏度),ΔT_lm 是温差的对数平均值(单位为摄氏度)。
总传热系数(U)可以通过考虑壳程和管程中传热系数(h_shell,h_tube)和管壁的热传导系数(k_tube)得到:1/U = 1/h_shell + Δx/k_tube + 1/h_tube其中,Δx是管壁的厚度(单位为米)。
温差的对数平均值(ΔT_lm)可以通过进口温度和出口温度计算得到:ΔT_lm = (ΔT_1 - ΔT_2) / ln(ΔT_1 / ΔT_2)其中,ΔT_1是冷凝器的进口温度和冷凝器温度的差值(单位为摄氏度),ΔT_2是冷凝器的出口温度和冷凝器温度的差值(单位为摄氏度)。
冷凝器换热面积计算方法
冷凝器换热面积(miàn jī)计算方法制冷量+压缩机电机功率(gōnglǜ)/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃压缩机制冷量=12527W+压缩机电机(diànjī)功率11250W=23777/230=风冷凝器换热面积103m2水冷凝器换热面积与风冷凝器比例=概算1比18(103/18)=6m2蒸发器的面积根据压缩机制冷量(蒸发温度℃×Δt相对湿度(xiāngduì shīdù)的休正系数查表)。
制冷量的计算方法制冷量=温差(wēnchā)×重量/时间×比热×设备维护机构例如:有一个速冻库1库温-35℃2速冻量1T/H3时间2/H内4速冻物质(鲜鱼)5环境温度27℃6设备维护机构保温板计算:62℃×1000/2/H×0.82×1.23=31266kcal/n可以查压缩机蒸发温度CT=40CE-40℃制冷量=31266kcal/n关于R410A和R22翅片管换热器回路数比的探讨晨怡热管(特灵亚洲研发中心上海200001)申广玉2008-6-1520:10:07摘要:通过理论计算得出了相同换热量和相同工况下,采用5/16″管径R410A蒸发器(或冷凝器)与采用3/8″管径R22蒸发器(或冷凝器)时回路数的比值,并指出比值是两工质物性差异和盘管的内径及当量摩擦阻力系数差异共同作用的结果。
关键词:R410A;回路数;蒸发器;冷凝器中图分类号:TQ051 文献标识码: B1前言随着人类环保意识的提高,新冷媒技术的发展和应用已成为空调器发展的方向和关注的焦点。
目前,国际上一致看好的R22替代物是混合工质R407C和R410A。
其中R410A是HFC 32和HFC 125按照50%:50%的质量百分比组成的二元近共沸混合制冷剂,它的温度滑移不超过0.2℃(R407C温度滑移约7℃左右),这给制冷剂的充灌、设备的更换提供了很多方便。
冷凝器计算
空气侧表面传热系数 管内凝结的表面传热系数
Q0 tk t0 ta1 ta2 db
δf sf s1 s2=s1*1.732/2
Cpa λa νa ρa
θm=(ta2-ta1)/ln【(tk-ta1)/(tk-ta2)】 ta2-ta1 (tk-ta1)/(tk-ta2) ln(tk-ta1)/(tk-ta2) Qk=C0*Q0 C0 af=2(s1*s2-π/4*db*db)/sf ab=π*db(sf-δf)/sf aof=af+ab ai=π*di
1.6549 m3/28 0.002749428 3.400922199 16.0007119 534.3194051
0.296 0.529
1.232 -0.238
66.3365316 27.73362896 0.516909894 2388*(50-twi)(-0.25次 方)
qv=Qk/【ρa*Cpa*(ta2-ta1)】 wy Ay=qv/wy l H=Ay/l N=H/s1-1/2
n b=n*s1*cos30 de=2(s1-db)(sf-δf)/【(s1-db)+(sf-δf)】 wmax=s1*sf*wy/(s1-db)/(sf-δf) b/de Ref=wmax*de/νa ψ n
1325.4 0.009 3.246679155 2388.247446
制冷量 冷凝温度 蒸发温度 进口空气温度 出口空气温度 外径 外牙 内牙 厚度 间距 长U管中心距
比热容 热导率 运动粘度 密度
1,对数平均温差
2,冷凝器负荷
3,每米管翅片换热面积 每米管翅片间换热面积 每米管翅片侧总换热面积 每米管长内面积 4,冷凝器风量 冷凝器空气体积流量 设定迎风面积 迎风面积 设定长U管长度 冷凝器迎风面高度 迎风面管排数 5,传热计算 设定冷凝器排数 翅片宽度 微元最窄截面的当量直径 最窄面风速
冷凝器参数计算
压缩机型号 制冷量KW Qo= 压缩机输入功率 Ni= 压缩机排气量 Gk= 冷凝温度℃ tk= 蒸发温度℃ to= 过热度℃ tr= 过冷度℃ tg= 冷却水进口温度 t1= 冷却水出口温度 t2= 冷凝温度℃ tk= 蒸发温度℃ to= 传热温差℃ △tm= 冷却水进出口温差 t= △ 冷却水进水温度范围 tk= 冷凝器热负荷 Qk= 单位面积热负荷 qf= 冷凝器传热面积 F= 冷却水量kg/s Gk= 冷却水量m3/h Gk= 一、冷凝热计算输入参数 SRS-S-252 输入 268.60000 输入 60.30000 输入 5881.00000 输入 40.00000 2.00000 5.00000 5.00000 30.00000 35.00000 40.00000 2.00000 7.50000 5.00000 16-33 二、冷凝器热力计算求解 328.90000 24.50000 22-27 13.42449 0.01571 56.57143
Hale Waihona Puke 三、水冷冷凝器基本尺寸参数 换热器换热管间距 A= 0.02000 排列方式 正三角形 换热管管径m D= 0.01588 换热管内径m D1= 0.01270 单根换热管氟侧换热面积 0.04986 Fd= 单根换热管水侧换热面积 0.03988 Fn= 单根换热管水侧通流面积 0.00013 Fds= 二、换热器物理参数计算 冷凝器组数 N= 1 输入 每组冷凝器换热管数 N1= 150 输入 每组冷凝器换热管长 L= 2.00 输入 每组冷凝器流程N3= 2 输入 每组冷凝器水侧通流面积 0.00950 Fy= 每组冷凝换热面积 Fz= 14.95896 必须满足校核值 冷凝器换热面积 F= 14.95896 14.7669 冷却水流速m/s ω= 1.65484 1.5-2.0 摩擦阻力系数 f= 0.03977 水阻力KPa △Pk= 23.31182 100
冷凝器换热面积计算方法
冷凝器换热⾯积计算⽅法冷凝器换热⾯积计算⽅法(制冷量+压缩机功率)/200~250=冷凝器换热⾯例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃制冷量12527W+压缩机功率11250W23777/230=⽓冷凝器换热⾯积103m2⽔冷凝器换热⾯积与⽓冷凝器⽐例=概算1⽐18;(103/18)= 6m2蒸发器的⾯积根据制冷量(蒸发温度℃×Δt进⽓温度)制冷量=温差×重量/时间×⽐热×安全系数例如:有⼀个速冻库1库温-35℃,2冷冻量1ton/H、3时间2/H,4冷冻物品(鲜鱼);5环境温度27℃;6安全系数1.23计算:62℃×1000/2/H×0.82×1.23=31266kcal/n可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/hNFB与MC选⽤⽆熔丝开关之选⽤考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V),低电压配线建议选⽤标准(单⼀压缩机)AF 取⼤于AT ⼀等级之值.(为接点耐电流的程度若开关会热表⽰AF选太⼩了)AT(A ) = 电动机额定电流×1 .5 ~2 .5(如保险丝的IC值)(多台压缩机)AT(A )=(最⼤电动机额定电流×1 .5 ~2 .5)+ 其余电动机额定电流总和IC启断容量,能容许故障时的最⼤短路电流,如果使⽤IC:5kA的断路器,⽽遇到10kA的短路电流,就⽆法承受,IC值愈⼤则断路器部的消弧室愈⼤、体积愈⼤,愈能承受⼤⼀点的故障电流,担保⽤电安全。
要搭配电压来表⽰220V 5KA 电压380V时IC值是2.5KA。
电磁接触器之选⽤考虑使⽤电压、控制电压,連续电流I t h 之⼤⼩(亦即接点承受之电流⼤⼩),連续电流I th 的估算⽅式建议为I t h=马达额定电流×1.25/√3。
直接启动时,电磁接触器之主接点应选⽤能启闭其额定电流之10倍。
冷凝器换热面积计算方法
冷凝器换热面积计算方法(制冷量+压缩机功率)/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃制冷量12527W+压缩机功率11250W23777/230=气冷凝器换热面积103m2水冷凝器换热面积与气冷凝器比例=概算1比18;(103/18)= 6m2蒸发器的面积根据制冷量(蒸发温度℃×Δt进气温度)制冷量=温差×重量/时间×比热×安全系数例如:有一个速冻库1库温-35℃,2冷冻量1ton/H、3时间2/H内,4冷冻物品(鲜鱼);5环境温度27℃; 6安全系数1.23计算:62℃×1000/2/H×0.82×1.23=31266kcal/n可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/hNFB与MC选用无熔丝开关之选用考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V),低电压配线建议选用标准(单一压缩机)AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了) AT(A ) = 电动机额定电流×1 .5 ~2 .5(如保险丝的IC值)(多台压缩机)AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+ 其余电动机额定电流总和IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部的消弧室愈大、体积愈大,愈能承受大一点的故障电流,担保用电安全。
要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。
电磁接触器之选用考虑使用电压、控制电压,連续电流I t h 之大小(亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√ 3。
直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10倍。
各种蒸发器冷凝器计算
各种蒸发器冷凝器计算蒸发器和冷凝器是蒸发冷凝循环系统的两个重要组成部分。
蒸发器用于将液体转化为蒸汽,冷凝器则将蒸汽重新转化为液体。
在工业生产或空调系统中,蒸发器和冷凝器的设计和计算十分重要,因为它们的效率和性能直接影响到系统的运行效果。
下面将对各种蒸发器和冷凝器的计算进行详细介绍。
一、蒸发器的计算蒸发器的主要作用是通过向环境中提供热量,将液体转变为蒸汽。
在计算蒸发器时,需要考虑以下参数:1.蒸发器的热负荷:即单位时间内从蒸发器中蒸发的液体的热量。
热负荷可以通过以下公式计算:热负荷=蒸发流量×蒸发潜热2.蒸发器的换热面积:蒸发器的换热面积决定了热量的传递效率。
一般而言,换热面积越大,热量传递效率越高。
换热面积的计算常采用多种方法,如LMTD法和效能法。
3. 蒸发器的传热系数:传热系数是指单位面积上的热量传递速率。
蒸发器的传热系数一般由蒸发器的材料和工况条件决定。
常见的计算方法有Nu数法和Kern法。
4.蒸发器的风速:蒸发器通过风速来增加传热效果。
风速的选择应根据具体的应用环境和蒸发器的性能来确定。
二、冷凝器的计算冷凝器的主要作用是将蒸汽重新冷凝为液体。
在计算冷凝器时,需要考虑以下参数:1.冷凝器的冷负荷:即单位时间内从冷凝器中冷凝的蒸汽的热量。
冷负荷可以通过以下公式计算:冷负荷=冷凝流量×冷凝潜热2.冷凝器的换热面积:冷凝器的换热面积决定了热量的传递效率。
一般而言,换热面积越大,热量传递效率越高。
换热面积的计算方法与蒸发器类似。
3. 冷凝器的传热系数:传热系数是指单位面积上的热量传递速率。
冷凝器的传热系数一般由冷凝器的材料和工况条件决定。
常见的计算方法也是采用Nu数法和Kern法。
4.冷凝器的冷却水流量和温差:冷凝器通过冷却水来吸收蒸汽的热量。
冷却水的流量和温差会影响冷凝器的性能和效率。
一般而言,冷却水的流量越大,温差越小,冷凝器的工作效果越好。
综上所述,不同类型的蒸发器和冷凝器在计算时,需要考虑的参数有所差异。
冷凝器换热面积计算方法
冷凝器换热面积计算方法(制冷量+压缩机功率)/200~250=冷凝器换热面例如:(3SS1-1500压缩机)CT=40℃:CE=-25℃制冷量12527W+压缩机功率11250W23777/230=气冷凝器换热面积103m2水冷凝器换热面积与气冷凝器比例=概算1比18;(103/18)= 6m2蒸发器的面积根据制冷量(蒸发温度℃×Δt进气温度)制冷量=温差×重量/时间×比热×安全系数例如:有一个速冻库1库温-35℃,2冷冻量1ton/H、3时间2/H内,4冷冻物品(鲜鱼);5环境温度27℃;6安全系数1.23计算:62℃×1000/2/H×0.82×1.23=31266kcal/n可以查压缩机蒸发温度CT=40;CE-40℃;制冷量=31266kcal/hNFB与MC选用无熔丝开关之选用考虑:框架容量AF(A)、额定跳脱电流AT(A)、额定电压(V),低电压配线建议选用标准(单一压缩机)AF 取大于AT 一等级之值.(为接点耐电流的程度若开关会热表示AF选太小了)AT(A ) = 电动机额定电流×1.5 ~2.5(如保险丝的IC值)(多台压缩机)AT(A )=(最大电动机额定电流×1 .5 ~2 .5)+ 其余电动机额定电流总和IC启断容量,能容许故障时的最大短路电流,如果使用IC:5kA的断路器,而遇到10kA的短路电流,就无法承受,IC值愈大则断路器内部的消弧室愈大、体积愈大,愈能承受大一点的故障电流,担保用电安全。
要搭配电压来表示220V 5KA 电压380V时IC值是2.5KA。
电磁接触器之选用考虑使用电压、控制电压,連续电流It h之大小( 亦即接点承受之电流大小),連续电流I th 的估算方式建议为I t h=马达额定电流×1.25/√3。
直接启动时,电磁接触器之主接点应选用能启闭其额定电流之10倍。
冷凝器蒸发器设计计算
冷凝器蒸发器设计计算冷凝器和蒸发器是热交换器中的两个重要部分,用于实现液体的冷凝和蒸发过程。
在冷凝器和蒸发器的设计计算中,需要考虑多个参数,如传热面积、传热系数、温度差、流体流速等。
首先,我们来看冷凝器的设计计算。
冷凝器是将气体或蒸汽冷凝为液体的设备。
在冷凝器的设计计算中,我们需要考虑的主要参数有传热面积和传热系数。
传热面积的大小决定了冷凝器的传热能力。
一般来说,传热面积越大,冷凝能力越强。
传热面积的计算可以通过以下公式进行估算:A=Q/(U×ΔTm)其中,A为传热面积,Q为冷凝能力,U为传热系数,ΔTm为平均温度差。
传热系数是冷凝器设计中另一个重要的参数。
传热系数表示单位面积的传热能力,取决于冷凝器的设计、材料、流体性质等因素。
在设计计算中,可以通过查表获得相应的传热系数。
另外,还需要考虑冷凝器的温差和流体流速。
温差是指工作介质的饱和温度和冷凝温度之间的差值,影响着传热过程中的温度梯度。
流体流速则会影响冷凝器的阻力和压降。
接下来,我们来看蒸发器的设计计算。
蒸发器是将液体蒸发为气体的设备。
在蒸发器的设计计算中,我们也需要考虑传热面积和传热系数。
同样,传热面积的大小决定了蒸发器的传热能力,可以通过上述公式进行估算。
传热系数对于蒸发器的设计同样重要。
传热系数表示单位面积的传热能力,取决于蒸发器的设计、材料、流体性质等因素。
也可以通过查表获得相应的传热系数。
除了传热面积和传热系数,还需要考虑蒸发器的温差和流体流速。
温差是指工作介质的饱和温度和蒸发温度之间的差值,影响着传热过程中的温度梯度。
流体流速同样会影响蒸发器的阻力和压降。
在冷凝器和蒸发器的设计计算中,还需要考虑其他一些因素,如材料的选择、外部环境温度、工作介质的流动性质等。
这些因素都会对设计结果产生一定的影响,需要进行综合考虑。
综上所述,冷凝器和蒸发器的设计计算需要考虑传热面积、传热系数、温度差、流体流速等多个参数。
通过合理的设计计算,可以实现冷凝和蒸发过程的高效运行,提高设备的性能和效率。
冷凝器计算
冷凝器(t k=40,t o=2)换热计算1.设计参数: Q k =SRF-120 压缩机W制冷剂: R22冷却介质: H2O冷凝温度: t k =40℃进水温度: t1 =30℃出水温度: t2 =35℃水侧污垢系数:γo =0.000086m2K/W 2.换热管参数:2.1换热管管内参数:内径: di =0.01348m 2.2换热管管外参数:坯管外径: do = d m =0.01588m 换热管光管段长度: l z = 2×0.050.1m 翅片外径: D w =0.01588m 翅片根径: D g =0.01418m 翅片高: h =0.00085m 翅片间隙: S =0.0004m 翅片距: P =0.00085m 翅片间当量直径: de = 4sh/(2h+s) =0.0006476m 传热面积系数:ηc =0.8单位管长外表面积: F ol = ηc[π(D w2-D g2)/2+πD g·S]/P =0.09232㎡/m 2.3拟取冷凝器参数:冷凝管根数: n n =113根过冷管根数: n g =0根管程数: Z =2程有效管长: l =2m 垂线上的平均管子数:N cg =9根似取冷凝面积(内表面) F in = n n×π×d i×l =9.57079923.水在定性温度下的物性值:定性温度: t m = (t1+t2)/2 =32.5定压比热: C p =4179J/kg·K 密度:ρw =994.9kg/m3动力粘度:μ =7.62E-04Pa·S 普兰德准数: P rw = 5.15导热系数:λ =0.6248w/mK 4.制冷剂在定性温度下的物性值:定性温度: t mf = t k =40℃导热系数:λf =0.0772W/mK 运动粘度:υf = 1.94E-07㎡/s 表面张力:σf = 5.80E-04㎏/m 密度:ρf =1133㎏/m3冷凝潜热: h fg =166220J/㎏普兰德准数: Pr f = 3.745.管内水侧给热系数:5.1冷却水流量: V = Q k/[C pρw(t2-t1)] =0m3/s0m3/h 5.2管内水速:ω= 4·Z·V/[(n n+n g)πd i2] =0m/s 5.3雷诺数: Re w = d iωρw/μ =05.4水侧给热系数:αi =0.023(λ/di)Re w0.8P rw0.4) =0w/㎡K6.管外制冷剂的给热系数:6.1毛细作用系数:βc =1-4{σf/[ρf ·(D g+h)de]}0.5/π=0.70800876.2单位面积热负荷:q = Q k/(n n·π·d o·l·ηc) =06.3雷诺数:Ref = 4qd m P/[ρfυf · h fg(2h+S)] =06.4伽利略准数:G a = gF ol3/υf2 = 2.051E+116.5表面张力作用系数:βσ= σf(1/0.0001+2/S)/(h·ρf) =9.03379896.6管外给热系数:6.6.1各种系数:①Co = 0.193βc0.5Re f-0.32Pr f0.31βσ0.15G a0.1(0.013/S)2000S =#DIV/0!②不凝气体影响系数;设不凝气体含量为: A =0.012η1 = EXP(-15.6×A) =0.8292779③制冷剂含油影响系数:设含油量为:B =0.01η2 = [EXP(-8.5×B)]0.8 =0.9342605④管束效应系数:η3 = N cg-0.25 =0.57735036.6.2管外给热系数:αo = η1η2η3C o(λf3·g/υf2)1/3 =#DIV/0!W/㎡K7.总传热系数:(按内表面计算)K i = A[1/αi+d i/(d mαo)+γo]-1 =#DIV/0!8.对数平均温差:Δt m = (t2-t1)/ln[(t k-t1)/(t k-t2)] =7.21347529.传热面积(内表面):F i' = Q k/(Δt m K i) =#DIV/0!取5%的面积裕量,则 F i =1.05F i' =#DIV/0!10.校核:F in/F i =#DIV/0!∵ 1≤F in/F i≤1.05 ∴计算合格。
(完整版)冷凝器热量及面积计算公式
(完整版)冷凝器热量及面积计算公式引言冷凝器是工业生产中常见的设备之一,用于将蒸汽或气体冷凝成液体,并释放热量。
为了正确设计冷凝器,我们需要通过计算来确定所需的热量和面积。
本文档将详细介绍冷凝器热量计算和面积计算的公式及步骤。
冷凝器热量计算冷凝器热量计算的公式如下:热量 = 比热容 ×质量 ×温度差其中,- 比热容指的是液体在单位质量下温度变化的热容量。
- 质量是液体的质量。
- 温度差是冷凝器进口液体的温度与出口液体的温度之差。
通过测量进口液体和出口液体的温度,以及知道液体的比热容和质量,即可计算出冷凝器需要释放的热量。
冷凝器面积计算冷凝器面积计算的公式如下:面积 = 热量 / (传热系数 ×温度差)其中,- 热量是前面计算得到的冷凝器需要释放的热量。
- 传热系数是冷凝器内部传热过程的系数。
- 温度差是冷凝器进口液体温度与环境温度之差。
通过测量进口液体温度和环境温度,以及知道热量和传热系数,即可计算出冷凝器所需的面积。
示例为了更好地理解和应用上述公式,以下是一组示例数据:假设冷凝器进口液体温度为80°C,出口液体温度为40°C,液体的比热容为2.1 J/(g°C),质量为1000 g,传热系数为50 J/(m²·°C),环境温度为30°C。
首先,计算热量:热量 = 2.1 × 1000 × (80 - 40) = J然后,计算面积:面积 = / (50 × (80 - 30)) = 168 m²因此,根据给定的数据,我们得出冷凝器所需的面积为168平方米。
结论通过本文档的介绍,我们了解了冷凝器热量计算和面积计算的公式及步骤。
这些公式可以帮助我们正确设计和计算冷凝器所需的热量和面积,从而提高冷凝器的效率和性能。
风冷冷凝器换热面积计算公式
即:(163000+52900)/220=981㎡
方法二(实际面积算法)
即;冷凝器铜管散热面积+铝翅片散热面积=实际冷凝器换热总面积
计算公式:[(排数X21.65)X(孔数X25)]X2X片数
根据计算;BY-70ASCS冷凝器换热实际面积为:712㎡
风冷冷凝器换热面积计算公式方法一理论算法此种计算方法比实际的冷凝器换热面积要大制冷量压缩机电机功率200250冷凝器换热面积此方法是根据压缩机取值的蒸发温度制冷量与冷凝温度压缩机输入功率的取值来计算
风冷冷凝器换热面积计算公式
方法一(理论量+压缩机电机功率/200~250=冷凝器换热面积(此方法是根据压缩机取值的蒸发温度(制冷量)与冷凝温度压缩机输入功率的取值来计算;)
冷凝器对数平均温差计算公式
冷凝器对数平均温差计算公式冷凝器是制冷系统中的一个重要部件,而对数平均温差的计算对于冷凝器的设计和性能评估至关重要。
咱先来说说啥是对数平均温差。
想象一下,冷凝器里一边是热流体,温度挺高,另一边是冷流体,温度相对低些。
这两种流体之间的温度差异不是恒定不变的,那怎么算出一个能比较准确反映它们之间传热效果的温差呢?这就得靠对数平均温差啦。
那这对数平均温差到底咋算呢?公式就是:ΔTm = (ΔT1 - ΔT2) /ln(ΔT1 / ΔT2) 。
这里面,ΔT1 是热流体进口和冷流体出口的温差,ΔT2 是热流体出口和冷流体进口的温差。
我给您举个例子哈。
比如说有个冷凝器,热流体进口温度是 80℃,出口温度是 50℃;冷流体进口温度是 20℃,出口温度是 45℃。
那咱先算ΔT1 ,就是 80 - 45 = 35℃;再算ΔT2 , 50 - 20 = 30℃。
然后代入公式,ln(35 / 30) 这部分,您得用计算器算算,算出来大概是 0.15 左右。
接着 (35 - 30) / 0.15 ,最后得出的结果就是这个冷凝器的对数平均温差啦。
可别小看这个公式,在实际工作中用处大着呢!我记得有一次,我们团队在设计一个大型制冷系统,要选合适的冷凝器。
大家一开始对对数平均温差的计算不太重视,就随便估摸着来。
结果呢,选的冷凝器根本达不到预期的制冷效果,整个系统运行得磕磕绊绊。
后来,我们重新仔细计算对数平均温差,根据准确的数据重新选型,这才让系统顺顺利利地运行起来。
再深入讲讲,这个公式里每个参数的准确性都特别关键。
比如说,测量流体进出口温度的时候,如果测量仪器不准确,或者测量点选择得不对,那算出来的温差就会有偏差,最终导致对数平均温差的计算错误。
所以啊,在实际操作中,一定要认真对待每一个数据的采集。
而且,不同类型的冷凝器,对数平均温差的影响因素也不太一样。
有的冷凝器结构复杂,流体流动情况多变,这时候就得综合考虑各种因素,不能简单地套公式,还得结合实际经验进行修正。
冷凝器热量及面积计算公式
冷凝器热量及面积计算公式冷凝器是一种用于将蒸汽或气体冷凝成液体的设备,通常由热交换器构成。
冷凝器的主要作用是将流体状态从气态或汽态转变为液态,从而释放出热量。
在实际工程中,冷凝器的热量和面积计算是非常重要的,对于冷凝器的设计和性能评估具有重要意义。
冷凝器的热量计算是指计算冷凝器在工作过程中冷凝释放的热量。
冷凝器的热量计算公式如下:Q=m×H其中,Q表示冷凝器释放的热量(单位:J或W),m表示冷凝的质量(单位:kg),H表示冷凝过程的热焓(单位:J/kg)。
冷凝过程的热焓可以通过蒸汽表或者物性表查找。
在实际应用中,常使用的是水的蒸汽表,根据给定的温度和压力可以得到水的饱和汽化温度和饱和汽汽化焓。
冷凝器工作过程中的温度和压力可以根据具体的工程参数获得,从而得到冷凝过程的热焓。
冷凝器的面积计算是指计算冷凝器的传热面积,通过传热面积可以评估冷凝器的传热能力。
冷凝器的面积计算公式如下:A = Q / (U × ΔTlm)其中,A表示冷凝器的面积(单位:m²),U表示冷凝器的传热系数(单位:W/(m²·K)或J/(s·m²·K)),ΔTlm表示冷凝器的平均对数温差(单位:K)。
冷凝器的传热系数是冷凝过程中的一个重要参数,表示冷凝器的传热能力。
传热系数可以通过实验值、经验公式或理论计算得到。
在实际工程中,也可以根据类似设备的实际运行数据进行估计。
冷凝器的平均对数温差是冷凝器传热过程中温度差的一个综合指标,可以通过以下公式计算:ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)其中,ΔT1和ΔT2分别表示冷凝器流体的温差,即冷凝器出口和入口两侧的温度差。
以上是冷凝器热量及面积的基本计算公式。
在实际工程中,还需要考虑到具体的工况条件、材料选择和操作方式等因素,以便进行更准确的计算和评估。
另外,需要注意的是,冷凝器设计和计算的具体方法可能会因不同的工程和应用而有所差异,需要根据具体情况进行调整和优化。
冷凝器参数计算
冷凝器计算
冷凝器的功能是把由压缩机排出的高温高压制冷剂气体冷凝成液体,把制冷剂在蒸发器中吸收的热量(即制冷量)与压缩机耗功率相当的热量之和排入周围环境中。
因此,冷凝器是制冷装置的放热设备,其传热能力将直接影响到整台制冷设备的性能和运行的经济性。
冷凝器按其冷却介质可分为水冷式、空冷式和水/空气混合式。
由于空冷式冷凝器使用方便,尤其适合于缺水地区,在小型制冷装置(特别是家用空调)中得到广泛应用。
空冷式冷凝器可分为强制对流式和自然对流式两种。
自然对流式冷凝器传热效果差,只用在电冰箱或微型制冷机中。
下面仅讨论强制对流式冷凝器。
二、强制对流空气冷却式冷凝器的结构及特点强制对流空气冷却式冷凝器都采用铜管穿整体铝片的结构(因此又称管翅式冷凝器)。
其结构组成主要为——U形弯传热管、翅片、小弯头、分叉管、进(出)口管以及端板等(如图1),其加工工艺流程如图2。
一、空气流量环境温度Tair=35,35℃进出口温差ΔT=10℃,空气进口温度Ti=35℃,空气出口温度T0=45℃,冷凝器中的平均温度Tm=40℃;空气的密度ρm=1.092Kg/m3;空气的定压比热Cp=1.01E+03J/(KgK);冷凝器的热负荷Qk=77000W;空气的体积流量Vair=6.96E+00m3/S二、结构初步规划选定迎面风速Wf=2.5m/s沿气流方向的排数nl=3冷凝器采用正三角*排翅片厚度δf=0.190.19mm 翅片节距Sf=1.8;1.8mm翅片管的纵向距离S1=25mm;翅片管的横向距离S2=21.65mm;翅片管的基管直径Db=9.9mm;单位管长翅片面积Ff=0.515902389m2;单位管长翅片间基管面积Fb=0.0278047m2;单位管长翅片管的总面积F0=0.543707089m2;翅片管的中性面的直径Dm=9.1mm;单位管长内螺纹管的中性面表面积Fm=0.028574m2;翅片管的的内径Di=8.68mm;内螺纹管的内表面积Fi=0.0272552m2;翅化系数β=F0/Fi19.94874699 ;最小截面与迎面截面面积之比0.540244444;最小截面的风速Wmax=4.627534861m/s;冷凝器的当量直径Deq=2.909754638mm由冷凝器的平均温度Tm,查空气的物性参数动力粘度νf=1.75E-05m2/s导热系数λf=0.0264W/(Mk)密度ρf=1.0955m3/K g故雷偌数Ref=7.69E+02长径比L/Deq=22.32146971 对于平套片管空气的换热系数A=0.518-0.02315*L/Deq+0.000425*(L/Deq)^2-3E-6*(L/Deq)^3 A=0.179648497C=A*(1.36-0.24*Ref/1000)2.09E-01n=0.45+0.0066*L/Deq0.5973217m=-0.28+0.08*Ref/1000-2.18E-01 对于*排换热系数比顺排高10%则α0=1.1*0.02643*C*Refn/Deq*(L/Deq)^m5.62E+01W/(M2k) 对于*排管簇L=S125mmB=S221.65mmρ=B/Db2.186868687ρ'=1.27*ρ*(L/B-0.)^0.52.56768664h'=Db*(ρ'-1)*(1+0.35*lnρ')/20 .010321268m=(2α0/(λf*δf))^0.553.99064795故翅片的效率ηf=th(mh’)/mh0.907911856表面效率ηs=1-Ff/F0(1-ηf)0.912621162 计算管内的换热系数αi假设壁温Tw=50.5℃液膜平均温度Tm=52.25温度rs1/4Bm4020.19271.655019.81166.84Tm19.7252865.75775 管内换热系数αi=0.683*rs1/4*Bm/di1/4*(Tk-Tw)-1/4 忽略铜管管壁和接触热阻,由管内外热平衡:αi*3.14*di*(Tk-Tw)=ηs*α0*f0*(Tw-Tm)0.683*rs1/4*Bm/di1/4*(Tk-Tw)-1/4*3.14*di*(Tk-Tw)=ηs*α0*f0*(Tw-Tm)Tw'=4.97E+01℃Δ=|Tw'-Tw|/Tw8.19E-01取壁温Tw=5.05E+01℃则αi=2.12E+03W/(M2k)5计算传热系数及传热面积取污垢系数ri=0,r0-0.0086(M2k)/W 计算传热系数K0=1/((1/αi+ri)*f0/fi+δ/λ*f0/fm+1/(ηs*α0))3.46E+01传热温差Θm=(ta2-ta1)/ln((tk-ta1)/(tk-ta2))13.38303969℃所需传热面积F=Qk/(K0*Θm)1.66E+02m2翅片管的总长L=F/f03.06E+02m 确定冷凝器的结构尺寸,选取垂直方向的排数,沿气流方向的排数NL N=40则宽A=L/(N*NL*2)1.27E+00m取A=1.4m则传热面积A'=12.2103296m2则实际风速Wf=2.49E+00m/s 计算空气侧阻力气流流过横向整套片的阻力损失由于*排比顺排阻力要大20%Δpa=(1+0.2)*9.81*A*(L/Deq)*(ρ*νmax)1.746.89073292Pa风机的全压P=50.31417042Pa选两台CFE710-6T_-C10-S 风量大概15000*2重新计算压力13150m3/h迎面风速Wf=2.609127m/s迎面风速Wmax=4.82953m/sΔpa=(1+0.2)*9.81*A*(L/Deq)*(ρ*νmax)1.77.06E+01Pa蒸发器的校核计算热负荷Q0=54000W制冷剂流量g=354g/s内表面的热流量qi=4422.485041W/m2取质量流速g=150kg/(m2s)总流通面积A=0.00236m2每根管的有效流通面积Ai=5.91438E-05m2蒸发器的分路数Z=39.90275631取Z'=40每一分路R22流量Gd=0.00885kg/s查的B值B=1.38则αi=B*Gd^0.2*qi^0.6/di^0.61424.149983 2、确定空气在蒸发器的状态变化由进口的空气参数t1=7℃,ts1=6℃,查焓湿图得I1=20.56KJ/kgd1=5.368g/kg干空气的密度ρρ=1.2Kg/m3空气的定压比热容Cp=1.005KJ/(kg℃)水蒸气的定压比热容Cp=4.19KJ/(kg℃)出口的干球温度t2由能量守衡Q0=Cp*ρ*V*(t2-t1)t2=0.870949℃假设出口的干球温度为t2‘=2℃由能量守衡Q0=ρ*V*(I1-I2)I2=14.4003KJ/KgI=Cpg*t+(2500+Cpq*t)*dd=0.00494Kgts2=2.81℃Tw=1.75℃,Iw=12.47KJ/Kg,dw=4.274g/kgTw=1.75℃Iw=12.47KJ/kgdw=4.274g/kg干在蒸发器中空气的平均焓值Im=Iw+(I1-I2)/Ln((I1-Iw)/(I2-Iw))Im=16.76861KJ/kg由Tm可得Tm=4.6℃dm=4.833g/kg求析湿系ξ=1+2.46*(dm-dw)/(tm-tw)ξ=1.482505空气的气体常数Ra=287.4T!=280K进口状态的比容ν1=Ra*T1*(1+0.0016d1)/Pbν1=0.801058m3/kg故空气的体积流量空气侧的换热系数空气的迎面风速Wf=Wf=2.609127m/s则空气侧的换热系数α0=57.8W/(M2k)凝露工况下的翅片效率m=(2*α0*ξ/(λf*δf))^0.5m=47.78611则ηf=ηf=0.926096故凝露工况下的换热系数αj=αj=79.67994W/(M2k)设翅片侧热阻以及翅片与管壁热阻之和4.80E-03m2k/WK0=1/(f0/fi/αi+r+1/αj)3.19E+01传热温差Θm=(t1-t2)/ln((t1-t0)/(t2-t0))6.80519则传热量Q=K0*Θm*F3.61E+04哪有这么麻烦,最简单12平米/hp设计冷凝器,风量10度温差,蒸发器肯定够。
冷凝器计算方法
3.53987 4.25311 5.95854 弯头计算方法 π 3.14 单个弯头重量 4.253111914
弯头长度mm 34.54
管型
φ 5 U形管 φ 7 U形管 φ 8 U形管 φ 9.52 U形管 1米(5*0.23+0.12)内螺纹 1米(7*0.23+0.12)内螺纹 1米(7.94*0.25+0.18)内螺纹 1米(9.52*0.27+0.15)内螺纹
铜价(上海) 50330 元/吨
107.3664 56000元/吨 123.13584 56000元/吨 149.64192 56000元/吨 234.864 56000元/吨 337.30944 56000元/吨 456.7266 56000元/吨 587.16 g/m
13000元/吨 18000元/吨
螺纹管距 21mm 22mm 25.4mm
U形管
排数 2 单片铝箔体积mm³ 722.09025 铝箔单价(元/KG) 18
总铝箔数量 969.1428571
配管
铝箔总价格 34.01069835
弯头单价(元/KG) 56
弯头总价格 1.1908708 铝箔 加工后
7mm弯头重量 7.94mm弯头重量 9.52mm弯头重量 弯头跨距 22 米克重 123.13584
胀高 677 冷凝器高度mm 399 铝箔密度g/cm³ 2.7
单排铝箔数量 484.5714286 铝箔厚度mm 0.095
单个弯头重量 311
弯头总重 21.26555
冷凝器计算 基本数据 片宽 7mm冷凝器片宽 12.7mm 7.94mm冷凝器片宽 19mm 9.52mm冷凝器片宽 22mm 螺纹管单价(元/KG) 60 螺纹管总价格 35.9502624