1基因与基因组学

合集下载

2014-基因组学——最终版

2014-基因组学——最终版

基因组学题库一基因组学介绍1 基因组与基因组学基因组是指生物的整套染色体所含有的全部DNA序列,是生物体所有遗传信息的总和。

基因组学(Genomics)是以生物信息学分析为手段研究基因组的组成、结构、表达调控机制和进化规律的一门学科,研究对象是基因组结构特征、变演规律和生物学意义。

2 C质与C质悖论C值(C value)通常是指某一生物单倍体基因组DNA的总量。

C值悖论(C Value Paradox):生物的复杂性与基因组的大小并不完全成比例增加。

3 人类基因组计划及其8个目标人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。

美、英、法、德、日和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。

按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。

其8个目标:1)人类DNA序列(Human DNA sequence);2)开发测序技术(Develop sequencing technology);3)识别人类基因组序列变异(Identify human genome sequence variation);4)功能基因组学技术(Functional genomics technology);5)比较基因组学(Comparative genomics);6)伦理、法律、社会问题(ELSI: ethical, legal, and social issues);7)生物信息学和系统生物学(Bioinformatics and computational biology);8)Training and manpower。

4 什么是宏基因组(metagenomics)?研究一类在特殊的或极端的环境下共栖生长微生物的混合基因。

生境中全部微小生物遗传物质的总和。

它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。

基因组与基因组学

基因组与基因组学

人体细胞的核型(Spectral Karyotype)
18
一些模式生物的基因组大小
基因组大小/bp T4噬菌体 2.0×10 5 大肠杆菌(Escherichia coli ) 4.2×10 6 酵母(Sccharomyces cerevisiae) 1.5×10 7 拟南芥(Arabidopsis thaliana ) 1.0×10 8 秀丽小杆线虫(Caenorhbditis elagans) 1.0×10 8 果蝇(Drosophila melanogaster) 1.65×10 8 水稻(Oryza sativa ) 3.89×10 8 小白鼠(Mus musculus ) 3.0×10 9 人类(Homo sapiens) 3.3×10 9 玉米(Zea mays ) 5.4×10 9 普通小麦(Triticum aestivum) 1.6×10 10
其DNA是与蛋白质结合,不形成染色体结构, 只是习惯上将之称为染色体。细菌染色体DNA在胞 内形成一个致密区域,即类核(nucleoid),类 核无核膜将之与胞浆分开。
2.功能相关的几个结构基因往往串联排列在一起 组成操纵子结构,受上游共同的调控区控制。 3.原核生物基因组中基因密度非常高,结构基因是 连续的多为单一拷贝。
3、编码序列只占基因组总DNA量的5%以下,非
编码区占95%以上,大量为重复序列。
49
重复序列
1.高度重复序列:重复频率 >105,通常这些序列的 长度为6-200bp,如卫星DNA; 2.中度重复序列:重复频率 101-105,重复单位平均 长度约300bp占基因总量的35%。(rRNA gene, tRNA gene, 组蛋白gene );
52
二、基因组学概念及范畴

基因组学:基因与基因组的研究

基因组学:基因与基因组的研究

基因编辑技术的伦理与法律问题
基因编辑技术如CRISPR-Cas9等为人类提供了重新编程生命的能力,具有巨大的潜力。然而,这种技 术的伦理和法律问题也引起了广泛的关注和讨论。例如,是否可以对人类胚胎进行基因编辑、是否可 以使用基因编辑技术创造“设计婴儿”等。
在伦理方面,人们担心基因编辑可能会破坏自然的生命过程,导致不公平的遗传优势,甚至可能引发 新的社会不平等问题。因此,需要建立严格的伦理准则和法律监管框架,以确保基因编辑技术的合理 和安全使用。
基因组学在医学领域的应用广泛,如疾病诊断、药物研发和 个性化医疗等方面,有助于提高疾病的预防、诊断和治疗水 平。
生物产业发展
基因组学的研究对于推动生物产业的发展也具有重要意义, 如基因治疗、生物制药和基因编辑等领域。
基因组学的研究历史与发展
研究历史
基因组学的研究可以追溯到20世纪初,随着DNA双螺旋结构的发现和分子遗传学的发展,基因 组学逐渐成为一门独立的学科。
04
基因组学在生物医学中的应 用
疾病诊断与预防
疾病诊断
基因组学技术可以帮助医生通过检测 基因变异来确定疾病的原因,为疾病 的早期诊断提供依据。
预防策略
基因组学研究有助于发现与疾病易感 性相关的基因变异,为制定针对性的 预防策略提供科学依据。
药物研发与治疗
药物靶点
基因组学有助于发现新的药物靶点, 提高药物研发的效率和成功率。
研究现状
目前,全球已经完成了多个人类和模式生物的基因组测序,基因组学的研究重点已经从基因组的 测序转向了基因的表达、调控和进化等领域。
发展趋势
未来,基因组学将继续朝着高通量、高精度和智能化等方向发展,同时与其他学科的交叉融合也 将更加紧密,如生物信息学、合成生物学和系统生物学等。

02医学遗传学:第一章 人类基因和基因组

02医学遗传学:第一章 人类基因和基因组

表观遗传学(epigenetics) • 表观遗传:基因的核苷酸序列不发生突
变,由基因的修饰导致基因的活性改变, 使基因决定的表型出现变化,且可传递 少数世代的遗传现象。
• 原因:DNA甲基化、组蛋白的乙酰化
第二节 基因的化学本质
基因的化学本质:
大部分生物:DNA(脱氧核酸) 少数病毒:RNA(核糖核酸)
侧翼序列
侧翼序列
侧翼序列(flanking sequence) 作用:调控序列、保持基因完整性必需。
侧翼序列
侧翼序列
二、基因组的组成
(一)单拷贝序列
定义:又称非重复序列;在基因组中仅有 单一拷贝或少数拷贝。
长度:800bp~1000bp之间
编码:各种蛋白质和酶——结构基因 在基因组中的比例:45%
第三节 人类基因和基因组的 结构特点
基因组(genome):一个物种的单倍体染 色体数目及所有包含的全部遗传物质 人类基因组:人体的所有遗传信息的总和; 人类基因组=核基因组(nuclear genome)
+
线粒体基因组(mitochondrial genome)
注:如无特别注明,人类基因组通常指核基因组
例如:烟草花叶病毒(TMV)
一、DNA分子组成
• 基本单位:脱氧核苷酸
腺嘌呤(A) P
5’
O 4’
碱基
1’ 2’
鸟嘌呤(G)
胞嘧啶(C)
胸腺嘧啶(T)
脱氧核糖
3’
图:脱氧核苷酸
• 单链连接方式:3’, 5’-磷酸二酯键
P
4’ 5’
O
1’
T
5’
3’
3’
2’
3’, 5’-磷酸二酯键

基因与基因组知识点资料整理总结

基因与基因组知识点资料整理总结

第一章基因与基因组1.基因的概念:基因是指合成有功能的蛋白质多肽链或RNA所必需的全部核酸序列(通常指DNA)。

2.基因的结构:①真核生物的结构基因不是连续编码的,而是由编码序列和非编码序列两部分构成,二者相互间隔排列,因此这种基因又称作割裂基因(split gene).②人类编码基因主要由外显子、内含子和侧翼序列组成.③能转录、并存在于成熟RNA中的序列称为外显子(exon)④能转录、但不存在于成熟RNA中的序列称为内含子(intron)(注:GT-AG法则:每个内含子的5’端开始的两个核苷酸都是GT,3’端末尾的两个核苷酸都是AG。

)⑤不同数目的外显子和内含子组成的各个基因大小各不相同;无内含子的基因一般较小,有较大内含子的基因一般较大。

⑥每个结构基因的第一个外显子和最后一个外显子外侧,即基因的5′端和3′端都有一段不被转录的DNA序列,对基因的转录表达及表达水平具有重要的调控作用。

包括:启动子、增强子和终止子,属顺式调控因子,称为调控序列。

(启动子 (Promoter),通常位于基因转录起点上游的100bp范围内,是RNA聚合酶的结合部位,促进转录过程,包括TATA框、Hogness框(TATA box, Hogness box)、CAAT框(CAAT box)和GC框(GC box)。

终止子 (Terminator),一段回文序列以及特定的序列,例如:5’-AATAAA-3’是RNA停止工作的信号。

增强子(Enhancer),启动子上游或下游的一段DNA序列,无明显方向性,但具有组织特异性,可增强启动子转录的效率)3.基因家族、基因簇和假基因①基因家族 (gene family):基因组中来源相同、结构相似、功能相关且常成簇存在的一组基因。

②基因簇:家族成员成簇排列在同一条染色体上,形成一个基因簇;不同成员成簇地分布在几条不同的染色体上,形成几个基因簇。

基因簇成员可能同时表达,也可能在不同发育阶段或不同部位表达。

表观遗传学&基因与基因组学

表观遗传学&基因与基因组学

第十三章 表观遗传学第一节 概 述基因的表达相同的基因型不同的表型:一.表观遗传学(epigenetic)DNA的序列不发生变化、基因表达改变、并且这种改变可稳定遗传。

二.表观遗传学研究的内容:1.基因选择性转录、表达的调控。

2.基因转录后调控。

(表观遗传通常被定义为DNA的序列不发生变化但是基因表达却发生了可遗传的改变,也就是说基因型未变化而表型却发生了改变,这种变化是细胞内除了遗传信息以外的其他可遗传物质的改变,并且这种改变在发育和细胞增殖的过程中能稳定的传递下去。

表观遗传学研究内容具体来说主要包括DNA甲基化表观遗传、染色质表观遗传、表观遗传基因表达调控、表观遗传基因沉默、细菌的限制性基因修饰等。

从更加广泛的意义上来说,DNA甲基化、组蛋白甲基化和乙酰化、基因沉默、基因组印记、染色质重塑、RNA剪接、RNA编辑、RNA干扰、x染色体失活等等都可以归入表观遗传学的范畴,而其中任何一个过程的异常都将影响基因结构以及基因表达,导致某些复杂综合症、多因素疾病或癌症。

) 三.表观遗传修饰从多个水平上调控基因表达:1.RNA水平:非编码RNA可通过某些机制实现对基因转录以及转录后的调控,例如microRNA、RNA干扰等2.蛋白质水平:通过对蛋白质的修饰或改变其构象实现对基因表达的调控,例如组蛋白修饰3.染色质水平:通过染色质位置、结构的变化实现对基因表达的调控,例如染色质重塑以上几个水平之间相互关联,任何一方面的异常都将影响染色质结构和基因表达。

四.表观遗传学的研究意义:1.表观遗传学补充了“中心法则”所忽略的两个问题,即哪些因素决定了基因的正常转录和翻译以及核酸并不是存储遗传信息的唯一载体。

2.表观遗传信息可以通过控制基因的表达时间、空间和方式来调控各种生理反应。

所以许多用DNA序列不能解释的现象都能够找到答案。

3.与DNA序列的改变不同,许多表观遗传的改变是可逆的,这使表观遗传疾病的治愈成为可能。

第七章 基因与基因组学

第七章 基因与基因组学
•2001年8月26日,人类基因组 “中国卷”的绘制工作
宣告完成。六国联合体:2001年2 月15日《Nature》 Celera公司:2001年2 月16日《Science》
•2003年4月14日,中、美、日、德、法、英6国科学家
宣布人类基因组序列图绘制成功,人类基因组计划的 所有目标全部实现(弗朗西斯·柯林斯)。温家宝等六 国首脑联名祝贺(标志着后基因组时代来临) 。
(三)第三代基因工程技术——途径工程
第二节 动物基因组学
一、
人类基因组计划(HGP)20世纪人类科技发展史上的三大创举 90年代人类基因组计划 60年代人类首次登上月球
40年代第一颗原子弹爆炸
•1986年,杜尔贝科在《Science》短文《癌症研究
的转折点--人类基因组测序》 。
•1990年,人类基因组计划正式启动,沃森担任
(5)猪的EST专门数据库: /
(6)小鼠单倍型图谱:
/haplotype_map.html (7)QTL在线分析系统:
/ (8)免费医学杂志(含遗传学):
要意义,中国基因组研究中心的测序 能力已跃居世界6大测序大国的16个 测序中心的第7位。
• 以人类基因组和拟南芥基因组为例说明你对生 物基因组全序测定工作的科学意义与社会意义 的认识(8分)
中国科学院2002年 硕士学位研究生入学分子遗传学试题
二、 动物基因组计划
2005年“中-丹家猪基因组计划” 1999年线虫基因组测序 2002年小鼠基因组测序 2005年家蚕基因组测序 2004年斑马鱼基因组测序 2005年绵羊基因组测序 2000年果蝇基因组测序
▪定向测序(Derected or ordered approaches)
▪ 克隆排序(Generate ordered clones ▪ Minimal redundance sequencing) ▪ 引物步移(Primer walking) ▪ 转座子插入(Transposon insertion) ▪ 限制性酶切片段亚克隆(Restriction

2第二章 基因、基因组与基因组学

2第二章  基因、基因组与基因组学
(侧翼序列),参与基因表达调控。
2019/9/26
8
1、结构基因
① 原核生物的结构基因是连续的,RNA合成后不需 要剪接加工。
z
y
非结构基因 a
非结构基因
结构基因
2019/9/26
9
② 真核生物结构基因 由外显子(编码序列)和内
含子(非编码序列)两部分组成,编码序列不连续, 称为断裂基因(split gene / interrupted gene)。
医学分子生物学
第二章 基因、基因组与基因组学
南华大学生物化学与分子生物学教研室
目录 CONTENT
• 基因的结构与功能 • 基因组的结构和功能 • 基因组学 • 基因组复制 • 本章小结
PPAARRTT1 1
第一节
基因的结构与功能
基因的生物学概念 基因的现代概念
2019/9/26
3
一、基因的生物学概念
1909, W. L. Johannsen 将遗传因子改称为基因(gene),提出 基因型和表型的概念
1910,T. H. Morgan 证实基因在染色体上
2019/9/26
4
1944, M. McCarty & O. Avery 肺炎球菌转化实验
1952,A. Hershey & . Chase T4噬菌体感染细菌实验
25
3. 结构基因没有内含子,多为单拷贝,结构基 因无重叠现象;
4. 基因密度非常高,基因组中编码区大于非编 码区;
5. 重复序列很少,重复片段为转座子; 6. 有编码同工酶的等基因(isogene);
2019/9/26
26
7、存在可移动的DNA序列
转 座 因 子 ( transposable element ) : 能 够 在 一 个 DNA分子内部或两个DNA分子之间移动的DNA片段。

基因与基因组名词解释

基因与基因组名词解释

基因与基因组名词解释
基因是生物体遗传信息的基本单位,它是DNA分子上的一段特
定序列,携带着编码特定蛋白质或RNA分子的遗传信息。

基因决定
了生物体的遗传特征和功能。

基因组是指一个生物体或一个物种所有基因的集合。

它包含了
该生物体或物种的全部遗传信息。

基因组可以分为核基因组和线粒
体基因组两个部分。

核基因组是指生物体细胞核内的DNA分子构成的基因组。

它包
含了大部分基因,编码了控制生物体发育、生长、代谢和功能的蛋
白质。

线粒体基因组是指线粒体内的DNA分子构成的基因组。

线粒体
是细胞内的一种细胞器,负责产生细胞所需的能量。

线粒体基因组
编码了一些与能量产生相关的蛋白质。

基因组的大小和组成可以因生物体的类型和复杂程度而异。

例如,人类基因组大约由30亿个碱基对组成,包含了大约2万个基因。

不同生物体的基因组大小和基因数量也有很大差异。

基因组研究对于了解生物体的遗传特征、进化过程以及与疾病
的关联具有重要意义。

通过对基因组的分析,科学家可以揭示基因
之间的相互作用关系,进而深入理解生物体的生物学功能和复杂性。

基因组学的发展也为基因治疗、基因编辑等领域的研究提供了基础。

基因组与基因组学

基因组与基因组学

基因组与基因组学基因组及其研究是生物学领域中一个重要的课题,通过对基因组的分析和研究,科学家们可以更好地理解生物的遗传性质和进化过程。

基因组学是研究基因组的学科,涉及到DNA序列、基因的功能以及基因在生物体内的相互作用等方面。

本文将介绍基因组和基因组学的基本概念、意义以及研究方法。

一、基因组的概念和组成基因组指的是一个生物体的全部遗传信息的总和,是由DNA分子组成的。

DNA是脱氧核糖核酸的简称,是生物体内存储遗传信息的重要分子。

DNA由核苷酸序列组成,分为腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)四种碱基。

基因组中的基因是DNA分子上具有特定功能的片段,可以编码蛋白质,控制生物体的形态和机能。

二、基因组学的意义1. 了解生物的遗传性质:通过对基因组的研究,我们可以了解不同生物之间的遗传差异,揭示基因对生物性状和行为的影响。

2. 探索进化的历程:基因组学使得研究者可以比较不同物种的基因组,从而推断它们的共同祖先以及进化过程中的遗传变化。

3. 解析复杂疾病的机制:基因组学的发展为研究复杂疾病的发病机制提供了新的方法,帮助科学家们找到与疾病发生相关的基因变异。

三、基因组学的研究方法1. 基因测序技术:随着高通量测序技术的发展,基因组学研究已经进入了全基因组测序时代。

通过测序技术,我们可以快速获得生物体基因组的序列信息,并进行进一步的分析和研究。

2. 基因组比较分析:通过比较不同生物基因组的差异,可以揭示基因间的共享和特异性,进而推断基因功能的演化以及物种间的进化关系。

3. 基因组功能注释:基因组学的一个重要任务是解析基因的功能。

通过生物信息学方法,科学家们可以预测基因的编码蛋白质功能,找到基因与疾病之间的关联。

基因组学作为一个新兴学科,为我们揭示了生物界的奥秘,对于生命科学的研究具有重要的意义。

通过对基因组的研究,我们可以在生物进化、疾病研究以及农作物改良等方面取得巨大的突破。

随着技术的不断进步,基因组学必将在未来发展中发挥更为重要的作用,并为我们带来更多的科学发现和进步。

1基因与基因组学

1基因与基因组学

mRNA 前体
5′--------AAUAAA ---------- GU------- 3′
含有II类启特动异子因的子基因,基因末端保
守5′的----A--A--TAAAAUAA顺AA序-及----下---游-- GGUT或----T--富- 含3′ 区,
被mR多N聚A 3腺′端苷加酸约化2特0P0个o异lyA因(A。子)聚识合别酶,在
mRNA 5′--------AAUAAA ------AAAAAAAA 3′
多聚腺苷酸化
25
真核生物基因的结构
调控序列
结构基因
调控序列
Enhancer
promoter
CAAT box TATA box UTRexon
exon
Poly(A) 加尾信号
UTR exon
5′
response
element
20
(1).启动子和上游启动子元件(II类)
➢ TATA盒(TATA Box):
位于-25~-30bp,TATAAAA/TATATAT 与TFII(RNA聚合酶复合物)结合,启动 基因转录。
-30
-25
+1
21
➢ CAAT盒(CAAT Box)
位于-70~-80bp,GG C/ T CAATCT, 与CTF结合,决定启动子转录效率。
随着遗传学的发展,人类对于基因的认识逐步深入,基因 概念也随之发展。基因概念发展经过几个时期。
(1)遗传“因子” 基因的最初概念是来自孟德尔的遗传“因子”,认为生物
性状的遗传是由遗传因子所控制的,性状本身是不能遗传 的,控制性状的遗传因子才是遗传的。 1909年,丹麦学者W.L.Johannsen提出了“基因”(gene) 一词,代替了孟德尔的遗传因子,并由此形成了“颗粒遗 传”学说,认为在杂种中等位基因不融合,各自保持其独 立性,这也是孟德尔遗传规律的核心。

基因与基因组学(答案)

基因与基因组学(答案)

第四章基因与基因组学(答案)一、选择题(一)单项选择题1.关于DNA分子复制过程的特点,下列哪项是错误的A.亲代DNA分子双股链拆开,形成两条模板链B.新合成的子链和模板链的碱基互补配对C.复制后新形成的两条子代DNA分子的碱基顺序与亲代的DNA分子完全相同D. 以ATP、UTP、CTP、GTP和TDP为合成原料E.半不连续复制*2.建立DNA双螺旋结构模型的是:and Crick and Schwann*3.下列哪个不属于基因的功能A.携带遗传信息B.传递遗传信息C.决定性状D.自我复制E.基因突变分子中核苷酸顺序的变化可构成突变,突变的机制一般不包括:A.颠换B.内复制C.转换D.碱基缺失或插入E.不等交换5.下列哪一种结构与割(断)裂基因的组成和功能的关系最小A.外显子B.内含子框 D.冈崎片段 E.倒位重复顺序*6.在一段DNA片段中发生何种变动,可引起移码突变A.碱基的转换B.碱基的颠换C.不等交换D.一个碱基对的插入或缺失个或3的倍数的碱基对插入或缺失7.从转录起始点到转录终止点之间的DNA片段称为一个:A.基因B.转录单位C.原初转录本D.核内异质RNAE.操纵子8.在DNA复制过程中所需要的引物是;9.下列哪一项不是DNA自我复制所必需的条件A.解旋酶多聚酶引物D. ATP、GTP、CTP和TTP及能量E.限制性内切酶10.引起DNA形成胸腺嘧啶二聚体的因素是A.羟胺B.亚硝酸溴尿嘧啶 D.吖啶类 E.紫外线11.引起DNA发生移码突变的因素是A.焦宁类B.羟胺C.甲醛D.亚硝酸溴尿嘧啶12.引起DNA分子断裂而导致DNA片段重排的因素A.紫外线B.电离辐射C.焦宁类D.亚硝酸E.甲醛13.可以引起DNA上核苷酸烷化并导致复制时错误配对的因素A.紫外线B.电离辐射C.焦宁类D.亚硝酸E.甲醛14.诱导DNA分子中核苷酸脱氨基的因素A.紫外线B.电离辐射C.焦宁类D.亚硝酸E.甲醛15.由脱氧三核苷酸串联重复扩增而引起疾病的突变为A.移码突变B.动态突变C.片段突变D.转换E.颠换16.在突变点后所有密码子发生移位的突变为A.移码突变B.动态突变C.片段突变D.转换E.颠换*17.异类碱基之间发生替换的突变为A.移码突变B.动态突变C.片段突变D.转换E.颠换18.染色体结构畸变属于A.移码突变B.动态突变C.片段突变D.转换E.颠换*19.由于突变使编码密码子形成终止密码,此突变为A.错义突变B.无义突变C.终止密码突变D.移码突变E.同义突变*20.不改变氨基酸编码的基因突变为A.同义突变B.错义突变C.无义突变D.终止密码突变E.移码突变21.可以通过分子构象改变而导致与不同碱基配对的化学物质为A.羟胺B.亚硝酸C.烷化剂溴尿嘧啶 E.焦宁类*22.属于转换的碱基替换为和C 和T 和C 和T 和C*23.属于颠换的碱基替换为和T 和G 和C 和U 和U(二)多项选择题*和RNA分子的主要区别有;A.戊糖结构上的差异B.一种嘌岭的不同C.嘧啶的不同D.在细胞内存在的部位不同E.功能不同2.乳糖操纵子包括:A.调节基因B.操纵基因(座位)C.启动子D.结构基因E.阻遏基因3.真核细胞基因调控包括下列哪些水平A.翻译水平的调控B. 翻译后水平的调控C.水平的调控D. 转录后水平的调控E. 转录前水平的调控*要经过下列哪些过程才能形成成熟的mRNAA.转录B.剪接C.翻译D.戴帽E.加尾*5.按照基因表达产物的类别,可将基因分为:A.蛋白质基因基因 C.结构基因 D.割裂基因 E.调节基因*6.基因突变的特点A.不可逆性B.多向性C.可重复性D.有害性E.稀有性7.切除修复需要的酶有聚合酶聚合酶 C.核酸内切酶 D.连接酶8.片段突变包括A.重复B.缺失C.碱基替换D.重组E.重排9.属于动态突变的疾病有A.脆性X综合征B.镰状细胞贫血C.半乳糖血症舞蹈症 E.β地中海贫血10.属于静态突变的疾病有A.脆性X综合征B.镰状细胞贫血C.半乳糖血症舞蹈症 E.β地中海贫血二、名词解释* 基因基因组gene 断裂基因转录expression 基因表达*突变mutation 动态突变shift mutation 移码突变三、问答1.何为基因突变它可分为哪些类型基因突变有哪些后果2.简述DNA损伤的修复机制。

分子生物学:基因、基因组与基因组学

分子生物学:基因、基因组与基因组学

mRNA
cDNA 酶切
(不能被酶切)
DNA 酶切
DNA中有的序列在mRNA中丢失, 且丢失部分不响基因 功能, 酶切位点在内含子中。
(exon-intron-exon)n structure of various genes
histone
total = 400 bp; exon = 400 bp
操纵子(operon) 是指数个功能相关的结构基因串联在一起,构成信息区, 连同其上游的调控区(包括启动和操纵区)及其下游的转录终止信号构成的 基因表达单位。 4.结构基因无重叠现象,基因组中任何一段DNA不会用于编码2种蛋白质。 5.基因序列是连续的,无内含子结构。
6.编码区和非编码区(主要是调控序列)在基因组中约各占50%。(5%, 95%)
The size of the human genome is ~ 3 X 109 bp; almost all of its complexity is in single-copy DNA.
bony afimshphibians
reptiles
birds
The human genome is thought
2.4.1 原核生物基因组结构与功能的特点
1.基因组通常仅由一条环状双链DNA分子组成。 其DNA是与蛋白质结合,但并不形成染色体结构,只是习惯上将之称为染色 体。细菌染色体DNA在胞内形成一个致密区域,即类核(nucleoid),类核 无核膜将之与胞浆分开。 2.基因组中只有1个复制起点。 3.具有操纵子结构。
7.基因组中的重复序列很少。编码蛋白质结构基因多为单拷贝,但编码 rRNA的基因往往是多拷贝的,这有利于核糖体的快速组装。(15AA/秒, 2AA/秒)

分子生物学课件 第3章 基因与基因组

分子生物学课件 第3章 基因与基因组
最初基因组被定义为一个单倍体细胞中的全套染色体,现 代分子生物学和遗传学则将基因组定义为一个生物体中的 所有遗传信息,由DNA或者RNA编码,包括所有的基因和 非编码序列。
实际应用中“基因组”这个词既可以特指储存在细胞核中 的整套DNA(即核基因组),也可以指储存在细胞器中的 整套DNA(即线粒体基因组或叶绿体基因组),还可以指 一些非染色体的遗传元件,如病毒基因组、质粒基因组和 转座元件等。
不同基因家族各成员之间的序列 相似度也不同:
序列高度相似:经典的基因家族,如rRNA基因家族和组蛋 白基因家族。 保守性较低,但是编码产物具有大段的高度保守的氨基酸 序列。
序列保守性很低,编码产物之间也只有很短的保守氨基酸 序列,但通常由于具有保守的结构和功能区域,因而编码产 物具有相似的功能。
基因家族的成员在染色体上 的分布形式不同:
成簇存在的基因家族(clustered gene family)或称基因簇 (gene cluster),如人类类α链基因簇和类β链基因簇。 散布的基因家族(interspersed gene family),如肌动蛋白 基因家族和微管蛋白基因家族。
基因间隔区较短且内含子较少,基因排列紧密。
3.2.7 沉默基因
沉默基因( Silent Gene)也叫隐蔽基因(Cryptic gene), 是处于不表达状态的基因。它可能是假基因,也可能是被关闭的 基因。这些基因以隐性的方式埋藏在染色体中,但遇到特殊因子 的刺激,有可能解除关闭变成显性基因。
3.2.8 RNA基因
tRNA、rRNA; 核仁小分子RNA(small nucleolar RNA, snoRNA) 微小分子RNA(microRNA, miRNA); 小分子干扰RNA(small interfering RNA, siRNA); 核内小分子RNA(small nuclear RNA, snRNA);

第1章 基因与基因组

第1章 基因与基因组

结构基因
I
P
O
Z
Y
Y: 透酶
A
Z: β-半乳糖苷酶
阻遏基因
CAP结合位点
操纵序列 启动序列
A:乙酰基转移酶
CAP : 分解(代谢)物基因激活蛋白
二、基因的结构与功能
断裂基因(真核生物):结构基因由编码序列和
非编码序列两部分组成,编码序列在DNA中是不 连续的,被非编码序列隔开
真核基因结构
真核基因结构不连续,为断裂基因(split gene)。

基因的5端称之为上游,3端称为下游
基因序列中开始RNA链合成的第一个核苷酸所
对应的碱基记为+1,此碱基上游的序列记为负
数,下游的序列记为正数。
2、调控序列:
位于结构基因两侧 不被转录 调控结构基因表达
基因的调控区(顺式作用元件)
位于基因转录区前后,对基因表达起调控作用的区 域,因其是紧邻的DNA序列,又称旁侧序列。
功能:
参与复制水平的调节
存在于DNA复制起点区的附近,是一些蛋白质(包 括酶)的结合位点。
参与基因表达的调控
可以转录到核内不均一RNA分子中,有些反向重复 序列可以形成发夹结构,有助于稳定RNA分子。
参与染色体配对
如卫星DNA成簇样分布在染色体着丝粒附近,可能 与染色体减数分裂时染色体配对有关。
Aluห้องสมุดไป่ตู้族
重复达30~50万次,每个成员的长度约300 bp。 每个单位长度中一个限制性内切酶Alu的切点 (AG↓CT),将其切成长130bp和170bp的两段。

KpnI家族

仅次于Alu家族的第二大家族, 重复序列中含有限制性内切酶KpnⅠ的位点 呈散在分布,拷贝数约为3000~4800个

人类基因组《普通生物学》

人类基因组《普通生物学》

人类基因组一、人类基因组及其研究1.基因组及基因组学(1)基因组基因组即染色体组,是指一个单倍体细胞核中、一个细胞器中或一个病毒毒粒中所含的全部DNA(或RNA)分子的总称,可分为核基因组、线粒体基因组、叶绿体基因组及病毒基因组。

(2)基因组学基因组学是研究生物体的基因组结构、组成和功能的科学。

2.人类基因组计划(HGP)人类基因组计划的主要内容包括:(1)绘制人类基因连锁图将大家系的系谱分析结合遗传标记等不同方法来确定人类的基因在染色体上所处的位置,完成人类22条常染色体以及X和Y染色体全套基因的遗传图谱。

(2)绘制物理图物理图是指以已知核苷酸序列的DNA片段为“界标”,以碱基对作为图距单位,标明其在DNA分子或染色体上所处位置的图谱。

(3)人类基因组测序测定人类全基因组DNA分子的核苷酸排列的次序。

(4)其他物种基因组分析HGP还包括对大肠杆菌和其他细菌、酵母、线虫、拟南芥、黑腹果蝇、小鼠、水稻等物种的基因组的比较分析。

3.基因组研究成果人类基因组的“工作草图”已于2000年绘制完成。

4.人类基因组各组分的基本特征(1)基因人类基因中,编码蛋白质的信息存在于一系列的外显子中,外显子由非编码的内含子隔开。

(2)基因外DNA基因外DNA的组成序列不是基因的一部分,也不是基因的相关序列,更非假基因和基因断片,大多数基因外DNA序列、是以单一或低拷贝数的形式存在的,其余是中度或高度重复序列。

①单一序列是指基因组里只出现一次的DNA序列。

②重复序列是指在基因组中重复出现的DNA序列。

可根据重复序列在基因组中的组织形式,分为分散重复序列和串联重复序列两类。

a.分散重复序列一般属于中度重复序列,以散在的方式分布于基因组中。

依重复单元的长度又可分为短散在重复序列(如Alu家族)和长散在重复序列。

b.串联重复序列人类基因组中首尾相连成长串联状的重复序列,根据重复单元的大小或重复序列簇的长度,分为卫星DNA、小卫星DNA和微卫星DNA。

基因及基因组学

基因及基因组学
第十节 人类基因组及基因组学
一、基因组学概况 二、人类基因组计划 三、遗传的分子基础 四、基因组序列复杂性 五、基因与基因家族 六、人类基因组
1. 掌握基因组及基因组 学的基本概念;
2. 掌握基因组学分支学 科的定义以及主要研 究内容;
一、基因组学概况
(一)基因组学基本概念
(二)基因组学分支 (三)基因组学的意义
癌肿基因 组解剖学 计划帮助 科学家们 更好地了 解癌生物 学: 1. 同一种 组织或器 官有非常 相似的基 因表达谱。
2. 有 些基因 只在某 一特定 的组织 中表达。
3. 在癌 细胞内, 一些基 因被破 坏或表 达被关 闭,或 新的基 因被表 达。
4. 在 细胞癌 变过程 中,基 因表达 的改变 是一个 渐变的 过程。
•癌肿基 因组解剖 学计划通 过测量 mRNA水 平来比较 正常组织 与癌变组 织的表达 谱。 •第一步 骤 分离 mRNA。
第二步骤 将mRNA 转变为 cDNA。
第三步骤 创建 cDNA文 库。 科学家们 将每一个 cDNA都 装入一个 质粒,并 导入一个 E.coli 细 胞内。
第四步骤 分离单个 cDNA。
通过这 种方法, 可以检 测到哪 些基因 在患者 前列腺 细胞内 得到表 达。因 此可作 出快速 准确的 诊断。
科学家们通 过基因芯片 的研究发现, 表面看起来 是一种类型 的淋巴瘤在 分子水平实 际上可分为 两种亚型。 传统的疗法 只对一种亚 型有效,而 对另一种亚 型则效果有 限。
癌肿基因组 解剖学计划 帮助全世界 的科学家们 更好地发现 新的基因以 及进行基因 分析。科学 上的进展又 可帮助临床 学家开发疾 病诊断及治 疗的新方法。 将更进一步 地造福人类。

植物的基因组与基因组学

植物的基因组与基因组学
蛋白质组学分析
利用蛋白质组学技术,分析逆境胁迫下植物蛋白 质的变化,发现与抗逆性相关的蛋白质。
3
关联分析
通过全基因组关联分析(GWAS)等方法,挖掘 与抗逆性相关的基因位点和等位变异。
逆境胁迫下植物基因组响应机制
基因表达调控
逆境胁迫下,植物通过 调控基因表达来适应环 境变化,包括转录因子 、miRNA等调控元件的 参与。
比较基因组学方法
全基因组比对
01
比较不同物种或品种的基因组序列,揭示基因组结构、功能和
演化等方面的差异。
基因组共线性分析
02
识别不同物种间基因组的共线性区域,研究物种间的亲缘关系
和基因渗透等现象。
基因组重排分析
03
研究基因组在演化过程中的重排事件,包括倒位、易位、复制
和删除等。
功能基因组学技术
基因表达分析
全基因组选择育种策略
全基因组关联分析(GWAS)
利用全基因组关联分析技术挖掘与目标性状相关的基因位点,为育种提供新的思路和方 法。
基因型芯片技术
利用基因型芯片技术对大量样本进行高通量基因型鉴定,为全基因组选择育种提供数据 支持。
创制高产、优质、多抗新品种
通过全基因组选择育种策略创制具有高产、优质、多抗等优良性状的新品种,满足农业 生产的需求。
转录组学研究方法
包括基因表达谱分析、染色质免疫共沉淀和 高通量测序等,这些方法为转录调控机制研 究提供了有力手段。
表观遗传学在植物基因组中作用
表观遗传学概念
表观遗传学是指研究基因表达的可遗传变化而不涉及DNA序列改变的学科领域,包括 DNA甲基化、组蛋白修饰和染色质重塑等。
表观遗传修饰对植物生长发育的影响
05

基因工程与基因组学

基因工程与基因组学

基因工程的定义和作用
1 定义
基因工程是指通过改变生物体的遗传物质, 创造新的生物特性或改变已有特于医学、农业和工业等领 域,用于治疗疾病、提高农作物产量和生产 特定化合物。
基因组学的定义和作用
1 定义
基因组学是研究整个生物体的基因组,包括基因组的结构、功能和相互关系。
2 作用
基因组学可以帮助我们理解生物体的遗传信息,预测疾病风险,开发新的药物和改善农 作物。
基因工程与基因组学的关系
基因工程和基因组学紧密相连,基因组学提供了基因工程所需的遗传信息,而基因工程则利用基因组学的信息 来创造新的生物特性。
基因工程的应用领域
医学
基因工程可以用于治疗遗传性疾 病,开发新药和生产生物医药产 品。
农业
基因工程可以提高农作物的抗病 性、产量和营养价值。
工业
基因工程可以用于生产各种化合 物、酶和其他工业产品。
基因组学的应用领域
人类基因组学
研究人类基因组的结构和功能, 有助于了解人类的遗传信息和 疾病风险。
微生物基因组学
研究微生物的基因组,有助于 了解微生物的生态学、代谢和 作用。
植物基因组学
研究植物的基因组,有助于了 解植物的生长、适应性和抗病 性。
未来发展和挑战
1
发展
基因工程和基因组学将继续发展,带来
道德和法律问题
2
更多创新和应用领域的拓展。
伦理和道德问题将继续围绕基因工程和
基因组学展开讨论,并推动相关法律的 制定。
3
安全和风险
基因工程和基因组学的应用需要对安全 和风险进行评估和管理,以确保人类和 环境的安全。
基因工程与基因组学
基因工程是通过改变或操作生物的遗传信息来创造新的生物特性的技术,而 基因组学研究整个生物体的基因组。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因的连锁和交换
➢ 20世纪初,美国著名的实 验胚胎学家Morgan及其同 事通过果蝇的杂交试验, 确立了基因在染色体上的 连锁和交换规律,被后人 称为遗传学第三定律。
• 基因交换导致基因重 组 重组率
• 染色体上各基因间的 重组率与基因位点间 的距离成正比
• 三点测交法 遗传学图
Sex-Linked Inheritance: Drosophilia
一个是双显性亲本:种子 是圆形的,种子的颜色为 黄色;
一个是双隐性亲本:种子 是皱缩的,种子的颜色为 绿色。
遗传的染色体学说
遗传因子及其独立分离 与自由组合特性与染色 体的行为特性有平行性:
➢ 染色体和基因成对存在; ➢ 形成配子时每对染色体
每对基因分离;
➢ 在配子中,只有每对染 色体一个染色单体,也 只有每对等位基因中一 个基因。
1938
微生物遗传
1953

1972
1990
分子遗传
重组时代
基因组和蛋白质学时代
1.核酸的发现
• 1869年,F.Miescher从 脓细胞中提取到一种富 含磷元素的酸性化合物。
• 称核质(nuclin)
• 1885—1900年间,Kossel、 Johnew、Levene证实核酸 由不同的碱基组成。其最 简单的单体结构是碱基-核 糖-磷酸构成的核苷酸。 1929年又确定了核酸有两 种,一种是脱氧核糖核酸 (DNA),另一种是核糖核酸 (RNA)。
(2)与克隆载体连接,形成新 的重组DNA分子;
(3)用重组DNA分子转化受体 细胞,并能在受体细胞中复制 和遗传;
(4)对转化子筛选和鉴定;
(5)对获得外源基因的细胞或 生物体通过培养,获得所需的 遗传性状或表达出所需要的产 物。
• 自然科学的发展
1928-1942 Fleming 发明青霉素
1953年
• red eye color dominant RR
• mutant allele for white eyes (W)
The Hershey Chase
Experiment • DNA Genetic Material
DNA Structure
➢ 重组DNA操作一般步骤: (1)获得目的基因;
基因与染色体的平行关系—基因定 位在染色体上
基因与染色体的复制
➢ 每一种生物染色体的数目都是恒定的。
➢ 多数动物和植物的体细胞是二倍体
➢ 亲本的每一个配子只带有一组 染色体,叫单倍体。单倍染色 体组所含有的全部遗传信息称 为基因组。
➢ 细胞有丝分裂时,复制后形成 的两个染色单体分开,分配到 两个新的子细胞中
黄色/绿色;
花着生位置:
腋生/顶生;
豆荚形状:
饱满/皱缩;
豆荚颜色:
绿色/黄色;
植株高度:
高/矮。
➢ Mendel最初实验是对具有单个
相对性状的亲代杂交,所有杂
交产生的F1代都只表现一个亲
代的性状,F2代具有一定的比
例。
豌豆单因子杂交实验与分离定律
Mendel遗传学第一定律:分离定律
➢ Mendel首创了测交实验 方法,验证了其推断的 正确性。
Watson和Crick DNA双螺旋
1973年
斯坦福大学 Cohn 加州大学 Boyer
基因工程 重组DNA技术之父
1997年2月 苏格兰 W9年
高考作文题
“假如记忆可以移植”
2000年6月 人类基因组计划
2001年
干细胞研究
20年后?
The minimum number of genes required to make a living cell is ~470.
1866年Mendel,G. 发表了《植物杂交 实验》的论文,开
创了遗传学。
• 1928年,
Griffith 肺炎双球 菌的转化
Beadle and Tatum: 一个基因 --- 一种酶
One Gene --- One Enzyme
MM
用X射线诱导处理红色 基本培养基 面包霉,筛选出被诱导的 突变体来进行实验。根据 遗传分析和大量研究 ,他 们认为基因发生突变,就 可能导致酶活性的丧失。
完全培养基 CM MM
Vitamins
Amino acids
Purines and pyrimidines
• 1944年,Avery在离体条件 下完成转化。
• 1950年,Chargoff 指出DNA中 四种碱基的比例关系为 A/T=G/C=1;
• 1951年, Pauling提出了 蛋白质的α-螺 旋结构。
基因与基因工程
1.基因的发现 2.基因的结构与功能 3.基因工程的诞生 4.基因操作基本技术
基因组学
1.基因组的概念 图 5.转录组与基因芯片表达谱
蛋白质组学
发展历史回顾
发展简史:
• 1868 70年
经典遗传
什么是遗传物质
1951 McClintock B. 发现跳跃基因 或称转座
1958 Kornberg 发 现 DNA合成酶
• 1952年,Hershey和Chase 噬 菌体感染实验
DNA双螺旋结构的发现
1951年 Watson 23岁 丹麦的哥本哈根 Wilkins教授 英国剑桥大学Cavendish实验室 Crick, 31岁 伦敦大学King’s实验室 女科学家Franklin Wilkins教授 Randall教授 DNA应该是双螺旋 A与T、 C与G巧妙连接 符合X衍射数据 DNA的复制 1953年2月28日,Waterson 和Crick用金属线又制出了新的DNA模型,他们 为自然科学树立了一座闪闪发光的里程碑。
➢ Mendel建立了遗传学 第一定律,即“分离 定律”:一对基因在 形成配子时完全按照 原样分离到不同的配 子中去,相互不发生 影响。
Mendel遗传学第二定律:自由组合定律
在分析了一对性状传 递规律的基础上, Mendel 进 一 步 进 行 了 两对相对性状杂交的 遗传分析。他选择了 这样两个亲本进行杂 交:
• 1952年, Wilkins和 Franklin用高度定向的 DNA纤维作出高质量的X光衍射照片
• 1962年, Wilkins、 Watson和 Crick共获诺 贝尔化学奖。
Mendel遗传学第一定律:分离定律
➢ 7对差别鲜明的性状:
花的颜色:
紫色/白色;
种子形状:
圆形/皱缩;
种子颜色:
相关文档
最新文档