第二节 拉氏变换公式..

合集下载

第二章 拉氏变换

第二章 拉氏变换
n A A A A A k n 1 2 F(s) = + +L+ +L+ =∑ k s − p1 s − p2 s − pk s − pn k=1 s − pk
式中p 为方程F 个不同的根, 式中 1、 p2 、… pn为方程 2(s)=0的n个不同的根,它们可以是 的 个不同的根 实数也可以是复数。由于s→ →∞, 实数也可以是复数 。 由于 → pk时 |F(s)|→∞, 故这些根称为 →∞ 故这些根称为F(s) 的极点(pole)。 A1、A2、An…为待定系数。为了求出其中任何一 为待定系数。 的极点 。 为待定系数 个常数A 个常数 k,用(s−pk)乘上式的两边各项得 : − 乘上式的两边各项得
本节的基本要求是掌握常用函数(直流或阶跃函 数、指数函数、冲激函数)的拉普拉斯逆变换。掌握 用部分分式展开法求有理分式的原函数。
定义: 定义:由F(s)求 f(t) 的运算称为拉普拉斯逆变换 求 (inverse Laplace transform)。 。 计算逆变换的一般公式是: 计算逆变换的一般公式是
− f (t) = L 1[F(s)]
它表示对中括号中的函数求拉氏反变换。 它表示对中括号中的函数求拉氏反变换。 不同的原函数对应着不同的象函数;反过来, 不同的原函数对应着不同的象函数;反过来,不同 的象函数对应着不同的原函数。它们之间有一一对应 的象函数对应着不同的原函数。 的关系。 的关系。 以后我们用小写字母表示原函数, 以后我们用小写字母表示原函数,用大写的相同字 母表示象函数。 母表示象函数。如:
ε (t)
A Ae- α t Ate- α t
δ (t)
sin ωt cos ωt
在线性集中参数电路中, 在线性集中参数电路中,电压和电流的象函数都是 s 的有理分式,可以展开成部分分式之和的形式,对每 的有理分式,可以展开成部分分式之和的形式, 个部分分式求原函数。再根据逆变换的线性性质, 个部分分式求原函数。再根据逆变换的线性性质,将 所有部分分式的原函数代数相加, 所有部分分式的原函数代数相加,就得所求象函数的 原函数。 原函数。 集中参数电路的象函数可以表示成下列有理分式

第二章 拉氏变换

第二章 拉氏变换

类似地,可得象函数的微分性质: 若,F (s) = £ [f (t)],则
F ( s ) =-£ [ Hale Waihona Puke f (t ) ],Re(s)>c
一般地 :
n F ( n ) ( s) = (1)n £ [ t f (t )],Re(s)>c
性质3(积分性质) : 若,F (s) = £ [f (t)],则:
1、若B(s)有n个单零点s1,s2,…,sn,有,
A( s) st A(sk )esk t Res e , sk B( sk ) B( s )
A(sk )e 即:f (t ) , (t 0) k 1 B( sk )
n
sk t
2、若s1是B(s)的一个m级零点,其余的n-m 都是单零点,sm+1,…,sn,有,
则, £[af1(t)+b f2(t)] =a F1(s)+b F2(s)
其中,a,b为常数
注意: Laplace逆变换也有类似的性质
性质2(微分性质) :
若,F (s) = £ [f (t)]
则有,£ [ f (t ) ] = sF(s) - f(0)
这个性质说明:一个函数求导以后取拉氏 变换等于该函数的拉氏变换乘以s,再减去 函数的初值。 推论 : 若,F (s) = £ [f (t)],
f (t ) Mect ,0 t
成立,则f(t)的Laplace变换(形如式(*)表 示)在半平面Re(s)>c上一定存在,右端的积 分在Re(s) ≥ c1>c上绝对收敛且一致收敛,并 且在Re(s)>c的半平面内,F(s)为解析函数。
举例
1 t 0 例1: 求单位阶跃函数 u (t ) 0 t 0

第二章 拉氏变换

第二章 拉氏变换
m
m 1
1、F(S)无重极点(n个不等根)时,F(s)可表示为
bm s bm 1s b1s b0 F ( s) an ( s p1 )( s p2 ) ( s pn )
m
m 1
Kn K1 K2 s p1 s p2 s pn
(a为实数)
L[e ] e e dt e 0 0
at at st


( s a )t
dt
1 sa
5、正弦函数
0 f (t ) sin t
其拉氏变换
t <0
t ≥0

(为实数)
L[sin t ] sin t e dt 0 2 2 s
在控制工程中,使用拉氏变换的主要目的: 用它来研究系统动态特性.
因为描述系统动态特性的传递函数和频 率特性都是建立在拉氏变换的基础之上 的。
第二节
一、拉氏变换定义
拉普拉斯变换
对时间函数f(t),t≥0,f(t)的拉普拉斯变换L[f(t)] (简称拉氏变换)或F(s)定义为
0 一个函数可以进行拉氏变换的充要条件是: 原函数 象函数
第二章 拉普拉斯变换的数学方法
1 复数与复变函数 2 拉普拉斯变换及反变换
2.1 复数和复变函数
一、复数的概念
为了解方程的需要,人们引入了一个新数i, 称为虚数单位,并规定:
教材上:j
(1) i 1;
2
(2) i 可与实数进行四则运算.
复 数
形如 s j 的数称为复数.
实部 记作:Re(s)=σ
复数可以表示成
s σ jω r (cos i sin )

拉氏变换常用公式

拉氏变换常用公式

拉氏变换常用公式拉氏变换是一种重要的数学工具,常被用于信号处理、系统分析、电路设计等领域。

在进行拉氏变换时,我们常用到一些常用的公式,这些公式是解决问题的关键。

本文将介绍一些常用的拉氏变换公式,以及其在实际应用中的意义和用法。

1. 基本定义拉氏变换是一种将时域函数转换为复频域函数的方法。

它定义如下:F(s) = L{f(t)} = ∫[0,∞)e^(-st) f(t) dt其中,F(s)表示拉氏变换结果,L表示拉氏变换算子,f(t)表示时域函数,s表示复频域变量。

2. 常见公式以下是一些常用的拉氏变换公式:2.1 常数函数L{1} = 1/s2.2 单位阶跃函数L{u(t)} = 1/s2.3 指数函数L{e^(at)} = 1/(s-a),其中a为常数2.4 正弦函数L{sin(at)} = a/(s^2 + a^2)2.5 余弦函数L{cos(at)} = s/(s^2 + a^2)2.6 钟形函数L{rect(t)} = 1/sinc(s/2),其中sinc(x) = sin(x)/x2.7 基本运算拉氏变换具有一些基本运算规则,如时移、倍乘和微分等。

这些运算可以用于求解更复杂的函数对应的拉氏变换。

详细的运算规则可以参考相应的数学教材。

3. 实际应用拉氏变换在信号处理、系统分析和电路设计等领域有着广泛的实际应用。

3.1 信号处理在信号处理中,常常需要对信号进行滤波、频域分析等操作。

通过将信号进行拉氏变换,可以将复杂的时域信号转换为频域函数,便于对信号特性的分析和处理。

3.2 系统分析拉氏变换在系统分析中有着重要的作用。

通过将系统的输入和输出进行拉氏变换,可以得到系统的传递函数,进而分析系统的频率响应、稳定性等性质。

3.3 电路设计在电路设计中,拉氏变换可以用于求解电路的导纳、阻抗等参数。

通过将电路的输入和输出进行拉氏变换,可以得到电路的传输函数,进而进行电路的设计和优化。

综上所述,拉氏变换是一种重要的数学工具,广泛应用于信号处理、系统分析、电路设计等领域。

最全拉氏变换计算公式

最全拉氏变换计算公式

1最全拉氏变换计算公式1. 拉氏变换的基本性质 1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][ '- -=-=----=-∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk k n n nn dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时)(])([s F s dtt f d L n nn = 3积分定理一般形式∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰==+-===+=++=+=nk t n n k n n nn t t t dt t f s s s F dt t f L sdt t f s dt t f s s F dt t f L sdt t f s s F dt t f L 101022022]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共初始条件为0时n n n ss F dt t f L )(]))(([=⎰⎰个共4 延迟定理(或称t 域平移定理))()](1)([s F e T t T t f L Ts -=--5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=-6 终值定理 )(lim )(lim 0s sF t f s t →∞→=7 初值定理 )(lim )(lim 0s sF t f s t ∞→→=8 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =-=-⎰⎰τττττ22. 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s)时间函数e(t) Z 变换E(z)1 1δ(t) 12 Tse --11∑∞=-=0)()(n T nT t t δδ1-z z 3 s1 )(1t1-z z 4 21s t2)1(-z Tz5 31s 22t32)1(2)1(-+z z z T6 11+n s!n t n)(!)1(lim 0aT n n n a ez z a n -→-∂∂- 7 as +1 at e - aTe z z-- 8 2)(1a s +atte- 2)(aT aT e z Tze ---9 )(a s s a+ ate--1))(1()1(aT aT e z z z e ----- 10 ))((b s a s ab ++-bt at e e --- bTaT e z ze z z ----- 11 22ωω+s t ωsin1cos 2sin 2+-T z z Tz ωω 12 22ω+s st ωcos1cos 2)cos (2+--T z z T z z ωω13 22)(ωω++a s t e atωsin - aTaT aT eT ze z Tze 22cos 2sin ---+-ωω 14 22)(ω+++a s a st eatωcos -aTaT aT e T ze z T ze z 222cos 2cos ---+--ωω15aT s ln )/1(1- T t a /az z -33. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

拉氏变换表(包含计算公式)

拉氏变换表(包含计算公式)

1拉氏变换及反变换公式1. 拉氏变换的基本性质 1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][ '- -=-=----=-∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk kn nnndtt f dt ffss F s dtt f dL f sf s F s dt t f dL f s sF dt t df L )(初始条件为0时)(])([s F s dtt f dL nnn=3 积分定理一般形式∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰==+-===+=++=+=nk t nn k n nnn t t t dt t f sss F dt t f L sdt t f sdt t f ss F dt t f L s dt t f ss F dt t f L 112222]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共初始条件为0时nnn ss F dt t f L )(]))(([=⎰⎰个共4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts-=--5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=-6 终值定理 )(lim )(lim 0s sF t f s t →∞→=7 初值定理 )(lim )(lim 0s sF t f s t ∞→→=8 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =-=-⎰⎰τττττ22. 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s)时间函数e(t) Z 变换E(z)1 1δ(t)12 Tse--11∑∞=-=)()(n T nT t t δδ1-z z 3 s1 )(1t1-z z 4 21st2)1(-z Tz5 31s22t32)1(2)1(-+z z z T6 11+n s!n tn)(!)1(limaTnn na ez zan -→-∂∂-7 as +1 ate- aTez z -- 8 2)(1a s + atte- 2)(aTaT ez Tze --- 9 )(a s s a + ate--1 ))(1()1(aTaTez z ze-----10 ))((b s a s ab ++- btatee---bTaTez z ez z ----- 11 22ωω+s tωsin 1cos 2sin 2+-T z z T z ωω12 22ω+s s tωcos1cos 2)cos (2+--T z z T z z ωω13 22)(ωω++a s t eatωsin - aTaT aTeT zez T ze22cos 2sin ---+-ωω 14 22)(ω+++a s a st eatωcos -aTaTaTeT ze zTzez 222cos 2cos ---+--ωω15aT s ln )/1(1-Tt a/az z-33. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

Laplace拉氏变换公式表

Laplace拉氏变换公式表

Laplace拉氏变换公式表1. 常数变换:对于常数C,其拉普拉斯变换为C/s,其中s是复数频率。

2. 幂函数变换:对于幂函数t^n,其中n为实数,其拉普拉斯变换为n!/s^(n+1)。

3. 指数函数变换:对于指数函数e^(at),其中a为实数,其拉普拉斯变换为1/(sa)。

4. 正弦函数变换:对于正弦函数sin(at),其中a为实数,其拉普拉斯变换为a/(s^2+a^2)。

5. 余弦函数变换:对于余弦函数cos(at),其中a为实数,其拉普拉斯变换为s/(s^2+a^2)。

6. 双曲正弦函数变换:对于双曲正弦函数sinh(at),其中a为实数,其拉普拉斯变换为a/(s^2a^2)。

7. 双曲余弦函数变换:对于双曲余弦函数cosh(at),其中a为实数,其拉普拉斯变换为s/(s^2a^2)。

8. 指数衰减正弦函数变换:对于指数衰减正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(s+a)^2+b^2。

9. 指数衰减余弦函数变换:对于指数衰减余弦函数e^(at)cos(bt),其中a和b为实数,其拉普拉斯变换为s+a)/(s+a)^2+b^2。

10. 指数增长正弦函数变换:对于指数增长正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。

Laplace拉氏变换公式表11. 幂函数与指数函数的乘积变换:对于函数t^n e^(at),其中n为实数,a为实数,其拉普拉斯变换为n!/(sa)^(n+1)。

12. 幂函数与正弦函数的乘积变换:对于函数t^n sin(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。

13. 幂函数与余弦函数的乘积变换:对于函数t^n cos(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。

14. 指数函数与正弦函数的乘积变换:对于函数e^(at) sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。

拉氏变换定义、计算、公式及常用拉氏变换反变换

拉氏变换定义、计算、公式及常用拉氏变换反变换

****拉普拉斯变换及反变换****定义:如果定义:• 是一个关于的函数,使得当时候,;•是一个复变量;• 是一个运算符号,它代表对其对象进行拉普拉斯积分;是的拉普拉斯变换结果。

则的拉普拉斯变换由下列式子给出:1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][- -=-=----=-∑11)1()1(1222)()()0()()(0)0(')(])([)0()(])([k k k k nk k n nnn dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时)(])([s F s dtt f d L n nn =2.表A-2 常用函数的拉氏变换和z变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。

第二节-拉氏变换公式

第二节-拉氏变换公式
拉氏变换是将时间域函数f(t)变换到s域内的复变函数F(s)。在定义中,函数f(t)需满足实函数、t<0时f(t)=0,以及t≥0时f(t)分段连续的条件。拉氏变换的公式为F(s)=L[f(t)],其中s=σ+jω,F(s)称为f(t)的拉氏变换或象函数,f(t)为F(s)的原函数。典型函数的拉氏变换包括阶跃函数、单位速度函数、幂函数等,每种函数都有对应的变换公式。此外,拉氏变换还遵循一系列运算定理,如线性定理、微分定理和积分定理,这些定理在求解复杂函数的拉氏变换时非常有用。例如,利用线性定理,可以先求各函数的象函数再进行减运算;微分定理则允许我们通过原函数的导数来求解其象函数。总之,拉氏变换是一种强大的数学工具,广泛应用于工程控制等领域。

拉氏变换表(包含计算公式)[1]1

拉氏变换表(包含计算公式)[1]1

1拉氏变换及反变换公式1. 拉氏变换的基本性质 1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][ '- -=-=----=-∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk k n n nn dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时)(])([s F s dtt f d L n nn = 3积分定理一般形式∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰==+-===+=++=+=nk t n n k n n nn t t t dt t f s s s F dt t f L sdt t f s dt t f s s F dt t f L sdt t f s s F dt t f L 101022022]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共初始条件为0时n n n ss F dt t f L )(]))(([=⎰⎰个共4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=--5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=-6 终值定理 )(lim )(lim 0s sF t f s t →∞→=7 初值定理 )(lim )(lim 0s sF t f s t ∞→→=8 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =-=-⎰⎰τττττ22. 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s)时间函数e(t) Z 变换E(z)1 1δ(t) 12 Tse --11∑∞=-=0)()(n T nT t t δδ1-z z 3 s1 )(1t1-z z 4 21s t2)1(-z Tz5 31s 22t32)1(2)1(-+z z z T6 11+n s!n t n)(!)1(lim 0aT n n n a ez z a n -→-∂∂- 7 as +1 at e - aTe z z-- 8 2)(1a s +atte- 2)(aT aT e z Tze ---9 )(a s s a+ ate--1))(1()1(aT aT e z z z e ----- 10 ))((b s a s ab ++-bt at e e --- bTaT e z ze z z ----- 11 22ωω+s t ωsin1cos 2sin 2+-T z z Tz ωω 12 22ω+s st ωcos1cos 2)cos (2+--T z z T z z ωω13 22)(ωω++a s t e atωsin - aTaT aT eT ze z Tze 22cos 2sin ---+-ωω 14 22)(ω+++a s a st eatωcos -aTaT aT e T ze z T ze z 222cos 2cos ---+--ωω15aT s ln )/1(1- T t a /az z -33. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

拉式变化公式表

拉式变化公式表

拉式变化公式表拉普拉斯变换(Laplace Transform)公式表:一、基本函数的拉普拉斯变换。

1. 单位阶跃函数。

- 函数定义:u(t)=0, t < 0 1, t≥0- 拉普拉斯变换:L[u(t)]=(1)/(s), Re(s)>02. 冲激函数(狄拉克δ函数)- 函数定义:δ(t),满足∫_-∞^∞δ(t)dt = 1且δ(t)=0 for t≠0 - 拉普拉斯变换:L[δ(t)] = 13. 指数函数。

- 函数定义:f(t)=e^at,其中a为常数。

- 拉普拉斯变换:L[e^at]=(1)/(s - a), Re(s)>a4. 正弦函数。

- 函数定义:f(t)=sin(ω t),其中ω为角频率。

- 拉普拉斯变换:L[sin(ω t)]=(ω)/(s^2)+ω^{2}, Re(s)>0 5. 余弦函数。

- 函数定义:f(t)=cos(ω t)- 拉普拉斯变换:L[cos(ω t)]=(s)/(s^2)+ω^{2}, Re(s)>0二、拉普拉斯变换的性质。

1. 线性性质。

- 若L[f_1(t)] = F_1(s),L[f_2(t)]=F_2(s),则对于任意常数a和b,L[af_1(t)+bf_2(t)]=aF_1(s)+bF_2(s)2. 时移性质。

- 若L[f(t)] = F(s),则L[f(t - t_0)u(t - t_0)]=e^-st_0F(s),其中t_0>03. 频移性质。

- 若L[f(t)] = F(s),则L[e^atf(t)]=F(s - a)4. 尺度变换性质。

- 若L[f(t)] = F(s),则L[f(at)]=(1)/(a)F((s)/(a)),a>05. 微分性质。

- 一阶导数:若L[f(t)] = F(s),则L[f^′(t)]=sF(s)-f(0)- 二阶导数:L[f^′′(t)] = s^2F(s)-sf(0)-f^′(0)- 一般地,n阶导数:L[f^(n)(t)]=s^nF(s)-s^n - 1f(0)-s^n - 2f^′(0)-·s - f^(n - 1)(0)6. 积分性质。

拉氏变换_精品文档

拉氏变换_精品文档

拉氏变换什么是拉氏变换拉氏变换(Laplace Transform)是一种将函数从时间域转换到复频域的数学工具。

它在工程学科和物理学中有广泛的应用,特别是在控制系统分析和信号处理领域。

拉氏变换通过积分运算将一个函数从时间域(t-domain)变换到频域(s-domain),其中s是一个复变量。

拉氏变换的定义给定一个函数f(t),其拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0, ∞] e^(-st) f(t) dt这里,s是复变量,e是自然对数的底数,t表示时间。

拉氏变换的性质拉氏变换具有许多有用的性质,以下是一些常见的性质:1.线性性质:L{af(t) + bg(t)} = aF(s) + bG(s),其中a和b是常数。

2.移位性质:L{f(t - a)} = e^(-as)F(s),其中a是常数。

3.初值定理:lim_[s→∞] sF(s) = f(0),其中f(0)是函数f(t)在t=0时的初值。

4.终值定理:lim_[s→0] sF(s) = lim_[t→∞] f(t),即函数f(t)在t→∞时的极限等于F(s)在s=0时的极限。

这些性质使得拉氏变换成为了解决微分方程问题以及计算复杂电路的有效工具。

拉氏变换的应用1. 信号处理在信号处理领域,拉氏变换用于分析和处理连续时间信号。

通过将信号从时间域转换到频域,可以更好地理解信号的频谱特性,并进行滤波、降噪、调制等处理。

2. 控制系统在控制系统分析中,拉氏变换被广泛用于研究和设计控制系统的性能和稳定性。

通过将控制系统表示为拉氏域的传输函数,可以方便地进行频率响应、稳定性分析和控制器设计。

3. 电路分析在电路分析中,拉氏变换用于求解电路的幅频特性、相频特性和传输函数。

通过将电路中的电压和电流转换到拉氏域,可以更方便地进行复杂电路的分析和计算。

4. 信号传输拉氏变换在信号传输中的应用非常广泛。

信号的拉氏变换可以帮助我们理解信号在传输过程中的衰减、失真和干扰等问题,从而优化信号传输的方案。

第三章 拉氏变换(2)

第三章 拉氏变换(2)
k11 − 6k12 = 1
− 6 k 11 = − 4
{
1 18 2 k11 = 3 k1 =
k12 = −
1 18
1 1 2 1 1 1 F ( s) = ⋅ + ⋅ 2 − ⋅ 18 s − 6 3 s 18 s
1 e 6t 2 f (t ) = + t− 18 3 18
⑵ 留数法求解
对于单极点对应的系数有 k i = F ( s )( s − si )
F (s) = ∑
n
(s − sk )n +1− p p =1
k1 p
s−4 k1 k11 k12 k1 s 2 + k11 s − 6k11 + k12 s 2 − 6k12 s F ( s) = 2 = = + 2 + s ( s − 6) s − 6 s s 2 ( s − 6) s
{
k1 + k12 = 0
求函数 f1(t)=t 和 f2(t)=sint 的卷积,即求 )=sin t * sint
解,依卷积的定义得 t ∗ sin t =
t
∫ τ sin(t − τ )dτ
0
t
t
利用分部积分可得 = τ cos(t − τ ) 0 − ∫0 cos(t − τ )dτ 卷积的交换性质:g(t)*h(t)=h(t)*g(t) 2. 卷积定理
用微分定理求常数k的拉氏变换
k l[kt ] = 2 s
6. 积分定理
k k l[k ] = s ⋅ 2 = s s
— 函数积分的拉氏变换 设函数 f (t)及其各重积分均符合拉氏变换定义, 且ℓ[ f (t)]=F(s),则 函数一重积分的拉氏变换: ,

(完整版)拉氏变换常用公式

(完整版)拉氏变换常用公式
Z变换E(z)
1
1
δ(t)
1
2
3
4
t
5
6
7
8
9Hale Waihona Puke 101112
13
14
15
用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设 是 的有理真分式
( )
式中系数 , 都是实常数; 是正整数。按代数定理可将 展开为部分分式。分以下两种情况讨论。
① 无重根
这时,F(s)可展开为n个简单的部分分式之和的形式。
(F-1)
式中, 是特征方程A(s)=0的根。 为待定常数,称为F(s)在 处的留数,可按下式计算:
(F-2)

(F-3)
式中, 为 对 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数
= (F-4)
2 有重根
设 有r重根 ,F(s)可写为
附录A拉普拉斯变换及反变换
表A-1拉氏变换的基本性质
1
线性定理
齐次性
叠加性
2
微分定理
一般形式
初始条件为0时
3
积分定理
一般形式
初始条件为0时
4
延迟定理(或称 域平移定理)
5
衰减定理(或称 域平移定理)
6
终值定理
7
初值定理
8
卷积定理
表A-2常用函数的拉氏变换和z变换表
序号
拉氏变换E(s)
时间函数e(t)
=
式中, 为F(s)的r重根, ,…, 为F(s)的n-r个单根;
其中, ,…, 仍按式(F-2)或(F-3)计算, , ,…, 则按下式计算:

第二节 拉氏变换公式

第二节 拉氏变换公式

L
f
(t) t
F(s)ds
s
F (s)ds
f (t)e stdtds
s
s0
f (t)dt
e stds
0
s
f (t ) d t [ 1 e st ]
0
t
s
f (t ) e st d t L [ f (t ) ]
0t
t
(2-29)
例2-10:求如下函数的拉氏变换
复数域微分定理
证:
Ltf (t)dF(s)
ds
(2-30)
dF(s)d
f(t)estdt
d[f(t)est] dt
ds ds 0
0 ds
tf(t)estdt L[tf(t)] 0
推论:
L(t)n f(t)dndFsn(s)
例2-11:求如下函数的拉氏变换
例2-12:已知因果函数f(t)的象函数
初值定理
(2-26)
尺度变换定理
证:令 t a
L f (at ) aF(as)
(2-28)

L[f(t)] f(t)estdt f()easd(a)
a 0a
0
a f()easd 0
再令 as
则 L[f(t)]af()easdaf()ed
a
0
0
aF()aF(as)
复数域积分定理
证:
f(t)
A
T O
f ’(t)
解:
t
f(t)= f ’(t)+ f ’’(t) =Aε(t) -Aε(t-T)
O f ’’(t)
O
L[f(t)]= A/s- A/s ·e-sT
t

积分变换第二章拉氏变换

积分变换第二章拉氏变换
L [ f ( t )] = F ( s )
则:
∞ f (t ) L = ∫s F ( s )d s . t
∞ ∞ ∞ f (t ) 一般地 , 有L n = ∫ d s ∫ d s⋯ ∫ F ( s )d s s s s t n次
17
例9 求函数
sht f (t ) = t
d L [ f ( t )] = −L [ tf ( t )] Re( s ) > c ds
推论
d n n L [ f ( t )] = ( −1) L[t f ( t )] Re( s ) > c n ds
n
10
f ( t ) = t 2 cos kt (k为实数 的拉氏变换 为实数) 例4 求 为实数 的拉氏变换.
2
2.拉氏变换的存在定理 若函数 (t)满足 拉氏变换的存在定理 若函数f 满足 满足: (1) 在t ≥ 0的任一有限区间上分段连续 的任一有限区间上分段连续; 的任一有限区间上分段连续 (2) 当t→+∞时, f (t)的增长速度不超过某一指数函数 即存 →+∞时 的增长速度不超过某一指数函数, →+∞ 的增长速度不超过某一指数函数 在常数 M > 0及c ≥ 0, 使得 及 |f (t)|≤ M e ct, 0≤ t <+∞ ≤ ≤ +∞ (t)的拉氏变换 则 f (t)的拉氏变换
f ( n) ( t ) = s n F ( s ) L
( Re s > c ) ( n = 1,2,⋯)
此性质可以使我们有可能将f 的微分方程 此性质可以使我们有可能将 (t)的微分方程 转化为F(s)的代数方程 的代数方程. 转化为 的代数方程

(2021年整理)Laplace拉氏变换公式表

(2021年整理)Laplace拉氏变换公式表

(完整)Laplace拉氏变换公式表编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)Laplace拉氏变换公式表)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)Laplace拉氏变换公式表的全部内容。

附录A 拉普拉斯变换及反变换1。

表A—1 拉氏变换的基本性质2.表A-2 常用函数的拉氏变换和z变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F (s )可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A (s )=0的根。

i c 为待定常数,称为F (s )在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→ (F-2) 或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械工程控制基础
第二章 拉普拉斯变换的数学方法 终值定理
原函数f(t)的稳态性质 (2-25) sF(s)在s=0邻域内的性质
机械工程控制基础
第二章 拉普拉斯变换的数学方法 初值定理
(2-26)
机械工程控制基础
第二章 拉普拉斯变换的数学方法 尺度变换定理
证:令


t a
t L f ( ) aF (as) a
st d [ f (t )e dF ( s) d ] st f (t )e dt dt 0 ds ds 0 ds
(2-30)
tf (t )e st dt L[tf (t )]
0

推论:
n d F (s) n L (t ) f (t ) ds n
第二章 拉普拉斯变换的数学方法
由于 δ(t)=dε(t)/dt
L[ (t )] L[d (t ) / dt]
1 =s - 0 s
=1
机械工程控制基础
第二章 拉普拉斯变换的数学方法 积分定理
机械工程控制基础
第二章 拉普拉斯变换的数学方法 多重积分
(2-22)
原函数的n重积分像函数中除以sn
(2-9)
式中:s=σ+jω(σ,ω均为正实数); F(s)称为函数f(t)的拉普拉氏变换或象函数; f(t)称为F(s)的原函数; L为拉氏变换的符号。
机械工程控制基础
第二章 拉普拉斯变换的数学方法
e st 称为收敛因子。
积分的结果不再是 t 的函数,而是复变量 s的函数。 所以拉氏变换是把一个时间域的函数f(t)变换到 s 域内的 复变函数F(s)。
机械工程控制基础
第二章 拉普拉斯变换的数学方法
由复位移定理
s 1 e f (3t 2) e 2 (s 1) 9
t
2 ( s 1) 3
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练 习
练习2-1:求如下函数的拉氏变换 练习2-2:求如下函数的拉氏变换
练习2-3:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
例2-11:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
例2-12:已知因果函数f(t)的象函数
s F (s) 2 s 1
t e 求 f (3t 2) 的象函数
解:由于
s f (t ) 2 s 1
s 2 s f (t 2) 2 e 利用实位移定理 s 1 s 2s 2 s 1 s 3 e 3 3 由尺度变换定理 f (3t 2) e 3 ( s )2 1 s2 9 3
机械工程控制基础
第二章 拉普拉斯变换的数学方法 线性定理
叠加定理
比例定理
机械工程控制基础
第二章 拉普拉斯变换的数学方法
例2-4:求以下函数的拉氏变换:
f(t)=K(1-e-at)
L[K(1-e-at)] =L[K] -L[Ke-at]
K K Ka sa s s( s a)
结论: 由此可见,根据拉氏变换的线性性质,求函 数乘以常数的象函数以及求几个函数相加减的结果 的象函数时,可以先求各函数的象函数再进行计算。
机械工程控制基础
第二章 拉普拉斯变换的数学方法
例2-7:求 et sin t 的拉氏变换
解:直接用复位移定理得:
L e
t
sin t (s )2 2
求 e t cos t 的拉氏变换?
机械工程控制基础
第二章 拉普拉斯变换的数学方法
延时定理(实位移定理)
0
(n 1) n(n) n!


n
u st
L[t ] t e dt
n st 0
1 s
n 1


0
n! u e du n1 s
n u
(2-14)
机械工程控制基础
第二章 拉普拉斯变换的数学方法 幂函数的拉氏变换(法2)
(2-15)
机械工程控制基础
第二章 拉普拉斯变换的数学方法
1 d sin(t ) t ) 解:(1) cos( dt
L[sin(t )] 2 s 2
1 d sin(t ) L[cos(t )] L dt 1 s s 2 0 2 2基础 (2) f(t)=δ(t)
练习2-4:求如下函数的拉氏变换
练习2-5:求如下函数的拉氏变换
练习2-6:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-7:求如下函数的拉氏变换 练习2-8:求如下函数的拉氏变换
练习2-9:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-1:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
第二节 拉氏变换
机械工程控制基础 一、拉氏变换的定义
第二章 拉普拉斯变换的数学方法
设函数f(t)满足: 1. f(t)实函数; 2. 当t<0时 , f(t)=0; 3. 当t0时, f(t)在每个区间上是分段连续的 3. f(t)的积分 f (t )e st dt 在s的某一域内收敛,s为复 0 变数 则函数f(t)的拉普拉氏变换存在,并定义为:
机械工程控制基础
第二章 拉普拉斯变换的数学方法 微分定理
机械工程控制基础
第二章 拉普拉斯变换的数学方法 多重微分
(2-21)
原函数的高阶导数 像函数中s的高次代数式
机械工程控制基础
第二章 拉普拉斯变换的数学方法
例2-5:利用导数性质求以下函数的象函数:
(1)f(t)=cos(ωt) (2)f(t)=δ(t)
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-6:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-7:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-8:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-9:求如下函数的拉氏变换
1 st f (t )dt [ e ] t s

0
f (t ) st f (t ) e dt L[ ] t t
机械工程控制基础
第二章 拉普拉斯变换的数学方法
例2-10:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法 复数域微分定理
证:
dF ( s ) L tf (t ) ds
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-2:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-3:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-4:求如下函数的拉氏变换
机械工程控制基础
第二章 拉普拉斯变换的数学方法
练习2-5:求如下函数的拉氏变换
L[ f (t a)] f (t a)e st dt
0

令=t-a
L[ f (t a)] f ( )e s ( a ) d ( a)
0

e
as


0
f ( )e s d
(2-24)
e as F ( s )
原函数平移 像函数乘以 e-s
机械工程控制基础
第二章 拉普拉斯变换的数学方法 复数域积分定理
证:
f (t ) L t


s
F ( s )ds
(2-29)


s
F ( s )ds

s


0
f (t )e st dtds
s
f (t )dt e st ds
0


0
(2-28)
t t st L[ f ( )] f ( )e dt f ( )e as d (a ) 0 0 a a
a f ( )e as d
0

再令 则
as
t as L[ f ( )] a f ( )e d a f ( )e d 0 0 a aF ( ) aF (as)
拉氏反变换的定义
(2-10)
其中L-1为拉氏反变换的符号。 用符号L-1 [ ]表示对方括号里的复变函数作拉氏 反变换。
L [ F ( s )]
1
1 2
j
c j
c j
F ( s )e ds
st
(2-11)
机械工程控制基础
第二章 拉普拉斯变换的数学方法
二、 典型函数的拉氏变换 阶跃函数的拉氏变换
f (t)
2 T
例2-9:求图所示三角波的拉氏变换 从图可知,三角波左边函数斜率
4 为 k1 2 ,右边函数斜率为 T 4 k2 2 ,则分段函数可表示为: T
O
T
T
2
t
f (t ) f1 (t ) f 2 (t ) f11 (t ) f12 (t ) f 21 (t ) f 22 (t ) T T f11 (t ) f11 (t ) f11 (t ) f11 (t T ) 2 2 4 4 T 4 T 4 2 t 2 (t ) 2 (t ) 2 (t T ) T T 2 T 2 T
相关文档
最新文档