数值分析实验报告-插值、三次样条
数值分析实验报告-插值、三次样条

实验报告:牛顿差值多项式&三次样条问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数21()25f x x作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。
实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。
应用所编程序解决实际算例。
实验要求:1. 认真分析问题,深刻理解相关理论知识并能熟练应用;2. 编写相关程序并进行实验;3. 调试程序,得到最终结果;4. 分析解释实验结果;5. 按照要求完成实验报告。
实验原理:详见《数值分析 第5版》第二章相关内容。
实验内容:(1)牛顿插值多项式1.1 当n=10时:在Matlab 下编写代码完成计算和画图。
结果如下:代码:clear allclcx1=-1:0.2:1;y1=1./(1+25.*x1.^2);n=length(x1);f=y1(:);for j=2:nfor i=n:-1:jf(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1));endendsyms F x p ;F(1)=1;p(1)=y1(1);for i=2:nF(i)=F(i-1)*(x-x1(i-1));p(i)=f(i)*F(i);endsyms PP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25*x^2),x,x0);plot(x0,y0,x0,y2)grid onxlabel('x')ylabel('y')P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。
C _数值分析_三次样条插值_自动选取步长梯形法_ROMBERG求积法_列主元高斯消去法_列主元LU分解法_JACOBI迭

//系数矩阵 //右端项 //中间项 //输出 //选取列主元的比较器
int i,j,k;
//计数器
void main() {
cout << "请输入线性方程组(ai1,ai2,ai3......ain, yi):"<<endl; for ( i = 0; i < N ;i++) {
for (int j = 0; j< N ;j++ ) cin >> A[i][j];
A[i][j] = A[i][j] - T * A[k][j]; } } } X[N-1] = B[N-1]/A[N-1][N-1]; for (i = N-2; i >=0 ; i--) {
6
double Temp = 0; for (int j = i+1; j<N ;j++)
Temp = Temp + A[i][j] * X[j]; X[i] = (B[i] - Temp) /A[i][i]; } cout << "线性方程组的解(X1,X2,X3......Xn)为:"<<endl; for( i = 0; i < N ;i++) { cout << X[i] <<" "; } } 运行结果截图:
double fun(double a) {
return 2/( 1+a*a ); } double SelfSelLength(double R_a,double R_b,double e) {
double h = (R_b-R_a)/2; double R1 = (fun(R_a)+fun(R_b)) * h; int n = 1; double R0; double S; double E; do //每当误差值不符合要求时,计算下一个 result 值 {
西北农林科技大学数值分析数值法实验报告

数值法实验报告专业班级:信息与计算科学121 姓名:金辉 学号:20120142801)实验目的本次实验的目的是熟练《数值分析》第二章“插值法”的相关内容,掌握三种插值方法:牛顿多项式插值,三次样条插值,拉格朗日插值,并比较三种插值方法的优劣。
本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并在MATLAB 软件中去实现。
2)实验题目 实验一:试用44据进行插值。
用图给出{(x i ,y i ),x i =0.2+0.08i ,i=0,1, 11, 10},P 4(x )及S (x )。
实验二:在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21()125f x x =+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数即()f x 的图形。
实验三:可以得到平方根函数的近似,在区间[0,64]上作图。
(1)用这9各点作8次多项式插值L 8(x).(2)用三次样条(自然边界条件)程序求S (x )。
从结果看在[0,64]上,那个插值更精确;在区间[0,1]上,两种哪个更精确?3)实验原理与理论基础《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日4)实验内容 实验一:试用44据进行插值。
用图给出{(xi ,yi),xi=0.2+0.08i,i=0,1, 11, 10},P4(x)及S(x)。
(1)首先我们先求牛顿插值多项式,此处要用4次牛顿插值多项式处理数据。
已知n次牛顿插值多项式如下:P n =f(x)+f[x,x1](x-x)+ f[x,x1,x2](x-x) (x-x1)+···+f[x0,x1, (x)n](x-x) ···(x-xn-1)我们要知道牛顿插值多项式的系数,即均差表中得部分均差。
在MATLAB的Editor中输入程序代码,计算牛顿插值中多项式系数的程序如下:function varargout=newtonliu(varargin)clear,clcx=[0.2 0.4 0.6 0.8 1.0];fx=[0.98 0.92 0.81 0.64 0.38];newtonchzh(x,fx);function newtonchzh(x,fx)%由此函数可得差分表n=length(x);fprintf('*****************差分表*****************************\n');FF=ones(n,n);FF(:,1)=fx';for i=2:nfor j=i:nFF(j,i)=(FF(j,i-1)-FF(j-1,i-1))/(x(j)-x(j-i+1));endendfor i=1:nfprintf('%4.2f',x(i));for j=1:ifprintf('%10.5f',FF(i,j));endfprintf('\n'); end由所以有四次插值牛顿多项式为:P 4(x )=0.98-0.3(x-0.2)-0.62500 (x-0.2)(x-0.4) -0.20833(x-0.2)(x-0.4)(x-0.6)-0.52083 (x-0.2)(x-0.4)(x-0.6)(x-0.8)(2)接下来我们求三次样条插值函数。
样条插值实验报告

四、三次样条插值1. 样条函数插值的原理给定区间[a,b]上划分A:a=x<x<<x<x=b,若分段函数S(x)满足:01n-1n1.S(x)在各个子区间[x,x],i=0,1,,n-1上均为x的三次多项式;ii+12.S(x)在整个区间[a,b]上有直至二阶的连续导数。
则称S(x)为[a,b]上依次划分的三次样条函数,简称样条函数。
具体地有分段表达式:ax3+bx2+cx+d,x G[x,x]000001ax3+bx2+cx+d,x G[x,x]111112S(x)=\ax3+bx2+cx+d,x G[x,x](1)222223ax3+bx2+cx+d,x G[x,x]、°*n-1n—T•••n-1n-1n-1n共有4n个参数a,b,c,d,i=0,1,,n,它们在内节点处满足iiii'S(x)=S(x),…i-0i+0<S'(x)=S'(x),i=1,2,,n-1.(2)i-0i-0S''(x)=S''(x),Ji-0i+0满足样条函数定义的函数集合称为分划A上的三次样条函数空间,记为S(3,A),可以证明S(3,A)为线性空间。
若S(x)G S(3,A),且进一步满足插值条件S(x)=y=f(x),i=0,1,,n(3)iii其中y为节点x处的给定函数值(若被插函数了(x)已知;••则用了(x)代替之),iii则称S(x)为以x,x,,x,x为节点的三次样条函数。
01n-1n其中式(3)插值节点提供了n+1个约束条件;加上式(2)的3n-3个,合起来共有4n-2个;欲求4n个待定参数的唯一解;尚缺两个条件。
这两个条件一般由样条函数的边界条件提供。
常用三类边界条件;他们分别与三次样条函数;构成不同边界条件的样条函数插值问题。
2. 三类样条函数插值问题2.1第二类边界条件给定边界条件两端的一阶导数值:S'(x)=y'=m,S'(x)=y'=m000nnn这相当于样条两短处的方向给定(压铁在两端点的压力方向确定),对应的插值问题如下:对于分划A:a=x<x<<x<x=b,给定节点对应的函数值01n—1ny,y,y,,y,以及两端点处的一阶导数值y'=m,y'=m,求三次样条函数012n00nnS(x),使…f S(x)=y,i=0,1,,n2iiI S'(x)=m,S'(x)=mJ00n…n2.2第一类边界条件给定边界两端的二阶导数值:S''(x)=y''=M,S''(x)=y''=M000nnn这相当于在样条两端处外加一个力矩,使梁两端点处有相应的曲率。
三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY数值分析实验报告三次样条插值方法的应用一、问题背景分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。
样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。
下面我们讨论最常用的三次样条函数及其应用。
二、数学模型样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。
设区间[]b ,a 上给定有关划分b x x n =<<<=Λ10x a ,S 为[]b ,a 上满足下面条件的函数。
● )(b a C S ,2∈;● S 在每个子区间[]1,+i i x x 上是三次多项式。
则称S 为关于划分的三次样条函数。
常用的三次样条函数的边界条件有三种类型:● Ⅰ型 ()()n n n f x S f x S ''0'',==。
● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。
● Ⅲ型 ()()Λ3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。
鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。
三、算法及流程按照传统的编程方法,可将公式直接转换为MATLAB可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB在矩阵运算上的优势。
数值分析报告作业-三次样条插值

数值计算方法作业实验4.3 三次样条差值函数实验目的:掌握三次样条插值函数的三弯矩方法。
实验函数:dt ex f xt ⎰∞--=2221)(πx 0.0 0.1 0.2 0.3 0.4 F(x)0.50000.53980.57930.61790.7554求f(0.13)和f(0.36)的近似值实验内容:(1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件; (2) 计算各插值节点的弯矩值;(3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲线比较插值结果。
实验名称 实验4.3三次样条插值函数(P126)4.5三次样条插值函数的收敛性(P127)实验时间姓名班级学号成绩实验4.5 三次样条差值函数的收敛性实验目的:多项式插值不一定是收敛的,即插值的节点多,效果不一定好。
对三次样条插值函数如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。
实验内容:按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。
实验要求:(1)随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情况,分析所得结果并与拉格朗日插值多项式比较;(2)三次样条插值函数的思想最早产生于工业部门。
作为工业应用的例子,考虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线,其中一段数据如下:x0 1 2 3 4 5 6 7 8 9 10 ky0.0 0.79 1.53 2.19 2.71 3.03 3.27 2.89 3.06 3.19 3.29 ky 0.8 0.2 k算法描述:拉格朗日插值:错误!未找到引用源。
其中错误!未找到引用源。
是拉格朗日基函数,其表达式为:()∏≠=--=nij j j i ji x x x x x l 0)()(牛顿插值:))...()(](,...,,[....))(0](,,[)0](,[)()(1102101210100----++--+-+=n n n x x x x x x x x x x f x x x x x x x f x x x x f x f x N其中⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=--=--=-)/(]),...,[],...,[(]...,[..],[],[],,[)()(],[01102110x x x x x f x x x f x x x f x x x x f x x f x x x f x x x f x f x x f n n n n i k j i k j k j i ji j i j i三样条插值:所谓三次样条插值多项式Sn(x)是一种分段函数,它在节点Xi(a<X0<X1……<Xn<b)分成的每个小区间[x i-1,x i ]上是三次多项式,其在此区间上的表达式如下:],[),6()6(]6)([6)(6)()(111113131i i ii i i i i i i i i i i i i i i i i i x x x h yM h M h h y x M M h h y y h x x Mi h x x M x S -------∈-+-+---+-+-=式中Mi=)(i x S ''.因此,只要确定了Mi 的值,就确定了整个表达式,Mi 的计算方法如下:令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=---+=+=+=+--++++++],,[6)(6111111111i i i i i i i i i i i i i i i i i i i ix x x f h y y h y y h h d h h h h h h λμ则Mi 满足如下n-1个方程:1,...2,1,211-==+++-n i d M M M i i i i i i λμ 常用的边界条件有如下几类:(1) 给定区间两端点的斜率m 0,m n ,即n n n m y x S m y x S ='='='=')(,)(000 (2) 给定区间两端点的二阶导数M0,Mn,即n n n M y x S M y x S =''=''=''='')(,)(000 (3) 假设y=f(x)是以b-a 为周期的周期函数,则要求三次样条插值函数S (x )也为周期函数,对S (x )加上周期条件2,1,0),0()0()(0)(=-=+p x S x S n p p对于第一类边界条件有⎪⎪⎩⎪⎪⎨⎧--=+--=+--)(62)(6211001110n n nn nn ih y y mn h M M m h y y h M M对于第二类边界条件有⎩⎨⎧=+=+-nn n n d M M d M M 2210100μλ其中nn n n nn n M u x x f m h d M m x x f h d )1(2]),[(6)1(2)],[(6100001010-+-=-+-=-μλλ那么解就可以为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----n n n n n n n d d d d d M M M M M 1210121011...2...............2............................1..2.1......0..2μλμλμλ 对于第三类边界条件,)0()0(,,000-=+==n n n x S x S M M y y ,由此推得0010012d M M M n =-++μλ,其中]),1[],[(6,,101010110n n nn n n x x f x x f h h d h h h h h h --+=+=+=μλ,那么解就可以为: ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------1221012101221100...2.............2..............................2..,,.......,..22n n n n n n n d d d d d M M M M M n μλλμλμμλ 程序代码: 1拉格朗日插值函数Lang.mfunction f=lang(X,Y,xi) %X 为已知数据的横坐标 %Y 为已知数据的纵坐标 %xi 插值点处的横坐标%f 求得的拉格朗日插值多项式的值 n=length(X); f=0; for i=1:n l=1; for j=1:i-1l=l.*(xi-X(j))/(X(i)-X(j)); end ; for j=i+1:nl=l.*(xi-X(j))/(X(i)-X(j));end;%拉格朗日基函数f=f+l*Y(i);endfprintf('%d\n',f)return2 牛顿插值函数newton.mfunction f=newton(X,Y,xi)%X为已知数据的横坐标%Y为已知数据的纵坐标%xi插值点处的横坐标%f求得的拉格朗日插值多项式的值n=length(X);newt=[X',Y'];%计算差商表for j=2:nfor i=n:-1:1if i>=jY(i)=(Y(i)-Y(i-1))/(X(i)-X(i-j+1));else Y(i)=0;endendnewt=[newt,Y'];end%计算牛顿插值f=newt(1,2);for i=2:nz=1;for k=1:i-1z=(xi-X(k))*z;endf=f+newt(i-1,i)*z;endfprintf('%d\n',f)return3三次样条插值第一类边界条件Threch.mfunction S=Threch1(X,Y,dy0,dyn,xi) % X为已知数据的横坐标%Y为已知数据的纵坐标%xi插值点处的横坐标%S求得的三次样条插值函数的值%dy0左端点处的一阶导数% dyn右端点处的一阶导数n=length(X)-1;d=zeros(n+1,1);h=zeros(1,n-1);f1=zeros(1,n-1);f2=zeros(1,n-2);for i=1:n%求函数的一阶差商h(i)=X(i+1)-X(i);f1(i)=(Y(i+1)-Y(i))/h(i);endfor i=2:n%求函数的二阶差商f2(i)=(f1(i)-f1(i-1))/(X(i+1)-X(i-1));d(i)=6*f2(i);endd(1)=6*(f1(1)-dy0)/h(1);d(n+1)=6*(dyn-f1(n-1))/h(n-1);%¸赋初值A=zeros(n+1,n+1);B=zeros(1,n-1);C=zeros(1,n-1);for i=1:n-1B(i)=h(i)/(h(i)+h(i+1));C(i)=1-B(i);endA(1,2)=1;A(n+1,n)=1;for i=1:n+1A(i,i)=2;endfor i=2:nA(i,i-1)=B(i-1);A(i,i+1)=C(i-1);endM=A\d;syms x;for i=1:nSx(i)=collect(Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))... +M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3); digits(4);Sx(i)=vpa(Sx(i));%三样条插值函数表达式endfor i=1:ndisp('S(x)=');fprintf('%s (%d,%d)\n',char(Sx(i)),X(i),X(i+1));endfor i=1:nif xi>=X(i)&&xi<=X(i+1)S=Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(xi-X(i))+M(i)/2*(xi-X(i))^2+(M(i+1)-M(i))/(6*h(i))*( xi-X(i))^3;endenddisp('xi S');fprintf('%d,%d\n',xi,S);return4 三次样条插值第二类边界条件Threch2.mfunction [Sx]=Threch2(X,Y,d2y0,d2yn,xi)X为已知数据的横坐标%Y为已知数据的纵坐标%xi插值点处的横坐标%S求得的三次样条插值函数的值%d2y0左端点处的二阶导数% d2yn右端点处的二阶导数n=length(X)-1;d=zeros(n+1,1);h=zeros(1,n-1);f1=zeros(1,n-1);f2=zeros(1,n-2);for i=1:n%求一阶差商h(i)=X(i+1)-X(i);f1(i)=(Y(i+1)-Y(i))/h(i);endfor i=2:n%求二阶差商f2(i)=(f1(i)-f1(i-1))/(X(i+1)-X(i-1)); d(i)=6*f2(i);endd(1)=2*d2y0;d(n+1)=2*d2yn;%赋初值A=zeros(n+1,n+1);B=zeros(1,n-1);C=zeros(1,n-1);for i=1:n-1B(i)=h(i)/(h(i)+h(i+1));C(i)=1-B(i);endA(1,2)=0;A(n+1,n)=0;for i=1:n+1A(i,i)=2;endfor i=2:nA(i,i-1)=B(i-1);A(i,i+1)=C(i-1);endM=A\d;syms x;for i=1:nSx(i)=collect(Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))...+M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3);digits(4);Sx(i)=vpa(Sx(i));endfor i=1:ndisp('S(x)=');fprintf('%s (%d,%d)\n',char(Sx(i)),X(i),X(i+1));endfor i=1:nif xi>=X(i)&&xi<=X(i+1)S(i)=Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(xi-X(i))+M(i)/2*(xi-X(i))^2+(M(i+1)-M(i))/(6*h(i) )*(xi-X(i))^3;endenddisp('xi S');fprintf('%d,%d\n',xi,S);return5插值节点处的插值结果main3.mclearclcX=[0.0,0.1,0.2,0.3,0.4];Y=[0.5000,0.5398,0.5793,0.6179,0.7554];xi=0.13;%xi=0.36;disp('xi=0.13');%disp('xi=0.36');disp('拉格朗日插值结果');lang(X,Y,xi);disp('牛顿插值结果');newton(X,Y,xi);disp('三次样条第一类边界条件插值结果');Threch1(X,Y,0.40,0.36,xi);%0.4,0.36分别为两端点处的一阶导数disp('三次样条第二类边界条件插值结果');Threch2(X,Y,0,-0.136,xi);%0,-0.136分别为两端点处的二阶导数6将多种插值函数即原函数图像画在同一张图上main2.mclearclcX=[0.0,0.1,0.2,0.3,0.4];Y=[0.5000,0.5398,0.5793,0.6179,0.7554];a=linspace(0,0.4,21);NUM=21;L=zeros(1,NUM);N=zeros(1,NUM);S=zeros(1,NUM);B=zeros(1,NUM);for i=1:NUMxi=a(i);L(i)=lang(X,Y,xi);% 拉格朗日插值N(i)=newton(X,Y,xi);%牛顿插值B(i)=normcdf(xi,0,1);%原函数S(i)=Threch1(X,Y,0.4,0.36,xi);%三次样条函数第一类边界条件endplot(a,B,'--r');hold on;plot(a,L,'b');hold on;plot(a,N,'r');hold on;plot(a,S,'r+');hold on;legend('原函数','拉格朗日插值','牛顿插值','三次样条插值',2); hold off7增加插值节点观察误差变化main4.mclear;clc;N=5;%4.5第一问Ini=zeros(1,1001);a=linspace(-1,1,1001);Ini=1./(1+25*a.^2);for i=1:3 %节点数量变化次数N=2*N;t=linspace(-1,1,N+1);%插值节点ft=1./(1+25*t.^2);%插值节点函数值val=linspace(-1,1,101);for j=1:101L(j)=lang(t,ft,val(j));S(j)=Threch1(t,ft,0.074,-0.074,val(j));%三样条第一类边界条件插值endplot(a,Ini,'k')%原函数图象hold onplot(val,L,'r')%拉格朗日插值函数图像hold onplot(val,S,'b')%三次样条插值函数图像str=sprintf('插值节点为%d时的插值效果',N);title(str);legend('原函数','拉格朗日插值','三次样条插值');%显示图例hold offfigureend8车门曲线main5.mclearclcX=[0,1,2,3,4,5,6,7,8,9,10];Y=[0.0,0.79,1.53,2.19,2.71,3.03,3.27,2.89,3.06,3.19,3.29];dy0=0.8;dyn=0.2;n=length(X)-1;d=zeros(n+1,1);h=zeros(1,n-1);f1=zeros(1,n-1);f2=zeros(1,n-2);for i=1:nh(i)=X(i+1)-X(i);f1(i)=(Y(i+1)-Y(i))/h(i);endfor i=2:nf2(i)=(f1(i)-f1(i-1))/(X(i+1)-X(i-1));d(i)=6*f2(i);endd(1)=6*(f1(1)-dy0)/h(1);d(n+1)=6*(dyn-f1(n-1))/h(n-1); A=zeros(n+1,n+1); B=zeros(1,n-1);C=zeros(1,n-1);for i=1:n-1B(i)=h(i)/(h(i)+h(i+1));C(i)=1-B(i);endA(1,2)=1;A(n+1,n)=1;for i=1:n+1A(i,i)=2;endfor i=2:nA(i,i-1)=B(i-1);A(i,i+1)=C(i-1);endM=A\d;x=zeros(1,n);S=zeros(1,n);for i=1:nx(i)=X(i)+0.5;S(i)=Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x(i)-X(i))+M(i)/2*(x(i)-X(i))^2+(M(i+1)-M(i))/(6* h(i))*(x(i)-X(i))^3;endplot(X,Y,'k'); hold on;plot(x,S,'o');title('三次样条插值效果图');legend('已知插值节点','三次样条插值');hold off实验结果:4.31计算插值节点处的函数值xi=0.13时Xi=0.36时2将多种插值函数即原函数图像画在同一张图上4.5.1增加插值节点观察误差变化从上面三张图可以看出增加插值节点并不能改善差之效果4.5.2 车门曲线。
数值分析上机实验报告(插值)

数值分析第一次上机练习实验报告——Lagrange 插值与三次样条插值一、 问题的描述设()2119f x x =+, []1,1x ∈-,取15iix =-+,0,1,2,...,10i =.试求出10次Lagrange 插值多项式()10L x 和三次样条插值函数()S x (采用自然边界条件),并用图画出()f x ,()10L x ,()S x .二、 方法描述——Lagrange 插值与三次样条插值我们取15i ix =-+,0,1,2,...,10i =,通过在i x 点的函数值()2119i i f x x =+来对原函数进行插值,我们记插值函数为()g x ,要求它满足如下条件:()()21,0,1,2,...,1019i i i g x f x i x ===+ (1)我们在此处要分别通过Lagrange 插值(即多项式插值)与三次样条插值的方法对原函数()2119f x x=+进行插值,看两种方法的插值结果,并进行结果的比较。
10次的Lagrange 插值多项式为:()()10100i i i L x y l x ==∑ (2)其中:()21,0,1,2,...,1019i i iy f x i x ===+ 以及()()()()()()()()()011011......,0,1,2,...,10......i i n i i i i i i i n x x x x x x x x l x i x x x x x x x x -+-+----==----我们根据(2)进行程序的编写,我们可以通过几个循环很容易实现函数的Lagrange 插值。
理论上我们根据区间[]1,1-上给出的节点做出的插值多项式()n L x 近似于()f x ,而多项式()n L x 的次数n 越高逼近()f x 的精度就越好。
但实际上并非如此,而是对任意的插值节点,当n →+∞的时候()n L x 不一定收敛到()f x ;而是有时会在插值区间的两端点附近会出现严重的()n L x 偏离()f x 的现象,即所谓的Runge 现象。
Matlab实验报告六(三次样条与分段线性插值)

实验名称插值与拟合
所属课程数学软件与实验
实验类型综合型实验
专业信息与计算科学
班级
学号
姓名
指导教师
一、实验概述
【实验目的】
学会在matlab环境下使用几种不同的插值法和拟合两种方法构造函数依据已经知道的某些特殊点来推测实际问题中需要知道但又不便于测量出来的量。
【实验原理】
1.z=interp2(x0,y0,z0,x,y,’method’): 要求x0,y0单调;x, y可取为矩阵, 或x取行向量, y取为列向量, x,y的值分别不能超出x0,y0的范围。
2.分段线性插值与计算量与n无关;n越大, 误差越小.
3.三次样条插值比分段线性插值更光滑。
4.‘linear’ : 分段线性插值;‘spline’ : 三次样条
二、实验内容
问题1 对函数, x([-5,5], 分别用分段线性插值和三次样条插值作插值(其中插值节点不少于20), 并分别作出每种插值方法的误差曲线.
1180 1320 1450 1420 1400 1300 700 900];
mesh(x,y,z)
xi=0:20:2800;
yi=0:20:2400;
zi=interp2(x,y,z,xi',yi,'cubic');
mesh(xi,yi,zi)
3.结果
4.结论及分析
通过实验,结果正确,分析无误。
三、实验小结
1270 1500 1200 1100 1350 1450 1200 1150
1230 1390 1500 1500 1400 900 1100 1060
1180 1320 1450 1420 1400 1300 700 900
插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
数值分析实验报告1

p
得到m=(00)T
即M0=0 ;M1=;M2=;M3=;M4=0
则根据三次样条函数定义,可得:
S(x)=
接着,在Command Window里输入画图的程序代码,
下面是画牛顿插值以及三次样条插值图形的程序:
x=[ ];
y=[ ];
plot(x,y)
hold on
for i=1:1:5
y(i)= *(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)
Pn=f(x0)+f[x0,x1](x-x0)+ f[x0,x1,x2](x-x0) (x-x1)+···+ f[x0,x1,···xn](x-x0) ···(x-xn-1)
我们要知道牛顿插值多项式的系数,即均差表中得部分均差。
在MATLAB的Editor中输入程序代码,计算牛顿插值中多项式系数的程序如下:
【实验原理】
《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日插值的相应算法和相关性质。
【实验环境】(使用的软硬件)
软件:
MATLAB 2012a
硬件:
电脑型号:联想 Lenovo 昭阳E46A笔记本电脑
操作系统:Windows 8 专业版
处理器:Intel(R)Core(TM)i3 CPU M 350 @
实验内容:
【实验方案设计】
第一步,将书上关于三种插值方法的内容转化成程序语言,用MATLAB实现;第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。
【实验过程】(实验步骤、记录、数据、分析)
实验的主要步骤是:首先分析问题,根据分析设计MATLAB程序,利用程序算出问题答案,分析所得答案结果,再得出最后结论。
关于三次样条插值函数的学习报告

关于三次样条插值函数的学习报告三次样条插值函数是一种广泛应用于数值分析领域的插值方法,用于逼近一组已知数据点构成的函数。
在这篇学习报告中,我将介绍三次样条插值函数的定义、原理、应用及其优缺点,并通过实际例子说明其如何在实际问题中使用。
一、三次样条插值函数的定义三次样条插值函数是指用分段三次多项式对一组已知数据点进行插值的方法。
具体来说,对于已知数据点$(x_0,y_0),(x_1,y_1),...,(x_n,y_n)$,三次样条插值函数会在每相邻两个数据点之间构造一个三次多项式,使得这些多项式在相应的数据点上满足插值条件,并且在相邻两个多项式之间满足一定的连续性条件。
二、三次样条插值函数的原理三次样条插值函数的原理是利用三次多项式在每个数据点上的取值和导数值来确定三次多项式的系数,从而构造出满足插值条件和连续性条件的插值函数。
具体来说,对于每个相邻的数据点$(x_i,y_i),(x_{i+1},y_{i+1})$,我们可以构造一个三次多项式$S_i(x)$,满足以下条件:1.$S_i(x_i)=y_i$,$S_i(x_{i+1})=y_{i+1}$,即在数据点上满足插值条件;2.$S_i'(x_{i+1})=S_{i+1}'(x_{i+1})$,$S_i''(x_{i+1})=S_{i+1}''(x_{i+1})$,即在数据点上满足连续性条件。
通过求解上述条件,可以得到每个相邻数据点之间的三次多项式$S_i(x)$,从而得到整个插值函数。
三、三次样条插值函数的应用三次样条插值函数在数值分析领域有广泛的应用,尤其在曲线拟合、数据逼近等问题中起到重要作用。
例如,当我们需要根据已知的离散数据点绘制平滑的曲线图形时,可以使用三次样条插值函数来进行插值,从而得到更加连续和光滑的曲线。
另外,在信号处理、图像处理等领域也常常会用到三次样条插值函数。
例如,在数字图像处理中,我们需要对像素点进行插值以得到更高分辨率的图像,三次样条插值函数可以很好地满足这个需求,使图像更加清晰和真实。
三次样条插值报告

三次样条插值多项式实验的目的及意义:为了取得理想结果:在不增加更多的插值条件下,能够求得一个插值多项式,既有良好的逼近效果,又有好的光滑性,引进三次样条插值 多项式。
如果已知函数y=f(x)在节点a=x0<x1<…<xn=b 处的函数值和导数值:()i i x f y =,i=0,1,2,…,n如果S(x)满足条件:1. S(x)是一个分段的三次多项式且()i i y x S =;2. S(x)在[a,b]具有二阶连续导数。
则称S(x)是三次样条插值函数。
S(x)的具体形式为:()()()()⎪⎪⎩⎪⎪⎨⎧∈∈∈=-]12,121,01,[,...............][,][,n n n x x x x s x x x x s x x x x s x s其中()x S i 在[]i i x x ,1-上是三次多项式()iiiiid x c x b x a x S +++=23由插值条件()ii y x S =,i=0,1,2,…,n ,得n+1个条件。
边界条件一:()()nn y x S y x S '',''00== 边界条件二:()()nn y x S y x S '''',''''00==数学公式:()()2211133[2]()[2()]()i i i i i i i i i i ih x x x x h x x x x H x y y h h ---+-----=++2211122()()()()i i i i i i i ix x x x x x x x m m h h -------+ 算法描述:Step1:输入未知数X 及(xi,yi),i=0,1,…,n ; Step2:计算步长H[i]; Step3:计算[][]()⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-+++i i i i i i i ii i i i i x x f x x f u g u hh h ,,311111λλλStep4:根据边界条件,求解相应的方程得到m0,m1,…, mn Step5:判断X 属于[]i i x x ,1-,i=1,2,…,n 中的哪一个Step6:计算()x s y i i ≈Step7:输出y. 程序原代码如下: #include "stdio.h" #define N 5 void main() { int i,k; float X,s,y0,yn;float a[N][N+1],h[N],u[N],v[N],g[N],m[N],p[N],q[N],w[N];printf("please input X:"); //X 为未知数的大小scanf("%f",&X);printf("please input x:"); //输入x的大小for(i=0;i<N;i++)scanf("%f",&a[i][0]);printf("please input y:"); //输入y的大小for(i=0;i<N;i++)scanf("%f",&a[i][1]);for(i=1;i<N;i++)h[i]=a[i][0]-a[i-1][0]; //计算步长for(i=1;i<N;i++){v[i]=h[i+1]/(h[i]+h[i+1]);u[i]=1-v[i];g[i]=3*u[i]*(a[i+1][1]-a[i][1])/h[i+1]+3*v[i]*(a[i][1]-a[i-1][1])/h[i]; }printf("\t(1)已知边界条件1\n");printf("\t(2)已知边界条件2\n");printf("请选择边界条件序号:");scanf("%d",&k);if(k==1){printf("请输入y0和yn的一阶导:"); //输入边界条件一scanf("%f%f",&m[0],&m[N-1]);p[0]=0; //用追赶法求解m[N]q[0]=0;g[1]=g[1]-v[1]*m[0];g[N-2]=g[N-2]-u[N-2]*m[N-1];for(i=1;i<N;i++){w[i]=2-u[i]*p[i-1];p[i]=v[i]/w[i];q[i]=(g[i]-u[i]*q[i-1])/w[i];}m[N-2]=q[N-2];for(i=N-3;i>0;i--)m[i]=q[i]-p[i]*m[i+1];printf("输出m[i]的值:\n");for(i=0;i<N;i++)printf("%f\n",m[i]);for(i=1;i<N;i++) //计算最终结果if(X>a[i-1][0]&&X<a[i][0])s=(h[i]+2*(X-a[i-1][0]))*(X-a[i][0])*(X-a[i][0])*a[i-1][1]/(h[i]*h[i]*h[i]) +(h[i]-2*(X-a[i][0]))*(X-a[i-1][0])*(X-a[i-1][0])*a[i][1]/(h[i]*h[i]*h[i])+ (X-a[i-1][0])*(X-a[i][0])*(X-a[i][0])*m[i-1]/(h[i]*h[i])+(X-a[i-1][0])*(X-a[i-1][0])*(X-a[i][0])*m[i]/(h[i]*h[i]);printf("s(%f)=%f\n",X,s);}if(k==2){printf("请输入y0和yn的二阶导:"); //输入边界条件二scanf("%f%f",&y0,&yn);g[0]=3*(a[1][1]-a[0][1])/h[1]-h[1]*y0/2;g[N-1]=3*(a[N-1][1]-a[N-2][1])/h[N-1]+h[N-1]*yn/2;q[0]=g[0];u[0]=1;v[N-1]=1;w[0]=2;for(i=1;i<N;i++){w[i]=2-v[i]*u[i-1]/w[i-1];q[i]=g[i]-v[i]*q[i-1]/w[i-1];}m[N-1]=q[N-1]/w[N-1];for(i=N-2;i>=0;i--)m[i]=(q[i]-u[i]*m[i+1])/w[i];printf("输出m[i]的值:\n");for(i=0;i<N;i++)printf("%f\n",m[i]);for(i=1;i<N;i++)if(X>=a[i-1][0]&&X<=a[i][0])s=(h[i]+2*(X-a[i-1][0]))*(X-a[i][0])*(X-a[i][0])*a[i-1][1]/(h[i]*h[i]*h[i]) +(h[i]-2*(X-a[i][0]))*(X-a[i-1][0])*(X-a[i-1][0])*a[i][1]/(h[i]*h[i]*h[i])+ (X-a[i-1][0])*(X-a[i][0])*(X-a[i][0])*m[i-1]/(h[i]*h[i])+(X-a[i-1][0])*(X-a[i-1][0])*(X-a[i][0])*m[i]/(h[i]*h[i]);printf("s(%f)=%f\n",X,s);}}数值计算:已知y=f(x)的如下数值求三次样条插值函数S(x),满足条件1.s’(0)=0,s’(4)=482.s’’(0)=0,s’’(4)=24Please input X:2.5Please input x:0 1 2 3 4 Please input y:-8 -7 0 19 56(1)已知边界条件1(2)已知边界条件2请选择边界条件的序号:1请输入y0和yn的一阶导:0 48 0.0000003.00000012.00000027.00000048.000000s(2.500000)=7.625000press any key tocontinue请选择边界条件的序号:2请输入y0和yn的二阶导:0 24 -0.0000003.00000011.99999927.00000248.0000007.625000press any key tocontinue s(2.500000)=7.625000 对计算结果进行评价分析:()()443845h M x S x f ≤-三次样条插值函数与三次Hermite 插值函数相比,不仅光滑度有提高,而且要求求解时还不需要增加内节点处的导数值,因此比较实用。
数值分析实验报告-插值、三次样条

实验报告:牛顿差值多项式&三次样条问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数21()25f x x作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。
实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。
应用所编程序解决实际算例。
实验要求:1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。
实验原理:详见《数值分析 第5版》第二章相关内容。
实验内容:(1)牛顿插值多项式1.1 当n=10时:在Matlab 下编写代码完成计算和画图。
结果如下:代码:clear allclcx1=-1:0.2:1;y1=1./(1+25.*x1.^2);n=length(x1);f=y1(:);for j=2:nfor i=n:-1:jf(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1));endendsyms F x p;F(1)=1;p(1)=y1(1);for i=2:nF(i)=F(i-1)*(x-x1(i-1));p(i)=f(i)*F(i);endsyms PP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25*x^2),x,x0);plot(x0,y0,x0,y2)grid onxlabel('x')ylabel('y')P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36* x^4+2.0202e-14*x^3-16.855*x^2-6.6594e-16*x+1.0并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。
数值分析三次样条插值函数

数值分析三次样条插值函数【问题】对函数f x =ex, x∈[0,1]构造等距节点的三次样条插值函数,对以下两种类型的样条函数1. 三次自然样条2. 满足S′ 0 =1,S′ 1 =e的样条并计算如下误差:max{ f x1 −S x1 ,i=1,…,N} i−i−i这里xi−1为每个小区间的中点。
对N=10,20,40比较以上两组节点的结果。
讨论你的结果。
【三次样条插值】在每一个区间[t1,t2],…,[tn−1,tn]上,S都是不同的三次多项式,我们把在[ti−1,ti]上表示S的多项式记为Si,从而,S0 x x∈[t0,t1]∈[t1,t2] S x = S1 x x…Sn−1 x x∈[tn−1,tn]通过在节点处函数值、一阶导数和二阶导数的连续性可以得到:Si−1 ti = yi= Si ti 1≤i≤ n−1Si−1′ ti = Si′ tix→ti+limS′′ x =zi=limS′′(x) x→ti−再给定z0和zn 的值就构成了4n个条件,而三次样条插值函数共4n个系数,故可以通过这4n个条件求解三次样条函数的系数,从而求得该三次样条插值函数。
特别的,当z0=zn=0 时称为自然三次样条。
文本预览:一、自然三次样条插值【自然三次样条插值算法】1.由上面的分析可知,求解三次样条函数实际上就是求解一个矩阵:u 1h 1h1u2h2h2u3…v1 z1 v2 z2 z3=v3 … z…hn−2 n−2 vn−2 z vn−1 un−1 n−1ih3…hn−3un−2hn−26…其中hi=ti+1−ti,ui=2(hi+hi−1),ui=h(yi+1−yi),vi=bi−bi−1 所以自然三层次样条插值的算法就是在得到端点的函数值,一次导数值和二次导数值,然后根据上述求解矩阵得到v,代入自然三次样条的表达式即可。
2.根据题目中所给出的误差估计,计算在区间中点处的最大误差。
【实验】通过Mathematica编写程序得到如下结果:N=101. 计算得到zi的值为:由此可以得到各个区间的自然三次样条插值函数。
第二类边界条件三次样条插值实验报告

数值计算实验—实验报告2一、实验项目:第二类边界条件三次样条插值二、实验目的和要求a.通过本实验深入地理解三次样条插值多项式的基本原理b.通过数值算例更好的领会三次样条插值多项式具有较高的准确性三、实验内容1.用调试好的程序解决如下问题:点中点处的函数值,并将计算结果与sinx在相应点的数值相比较。
n=8;p1=0.4794;pn=0.9463;u=[0.6,0.8,1.0,1.2,1.4,1.6,1.8];p=7;x=[0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9];y=[0.4794,0.6442,0.7833,0.8912,0.9636,0.9975,0.9917,0.9463];for i=1:n-1h(i)=x(i+1)-x(i);enda2(1)=1;g(1)=3*(y(2)-y(1))/h(1)-p1*h(1)/2;for k=2:n-1a1(k-1)=h(k)/(h(k)+h(k-1));a2(k)=h(k-1)/(h(k)+h(k-1));g(k)=3*a2(k)*(y(k+1)-y(k))/h(k)+3*a1(k-1)*(y(k)-y(k-1))/h(k-1); enda1(n-1)=1;g(n)=3*(y(n)-y(n-1))/h(n-1)+pn * h(n-1)/2;%追赶法求三转角方程b1(1)=2;m(1)=g(1)/2;b2(1)=a2(1)/b1(1);for i=2:nb1(i)=2-a1(i-1)*b2(i-1);if(i~=n)b2(i)=a2(i)/b1(i);endm(i)=(g(i)-a1(i-1)*m(i-1))/b1(i);endfor i=n-1:-1:1m(i)=m(i)-b2(i)*m(i+1);endfor j=1:pfor i=1:nif((u(j)>=x(i))&&(u(j)<x(i+1)))k=i;break;endends(j)=0;s(j)=s(j)+(h(k)+2*(u(j)-x(k)))*(u(j)-x(k+1))^2*y(k)/(h(k))^3;s(j)=s(j)+(h(k)-2*(u(j)-x(k+1)))*(u(j)-x(k))^2*y(k+1)/(h(k))^3;s(j)=s(j)+(u(j)-x(k))*(u(j)-x(k+1))^2*m(k)/(h(k))^2;s(j)=s(j)+(u(j)-x(k+1))*(u(j)-x(k))^2*m(k+1)/(h(k))^2;end(2).运行结果3. 根据Lagrange插值多项式基本原理编制程序,并计算下面的数值算例:=-5+kh,其中h=10/n,n=10,20,40.给定函数f(x)=1/(1+x^2)(-5≤x≤5),取等距节点xk边界条件为S''(x0)=f''(x0),S''(x n)=f''(x n).用上述算法计算S10(x),S20(x), S40(x),并与函数f(x)以及10次Lagrange插值多项式L10(x)在给定点处的函数值进行比较。
数值分析实验报告

南京信息工程大学数值分析实验报告(一)实验名称数值分析 实验日期 2016.5.13得分指导教师专业 数学与应用数学 年级 大二 班级 应用数学1班 姓名 丁晨 学号 20141323001一、 实验目的(1) 了解插值的基本原理(2) 了解拉格朗日插值,牛顿差值和样条差值的基本思想; 二、实验内容试用4次牛顿插值多项式P 4(x )及三次样条函数S (x )对数据进行插值。
用图给出{(x i,y i ),x i =0.2+0.08i,i=0,1,11,10}P 4(x)及S (x )2.在区间[1,1]上,取n=10,20用两组等距节点对龙格函数f(x)=22511x作三次样条差值,对每个n 分别画出差值函数和f (x )的图形。
3.三、实验求解 1.程序代码: clc;x1=[0.2 0.4 0.6 0.8 1.0];y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:);for j=2:n %求差商 for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end endsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i-1)*df(i); endP4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, 'variational');%调用三次样条函数 q=pp.coefs;q1=q(1,:)*[(x-.2)^3;(x-.2)^2;(x-.2);1]; q1=vpa(collect(q1),5)q2=q(1,:)*[(x-.4)^3;(x-.4)^2;(x-.4);1]; q2=vpa(collect(q2),5)q3=q(1,:)*[(x-.6)^3;(x-.6)^2;(x-.6);1]; q3=vpa(collect(q3),5)q4=q(1,:)*[(x-.8)^3;(x-.8)^2;(x-.8);1]; q4=vpa(collect(q4),5)%求解并化简多项式运行matlab 程序结果如下:P4 =0.98*x - 0.3*(x - 0.2)*(x - 0.4) - 0.625*(x - 0.2)*(x - 0.4)*(x - 0.6) - 0.20833*(x - 0.2)*(x - 0.4)*(x - 0.8)*(x - 0.6) + 0.784q1 =- 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04q2 =- 1.3393*x^3 + 1.6071*x^2 - 0.88929*x + 1.1643q3 =- 1.3393*x^3 + 2.4107*x^2 - 1.6929*x + 1.4171q4 =- 1.3393*x^3 + 3.2143*x^2 - 2.8179*x + 1.86290.10.20.30.40.50.60.70.80.910.40.50.60.70.80.911.1所以4次牛顿差值多项式4()P x =0.98*x - 0.3*(x - 0.2)*(x - 0.4) - 0.625*(x - 0.2)*(x- 0.4)*(x - 0.6) - 0.20833*(x - 0.2)*(x - 0.4)*(x - 0.8)*(x - 0.6) + 0.784三次样条差值多项式()Q x323232321.33930.803570.40714 1.04,[0.2,0.4]1.3393 1.60710.88929 1.1643,[0.4,0.6]1.3393 2.4107 1.6929 1.4171,[0.6,0.8]1.3393 3.21432.8179 1.8629,[0.8,1.0]x x x x x x x x x x x x x x x x ⎧-+-+∈⎪-+-+∈⎪⎨-+-+∈⎪⎪-+-+∈⎩2.三次样条差值: 1.M 文件: x=-1:0.0001:1; y=1./(1+25*x.^2); x1=-1:0.2:1;y1=interp1(x,y,x1,'spline'); plot(x1,y1,'o',x,y) grid on xlabel('x') ylabel('y') y1matlab 运行结果如下: y1 =0.0385 0.0588 0.1000 0.2000 0.5000 1.0000 0.5000 0.2000 0.1000 0.05880.0385。
数值分析课程设计--三次样条插值

《数值分析》课程设计三次样条插值算法院(系)名称信息工程学院专业班级 09普本信计1班学号 090111073学生姓名宣章然指导教师孔繁民2012年06月08日数值分析课程设计评阅书课程设计任务书2008—2009学年第二学期专业班级: 09普本信计1班学号: 060111060 姓名:宣章然课程设计名称:数值分析设计题目:三次样条插值完成期限:自 2012 年 6 月 8 日至 2012 年 6 月 13 日共 1 周设计依据、要求及主要内容:一、设计目的熟练掌握三次样条插值算法的原理和推导过程,并且能够应用Matlab软件编写相应的程序和使用Matlab软件函数库软件。
二、设计要求(1)用Matlab函数库中相应函数对选定的问题,求出具有一定精度的结果。
(2)使用所用的方法编写Matlab程序求解,对数值结果进行分析。
(3)对于使用多个方法解同一问题的,在界面上设计成菜单形式。
三、设计内容首先构造三次样条插值函数的定义和一般特征,并对实例问题进行实例分析,并总结四、参考文献[1] 黄明游,冯果忱.数值分析[M].北京:高等教育出版社,2008.[2] 马东升,雷勇军.数值计算方法[M].北京:机械工业出版社,2006.[3] 石博强,赵金.MATLAB数学计算与工程分析范例教程[M].北京:中国铁道出版社.2005.[4]郝红伟,MATLAB 6,北京,中国电力出版社,2001[5]姜健飞,胡良剑,数值分析及其MATLAB实验,科学出版社,2004[6]薛毅,数值分析实验,北京工业大学出版社,2005 计划答辩时间:2012年6月18日指导教师(签字):教研室主任(签字):批准日期:年月三次样条插值摘 要分段低次样条插值虽然计算简单、稳定性好、收敛性有保证且易在电子计算机上实现,但只能保证各小段曲线在连接处的连续性,不能保证整件曲线的光滑性。
利用样条插值,既可保持分段低次插值多项式,又可提高插值函数光滑性。
三次样条插值实验报告

x1=0:.01:1;y1=polyval(S1(1,:),x1-X(1)); x2=1:.01:2;y2=polyval(S1(2,:),x2-X(2)); x3=2:.01:3;y3=polyval(S1(3,:),x3-X(3)); x4=3:.01:4;y4=polyval(S1(4,:),x4-X(4)); x5=4:.01:5;y5=polyval(S1(5,:),x5-X(5)); x6=5:.01:6;y6=polyval(S1(6,:),x6-X(6)); >> plot(x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,X,Y,'.') >> hold on >> x1=0:.01:1;y1=polyval(S2(1,:),x1-X(1)); x2=1:.01:2;y2=polyval(S2(2,:),x2-X(2)); x3=2:.01:3;y3=polyval(S2(3,:),x3-X(3)); x4=3:.01:4;y4=polyval(S2(4,:),x4-X(4)); x5=4:.01:5;y5=polyval(S2(5,:),x5-X(5)); x6=5:.01:6;y6=polyval(S2(6,:),x6-X(6)); >> plot(x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,X,Y,'.') >> hold on >> x1=0:.01:1;y1=polyval(S3(1,:),x1-X(1)); x2=1:.01:2;y2=polyval(S3(2,:),x2-X(2)); x3=2:.01:3;y3=polyval(S3(3,:),x3-X(3)); x4=3:.01:4;y4=polyval(S3(4,:),x4-X(4)); x5=4:.01:5;y5=polyval(S3(5,:),x5-X(5)); x6=5:.01:6;y6=polyval(S3(6,:),x6-X(6)); >> plot(x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,X,Y,'.')
工程数值分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,对工程实际问题进行建模、求解和分析。
通过学习数值方法的基本原理和算法,提高解决实际工程问题的能力。
二、实验内容1. 线性方程组的求解2. 矩阵特征值与特征向量的计算3. 函数插值与曲线拟合4. 数值微分与积分三、实验步骤1. 线性方程组的求解(1)编写程序实现高斯消元法、克劳斯消元法和列主元素法(2)设计输入界面,用户输入增广矩阵的行和列,填写系数及常数项(3)分别运用三种方法求解线性方程组,比较求解结果的正确性、数值稳定性和计算效率2. 矩阵特征值与特征向量的计算(1)编写程序实现幂法、QR算法和逆幂法(2)设计输入界面,用户输入矩阵的行和列,填写矩阵元素(3)分别运用三种方法计算矩阵的特征值与特征向量,比较求解结果的准确性和计算效率3. 函数插值与曲线拟合(1)编写程序实现拉格朗日插值、牛顿插值和样条插值(2)设计输入界面,用户输入函数的自变量和函数值,选择插值方法(3)分别运用三种方法进行函数插值,比较插值结果的准确性和光滑性4. 数值微分与积分(1)编写程序实现有限差分法、龙格-库塔法和辛普森法(2)设计输入界面,用户输入函数的导数或积分的上下限,选择数值方法(3)分别运用三种方法进行数值微分和积分,比较求解结果的准确性和计算效率四、实验结果与分析1. 线性方程组的求解通过实验,我们发现列主元素法在求解线性方程组时具有较好的数值稳定性,计算效率也较高。
而高斯消元法和克劳斯消元法在处理大型稀疏矩阵时存在一定的困难。
2. 矩阵特征值与特征向量的计算实验结果表明,QR算法和逆幂法在计算矩阵特征值与特征向量时具有较高的准确性和计算效率。
幂法在处理大型稀疏矩阵时表现出较好的性能。
3. 函数插值与曲线拟合在函数插值和曲线拟合实验中,样条插值方法具有较好的准确性和光滑性。
拉格朗日插值和牛顿插值方法在处理简单函数时表现良好,但在处理复杂函数时可能存在精度问题。
数值分析作业-三次样条插值

数值计算方法作业实验4.3 三次样条差值函数实验目的:掌握三次样条插值函数的三弯矩方法。
实验函数:dt ex f xt ⎰∞--=2221)(π实验内容:(1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件; (2) 计算各插值节点的弯矩值;(3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲线比较插值结果。
实验4.5 三次样条差值函数的收敛性实验目的:多项式插值不一定是收敛的,即插值的节点多,效果不一定好。
对三次样条插值函数如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。
实验内容:按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。
实验要求:(1) 随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情况,分析所得结果并与拉格朗日插值多项式比较;(2) 三次样条插值函数的思想最早产生于工业部门。
作为工业应用的例子,考虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线,其中一段数据如下:kx012345678910 ky0.00.79 1.53 2.19 2.71 3.03 3.27 2.89 3.06 3.19 3.29ky'0.80.2算法描述:拉格朗日插值:其中是拉格朗日基函数,其表达式为:()∏≠=--=nijj jiji xxxxxl)()(牛顿插值:))...()(](,...,,[....))(](,,[)0](,[)()(11211211----++--+-+=nnnxxxxxxxxxxfxxxxxxxfxxxxfxfxN其中⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=--=--=-)/(]),...,[],...,[(]...,[..],[],[],,[)()(],[11211xxxxxfxxxfxxxfxxxxfxxfxxxfxxxfxfxxfnnnnikjikjkjijijiji三样条插值:所谓三次样条插值多项式Sn(x)是一种分段函数,它在节点Xi(a<X0<X1……<Xn<b)分成的每个小区间[xi-1,xi]上是三次多项式,其在此区间上的表达式如下:],[),6()6(]6)([6)(6)()(111113131iiiiiiiiiiiiiiiiiiiiixxxhyMhMhhyxMMhhyyhxxMihxxMxS-------∈-+-+---+-+-=式中Mi=)(ixS''.因此,只要确定了Mi 的值,就确定了整个表达式,Mi 的计算方法如下:令⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=---+=+=+=+--++++++],,[6)(6111111111i i i i i i i i i i i i i i i i i i i ix x x f h y y h y y h h d h h h h h h λμ则Mi 满足如下n-1个方程:1,...2,1,211-==+++-n i d M M M i i i i i i λμ 常用的边界条件有如下几类:(1) 给定区间两端点的斜率m 0,m n ,即n n n m y x S m y x S ='='='=')(,)(000 (2) 给定区间两端点的二阶导数M0,Mn,即n n n M y x S M y x S =''=''=''='')(,)(000 (3) 假设y=f(x)是以b-a 为周期的周期函数,则要求三次样条插值函数S (x )也为周期函数,对S (x )加上周期条件2,1,0),0()0()(0)(=-=+p x S x S n p p对于第一类边界条件有⎪⎪⎩⎪⎪⎨⎧--=+--=+--)(62)(6211001110n n n n n n i h y y mn h M M m h y y h M M对于第二类边界条件有⎩⎨⎧=+=+-n n n n d M M d M M 221100μλ其中n n n n nnn M u x x f m h d M m x x f h d )1(2]),[(6)1(2)],[(6100001010-+-=-+-=-μλλ那么解就可以为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----n n n n n n n d d d d d M M M M M 1210121011...2...............2............................1..2.1......0..2μλμλμλ对于第三类边界条件,)0()0(,,000-=+==n n n x S x S M M y y ,由此推得0010012d M M M n =-++μλ,其中]),1[],[(6,,101010110n n nn n n x x f x x f h h d h h h h h h --+=+=+=μλ,那么解就可以为: ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------1221012101221100...2.............2..............................2..,,.......,..22n n n n n n n d d d d d M M M M M n μλλμλμμλ 程序代码: 1拉格朗日插值函数Lang.mfunction f=lang(X,Y,xi) %X 为已知数据的横坐标 %Y 为已知数据的纵坐标 %xi 插值点处的横坐标%f 求得的拉格朗日插值多项式的值 n=length(X); f=0; for i=1:n l=1; for j=1:i-1l=l.*(xi-X(j))/(X(i)-X(j)); end ; for j=i+1:nl=l.*(xi-X(j))/(X(i)-X(j)); end ;%拉格朗日基函数 f=f+l*Y(i); endfprintf('%d\n',f) return2 牛顿插值函数newton.mfunction f=newton(X,Y,xi) %X 为已知数据的横坐标 %Y 为已知数据的纵坐标%xi插值点处的横坐标%f求得的拉格朗日插值多项式的值n=length(X);newt=[X',Y'];%计算差商表for j=2:nfor i=n:-1:1if i>=jY(i)=(Y(i)-Y(i-1))/(X(i)-X(i-j+1));else Y(i)=0;endendnewt=[newt,Y'];end%计算牛顿插值f=newt(1,2);for i=2:nz=1;for k=1:i-1z=(xi-X(k))*z;endf=f+newt(i-1,i)*z;endfprintf('%d\n',f)return3三次样条插值第一类边界条件Threch.mfunction S=Threch1(X,Y,dy0,dyn,xi)% X为已知数据的横坐标%Y为已知数据的纵坐标%xi插值点处的横坐标%S求得的三次样条插值函数的值%dy0左端点处的一阶导数% dyn右端点处的一阶导数n=length(X)-1;d=zeros(n+1,1);h=zeros(1,n-1);f1=zeros(1,n-1);f2=zeros(1,n-2);for i=1:n%求函数的一阶差商h(i)=X(i+1)-X(i);f1(i)=(Y(i+1)-Y(i))/h(i);endfor i=2:n%求函数的二阶差商f2(i)=(f1(i)-f1(i-1))/(X(i+1)-X(i-1));d(i)=6*f2(i);endd(1)=6*(f1(1)-dy0)/h(1);d(n+1)=6*(dyn-f1(n-1))/h(n-1);%¸赋初值A=zeros(n+1,n+1);B=zeros(1,n-1);C=zeros(1,n-1);for i=1:n-1B(i)=h(i)/(h(i)+h(i+1));C(i)=1-B(i);endA(1,2)=1;A(n+1,n)=1;for i=1:n+1A(i,i)=2;endfor i=2:nA(i,i-1)=B(i-1);A(i,i+1)=C(i-1);endM=A\d;syms x;for i=1:nSx(i)=collect(Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))...+M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3);digits(4);Sx(i)=vpa(Sx(i));%三样条插值函数表达式endfor i=1:ndisp('S(x)=');fprintf('%s (%d,%d)\n',char(Sx(i)),X(i),X(i+1));endfor i=1:nif xi>=X(i)&&xi<=X(i+1)S=Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(xi-X(i))+M(i)/2*(xi-X(i))^2+(M(i+1)-M(i))/(6 *h(i))*(xi-X(i))^3;endenddisp('xi S');fprintf('%d,%d\n',xi,S);return4 三次样条插值第二类边界条件Threch2.mfunction [Sx]=Threch2(X,Y,d2y0,d2yn,xi)X为已知数据的横坐标%Y为已知数据的纵坐标%xi插值点处的横坐标%S求得的三次样条插值函数的值%d2y0左端点处的二阶导数% d2yn右端点处的二阶导数n=length(X)-1;d=zeros(n+1,1);h=zeros(1,n-1);f1=zeros(1,n-1);f2=zeros(1,n-2);for i=1:n%求一阶差商h(i)=X(i+1)-X(i);f1(i)=(Y(i+1)-Y(i))/h(i);endfor i=2:n%求二阶差商f2(i)=(f1(i)-f1(i-1))/(X(i+1)-X(i-1));d(i)=6*f2(i);endd(1)=2*d2y0;d(n+1)=2*d2yn;%赋初值A=zeros(n+1,n+1);B=zeros(1,n-1);C=zeros(1,n-1);for i=1:n-1B(i)=h(i)/(h(i)+h(i+1));C(i)=1-B(i);endA(1,2)=0;A(n+1,n)=0;for i=1:n+1A(i,i)=2;endfor i=2:nA(i,i-1)=B(i-1);A(i,i+1)=C(i-1);endM=A\d;syms x;for i=1:nSx(i)=collect(Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x-X(i))... +M(i)/2*(x-X(i))^2+(M(i+1)-M(i))/(6*h(i))*(x-X(i))^3);digits(4);Sx(i)=vpa(Sx(i));endfor i=1:ndisp('S(x)=');fprintf('%s (%d,%d)\n',char(Sx(i)),X(i),X(i+1));endfor i=1:nif xi>=X(i)&&xi<=X(i+1)S(i)=Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(xi-X(i))+M(i)/2*(xi-X(i))^2+(M(i+1)-M(i)) /(6*h(i))*(xi-X(i))^3;endenddisp('xi S');fprintf('%d,%d\n',xi,S);return5插值节点处的插值结果main3.mclearclcX=[0.0,0.1,0.2,0.3,0.4];Y=[0.5000,0.5398,0.5793,0.6179,0.7554];xi=0.13;%xi=0.36;disp('xi=0.13');%disp('xi=0.36');disp('拉格朗日插值结果');lang(X,Y,xi);disp('牛顿插值结果');newton(X,Y,xi);disp('三次样条第一类边界条件插值结果');Threch1(X,Y,0.40,0.36,xi);%0.4,0.36分别为两端点处的一阶导数disp('三次样条第二类边界条件插值结果');Threch2(X,Y,0,-0.136,xi);%0,-0.136分别为两端点处的二阶导数6将多种插值函数即原函数图像画在同一张图上main2.mclearclcX=[0.0,0.1,0.2,0.3,0.4];Y=[0.5000,0.5398,0.5793,0.6179,0.7554];a=linspace(0,0.4,21);NUM=21;L=zeros(1,NUM);N=zeros(1,NUM);S=zeros(1,NUM);B=zeros(1,NUM);for i=1:NUMxi=a(i);L(i)=lang(X,Y,xi);% 拉格朗日插值N(i)=newton(X,Y,xi);%牛顿插值B(i)=normcdf(xi,0,1);%原函数S(i)=Threch1(X,Y,0.4,0.36,xi);%三次样条函数第一类边界条件endplot(a,B,'--r');hold on;plot(a,L,'b');hold on;plot(a,N,'r');hold on;plot(a,S,'r+');hold on;legend('原函数','拉格朗日插值','牛顿插值','三次样条插值',2);hold off7增加插值节点观察误差变化main4.mclear;clc;N=5;%4.5第一问Ini=zeros(1,1001);a=linspace(-1,1,1001);Ini=1./(1+25*a.^2);for i=1:3 %节点数量变化次数N=2*N;t=linspace(-1,1,N+1);%插值节点ft=1./(1+25*t.^2);%插值节点函数值val=linspace(-1,1,101);for j=1:101L(j)=lang(t,ft,val(j));S(j)=Threch1(t,ft,0.074,-0.074,val(j));%三样条第一类边界条件插值endplot(a,Ini,'k')%原函数图象hold onplot(val,L,'r')%拉格朗日插值函数图像hold onplot(val,S,'b')%三次样条插值函数图像str=sprintf('插值节点为%d时的插值效果',N);title(str);legend('原函数','拉格朗日插值','三次样条插值');%显示图例hold offfigureend8车门曲线main5.mclearclcX=[0,1,2,3,4,5,6,7,8,9,10];Y=[0.0,0.79,1.53,2.19,2.71,3.03,3.27,2.89,3.06,3.19,3.29]; dy0=0.8;dyn=0.2;n=length(X)-1;d=zeros(n+1,1);h=zeros(1,n-1);f1=zeros(1,n-1);f2=zeros(1,n-2);for i=1:nh(i)=X(i+1)-X(i);f1(i)=(Y(i+1)-Y(i))/h(i);endfor i=2:nf2(i)=(f1(i)-f1(i-1))/(X(i+1)-X(i-1));d(i)=6*f2(i);endd(1)=6*(f1(1)-dy0)/h(1);d(n+1)=6*(dyn-f1(n-1))/h(n-1); A=zeros(n+1,n+1);B=zeros(1,n-1);C=zeros(1,n-1);for i=1:n-1B(i)=h(i)/(h(i)+h(i+1));C(i)=1-B(i);endA(1,2)=1;A(n+1,n)=1;for i=1:n+1A(i,i)=2;endfor i=2:nA(i,i-1)=B(i-1);A(i,i+1)=C(i-1);endM=A\d;x=zeros(1,n);S=zeros(1,n);for i=1:nx(i)=X(i)+0.5;S(i)=Y(i)+(f1(i)-(M(i)/3+M(i+1)/6)*h(i))*(x(i)-X(i))+M(i)/2*(x(i)-X(i))^2+(M(i+1)-M (i))/(6*h(i))*(x(i)-X(i))^3;endplot(X,Y,'k'); hold on;plot(x,S,'o');title('三次样条插值效果图');legend('已知插值节点','三次样条插值');hold off实验结果:4.31计算插值节点处的函数值xi=0.13时Xi=0.36时2将多种插值函数即原函数图像画在同一张图上4.5.1增加插值节点观察误差变化从上面三张图可以看出增加插值节点并不能改善差之效果4.5.2 车门曲线(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告:牛顿差值多项式&三次样条问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数21()25f x x作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。
实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。
应用所编程序解决实际算例。
实验要求:1. 认真分析问题,深刻理解相关理论知识并能熟练应用;2. 编写相关程序并进行实验;3. 调试程序,得到最终结果;4. 分析解释实验结果;5. 按照要求完成实验报告。
实验原理:详见《数值分析 第5版》第二章相关容。
实验容:(1)牛顿插值多项式1.1 当n=10时:在Matlab 下编写代码完成计算和画图。
结果如下:代码:clear allclcx1=-1:0.2:1;y1=1./(1+25.*x1.^2);n=length(x1);f=y1(:);for j=2:nfor i=n:-1:jf(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1));endendsyms F x p ;F(1)=1;p(1)=y1(1);for i=2:nF(i)=F(i-1)*(x-x1(i-1));p(i)=f(i)*F(i);endsyms PP=sum(p);P10=vpa(expand(P),5);x0=-1:0.001:1;y0=subs(P,x,x0);y2=subs(1/(1+25*x^2),x,x0);plot(x0,y0,x0,y2)grid onxlabel('x')ylabel('y')P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。
Fig.1 牛顿插值多项式(n=10)函数和原函数图形从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。
1.2 当n=20时:对n=10的代码进行修改就可以得到n=20时的代码。
将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。
运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。
Fig.2牛顿插值多项式(n=20)函数和原函数图形当n=20时,端点处发生了更加剧烈的震荡。
表明随着分段不断增加,牛顿插值多项式与原函数的误差不但没有减少,反而变得更大了。
(2)三次样条2.1 当n=10时:在Matlab下编写代码完成计算和画图。
结果如下:代码:clear allclcx1=-1:0.2:1;y1=1./(1+25.*x1.^2);syms xm1=subs(diff(1/(1+25*x^2)),-1);m2=subs(diff(1/(1+25*x^2)),1);n=length(x1);syms a b h f dfor i=1:n-1h(i)=x1(i+1)-x1(i);f(i)=(y1(i+1)-y1(i))/(x1(i+1)-x1(i));enda(n)=1;b(1)=1;for i=2:n-1a(i)=h(i-1)/(h(i-1)+h(i));b(i)=h(i)/(h(i-1)+h(i));endd(1)=6/h(1)*(f(1)-m1);d(n)=6/h(n-1)*(m2-f(n-1));for i=2:n-1d(i)=6*(f(i)-f(i-1))/(h(i-1)+h(i));endD=d';A=2.*eye(n);for i=1:n-1A(i,i+1)=b(i);A(i+1,i)=a(i+1);endM=A^-1*D;for i=1:n-1s(i)=M(i)*(x1(i+1)-x)^3/h(i)/6+M(i+1)*(x-x1(i))^3/h(i)/6+(y1(i)-M(i)* h(i)^2/6)*(x1(i+1)-x)/h(i)+(y1(i+1)-M(i+1)*h(i)^2/6)*(x-x1(i))/h(i); endS=vpa(expand(s.'),5);for i=1:n-1x0=-1-(2/(n-1))+(2/(n-1))*i:0.001:-1+(2/(n-1))*i;y0=subs(s(i),x,x0);plot(x0,y0)hold onendy2=subs(1/(1+25*x^2),x,-1:0.001:1);plot(-1:0.001:1,y2,'r')grid onxlabel('x')ylabel('y')S即为我们所求的三次样条,其结果为:S10(x) =0.08225*x^3+0.36953*x^2+0.56627*x+0.31745 [-1,-0.8]0.96279*x^3+2.4828*x^2+2.2569*x+0.76829 [-0.8,-0.6]0.81773*x^3+2.2217*x^2+2.1002*x+0.73696 [-0.6,-0.4]13.413*x^3+17.336*x^2+8.1461*x+1.5431 [-0.4,-0.2]-54.471*x^3-23.394*x^2-1.8741e-17*x+1.0 [-0.2,0]54.471*x^3-23.394*x^2+1.9683e-17*x+1.0 [0,0.2]-13.413*x^3+17.336*x^2-8.1461*x+1.5431 [0.2,0.4]-0.81773*x^3+2.2217*x^2-2.1002*x+0.73696 [0.4,0.6]-0.96279*x^3+2.4828*x^2-2.2569*x+0.76829 [0.6,0.8]-0.08225*x^3+0.36953*x^2-0.56627*x+0.31745 [0.8,1] 并且这里可以得到该三次样条的在[-1,1]上的图形,并和原函数进行对比(见Fig.3)。
Fig.3三次样条(n=10)函数和原函数图形从图形我们可以看出,三次样条图形和原函数图形非常接近,误差相对较小。
2.2 当n=20时:同样的,将上面代码中的“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。
运行程序,我们可以得到n=20时的三次样条,其结果为S20(x) =0.16461*x^3+0.59746*x^2+0.77505*x+0.38066 [-1,-0.9]0.27191*x^3+0.88717*x^2+1.0358*x+0.45888 [-0.9,-0.8]0.46379*x^3+1.3477*x^2+1.4042*x+0.55712 [-0.8,-0.7]0.86962*x^3+2.1999*x^2+2.0008*x+0.69632 [-0.7,-0.6]1.5804*x^3+3.4792*x^2+2.7683*x+0.84984 [-0.6,-0.5]3.5442*x^3+6.425*x^2+4.2412*x+1.0953 [-0.5,-0.4]5.7284*x^3+9.046*x^2+5.2896*x+1.2351 [-0.4,-0.3]12.534*x^3+15.171*x^2+7.1273*x+1.4189 [-0.3,-0.2]-32.789*x^3-12.023*x^2+1.6884*x+1.0563 [-0.2,-0.1]-89.07*x^3-28.907*x^2+5.1067e-17*x+1.0 [-0.1,0]89.07*x^3-28.907*x^2-3.9148e-17*x+1.0 [0,0.1]32.789*x^3-12.023*x^2-1.6884*x+1.0563 [0.1,0.2]-12.534*x^3+15.171*x^2-7.1273*x+1.4189 [0.2,0.3]-5.7284*x^3+9.046*x^2-5.2896*x+1.2351 [0.3,0.4]-3.5442*x^3+6.425*x^2-4.2412*x+1.0953 [0.4,0.5]-1.5804*x^3+3.4792*x^2-2.7683*x+0.84984 [0.5,0.6]-0.86962*x^3+2.1999*x^2-2.0008*x+0.69632 [0.6,0.7]-0.46379*x^3+1.3477*x^2-1.4042*x+0.55712 [0.7,0.8]-0.27191*x^3+0.88717*x^2-1.0358*x+0.45888 [0.8,0.9]-0.16461*x^3+0.59746*x^2-0.77505*x+0.38066 [0.9,1.0] 并且这里也能得到该三次样条的在[-1,1]上的图形,并和原函数进行对比(见Fig.4)。
Fig.4三次样条(n=20)函数和原函数图形当分段数达到20时,三次样条的图像与原函数基本重合,表明随着分段数的增加,三次样条的误差也不断减少。