第七章 电动势式传感器
《传感与检测技术》习题及解答
第1章传感与检测技术基础1、电感式传感器有哪些种类?它们的工作原理分别是什么?2、说明3、变气隙长度自感式传感器的输出特性与哪些因素有关?怎样改善其非线性?怎样提高其灵敏度?答:根据变气隙自感式传感器的计算式:00022l S W L μ=,线圈自感的大小,即线圈自感的输出与线圈的匝数、等效截面积S 0和空气中的磁导率有关,还与磁路上空气隙的长度l 0有关;传感器的非线性误差:%100])([200⨯+∆+∆= l ll l r 。
由此可见,要改善非线性,必须使l l∆要小,一般控制在0.1~0.2。
(因要求传感器的灵敏度不能太小,即初始间隙l 0应尽量小,故l ∆不能过大。
)传感器的灵敏度:20022l S W dl dL l L K l ⨯-=≈∆∆≈μ,由此式可以看出,为提高灵敏度可增加线圈匝数W ,增大等效截面积S 0,但这样都会增加传感器的尺寸;同时也可以减小初始间隙l 0,效果最明显。
4、试推导 5、气隙型 6、简述 7、试分析 8、试推导 9、试分析 10、如何通过 11、互感式12、零点残余电压产生的原因是什么?怎样减小和消除它的影响?答:在差动式自感传感器和差动变压器中,衔铁位于零点位置时,理论上电桥输出或差动变压器的两个次级线圈反向串接后电压输出为零。
但实际输出并不为零,这个电压就是零点残余电压。
残差产生原因:①由于差动式自感传感器的两个线圈结构上不对称,如几何尺寸不对称、电气参数不对称。
②存在寄生参数;③供电电源中有高次谐波,而电桥只能对基波较好地预平衡。
④供电电源很好,但磁路本身存在非线性。
⑤工频干扰。
差动变压器的零点残余电压可用以下几种方法减少或消除:①设计时,尽量使上、下磁路对称;并提高线圈的品质因素Q=ωL/R;②制造时,上、下磁性材料性能一致,线圈松紧、每层匝数一致等③采用试探法。
在桥臂上串/并电位器,或并联电容等进行调整,调试使零残最小后,再接入阻止相同的固定电阻和电容。
第7章热电式传感器案例
B
第7章 热电式传感器
§7-1 热电偶
(二) (导体内)温差电势
导体内因两点温度不同,两点产生电势。
机理:导体内自由电子在高温 端具有较大的动能,因而向低 温端扩散,结果高温端因失去 电子而带正电荷,低温端因得 到电子而带负电荷,从而形成 一个静电场。
eA (T , T0 ) dT
- eAB (T0 ) eBC (T0 ) eCA (T0 )
10
第7章 热电式传感器
§7-1 热电偶
二、热电偶基本定律 (一)中间导体定律 右图的热电偶回路总电势为
EABC (T , T0 ) eAB (T ) eBC (T0 ) eCA (T0 ) - AdT BdT
第7章 热电式传感器
热电式传感器是一种将温度变化转换为电量变化的装置。在 各种热电式传感器中,把量转换为电势和电阻的方法最为普遍。 其中:将温度转换为电势的热电式传感器叫热电偶 将温度转换为电阻值的热电式传感器叫热电阻。 ① 温度 电势 放大电路
热电偶 热电阻 热敏电阻
②
温度
电阻
检测电路
1
第7章 热电式传感器
EABC (T , T0 ) eAB (T ) eBC (T0 ) eCA (T0 ) - AdT BdT
T0 T0
T
T
接触电势
温差电势
9
第7章 热电式传感器
§7-1 热电偶
二、热电偶基本定律 (一)中间导体定律
在T=T0时
eAB (T0 ) eBC (T0 ) eCA (T0 ) 0
EABC (T , T0 ) eAB (T ) - eAB (T0 ) ( B - A )dT EAB (T , T0 )
第七章霍尔传感器及应用
B
C U0
D I
A 图7-4 不等位电势
R1
B
R2
C R3
D RR44
A 图7-5 霍尔元件的等效电路
A
C
D
B
W
R1 C
A R2 D
几种常用补偿方法
湖州职业技术学院机电分院
A
C
D
B
W
A
C
D
(b)
B
W
R1 C
A R2 D
R1 C
A R2 D
R3
R4
B
W (a)
R3 (b)
R4 B
W (c)
R3
R4
B
若取 RH = 1 / nq 则
IB UH RH d
RH为霍尔元件的霍尔系数。显然,霍尔系数由半导体材料的性质决定,它反映材料霍尔效应的
强弱。
设
KH
RH d
湖州职业技术学院机电分院
UHKHIB
KH为霍尔元件的灵敏度,它表示一个霍尔元件在单位控制电流和单位磁感应强度时产生的霍 尔电压的大小。单位是mV/(mA·T)
7.1 霍尔效应及霍尔元件 一、 霍尔效应
霍尔效应
湖州职业技术学院机电分院
B
b FE
FL v
湖州职业技术学院机电分院
d
I UH
l 图7-1 霍尔效应
设霍尔元件为N型半导体,当它通电流I时 FL = qvB
(7-1)
当电场力与洛仑兹力相等时,达到动态平衡,这时有 qEH=qvB
故霍尔电场的强度为 EH=vB
结论:
湖州职业技术学院机电分院
① 如果是P型半导体,其载流子是空穴,若空穴浓度为p,同理可得
第七章 热电式传感器.ppt
测量温度范围
1000C 热电势/
mV
B
铂铑30-铂铑6
50~1820 C
4.834
R
铂铑13—铂
-50~1768 C
10.506
S
铂铑10—铂
-50~1768 C
9.587
K
镍铬-镍铬 (铝) -270~1370 C 41.276
E 镍铬-铜镍 (康 铜) -270~800 C
——?
第7章 热电式传感器 普通装配型热电偶的外形
第7章 热电式传感器
本章主要内容
➢了解热电阻工作的主要原理 ➢掌握热电效应,热电偶工作原理 ➢掌握热电偶工作定律 ➢了解热电偶的测温材料及其特点 ➢熟悉热电偶的应用
第7章 热电式传感器
7.1.1 热电阻
工作原理:热电阻的阻值随温度的变化而变化。
1. 热电阻材料的特点:
a 高温度系数,高电阻率
b 化学和物理性能稳定
▪ 定义:将两种不同性质的导体A、B组成闭合回路,若节点处于不同的 温度时,两者之间将产生一热电势,在回路中形成一定大小的电流, 这种现象称为热点效应。
▪
接触电势
EAB (T )
温差电势
kT e
ln
NA NB
T
EA (T ,T0 ) EB (T ,T0 ) T0 ( A B )dT
T
EA (T ,T0 ) T0 AdT
AA’CTBB’C’
热电偶
补偿导线 试管
铜 导 线
冰点槽
T0
冰水溶液
mV
仪 表
第7章 热电式传感器
2. 计算修正法
用普通室温计算出参比端实际温度 TH ,利用公式计 算
EAB(T,T0)=EAB(T,TH)+EAB(TH,T0)
(整理)第七章光电传感器习题答案
•第七章光敏传感器•1.光电效应通常分为哪几类?简要叙述之。
与之对应的光电器件有哪些?•2.半导体内光电效应与入射光频率的关系是什么?3.光电倍增管产生暗电流的原因有哪些?如何降低暗电流?•4.试述光电倍增管的组成及工作原理?•5.简述光敏二极管和光敏三极管的结构特点、工作原理及两管的区别?•6.为什么在光照度增大到一定程度后,硅光电池的开路电压不再•随入射照度的增大而增大?硅光电池的最大开路电压为多少?•7.试举出几个实例说明光电传感器的实际应用,并进行工作原理的分析。
答案:一、光电效应分为两类:外光电效应和内光电效应外光电效应:入射光子被物质的表面所吸收,并从表面向外部释放电子的一种物理现象。
基于外光电效应的光电器件有光电管、光电倍增管。
内光电效应当光照在物体上,使物体的电导率发生变化,或产生光生电动势的现象。
分为光电导效应(如:光敏电阻)和光生伏特效应(如光电池、光电二极管、光电三极管)。
二、、对于不同的本征半导体材料,禁带宽度Eg不同,对入射光的波长或频率的要求也不同,一般都必须满足:7he1.24「hv=T^^-Eg式中v、A分别为入射光的频率和波长。
对于杂质半导体:Ei为杂质电离能三、1、欧姆漏电欧姆漏电主要指光电倍增管的电极之间玻璃漏电、管座漏电和灰尘漏电等。
欧姆漏电通常比较稳定,对噪声的贡献小。
在低电压工作时,欧姆漏电成为暗电流的主要部分。
在使用光电倍增管时,保证管壳和所有连接件的清洁干燥是十分必要的。
2、热发射由于光电阴极材料的光电发射阈值较低,容易产生热电子发射,即使在室温下也会有一定的热电子发射,并被电子倍增系统倍增。
要减小热电子发射,应选用热发射小的阴极材料,并在满足使用的前提下,尽量减小光电阴极的面积,降低光电倍增管温度。
3、残余气体放电光电倍增管中高速运动的电子会使管中的残余气体电离,产生正离子和光子,它们也将被倍增,形成暗电流。
这种效应在工作电压高时特别严重,使倍增管工作不稳定。
传感器原理及应用(第三版)第7章
(二)温差电势 单一导体,如果两端温度不同,则导体内自由电子在高温端具有 较大的动能,因而向低温端扩散,高温端因失去电子而带正电,低 温端因得到电子而带负电,从而形成静电场,如图所示。该电场阻 碍电子的继续扩散,当达到动平衡时,在导体两端便产生一个稳定 的电位差,即温差电势。同样由物理学可知: 温差电势: T e A ( T , T 0 ) = ∫ σ dT T0 其中: e A (T , T0 ) —导体A两端温度为时形成的 温差电势 σ —汤姆逊系数,表示单一导体两 端温差1℃时所产生的温差电势,其值与材料性质及两端温度有关. ℃ 结论: 结论:在热电偶中,温差电势相对于接触电势非常小,工程上常 将其忽略不计,起决定作用的是接触电势。但热电偶作为检测计量 使用时要加以考虑 。
Tn Tn T T + ∫ σ B dT − ∫ σ A dT + ∫ σ B ' dT − ∫ σ A ' dT Tn Tn T0 T0
= EAB (T , Tn ) + E A'B ' (Tn , T0 )
因此上述定律成立。
上一页 下一页
(T1Tn ), (Tn1T0 )
2 中间温度定律: 定律描述:热电偶在结点温度为 (T,T0 ) 时的热电势 EAB(T,T0 ) ,等于 热电偶在 (T,Tn ),(T,T0 ) 时相应的热电势 EAB(T,Tn ) 与 EAB(Tn ,T0 ) 的代数和。 数学表达式:
EABB' A' (T ,Tn ,T0 ) = EAB(T ,Tn ) + EA'B' (Tn ,T0 )
证明:由上图所示,回路总电势
EABB' A' (T ,Tn ,T0 ) = EAB(T ) + EBB' (Tn ) + EB' A' (T0 ) + EA' A (Tn )
第6章电动势式传感器
在施加外电场时,电畴 转到与外电场一致。
+++++++ -------
+++++++ -------
极化后,两端出现束缚电荷, 吸引一层外来电荷,因而仍呈 中性。在外力的作用下,极化 电畴变化使两极板上电荷变化。
第六章
三.压电传感器的等效电路
1. 压电传感器的等效电路
q
q
F
电动势式传感器
Ca u
压电晶体
uo
电路的时间常数是由等效电阻及等效电容来决定的
R (Ra // Ri )
C Ca Cc Ci (1 A)C f
(Ra // Ri )[Ca Cc Ci (1 A)C f ] Ri AC f
与使用电压放大器相比时间常数要大得多,对输入电 阻的要求相对降低
第六章
五.应用举例
1.压电加速度传感器 2.压电式压力传感器 3.基于压电效应的超声波传感器
d
第六章
6.2 压电晶体传感器
电动势式传感器
压电传感是以某些物质的压电效应为基础的一种有源 传感器。在外力作用下,某些物质变形后其表面会产生电 荷,从而实现非电量电测的目的。
压电传感器尺寸小,重量轻,工作频率宽,可测量变 化很快的动态压力、加速度、振动等。
第六章
电动势式传感器
一.压电效应
某些电介质物质,当沿一定方向受到外力作用而变形 时,在它的两个表面会产生符号相反的电荷;当将外力去 掉后,又重新回到不带电状态,这种现象称为压电效应。
(1) 放大传感器输出的微弱信号; (2) 将传感器的高阻抗输出变换为低阻抗输出。
1. 电压放大器 采用电压放大器要 考虑的两个主要问 题
传感器的主要学习知识重点
绪论一、传感器的定义、组成、分类、发展趋势能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件构成。
如果传感器信号经信号调理后,输出信号为规定的标准信号(0~10mA,4~20mA;0~2V,1~5V;…),通常称为变送器,分类:按照工作原理分,可分为:物理型、化学型与生物型三大类。
物理型传感器又可分为物性型传感器和结构型传感器。
按照输入量信息:按照应用范围:传感器技术: 是关于传感器的研究、设计、试制、生产、检测和应用的综合技术.发展趋势: 一是开展基础研究,探索新理论,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化、多功能化与智能化。
1.发现新现象;2.发明新材料;3.采用微细加工技术;4.智能传感器;5.多功能传感器;6.仿生传感器。
二、信息技术的三大支柱现在信息科学(技术)的三大支柱是信息的采集、传输与处理技术,即传感器技术、通信技术和计算机技术。
课后习题1、什么叫传感器,它由哪几部分组成?它们的作用与相互关系?传感器(transducer/sensor):能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置(国标GB7665—2005)。
通常由敏感元件和转换元件组成。
敏感元件:指传感器中能直接感受或响应被测量并输出与被测量成确定关系的其他量(一般为非电量)部分。
转换元件:指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的可用输出信号(一般为电信号)部分。
信号调理电路(Transduction circuit) :由于传感器输出电信号一般较微弱,而且存在非线性和各种误差,为了便于信号处理,需配以适当的信号调理电路,将传感器输出电信号转换成便于传输、处理、显示、记录和控制的有用信号。
第一章传感器的一般特性1.传感器的基本特性动态特性静态特性2.衡量传感器静态特性的性能指标(1)测量范围、量程(2)线性度%100max⨯∆±=⋅SF L y δ 传感器静态特性曲线及其获得的方法传感器的静态特性曲线是在静态标准条件下进行校准的。
传感器原理与应用习题-第7章热电式传感器
传感器原理与应用习题-第7章热电式传感器《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第7章热电式传感器7-1 热电式传感器有哪几类?它们各有什么特点?答:热电式传感器是一种将温度变化转换为电量变化的装置。
它可分为两大类:热电阻传感器和热电偶传感器。
热电阻传感器的特点:(1)高温度系数、高电阻率。
(2)化学、物理性能稳定。
(3)良好的输出特性。
(4).良好的工艺性,以便于批量生产、降低成本。
热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传7-2 常用的热电阻有哪几种?适用范围如何?答:铂、铜为应用最广的热电阻材料。
铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。
铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。
当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。
7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题?7-4 利用热电偶测温必须具备哪两个条件?答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义?答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。
利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。
连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。
连接导体定律是工业上运用补偿导线进行温度测量的理论基础。
7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义?答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0)这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。
车辆检测技术——热电式传感器
第七章热电式传感器第一节热电偶热电式传感器是一种利用敏感元件的电磁参数随温度变化而变化的特性来测量温度的装置。
在各种热电式传感器中,把温度量转换为电势和电阻的方法最为普遍。
其中将温度转换为电势的热电式传感器叫热电偶温度传感器,将温度转换为电阻值的热电式传感器叫电阻式温度传感器。
金属热电式传感器简称热电阻,半导体式传感器简称热敏电阻。
热电式传感器目前在工业生产中得到了广泛的应用,并且可以选用定型的显示仪表和记录仪来进行显示和记录。
在计算机控制系统中,热电式传感器的输出信号可直接进入I/O卡,进行信号的预处理、显示和控制。
热电偶由于性能稳定、结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传的特点,在工业和科研领域中得到广泛应用。
常用的热电偶,低温可测到-50℃,高温可达到+1600℃。
若配用特殊材料,其温度范围可达到-150℃~2000℃。
如图7-1所示,热电偶温度传感器将被测温度转换成毫伏级热电势,通过连接导线与显示表构成温度检测系统,从而实现温度的显示、记录和调节。
图7-1热电偶测温示意图一热电偶的基本原理1 热电效应1821年,德国物理学家赛贝克(T⋅J⋅Seebeck)用两种不同金属组成闭合回路,并用酒精灯加热其中一个接触点(称为结点),发现放在回路中的电流表指针发生偏转。
如果用两盏酒精灯对两个结点同时加热,指针的偏转角反而减小。
显然,指针的偏转说明回路中有电动势产生并有电流在回路中流动,电流的强弱与两个结点的温差有关。
据此,赛贝克发现和证明了将两种不同性质的导体A 、B 组成闭合回路,如图7-2所示。
若节点(1)、(2)处于不同的温度(T≠T 0)时,两者之间将产生一热电势,在回路中形成一定大小的电流,这种现象称为热电效应。
两种不同材料的导体所组成的回路称为“热电偶”,组成热电偶的导体称为“热电极”,热电偶所产生的电动势称为热电势。
热电偶的两个结点中,置于温度为T 的被测对象中的结点称之为测量端,又称为工作端或热端;而置于参考温度为T 0的另一结点称之为参考端,又称自由端或冷端。
传感器原理与应用习题_第7章热电式传感器
《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第7章热电式传感器7-1 热电式传感器有哪几类?它们各有什么特点?答:热电式传感器是一种将温度变化转换为电量变化的装置。
它可分为两大类:热电阻传感器和热电偶传感器。
热电阻传感器的特点:(1)高温度系数、高电阻率。
(2)化学、物理性能稳定。
(3)良好的输出特性。
(4).良好的工艺性,以便于批量生产、降低成本。
热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传7-2 常用的热电阻有哪几种?适用范围如何?答:铂、铜为应用最广的热电阻材料。
铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。
铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。
当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。
7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题?7-4 利用热电偶测温必须具备哪两个条件?答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义?答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。
利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。
连接导体定律:回路的总电势等于热电偶电势EAB(T,T0)与连接导线电势EA’B’(Tn,T0)的代数和。
连接导体定律是工业上运用补偿导线进行温度测量的理论基础。
7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义?答:EAB(T,Tn,T0)=EAB(T,Tn)+EAB(Tn,T0)这是中间温度定律表达式,即回路的总热电势等于EAB(T,Tn)与EAB(Tn,T0)的代数和。
传感器原理与应用习题-第7章热电式传感器
《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案教材:传感器技术(第3版)贾伯年主编,及其他参考书第7章热电式传感器7-1 热电式传感器有哪几类?它们各有什么特点?答:热电式传感器是一种将温度变化转换为电量变化的装置。
它可分为两大类:热电阻传感器和热电偶传感器。
热电阻传感器的特点:(1)高温度系数、高电阻率。
(2)化学、物理性能稳定。
(3)良好的输出特性。
(4).良好的工艺性,以便于批量生产、降低成本。
热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传7-2 常用的热电阻有哪几种?适用范围如何?答:铂、铜为应用最广的热电阻材料。
铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。
铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。
当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。
7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题?7-4 利用热电偶测温必须具备哪两个条件?答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义?答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。
利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。
连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。
连接导体定律是工业上运用补偿导线进行温度测量的理论基础。
7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义?答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0)这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。
磁电式传感器(1)
★优点:结构简单、体积小、坚固、频率响应宽(从直流到
微波)、动态范围(输出电动势的变化)大、非接触、使用寿 命长、可靠性高、易于微型化和集成化 。
★缺点:转换率较低、温度影响大、要求转换精度较高时
必须进行温度补偿 。
一、霍尔效应
图7-11所示,一块长为 、l宽为w、厚为d的N型半导体簿 片,位于磁感应强度为B的磁场中,B垂直于 l -w平面。沿l
个高梯度磁场,磁场梯度可达1T/mm,灵敏度较高, 但其可测量的位移量特别小,一般 z 0.5mm。
2.转速测量
图(a)是把永磁体粘贴在旋转体上部,图(b)是把永磁体 粘贴在旋转体边缘。每个永磁体都形成一个小磁场,当旋转体转 动时,则霍尔电势发生突变。图(c)是其输出信号波形。永磁 体越多,分辨率越高,但最小脉冲周期不能小于计数周期。
作用在半导体薄片上的磁场强度B越强,霍尔电势也就越高。 霍尔电势EH可用下式表示:
EH=KH IB
霍尔效应演示
d a
b c
当磁场垂直于薄片时,电子受到洛仑兹力的作用,向内侧
偏移,在半导体薄片c、d方向的端面之间建立起霍尔电势。
在力FB的作用下,电子向半导体片的一个侧面偏转,在该
侧面上形成电子的积累,而在相对的另一侧面上因缺少电子而
一、工作原理:
根据电磁感应定律,线圈两端的感应电势e正比于匝链线 圈的磁通的变化率,即
e W d
dt Φ—匝链线圈的磁通;W—线圈匝数。
★若线圈在恒定磁场中作直线运动并切割磁力线时,则线
圈两端产生的感应电势e为
e WBl dx sin WBlvsin
dt
B—磁场的磁感应强度;x—线圈与磁场相对运动的位移; v—线圈与磁场相对 运动的速度;θ—线圈运动方向与磁场方向之间的夹角; W—线圈的有效匝 数; l—每匝线圈的平均长度。
传感器(第6版) PPT课件第7章
第二节 光电器件
一、热探测器 原理及特点:基于光辐射与物质相互作用的热效应制成的传感器, 它的突出优点是能够接收超低能量的光子,具有宽广和平坦的光谱响应, 尤其适用于红外的探测。 种类:测辐射热电偶、测辐射热敏电阻和热释电探测器。 1、测辐射热电偶 与常规热电偶相似,只是在电偶的一个接头上增加光吸收涂层,当 有光线照射到涂层上,电偶接头的温度随之升高,造成温差电势。 2、测辐射热敏电阻 用热敏电阻代替了热电偶,当有光线照射到涂层上,首先引起温度 的变化,热敏电阻再将温度转化为电阻值的变化。
第一节 光源
四、激光器 激光产生的过程: ➢某 些 物 质 的 分 子 、 原 子 、 离 子 吸 收 外 界 特 定 能 量 ( 如 特 定 频 率 的 辐 射),从低能级跃迁到高能级上(受激吸收); ➢如果处于高能级的粒子数大于低能级上的粒子数,就形成了粒子数反 转,在特定频率的光子激发下,高能粒子集中地跃迁到低能级上,发射 出与激发光子频率相同的光子(受激发射); ➢由于单位时间受激发射光子数远大于激发光子数,因此上述现象称为 光的受激辐射放大。 ➢具有光的受激辐射放大功能的器件称为激光器。
普通高等教育“十一五”国家级规划教材
传 感 器(第6版)
哈尔滨工业大学 唐文彦 主编
普通高等教育“十一五”国家级规划教材
第七章 光电式传感器
第一节 光源 第二节 光电器件 第三节 电荷耦合器件和位置敏感器件 第四节 光纤传感器 第五节 光栅式传感器 第六节 激光式传感器
返回主目录
第七章 光电式传感器
波长300—380nm称为近紫外线 波长200—300nm称为远紫外线 波长10—200nm称为极远紫外线
第一节 光源
红外线:波长780—106nm 波长3μm(即3000nm)以下的称近红外线 波长超过3μm 的红外线称为远红外线。
电动势式传感器
电荷qx应包含相应的符号,它是由Fx是压力 还是拉力而定(参看图8)。由式(11)可见,电荷 的多少与切片的几何尺寸无关。 如果在同一切片上作用力沿着机械轴方向, 其电荷仍在与X轴垂直的平面上出现,而极性相 反,此时电荷的大小为
图2
磁电式传感器与指示仪表 相连的等效电路
图(2)是磁电式传感器与指示仪表相连的等 效电路。整个回路电流为 (5)
e i R Rd
当温度变化时,上式的分子分母都会随温度而 变,而且它们的变化方向是相反的。因为永久 磁铁的磁感应强度随温度增加而减小,即感应 电动势随温度增加而减小。
例如钨钢和铬钢做的磁铁,当温度在50℃~60℃以 而传感器线圈与指示器的电阻都是铜电阻,所以 它们的电阻温度系数都是正的。当温度增加t℃ 时,回路电流将从i变化到i'。 e(1 t ) ' i R(1 t ) Rd (1 1t ) ——传感器线圈电阻正温度系数; (6)
在传感器中,当结构已定时,B,A,N,l
都是常数,感应电动势就与线圈对磁场的相对
运动速度或成正比,因此磁电式传感器可直接
用于测量线速度与角速度。由于速度与位移、
加速度之间存在一定的积分或微分关系。因此,
如果在感应电动势的测量电路中接入一微分电
路,其输出就与运动的加速度成正比;如果在测
量电路中加接一积分电路,则其输出就与位移
流和交流两种。直流测速发电机,它的结构类似
小型直流电机,大多采用永磁励磁方式,其输出直
流电压为
U Ken
(8)
式中 Ke——电动势系数,与电机结构有关;
——磁极磁通(Wb可见,直流测速发电机的输出电压U 和被测对象的转速n成正比,并且直流电压的极性
被称为感应式传感器。这种传感器工作时不需要电
第七节电涡流式传感器金属导体置于变化着的磁场中,导体内就会...
第七节电涡流式传感器金属导体置于变化着的磁场中,导体内就会产生感应电流,这种电流像水中旋涡那样在导体内转圈,所以称之为电涡流或涡流。
这种现象就称为涡流效应。
电涡流式传感器就是在这种涡流效应的基础上建立起来的。
要形成涡流必须具备下列二个条件:①存在交变磁场;②导电体处于交变磁场之中。
因此,涡流式传感器主要由产生交变磁场的通电线圈和置于线圈附近因而处于交变磁场中的金属导体两部分组成。
金属导体也可以是被测对象本身。
如图3-33a所示,如果把一个扁平线圈置于金属导体附近,当线圈中通以正弦交变电流时,线圈的周围空间就产生了正弦交变磁场,处于此交变磁场中的金属导体内就会产生涡流,此涡流也将产生交变磁场,的方向与的方向相反。
由于磁场的作用,涡流要消耗一部分能量,从而使产生磁场的线圈阻抗发生变化。
可以看出,线圈与金属导体之间存在着磁性联系。
若把导体形象地看作一个短路线圈,其间的关系可用图3-33b所示的电路来表示。
线圈与金属导体之间可以定义一个互感系数,它将随着间距的减少而增大。
根据克西荷夫定律,可列出方程(3-76)解之得(3-77)式中——线圈的电阻和电感;——金属导体的电阻和电感;——线圈激励电压;由的表达式可以看出线圈受到金属导体影响后的等效阻抗为(3-78)等效电阻、电感分别为(3-79)在等效电感中,第一项与磁效应有关。
若金属导体为非磁性材料,就是空心线圈的电感。
当金属导体是磁性材料时,将增大,而且随着的变化而变化。
第二项与涡流效应有关,涡流引起的反磁场将使电感减小,越小,电感减小的程度就越大。
等效电阻总是比原有的电阻来得大,这是因为涡流损耗、磁滞损耗都将使阻抗的实数部分增加。
显然,金属导体材料的导电性能和线圈离导体的距离将直接影响这实数部分的大小。
由式(3-79)也可以得到线圈的品质因数为(3-80) 式中——无涡流影响时线圈的值;——金属导体中产生涡流的圆环部分的阻抗,。
由上可知,被测参数变化,既能引起线圈阻抗变化,也能引起线圈电感和线圈值变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
剩余极 化强度
剩余伸长
压电陶瓷的正压电效应
压电陶瓷片上加上一个与极化反向平行的外力, 陶瓷片将产生压缩变形,原来吸附在极板上的 自由电荷,一部分被释放而出现放电现象。
逆压电效应:外加电场→机械形变
指对晶体施加电场引起晶体机械变形的现象,在撤掉 外加电场时,这些物质的机械变形随之消失。
7.2.1 压电式传感器的工作原理
电势型传感器 以压电效应为基础
压电效应可逆 “双向传感器”
正压电效应
加力 变形 产生电荷
逆压电效应
施加电场 电介质产生变形
应力
常见的压电材料有石英、钛酸钡、锆钛酸铅等。
前置放大器的形式: 1、电压放大器:输出电压与输入电压(传感器输出 电压)成正比;要求高输入阻抗,以提高低频段测 量范围。电缆长度应设为常数(灵敏度易受电缆电 容的影响)。 2、电荷放大器:输出电压与传感器的输出电荷成正 比。输出电压与传输电缆长度无关(电缆电容影响 小),适合长距离传输工作。 经前置放大后,可采用一般放大、检波、记录 等电路,或经功率放大至记录器。
θ—线圈面的法线方向与磁场方向夹角 N—工作气隙中线圈绕组的匝数
ω—角频率。ω为常数时,θ=ωt
A—线圈所包围的面积
7.1 磁电式传感器
7.1.1 磁电式传感器的工作原理 7.1.2 动圈式磁电传感器 7.1.3 磁阻式磁电传感器
7.1.3 磁阻式磁电传感器
线圈和磁铁部分都是静止的,与被测物连接而运 动的部分是用导磁材料制成的,在运动中,它们改 变磁路的磁阻,因而改变贯穿线圈的磁能量,在线 圈中产生感应电动势。 用来测量转速,线圈中产生感应电动势的频率作为 输出,而电势的频率取决于磁通变化的频率。 结构:开磁路、闭磁路
2. 压电式传感器的信号调节电路
压电式传感器要求负载电阻 RL必须有很大的数 值,才能使测量误差小到一定数值以内。 因此常先接入一个高输入阻抗的前置放大器, 然后再接一般的放大电路及其它电路。 测量电路关键在高阻抗的前置放大器。
前置放大器两个作用:
把压电式传感器的微弱信号放大; 把传感器的高阻抗输出变换为低阻抗输出。
出的要求、工作环境温度等各种因素。
晶片数目:通常是使用机械串联而电气并联的两片。
晶片电气并联两片,可以使传感器的电荷
输出灵敏度增大一倍。
单向压电式测力传感器
用于机床动态切削力的测量。
压电式压力传感器
直流电场E 剩余极化强度P
(a)极化处理前
电场作用下的伸长 (b) 极化处理(取极 化方向为Z轴方向)
剩余伸长 (c)极化处理后
极化处理后,大多数电畴仍大致沿原外电场方向排列,因而陶 瓷内部极化强度不为0,即存在剩余极化强度, 压电陶瓷两端出现 束缚电荷,但整体上仍表现为电中性
(3)压电陶瓷的压电效应: 压电效应: 沿极化方向施加外力 • 外力→压缩变形→电畴偏转→极化强 度减小→释放部分自由电荷。(放电) • 外力撤消→恢复原形→电畴回转→极 化强度增大→吸附部分自由电荷。(充 电)
7.2 压电式传感器
7.2.1 压电式传感器的工作原理 7.2.2 等效电路及信号变换电路 7.2.3 压电式加速度传感器 7.2.4 压电式测力传感器
7.2.2 等效电路及信号变换电路
1. 压电元件的等效电路
2. 压电式传感器的信号调节电路
1. 压电元件的等效电路
Ca
s
h
r 0 s
当压力撤消后,陶瓷片恢复原状,片内的正、 负电荷之间的距离变大,极化强度也变大,因 此电极上又吸附部分自由电荷而出现充电现象。
放电电荷的多少与外力的大小成比例关系
Q d 33 F
常见压电陶瓷 :
(1)钛酸钡(BaTiO3)压电陶瓷 具有较高的压电系数和介电常数,机械强度不如石英。 (2)锆钛酸铅Pb(Zr· Ti)O3系压电陶瓷(PZT) 压电系数较高,各项机电参数随温度、时间等外界条件的 变化小,在锆钛酸铅的基方中添加一两种微量元素,可以 获得不同性能的PZT材料。 (3)铌镁酸铅Pb(MgNb)O3-PbTiO3-PbZrO3压电陶瓷(PMN) 具有较高的压电系数,在压力大至700kg/cm2仍能继续工 作,可作为高温下的力传感器。
石英晶体的压电效应
(a)正负电荷是互相平衡的,所以外部没有带电现象。 (b)在X轴方向压缩,表面A上呈现负电荷、B表面呈现正电荷。 (c)沿Y轴方向压缩,在A和B表面上分别呈现正电荷和负电荷
石英晶体
一种天然晶体,压电系数d11=2.31×10-12C/N; 莫氏硬度为 7 、熔点为 1750℃、膨胀系数仅为钢的 1/30。 优点: 转换精度高、线性范围宽、重复性好、固有频率 高、动态特性好、工作温度高达550℃(压电系数 不随温度变化而改变)、工作湿度高达100%、稳 定性好。
产生电荷
Qx d11 Fx
d11——压电系数(C/N) 作用力是沿着机械轴方向 电荷仍在与X轴垂直的平面
Q x d12 a a Fy d11 Fy b b
切片上电荷的符号与受力方向的关系
图(a)是在X轴方向受压力, 图(b)是在X轴方向受拉力, 图(c)是在Y轴方向受压力, 图(d)是在Y轴方向受拉力。
闭磁路磁阻式转速传感器
闭 磁 5-永久磁铁 路 4-感应线圈 磁 3-外齿轮 组 式 2-内齿轮 转 1-转轴 速 传 感 器 当转轴连接到被测轴上转动时,内外齿轮的相对运动使磁路气隙发 生变化,因而磁阻发生变化并使贯穿于线圈中的磁通量变化,在线 圈中感应出电动势。 采用在振动强的场合,有下限工作频率(50Hz ) 传感器的输出电势取决于线圈中磁场变化速度,
h
U
Q Ca
• 静电荷发生器 : 当压电元件受到外力作用时,会在压电元件一定 方向的两个表面(电极面)上产生电量相等、极性相反的电荷。 •电容器:在压电元件的两个电极面上有电荷聚集,并且电极面间的 物质可以等效为电介质。
压电式传感器的等效电路
(a)等效为一个电荷源Q与一个电容Ca并联的电路 (b) 等效成一个电源U = Q/Ca 和一个电容Ca的串联电路
7.2 压电式传感器
7.2.1 压电式传感器的工作原理 7.2.2 等效电路及信号变换电路 7.2.3 压电式加速度传感器 7.2.4 压电式测力传感器
7.2.3 压电式加速度传感器
压 缩 式 压 电 加 速 度 传 感 器 结 构
测量原理
当传感器感受振动时,质量块感受与传感器基座相同的
振动,并受到与加速度方向相反的惯性力的作用。这样, 质量块就有一正比于加速度的交变力作用在压电片上。 由于压电片压电效应,两个表面上就产生交变电荷,当 振动频率远低于传感器的固有频率时,传感器的输出电 荷(电压)与作用力成正比,亦即与试件的加速度成正 比。 输出电量由传感器输出端引出,输入到前置放大器后就 可以用普通的测量仪器测出试件的加速度,如在放大器 中加进适当的积分电路,就可以测出试件的振动速度或 位移。
优点:
不需要供电电源,电路简单, 性能稳定,输出阻抗小
7.1 磁电式传感器
7.1.1 磁电式传感器的工作原理 7.1.2 动圈式磁电传感器 7.1.3 磁阻式磁电传感器
7.1.1 磁电式传感器的工作原理
d 法拉第电磁感应定律: E N dt
不同类型的磁电式传感器
磁通量Ф的变化实现办法:
磁铁与线圈之间作相对运动; 恒定磁场中线圈面积的变化; 磁路中磁阻的变化.
直接应用:测定速度
在信号调节电路中接积分电路,或微分电路,磁电式传 感器就可以用来测量位移或加速度。
7.1 磁电式传感器
7.1.1 磁电式传感器的工作原理 7.1.2 动圈式磁电传感器 7.1.3 磁阻式磁电传感器
动圈式磁电传感器结构
7.2 压电式传感器
7.2.1 压电式传感器的工作原理 7.2.2 等效电路及信号变换电路 7.2.3 压电式加速度传感器 7.2.4 压电式测力传感器
7.2.4 压电式测力传感器
压电元件是直接把力转换为电荷的传感器。
变形方式:利用纵向压电效应的TE方式最简便。 材料选择:决定于所测力的量值大小,对测量误差提
(2)线圈做旋转运动的传感器: (类似于发电机)
d e N dt
d ( BA cos ) d e(t ) N NBA sin NBA sin t dt dt
if 90 k 360 ,
0 0
e Em NBA
结构一定时,感应电势与线圈 对磁场的相对角速度成正比。
2、压电陶瓷的压电效应:
(1) 压电陶瓷介绍: • 压电陶瓷是一种具有压电效应的功能陶瓷。 • 人工制造、各向同性、多晶体。 • 原始的压电陶瓷材料内部具有无数自发极化的电畴,各电 畴的极化方向无规则,不具备压电性。 • 压电陶瓷要经极化处理之后才具有压电性。
(2)极化处理:Z轴方向外加强直流电场1000~3000V/mm
开磁路磁阻式转速传感器
1-永久磁铁 3-感应线圈 2-软铁 4-齿轮 当齿轮旋转时,由齿轮的凹凸引起磁阻的周期性变化 ,磁通也周期 性变化,从而在线圈中感应出交变电势,其 频率f与转速n及齿轮齿数z的关系为: f z n / 60
结构比较简单,但输出信号较小, 当被测轴振动较大时,传感器输出波形失真较大。
7.2 压电式传感器
7.2.1 压电式传感器的工作原理 7.2.2 等效电路及信号变换电路 7.2.3 压电式加速度传感器 7.2.4 压电式测力传感器
压电Байду номын сангаас应:
由法国物理学家居里兄弟皮埃尔、雅克于1880年发现。