最新人教版八年级数学上册讲义

合集下载

第十二章 全等三角形 讲义 2021--2022学年人教版八年级数学上册

第十二章 全等三角形 讲义      2021--2022学年人教版八年级数学上册

第十二章全等三角形讲义题型一、全等三角形的概念和性质例1、下列说法一定正确的是( )A.所有的等边三角形都是全等三角形B.全等三角形是指形状相同的两个三角形C.全等三角形是指面积相等的两个三角形D.全等三角形的周长和面积分别相等变式1、下列各组图形中,全等的一组是()A.(A) B.(B) C.(C) D.(D)变式2、下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等题型二、全等三角形的判定(SSS)例1、如图,AB=AC,AD=AE,CD=BE.求证:∠DAB=∠EAC.变式1、如图,AB DE =,AC DF =,BE CF =,求证:ABC DEF △≌△.变式2、如图,已知AB.ED.BC=DF.AF=EC.求证:(1.△ABC ≌△EDF..2.BC ∥DF.例1、已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).变式1、如图,点E 在CD 上,BC 与AE 交于点F ,AB=CB ,BE=BD ,∠1=∠2.(1)求证:△ABE ≌△CBD ;(2)证明:∠1=∠3.变式2、 如图,点D 在AB 上,点E 在AC 上,CD 与BE 相交于点O ,且AD =AE ,AB =AC ,若∠B =20°,则∠C =_______.例1、如图,点B,C,E,F在同一直线上,BE=CF,AB∥DE,AC∥DF,求证:AC=DF .变式1、如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O (1)求证:△AEC≌△BED;(2)若∠1=38°,求∠BDE的度数.变式2、如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.题型五、全等三角形的判定(AAS)例1、如图,AF=CE,AD∥CB,∠B=∠D,求证:△ADF≌△CBE.若∠D=20°,∠C=25°,求∠AEB的度数.变式1、如图,AB CB ⊥,DC CB ⊥,E 、F 在BC 上,A D ∠=∠,BE CF =,求证:AF DE =.变式2、如图,已知∠1=∠2.∠3=∠4,求证:BC=BD.题型六、全等三角形的判定(HL )例1、如图,∠A=∠D=90°.AC=DB.AC.DB 相交于点O .求证:OB=OC.变式1、已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.变式2、已知:如图,AC与BD相交于点O,AC⊥BC,AD⊥BD,垂足分别为点C、D,且AC=BD.求证:OA =OB.题型七、角平分线的性质与判定例1、已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.变式1、如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.变式2、如图,在⊥ABC中,⊥C=90°,AD平分⊥CAB,交CB于点D,过点D作DE⊥AB,于点E (1)求证:⊥ACD⊥⊥AED;(2)若⊥B=30°,CD=1,求BD的长.题型八、角平分线的性质的应用例1、 如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和38,则△EDF 的面积为( )A .8B .12C .4D .6变式1、到三角形三边距离相等的点是( )A.三角形三条高线的交点B.三角形三条中线的交点C .三角形三边垂直平分线的交点 D.三角形三条内角平分线的交点变式2、已知在△ABC 中,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,若AB=6,AC=8,ABC 28S ∆=,则DE=_______________题型九、全等三角形性质的应用例1、如图,在△ABC 中,D 是边BC 上的一点,AB =DB ,BE 平分∠ABC ,交AC 边于点E ,连接DE .(1)求证:∠AEB =∠DEB ;(2)若∠A =100°,∠C =50°,求∠AEB 的度数.变式1、如图,在△ABC中,AB=AC,∠BAC=80°,点D为△ABC内一点,∠ABD=∠ACD=20°,E为BD延长线上的一点,且AB=AE.(1)求∠BAD的度数;(2)求证:DE平分∠ADC;(3)请判断AD,BD,DE之间的数量关系,并说明理由.变式2、王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.题型十、全等三角形综合问题=,例1、如图,要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使BC CD 再作出BF的垂线DE,使点A,C,E在同一条直线上(如图所示),可以说明ABC≌EDC,得=,因此测得DE的长就是AB的长,判定ABC≌EDC,最恰当的理由是()AB DEA.边角边 B.角边角 C.边边边 D.边边角例2、如图,∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE;(2)若OM平分∠EOF,求证:OM⊥EF.变式1、在四边形ABCD中,E为BC边中点.已知:如图,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;变式2、如图,某同学不小心把一块三角形玻璃打碎成三块,现在要到玻璃店配一块与原来完全相同的玻璃,最省事的方法是( )A.带①和②去 B.只带②去 C.只带③去 D.都带去题型十一、多次证明全等例1、如图,AC OB ⊥于点C ,BD OA ⊥于点D ,AC 与BD 交于点E ,OA OB =,求证:AE BE =.变式1、如图,已知B 、E 是线段AC 、AD 上的点,且AB AE =,AC AD =,BD与CE 相交于点F .求证:AF 是CAD ∠的角平分线.题型十二、全等三角形提升题(选讲)例1、如图,点C 是AB 的中点,点E 是CD 上一点,AEC D ∠=∠,求证:AE BD =.变式1、如图,90ACB ︒∠=,AC BC =,过点C 作CF AE ⊥于F ,过点B 作BD BC ⊥交CF 延长线于点D .求证:AE CD =.变式2、如图,2B C ∠=∠,AD 是BAC ∠的角平分线.求证:AC AB BD =+.变式3、如图,ABC △中,点D 是BC 的中点,延长BA 至E ,连接ED 交AC 于F ,若BE FC =.求证:AE AF =.。

新人教版八年级上册数学培优讲义(全套15讲)

新人教版八年级上册数学培优讲义(全套15讲)

第一讲 三角形考点·方法·破译1.了解与三角形有关的线段(边、高、中线、角平分线),会画出任意三角形的高、中线、角平分线. 2.知道三角形两边的和大于第三边,两边之差小于第三边. 3.了解与三角形有关的角(内角、外角) . 4.掌握三角形三内角和等于180°,三角形的一个外角等于与它不相邻的两个内角的和. 5.会用方程的思想解与三角形基本要素相关的问题.6.会从复杂的图形中找到基本图形,从而寻求解决问题的方法.经典·考题·赏析【例1】若的三边分别为4,x ,9,则x 的取值范围是______________,周长l 的取值范围是______________ ;当周长为奇数时,x =______________.【变式题组】1.若△ABC 的三边分别为4,x ,9,且9为最长边,则x 的取值范围是______________,周长l 的取值范围是______________.2.设△ABC 三边为a ,b ,c 的长度均为正整数,且a <b <c ,a +b +c =13,则以a ,b ,c 为边的三角形,共有______________个.3.用9根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的三角形个数是( ). A .1 B .2 C .3 D .4【例2】已知等腰三角形的一边长为18cm ,周长为58cm ,试求三角形三边的长.【变式题组】1.已知等腰三角形两边长分别为6cm ,12cm ,则这个三角形的周长是( )A .24cmB .30cmC .24cm 或30cmD .18cm2.已知三角形的两边长分别是4cm 和9cm ,则下列长度的四条线段中能作为第三条边的是( )A .13cmB .6cmC .5cmD .4cm3.等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分,则此等腰三角形的腰长为______________. 【例3】如图AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线,若S △GFC=1cm 2,则S △ABC =______________.GFE DBAC1.如图,已知点D 、E 、F 分别是BC 、AD 、BE 的中点,S △ABC =4,则S △EFC =______________.2.如图,点D 是等腰△ABC 底边BC 上任意一点,DE ⊥AB 于E ,DF ⊥AC 于F ,若一腰上的高为4cm ,则DE +DF =______________.3.如图,已知四边形ABCD 是矩形(AD >AB ) ,点E 在BC 上,且AE =AD ,DF ⊥AE 于F ,则DF 与AB的数量关系是______________.【例4】已知,如图,则∠A +∠B +∠C +∠D +∠E =______________.【变式题组】1.如图,则∠A +∠B +∠C +∠D +∠E =______________.2.如图,则∠A +∠B +∠C +∠D +∠E +∠F =______________.3.如图,则∠A +∠B +∠C +∠D +∠E +∠F =______________.【例5】如图,已知∠A =70°,BO 、CO 分别平分∠ABC 、∠ACB .则∠BOC = ______________.(第1题图)FE DBA C(例4题图)BDACE(第3题图)A BCDE FOBA C(第2题图)FEBCAD (第3题图)FDBCA E(第2题图)ABFE D C(第1题图)ABEDC1.如图,∠A =70°,∠B =40°,∠C =20°,则∠BOC =______________.3.如图,∠O =140°,∠P =100°,BP 、CP 分别平分∠ABO 、∠ACO ,则∠A =______________.【例6】如图,已知∠B =35°,∠C =47°,AD ⊥BC ,AE 平分∠BAC ,则∠EAD =______________.【变式题组】 1.(改)如图,已知∠B =39°,∠C =61°,BD ⊥AC ,AE 平分∠BAC ,则∠BFE=__________.2.如图,在△ABC 中,∠ACB =40°,AD 平分∠BAC ,∠ACB 的外角平分线交AD 的延长线于点P ,点F 是BC 上一动点(F 、D 不重合) ,过点F 作EF ⊥BC 交于点E ,下列结论:①∠P +∠DEF 为定值,②∠P -∠DEF 为定值中,有且只有一个答案正确,请你作出判断,并说明理由.*【例7】如图,在平面内将△ABC 绕点A 逆时针旋转至△AB ′C ′,使CC ′∥AB ,若∠BAC =70°,则旋转角α=______________.【变式题组】1.如图,用等腰直角三角形板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的直角α=______________.(第1题图)OBA C(第3题图)P OBA C(例6题图)E DAB C(第2题图)DE PC AG B F (第1题图)F E DAB C C'B'A BC2.如图,在平面内将△AOB 绕点O 顺时针旋转α角度得到△OA ′B ′,若点A ′在AB 上时,则旋转角α=______________.(∠AOB =90°,∠B =30°)3.如图,△ABE 和△ACD 是△ABC 沿着AB 边,AC 边翻折180°形成的,若∠BAC =130°,则∠α=______________.演练巩固·反馈提高1.如图,图中三角形的个数为( )A .5个B .6个C .7个D .8个2.如果三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .不确定 3.有4条线段,长度分别是4cm ,8cm ,10cm ,12cm ,选其中三条组成三角形,可以组成三角形的个数是( )A .1个B .2个C .3个D .4个 4.下列语句中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形的一个外角等于这个三角形的两个内角的和C .三角形的外角中,至少有两个钝角D .三角形的外角中,至少有一个钝角5.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定 6.若一个三角形的一个外角大于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定7.如果等腰三角形的一边长是5cm ,另一边长是9cm ,则这个三角形的周长是______________.8.三角形三条边长是三个连续的自然数,且三角形的周长不大于18,则这个三角形的三条边长分别是______________. 9.如图,在△ABC 中,∠A =42°,∠B 与∠C 的三等分线,分别交于点D 、E ,则∠BDC 的度数是______________.(第1题图)α22°OBMA(第2题图)B'A'AO B(第3题图)αEDCBAE D AB CF G10.如图,光线l 照射到平面镜上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=55,∠γ=75°,∠β=______________.11.如图,点D 、E 、F 分别是BC 、AD 、BE 的中点,且S △EFC =1,则S △ABC =______________. 12.如图,已知: ∠1=∠2,∠3=∠4,∠BAC =63°,则∠DAC =______________. 13.如图,已知点D 、E 是BC 上的点,且BE =AB ,CD =CA ,∠DAE =13∠BAC ,求∠BAC 的度数培优升级·奥赛检测1.在△ABC 中,2∠A =3∠B ,且∠C -30°=∠A +∠B ,则△ABC 是( )A .锐角三角形B .钝角三角形C .有一个角是30°的直角三角形D .等腰直角三角形 B . C .2.已知三角形的三边a 、b 、c 的长都是整数,且a ≤b ≤c ,如果b =7,则这样的三角形共有( )A .21个B .28个C .49个D .54个 3.在△ABC 中,∠A =50°,高BE 、CF 交于O 点,则∠BOC =______________. 4.在等腰△ABC 中,一腰上的高与另一腰的夹角为26°,则底角的度数为______________. 5.如图,BP 平分∠ABC 交CD 于点F ,DP 平分∠ADC 交AB 于点E ,若∠A =40°,∠C =38°,则∠P = ______________.6.如图,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为(0,a )和(9,a ).点E 在AB 上 ,且AE =13AB .点F 在OC 上 ,且OF =13OC ,点G 在OA 上,且使△GEC 的面积为16,试求α的值.(第9题图)D EBACxy EBG FOCAγβα(第10题图)ⅡⅠ(第11题图)FE DABC(第13题图)D E ABC4321(第12题图)DBA CG FE PAB CDBACDEF 7.如图,已知四边形ABCD 中,∠A +∠DCB =180°,两组对边延长后分别交于P 、Q 两点,∠P 、∠Q 的平分线交于M ,求证PM ⊥QM .第二讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( )A .5对B .4对C .3对D .2对【变式题组】 1.(武汉2011)下列判断中错误的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 MQPABCDA F C ED B 2.(黄冈)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.3.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【变式题组】1.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( )A .2B .3C .4D .52.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. AE第1题图A BCDEBCDO第2题图A BC DO F E A C E F B D3.(孝感2013)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【变式题组】1.(绍兴2013)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58°2.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF3.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.EFB AB P D EC第1题图ACDG 第2题图B (E )OC F 图③FA B C DE FAB (E )C DDA图②图①AFECB DA B C D F E【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【变式题组】 1.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:AF ⊥CD .2.(湖州市竞赛试题)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am3.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE的面积为__________AECBA 75° C45° BNM第2题图第3题图DBF AC E NMPDD A CB FE21ABC P Q EF D1.(海南2011)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°2.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40°3.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( ) A .SAS B .ASA C .AAS D .SSS 4.(武汉2012)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°5.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( ) A . △ABE ≌△CBD B . ∠ABE =∠CBD C . ∠ABC =∠EBD =45° D . AC ∥BE6.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对7.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.8.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB的度数为_______.9.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______E2 1N AB DC 第5题图ABCDEAB CD第4题图第6题图M第3题图第1题图C AO D BP第2题图ACA /B B /a αcca50° b72° 58°D C10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____.11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .D A C .QP.B第10题图AB CDE 第9题图EABC D ABC DEF O C AEBD 第7题图第8题图D B A CE FA EB F DC BD E C l AAEF C DB 培优升级·奥赛检测1.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( )A .4对B .5对C .6对D .7对2.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③3.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC4.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等5.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______. 6.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE =AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)7.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.8.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线. 求证:AC =2AE .AB E D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFC D 第1题图B第2题图第3题图4321NM ABO DP A D EG CHBA EB DC 9.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE =90°, ∠BAC=∠EAD .求证:∠CED =90°.10.如图,AB =AD ,AC =AE ,∠BAD =∠CAE =180°. AH ⊥AH 于H ,HA 的延长线交DE 于G. 求证:GD=GE .第三讲 角平分线的性质与判定考点·方法·破译1.角平分线的性质定理:角平分线上的点到角两边的距离相等.2.角平分线的判定定理:角的内角到角两边距离相等的点在这个角的平分线上. 3.有角平分线时常常通过下列几种情况构造全等三角形.经典·考题·赏析【例1】如图,已知OD 平分∠AOB ,在OA 、OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD .求证:PM =PNP CA B MN M N A B D C P E D A BC D CA B 321FEDCAB 1.如图,CP 、BP 分别平分△ABC 的外角∠BCM 、∠CBN .求证:点P 在∠BAC 的平分线上.2.如图,BD 平分∠ABC ,AB =BC ,点P 是BD 延长线上的一点,PM ⊥AD ,PN ⊥CD .求证:PM =PN【例2】(天津竞赛题)如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),如果∠D =120°,求∠B 的度数【变式题组】1.如图,在△ABC 中,CD 平分∠ACB ,AC =5,BC =3.求ACD CBDSS ∆∆2.(河北竞赛)在四边形ABCD 中,已知AB =a ,AD =b .且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画图并证明你的结论.【例3】如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE .求证:CE =12BDD E C A B DF E B A C第1题图D C B A第2题图D B CA E P 第3题图Q S R PBA C 第4题图E F B D A C 第5题图E B C A 1.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E ,求证:AB =AC +BD .2.如图,在△ABC 中,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .⑴请你判断FE 和FD 之间的数量关系,并说明理由; ⑵求证:AE +CD =AC .演练巩固·反馈提高1.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于D ,若CD =n ,AB =m ,则△ABD 的面积是( )A .13mn B .12mn C . mn D .2 mn2.如图,已知AB =AC ,BE =CE ,下面四个结论:①BP =CP ;②AD ⊥BC ;③AE 平分∠BAC ;④∠PBC=∠PCB .其中正确的结论个数有( )个 A . 1 B .2 C .3 D .43.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S .若AQ =PQ ,PR =PS ,下列结论:①AS =AR ;②PQ ∥AR ;③△BRP ≌△CSP .其中正确的是( ) A . ①③ B .②③ C .①② D .①②③4.如图,△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,则下列四个结论中:①AD 上任意一点到B 、C 的距离相等;②AD 上任意一点到AB 、AC 的距离相等;③AD ⊥BC 且BD =CD ;④∠BDE =∠CDF .其中正确的是( ) A .②③ B .②④ C .②③④ D .①②③④ 5.如图,在Rt △ABC 中,∠ACB =90°,∠CAB =30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,则∠AEB 的度数为( ) A .50° B .45° C .40° D .35°6.如图,P 是△ABC 内一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,且PD =PE =PF ,给出下列结论:①AD =AF ;②AB +EC =AC +BE ;③BC +CF =AB +AF ;④点P 是△ABC 三条角平分线的交点.其中正确的序号是( )第6题图F ED PA B C 第7题图P ABCE F 第8题图DABC E第9题图ED C AB 第10题图K NMQ CBA F BDE C A OFE D A B Cl 1l 2DC FG E P AB C D E O B A 7.如图,点P 是△ABC 两个外角平分线的交点,则下列说法中不正确的是( )A .点P 到△ABC 三边的距离相等B .点P 在∠ABC 的平分线上C .∠P 与∠B 的关系是:∠P +12∠B =90°D .∠P 与∠B 的关系是:∠B =12∠P8.如图,BD 平分∠ABC ,CD 平分∠ACE ,BD 与CD 相交于D .给出下列结论:①点D 到AB 、AC 的距离相等;②∠BAC =2∠BDC ;③DA =DC ;④DB 平分∠ADC .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个9.如图,△ABC 中,∠C =90°AD 是△ABC 的角平分线,DE ⊥AB 于E ,下列结论中:①AD 平分∠CDE ;②∠BAC =∠BDE ;③ DE 平分∠ADB ;④AB =AC +BE .其中正确的个数有( ) A .3个 B .2个 C .1个 D .4个10.如图,已知BQ 是∠ABC 的内角平分线,CQ 是∠ACB 的外角平分线,由Q 出发,作点Q 到BC 、AC和AB 的垂线QM 、QN 和QK ,垂足分别为M 、N 、K ,则QM 、QN 、QK 的关系是_________ 11.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC .求证:BE =CF12.如图,在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD ⊥EF .培优升级·奥赛检测1.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( ) A .一处 B .二处 C .三处 D .四处2.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :CD =9:7,则D 到AB边的距离为( ) A .18 B .16 C .14 D .123.如图,△ABC 中,∠C =90°,AD 是△ABC 的平分线,有一个动点P 从A 向B 运动.已知:DC =3cm ,DB =4cm ,AD =8cm .DP 的长为x (cm ),那么x 的范围是__________GPF E DCBAPD AB C Q P C B A4.如图,已知AB ∥CD ,PE ⊥AB ,PF ⊥BD ,PG ⊥CD ,垂足分别为E 、F 、G ,且PF =PG =PE ,则∠BPD=__________5.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的平分线的交点,OE ⊥AC ,且OE =2,则两平行线AB 、CD间的距离等于__________ 6.如图,AD 平分∠BAC ,EF ⊥AD ,垂足为P ,EF 的延长线于BC 的延长线相交于点G .求证:∠G =12(∠ACB -∠B )7.如图,在△ABC 中,AB >AC ,AD 是∠BAC 的平分线,P 为AC 上任意一点.求证:AB -AC >DB -DC8.如图,在△ABC 中,∠BAC =60°,∠ACB =40°,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别为∠BAC 、∠ABC 的角平分线上.求证:BQ +AQ =AB +BP第四讲 轴对称及轴对称变换考点·方法·破译1.轴对称及其性质把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫对称轴.轴对称的两个图形有如下性质:①关于某直线对称的两个图形是全等形;②对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2.线段垂直平分线平分.性质定理:线段垂直平分线上的点与这条线段两个端点的距离相等.判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.当已知条件中出现了等腰三角形、角平分线、高(或垂线)、或求几条折线段的最小值等情况时,通常考虑作轴对称变换,以“补齐”图形,集中条件.经典·考题·赏析【例1】(兰州)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()【变式题组】1.将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是()2.(荆州)如图,将矩形纸片ABCD沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上,叠完后,剪一个直径在BC上的半圆,再展开,则展开后的图形为()【例2】(襄樊)如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A’B’C’,则与点B’关于x轴对称的点的坐标是()A.(0,-1)B.(1,1)C.(2,-1)D.(1,-1)【变式题组】1.若点P(-2,3)与点Q(a,b)关于x轴对称,则a、b的值分别是()A.-2,3 B.2,3 C.-2,-3 D.2,-32.在直角坐标系中,已知点P(-3,2),点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,则点R的坐标是___________.3.(荆州)已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的取值范【例3】如图,将一个直角三角形纸片ABC(∠ACB=90°),沿线段CD折叠,使点B落在B1处,若∠ACB1=70°,则∠ACD=()A.30°B.20°C.15°D.10°【变式题组】1.(孝感)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在点D’、C’的位置.若∠EFB=65°,则∠AED’等于()A.70°B.65°C.50°D.25°2.如图,△ABC中,∠A=30°,以BE为边,将此三角形对折,其次,又以BA为边,再一次对折,C点落在BE上,此时∠CDB=82°,则原三角形中∠B=___________.【例4】如图,在△ABC中,AD为∠BAC的平分线,EF是AD的垂直平分线,E为垂足,EF交BC的延长线于点F,求证:∠B=∠CAF.【变式题组】1.如图,点D在△ABC的BC边上,且BC=BD+AD,则点D在__________的垂直平分线上.2.如图,△ABC中,∠ABC=90°,∠C=15°,DE⊥AC于E,且AE=EC,若AB=3cm,则DC=___________cm.3.如图,△ABC中,∠BAC=126°,DE、FG分别为AB、AC的垂直平分线,则∠EAG=___________.4.△ABC中,AB=AC,AB边的垂直平分线交AC于F,若AB=12cm,△BCF的周长为20cm,则△ABC的周长是___________cm.【例5】(荆州)如图,在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面的备用图中画出所有这样的△DEF.【变式题组】1.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有___________个.2.如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:⑴涂黑部分的面积是原正方形面积的一半;⑵涂黑部分成轴对称图形。

新人教版八年级上册数学全册课件

新人教版八年级上册数学全册课件

2020/10/21
注意:
A
知1-讲
c
b
1.三角形的三边用字母表示时,字
母没有顺序限制.
B
aC
2.三角形的三边,有时也用一个小写字母来表示.
如:△ABC的三边中,顶点A所对的边BC也可表示为a,
顶点B所对的边AC也可表示为b,顶点C所对的边AB也可
表示为c.
3.一般情况下,我们把边BC叫做 A的对边,AC,AB叫
2020/10/21
知2-讲
按 角 分
按 边 分
2020/10/21
三角形的分类
锐角三角形
直角三角形 钝角三角形
三边都不相等的三角形 底边和腰不相等
等腰三
三边都 角形
不相等
的三角 等边三

角形
等腰三角形 的等腰三角形
三角形
等边三角形
知2-练
1 下列说法:①等边三角形是等腰三角形;②等腰 三角形也可能是直角三角形;③三角形按边分类 可分为等腰三角形、等边三角形和三边都不相等 的三角形;④三角形按角分类应分为锐角三角形、 直角三角形和钝角三角形.其中正确的有( C ) A.1个 B.2个 C.3个 D.4个
同理有
AC+BC>AB,

AB+BC>AC.

一般地,我们有
三角形两边的和大于第三边. 由不等式②③移项可得BC>AB-AC,BC>AC-AB. 这就是说,三角形两边的差小于第三边.
2020/10/21
知3-导
例1 用一条长为18 cm的细绳围成一个等腰三角形. (1) 如果腰长是底边长的2倍,那么各边的长是多少? (2) 能围成有一边的长是4 cm的等腰三角形吗?为什么?

初中数学人教版八年级上册:第3讲 全等三角形(一)预习讲义

初中数学人教版八年级上册:第3讲 全等三角形(一)预习讲义

B.全等三角形是指面积相等的两个三角形
C.全等三角形的周长和面积分别相等
D.所有等边三角形都是全等三角形
⑶如图是两个全等三角形,图中的字母表示三角形的边长,则∠1=
D 度.
【例 2】⑴如图:△ABC≌△DBF,∠B 的对应角是
,∠C 的对应角是
,∠BAC 的对应
角是
;AB 的对应边是
,AC 的对应边是
A
B
C
知识点
典型范例
三边分别相等的两个三角形全等(可以简 写成“边边边”或“SSS”).
在△ABC 和△DEF 中,
AB=DE BC=EF
E
AC=DF
∴△ABC≌△DEF(SSS).
典例精练
【例 3】如图,已知△ABC 中,AB=AC,点 D 是 BC 边上的中点.求证:△ABD≌△ACD.
证明:∵D 是 BC 的中点,
ALeabharlann ∴.在△ABD 与△ACD 中,
_______ ∵ _______
AB = AC
B
D
C
∴△ABD≌△ACD(SSS)
3
【例 4】如图,点 B,E,C,F 在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.
【例 5】如图,已知 AC,BD 相交于点 O,且 AB=DC,AC=DB,能得到∠A=∠D 吗?为什么?
,BC 的对应边是

⑵如图,△ABC≌△CDA,AB 和 CD,BC 和 DA 是对应边,写出其他对应边及对应角.
⑶如图,△OCA≌△OBD,点 C 和点 B,点 A 和点 D 是对应顶点.写出这两个三角形中相等的
边和角.
A
C B
B O
D

人教版八年级上册数学讲义

人教版八年级上册数学讲义

八年级数学讲义第 11章三角形一、三角形的看法1.三角形的定义由不在同素来线上的三条线段首尾按次连接所组成的图形叫做三角形要点:①三条线段;②不在同素来线上;③首尾按次相接.2.三角形的表示△ABC中,边:AB,BC,AC或c,a,b.极点: A,B,C .内角:∠ A ,∠ B ,∠ C..二、三角形的边1.三角形的三边关系 : (证明所有几何不等式的唯一方法)(1) 三角形任意两边之和大于第三边:b+c>a(2) 三角形任意两边之差小于第三边:b-c<a判断三条已知线段a、b、c 能否组成三角形 .当 a 最长,且有 b+c>a 时, 即可组成三角形 .确定三角形第三边的取值范围:两边之差<第三边<两边之和.2.三角形的主要线段三角形的高线从三角形的一个极点向它的对边所在直线作垂线,极点和垂足之间的线段叫做三角形的高线 .①锐角三角形三条高线交于三角形内部一点;②直角三角形三条高线交于直角极点;③钝角三角形三条高线所在直线交于三角形外面一点三角形的角均分线三角形一个角的均分线与它的对边订交,这个角的极点与交点之间的线段叫做三角形的角均分线。

三条角均分线交于三角形内部一点.ABD A C三角形的中线连接三角形一个极点与它对边中点的线段叫做三角形的中线。

B D C三角形的三条中线交于三角形内部一点.三、三角形的角1三角形内角和定理结论 1:△ ABC中:∠ A+∠B+∠C=180°※三角形中最少有 2 个锐角结论 2:在直角三角形中,两个锐角互余.※三角形中至多有 1 个钝角注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ ABC中,∠ C=180°-(∠ A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ ABC中,已知∠ A:∠ B:∠ C=2:3:4,求∠ A、∠ B、∠ C的度数2三角形外角和定理外角:三角形一边与另一边的延长线组成的角叫做三角形的角.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.③三角形的一个外角与与之相邻的内角互补外角个数:过三角形的一个极点有两个外角,这两个角为对顶角(相等),可见一个三角形共有 6 个外角四、三角形的分类(1)按角分:①锐角三角形②直角三角形③钝角三角形(2)按边分:①不等边三角形②底与腰不等的等腰三角形③等边三角形五多边形及其内角1、多边形的定义:在平面内,由一些线段首尾按次相接组成的图形叫做多边形 .2、正多边形 : 各个角都相等、各个边都相等的多边形叫做正多边形。

初中数学 人教版八年级上册分式的化简 求值 与证明讲义

初中数学 人教版八年级上册分式的化简 求值 与证明讲义

分式的化简 求值 与证明考点•方法•破译1. 分式的化简、求值先化简,后代入求值是代数式化简求值问题的基本策略,有条件的化简求值题,条件可直接使用,变形使用,或综合使用,要与目标紧紧结合起来;无条件的化简求值题,要注意挖掘隐含条件,或通过分式巧妙变形,使得分子为0或分子与分母构成倍分关系特殊情况,课直接求出结果.2. 分式的证明证明恒等式,没有统一的方法,具体问题还要具体分析,一般分式的恒等式证明分为两类:一类是有附加条件的,另一类是没有附加条件的,对于前者,更要善于利用条件,使证明简化.经典•考题•赏析【例1】先化简代数式(11x x -++221x x -)÷211x -,然后选取一个使原式有意义的x 的值代入求值.【解法指导】本题化简并不难,关键是x 所取的值的选择,因为原式的分母为:x +1,x 2-1,要是原式有意义,则x +1≠0且x 2-1≠0故x ≠1,因而x 可取的值很多,但不能取x ≠1解:(11x x -++221x x -)÷211x - =[2(1)(1)(1)x x x -+-+2(1)(1)x x x +-]·(x +1)(x -1)=(x -1)2+2x =x 2+1 当x =0时,原式=1. 【变式题组】01.先化简,再求值222366510252106a a a a a a a a--+÷•++++,其中a =.02.已知x =2,y =22211x y x y x y x y xy ⎛⎫⎛⎫+--•- ⎪ ⎪-+⎝⎭⎝⎭的值03.先化简:222a b a ab --÷(a +22ab b a+),当b =-1时,请你为a 任选一个适当的数代入求值.04.先将代数式(x -1x x +)÷(1+211x -)化简,再从-3<x <3的范围内选取一个合适的整数x 代入求值.【例2】已知1x+1y =5,求2322x xy y x xy y -+++的值.【解法指导】解法1:由已知条件115x y+=,知xy ≠0.将所求分式分子、分母同除以xy ,用整体代入法求解.解法2:由已知条件1x+1y =5,求得x +y =5xy ,代入求值. 解:方法1:∵1x+1y =5,,∴x ≠0,y ≠0,xy ≠0将待求分式的分子、分母同除以xy . 原式=(232)(2)x xy y xy x xy y xy -+÷++÷=112()311()2x y x y+-++=2552⨯+=1.方法2:由1x+1y =5知x ≠0,y ≠0,两边同乘以xy ,得x +y =5xy 故2322x xy y x xy y -+++=2()()2x y x y xy +++=25352xy xy xy xy ⨯-⨯+=77xy xy=1.【变式题组】 01.(天津)已知1a -1b =4,则2227a ab ba b ab---+的值等于( ) A .6 B .-6 C . 215 D . 27-02.若x +y =12,xy =9,求的22232x xy yx y xy+++值.03.若4x -3y -6z =0,x +2y -7z =0,求22222223657x y z x y z ++++的值.【例3】(广东竞赛)已知231xx x -+=1,求24291x x x -+的值. 【解法指导】利用倒数有时会收到意外的效果.解:∵2131x x x =-+∴231x x x -+=1∴x -3+1x =1∴x +1x =4. 又∵42291x x x -+=x 2-9+21x =(x -1x )2-11=16-11=5. ∴24291x x x -+=15. 【变式题目】01.若x +1x=4,求2421x x x ++的值.02.若a 2+4a +1=0,且4232133a ma a ma a++++=5求m .【例4】已知ab a b +=13,bc b c +=14,ac a c +=15,求abcab ac bc++的值. 【解法指导】将已知条件取倒数可得a b ab +=3,b c bc +=4,a cac+=5,进而可求111a b c++的值,将所求代数式也取倒数即可求值. 解:由已知可知ac 、bc 、ab 均不为零,将已知条件分别取倒数,得345a babb c bca cac+⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩,即113114115a b c b a c ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 三式相加可得1a +1b +1c =6,将所求代数式取倒数得ab ac bc abc ++=1a +1b +1c =6,∴abc ab ac bc ++=16.【变式题组】 01.实数a 、b 、c 满足:ab a b +=13,bc b c +=14,ac a c +=15,则ab +bc +ac = . 02.已知xy x y +=2,xzx z+=3,yz y z +=4,求7x +5y -2z 的值.【例5】若a b c +=c b a +=a c b +,求()()()a b c b a c abc+++的值. 【解法指导】观察题目易于发现,条件式和所求代数式中都有a +b ,c +b ,a +c 这些比较复杂的式子,若设a b c +=c b a +=a cb+=k ,用含k 的式子表示a +b ,c +b ,a +c 可使计算简化. 解:设a b c +=c b a +=a c b+=k ,则a +b =ck ,c +b =ak ,a +c =bk ,三式相加,得2(a+b +c )=(a +c +b )k .当a +b +c ≠0时,k =2;当a +b +c =0时,a +b =-c ,1a bc+=-,∴k =-1.∴当k =2时,()()()a b c b a c abc +++=k 3=8;当k =-1时,()()()a b c b a c abc+++=k3=-1.【变式题组】01.已知x 、y 、z 满足2x=3y z -=5z x +,则52x y y z -+的值为( ) A .1 B . 13 C . 13- D . 1202.已知a 、b 、c 为非零实数,且a +b +c ≠0,若a b c c +-=a b c b -+=a b ca-++,求()()()a b b c c a abc+++的值.【例6】已知abc =1,求证:1a ab a +++1b bc b +++1cac c ++=1【解法指导】反复整体利用,选取其中一个的分母不变,将另外两个的分母化为与它的分母相同再相加.证明:∵1a ab a ++=a ab a abc ++=11b bc ++1c ac c ++=c ac c abc ++=11a ab ++=abc a abc ab ++=1cbbc b++∵1a ab a +++1b bc b +++1c ac c ++=11bc b +++1b bc b +++1bc bc b ++=1 【变式题组】01.已知1a b +=1b c +=1c a+,a ≠b ≠c 则a 2+b 2+c 2=( ) A .5 B . 72 C .1 D . 1202.已知不等于零的三个数a b c 、、满足1111a b c a b c++=++.求证:a 、b 、c 中至少有两个数互为相反数.03.若:a 、b 、c 都不为0,且a +b +c =0,求222222222111b c a c a b a b c+++-+-+-的值.演练巩固 反馈提高01.已知x -1x=3,那么多项式x 3-x 2-7x +5的值是( ) A .11 B .9 C .7 D . 5 02.若M =a +b ,N =a -b ,则式子M N M N +--M NM N-+的值是( )A . 22a b ab -B . 222a b ab -C . 22a b ab+ D . 003.已知5x 2-3x -5=0,则5x 2-2x -21525x x --= . 04.设a >b >0,a 2+b 2-6ab =0,则a b b a+-= .05.已知a =1+2n ,b =1+12n ,则用含a 的式子表示b 是 .06. a +b =2,ab =-5,则b aa b+= .07.若a =534-⎛⎫- ⎪⎝⎭,b =-534⎛⎫ ⎪⎝⎭,c =534-⎛⎫⎪⎝⎭,试把a 、b 、c 用“<”连接起来为 .08.已知1n m -⎛⎫⎪⎝⎭=53,求的222m m n m n m n m n +-+--值为 . 09.若2x =132,13y⎛⎫⎪⎝⎭=81,则x y 的值为 .10.化简24322242c b c b a b a ca -⎛⎫⎛⎫⎛⎫•-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为 .11.先化简,再求值:221122x y x y x x y x +⎛⎫--+ ⎪+⎝⎭,其中x,y =3.12.求代数式的值:222222144x x x x x x -++÷--,其中x =2.13.先化简,再求值:22121124x x x x ++⎛⎫-÷⎪+-⎝⎭,其中x =-3.14.已知:2352331x A Bx x x x -=+---+,求常数A 、B 的值. 15.若a +1a =3,求2a 3-5a 2-3+231a +的值.培优升级 奥赛检测01.若a b =20,b c =10,则a b b c++的值为( ) A . 1121 B . 2111C . 11021D . 2101102.已知x +y =x -1+y -1≠0,则xy 的值为( )A . -1B . 0C . 1D . 203.已知x +1x =7(0<x <1)的值为( ) A . -7 B .-5 C . 7 D . 5 04.已知正实数a 、b 满足ab =a +b ,则b aab a b+-=( ) A . -2 B .12 C . 12- D . 2 05.已知1a -a =1,则1a+a 的值为( )A .B .C .D .1 06.已知abc ≠0,并且a +b +c =0,则a (1b +1c )+b (1a +1c )+c (1b +1a)的值为( ) A . 0 B . 1 C . -1 D .-3 07.设x 、y 、z 均为正实数,且满足z x y x y y z z x<<+++,则x 、y 、z 三个数的大小关系是( )A . z <x <yB . y <z <xC . x <y <zD . z <y <x08.如果a 是方程x 2-3x +1=0的根,那么分式543226213a a a a a-+--的值是 .09.甲乙两个机器人同时按匀速进行100米速度测试,自动记录表表明:当甲距离终点差1米,乙距离终点2米;当甲到达终点时,乙距离终点1.01米,经过计算,这条跑道长度不标准,则这条跑道比100米多 . 10.若a +1b =1,b +1a =1,求c +1a的值.11.已知a 、b 、c 、x 、y 均为实数,且满足ab +a b =341-x y ,+bc b c =31x ,+cac a=341+x y ,++abc ab bc ca =112(y )(其中)求x 的值.12.当x 分别取值12009,12008,12007, (1)2,1,2,……2007,2008,2009时,分别计算代数式221-1+x x的值,将所得的结果相加,其和是多少?13.在一列数x 1,x 2,x 3…中,已知x 1=1,且当k ≥2时,x k =x k -1+1-4([14k --24k -])(取整符号[a ]表示不超过实a 数的最大整数,例如[2.6]=2,[0.2]=0)求x 2010的值.14. 已知对于任意正整数n ,都有a 1+a 2+…+a n =n 3,求211a -+311a -+…+10011a -的值.。

最新人教版八年级数学《线段的垂直平分线的性质及其判定》省公开课获奖课件说课比赛一等奖课件

最新人教版八年级数学《线段的垂直平分线的性质及其判定》省公开课获奖课件说课比赛一等奖课件
• 线段垂直平分线旳性质是处理线段相等问题旳一种主要 措施;线段垂直平分线旳鉴定可用来证明两线旳位置关 系(垂直平分).
A
1、∵ AD为BC旳中垂,线
B
∴AB=AC( 线__段_垂__直__平_分__线__上_旳__点__与_这__条__线_段)
两个端点旳距离相等.
D
C
2、∵ _______A_B__=__A_C__________ ,
小于1 AB旳长为半径作弧,两
2
弧相交于C、D两点;
A
B ⑵作直线CD .
CD即为所求旳直线.
D 结论:对于轴对称图形,只要找到任意一组相应点,作出相 应点所连线段旳垂直平分线,就得到此图形旳对称轴.
【跟踪训练】
1.下图中旳五角星有几条对称轴?作出
n
这些对称轴. A
B
作法:(1)找出五角星旳一对
相应点A和B,连接AB.
思索:生活中旳数学
A
某区政府为了以便居民旳生
活,计划在三个住宅小区A、B、
C之间修建一种购物中心,试问,
该购物中心应建于何处,才干
使得它到三个小区旳距离相等。
·
B
C
尺规作图
怎样用尺规作图旳措施经过直线外一点作已知直线 旳垂线?
已知:直线AB和AB上一点C(如图) 求作:AB旳垂线,使它经过点C
作法:(1)任意取一点K,使点K和点C在AB旳两旁。
随堂练习
1、如图,已知AB是线段CD旳垂直平 分线,E是AB上旳一点,假如EC=7cm, 那么ED= 7 cm;假如∠ECD=600,那 么∠EDC= 60 0.
C
AE
B D
2、如图所示,在 △ABC中, AB=AC=32, MN是AB旳垂直 平分线,且有 BC=21,

人教版八年级数学上册 全等三角形的判定HL 讲义

人教版八年级数学上册 全等三角形的判定HL 讲义

斜边直角边(HL )一条斜边和一条直角边对应相等的两个直角三角形全等温馨提示:SSA 、AAA 不能证全等!!1、如图,点C 在∠DAB 的内部,CD ⊥AD 于D ,CB ⊥AB 于B ,CD=CB 那么Rt △ADC ≌Rt △ABC 的理由是( )A .SSSB. ASAC. SASD. HL 2、如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,AC ∥DB ,且AC=BD ,那么Rt △AEC ≌Rt △BFD 的理由是( ).A .SSS B. AAS C. SAS D. HL3、下列说法正确的个数有( )①有一角和一边对应相等的的两个直角三角形全等;②有两边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个直角三角形全等;④有两角和一边对应相等的两个直角三角形全等.A .1个 B. 2个 C. 3个 D. 4个4、在△ABC 和△C B A '''中,如果AB=B A '',∠B=∠B ',AC=C A '',那么这两个三角形( ).A .全等 B. 不一定全等 C. 不全等 D. 面积相等,但不全等5、 下列可使两个直角三角形全等的条件是( )A.一条边对应相等B.两条直角边对应相等C.一个锐角对应相等D.两个锐角对应相等6、给出下列条件:①两边一角对应相等②两角一边对应相等③三角形中三角对应相等④三边对应相等,其中,不能判定两个三角形全等的条件是()A. ①③B. ①②C. ②③D. ②④7、李明同学把一块三角形的玻璃打碎成了如图所示的三块,现在要到玻璃商店去配一块完全一样的玻璃,那么最省事的办法是().A.带①去B.带②去C.带③去D.带①和②去8、如图,点D、E分别在线段AB、AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()∠B=∠CB、AD=AEC、BD=CED、BE=CD9、下列语句中不正确的是()斜边和一锐角对应相等的两个直角三角形全等有两边对应相等的两个直角三角形全等C、有两个角对应相等的两个直角三角形全等D、有一直角边和一锐角对应相等的两个直角三角形全等10、如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍不能证明△ABC≌△DEF,这个条件是()A、∠A=∠DB、BC=EFC、∠ACB=∠FD、AC=DF11、在Rt△ABC和Rt△DEF中,∠ACB=∠DFE=90°,AB=DE,AC=DF,那么Rt△ABC与Rt△DEF_______(填全等或不全等)12、如图,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是________(写一个即可)13、如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件________(写一个即可)14、如图,点B在AE上,∠CAB=∠DAB,要使△ABC≌△ABD,可补充的一个条件是:____________(写一个即可)F E D C B A 15、如图,已知AD=BC.EC ⊥AB.DF ⊥AB , C.D 为垂足,要使ΔAFD ≌ΔBEC ,还需添加一个条件.若以“ASA ”为依据,则添加的条件是_________16、如图,AB=CD,AD 、BC 相交于点O ,要使△ABO ≌△DCO,应添加的条件为_________(添加一个条件即可)17、如图,B 、E 、F 、C 在同一直线上,AE ⊥BC ,DF ⊥BC ,AB=DC ,BE=CF ,试判断AB 与CD 的位置关系18、已知 如图,AB ⊥BD ,CD ⊥BD ,AB=DC ,求证:AD ∥BC.A D BC19、如图,Rt△ADC与Rt△BCD,∠A=∠B=90°,AC=BD,求证AD=BC20、如图,AD是△ABC的高,E为AC上一点,BE交AD于F,具有BF=AC,FD=CD(1)求证:BD=AD(2)(八字模型)试探究BE与AC的位置关系21、如图,在△ABC中,∠ACB=90°,AC=BC,直线DE经过点C,且AD⊥DE于D,BE⊥DE于E。

人教版八年级上册数学《因式分解--十字相乘法与分组分解法》专题讲义(含答案)

人教版八年级上册数学《因式分解--十字相乘法与分组分解法》专题讲义(含答案)

因式分解的基本方法例题精讲一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】 268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】 278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】 [][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】 [][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。

第十一章 三角形讲义2021-2022学年人教版八年级数学上册

第十一章 三角形讲义2021-2022学年人教版八年级数学上册

第十一章三角形讲义题型一、三角形的三边关系例1、下列长度的三条线段,能组成等腰三角形的是()A.2 cm,2 cm,4 cm B.3 cm,4 cm,3 cmC.4 cm,4 cm,9 cm D.3 cm,4 cm,5 cm例2、若a、b、c是△ABC的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是()A.a+b+c B.-a+3b-c C.a+b-c D.2b-2c变式1、下列每组数据分别是三根木棒的长度,能用它们摆成三角形的是( )A.2 cm,5 cm,8 cm B.13 cm,12 cm,25 cm C.3 cm,3 cm,6 cm D.13 cm,12 cm,20 cm变式2、已知a,b,c是三角形的三边长,化简:|a,b,c|,|b,a,c|,__________.变式3、如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是题型二、三角形的稳定性例1、下列选项中,有稳定性的图形是()A.B.C.D.变式1、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是.题型三、三角形中的线段例1、下列叙述正确的是()①三角形的中线、角平分线都是射线②三角形的三条高线交于一点③三角形的中线就是经过一边中点的线段④三角形的三条角平分线交于一点⑤三角形的中线将三角形分成面积相等的两个小三角形.A.④⑤B.①②④C.②④D.④例2、如图3,AD 是△ABC 的角平分线,已知△C =80°,△B =40°,则△ADC 的度数为( )A .50°B .60°C .70°D .80°例3、如图4,已知CD 是△ABC 的中线,E 为CD 的中点,若△ABC 的面积为1,则△ACE 的面积为( )A.21 B .31 C .41 D .51变式1、如图,在△ABC 中,∠1=∠2,G 为AD 中点,延长BG 交AC 于点E,F为AB 上一点,CF AD ⊥于H.下面判断正确的有 (1)AD 是ABC ∆的角平分线 (2)BE 是ABD ∆的AD 边上的中线 (3)CH 为ACD ∆边AD 上的高线 (4)AH 是ACF ∆的角平分线和高线变式2、如图,AD 是△ABE 边BE 上的中线,AE 是△ACD 边CD 上的中线,则图中面积相等的三角形有( )A .3对B .4对C .5对D .6对变式3、如图,在△ABC 中,∠ABC =56º△∠ACB =44º△AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数。

最新人教版八年级数学上册讲义

最新人教版八年级数学上册讲义

八年级上册讲义任老师内部资料第十一讲三角形11.1 与三角形有关的线段11.1.1 三角形的边11.1.2-11.1.3 三角形的高、中线、角平分线及三角形的稳定性11.2 与三角形有关的角11.2.1 三角形的内角11.2.2 三角形的外角11.3 多边形及其内角和教学活动小结复习题 11【知识精要】1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用 A、 B、C 表示三角形的三个顶点时,此三角形可记作△ ABC,其中线段 AB、 BC、 AC是三角形的三条边,∠ A、∠ B、∠ C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ ABC三边长 a、b、c 的不等式有: a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ ABC三边长 a、b、c 的不等式有: a>b-c ,b>a-c ,c>b-a .注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.三角形内角和性质的推理方法有多种,常见的有以下几种:1/ 69任老师内部资料(四)三角形的内角结论 1:三角形的内角和为 180°.表示:在△ ABC中,∠ A+∠B+∠ C=180°( 1)构造平角①可过 A 点作 MN∥ BC(如图 )②可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)结论 2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形 ABC中,∠ C=90°,那么∠ A+∠ B=90°(因为∠ A+∠ B+∠ C=180°)注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ ABC中,∠ C=180°-(∠ A+∠ B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ ABC中,已知∠ A:∠ B:∠ C=2: 3:4,求∠ A、∠ B、∠ C 的度数.(五)三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ ACD为△ ABC的一个外角,∠ BCE也是△ ABC的一个外角,这两个角为对顶角,大小相等.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.如图中,∠ ACD=∠ A+∠ B , ∠ ACD>∠ A , ∠ACD>∠ B.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.(六)多边形①多边形的对角线n(n3) 条对角线2②n边形的内角和为( n-2)× 180°③多边形的外角和为 360°考点 11. 对下面每个三角形,过顶点 A 画出中线,角平分线和高.A AAB C 2/ 69BCC B(1)(2) (3)任老师 内部资料考点 21、下列说法错误的是 ( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点2、下列四个图形中,线段 BE 是△ ABC 的高的图形是( ) B B BBEE A CA E CAEAC CA B C D3.如图 3,在△ ABC 中,点 D 在 BC 上,且 AD=BD=CD , AE 是 BC 边上的高,若沿 AE 所在直线折叠,点 C 恰好落在点 D 处,则∠B 等于( 2题图 )A .25°B .30°C .45°D .60°4. 如图 4,已知 AB=AC=BD ,那么∠1 和∠2之间的关系是( )A. ∠1=2∠2B. 2 ∠1+∠2=180°C.∠1+3∠2=180° D. 3 ∠1 - ∠2=180°5. 如图 5,在△ ABC 中,已知点 D ,E ,F 分别为边 BC ,AD ,CE 的中点, 且 S ABC = 4 cm 2,则 S 阴影等于( )A B 1 cm 2 1 cm 2 A . 2 cm 2B. 1 O DC. D. C2 4 6. 如图 7, BD=DE=EF=FC ,那么, AE 是 _____ 的中线。

最新人教版初中数学八年级上册《15.1.2 分式的基本性质》精品教学课件

最新人教版初中数学八年级上册《15.1.2 分式的基本性质》精品教学课件

通分:
2c 3ac
(1) 与 2
bd 4b
8bc
4b 2 d
2 xy
x
(2)
与 2
2
( x y)
x y2
2 x 2 y 2 xy 2
( x y)2( x y)
3acd
2
4b d
x 2 xy
( x y)2( x y)
巩固练习
(3)
x 1
4

3x
2 x 2

x 1
4 x3
解:(3)最简公分母是 12x 3 .
x 1 (x 1) 6 x
6 x(x 1)


,
2
2
3
2 x
2 x 6 x
12 x
4
4 ( 4 x 2) 16 x 2


,
2
3
3x
3 x ( 4 x ) 12 x
x 1 (x 1)( 3) (
3 x 1)
分式的分子与分母乘(或除以)同一个不等于0的整
式,分式的值不变.
探究新知
追问1 如何用式子表示分式的基本性质?
A
A C A
A C

,

(C 0)
.
B
B C B
B C
其中A,B,C 是整式.
探究新知
追问2 应用分式的基本性质时需要注意什么?
(1)分子、分母应同时做乘、除法中的同一种运算;
;(3)
; (4)

2
y
2b
3n
5y
a
4m
x

1

最新人教版初中数学八年级上册《12.2 三角形全等的判定(第2课时)》精品教学课件

最新人教版初中数学八年级上册《12.2 三角形全等的判定(第2课时)》精品教学课件

∴ ∠A=∠D(全等三角形的对应角相等).
A D C
E
探究新知
素养考点 2 利用全等三角形测距离
例2 如图,有一池塘,要测池塘两端A、B的距离,可先在平
地上取一个可以直接到达A和B的点C,连接AC并延长到点D,
使CD=CA,连接BC并延长到点E,使CE=CB.连接DE,
那么量出DE的长就是A、B的距离,为什么?
课堂检测
能力提升题
已知:如图,AB=AC, BD=CD,E为AD上一点.
求证: BE=CE.
证明: 在△ABD和△ACD中,
A
AB=AC (已知),
BD=CD (已知),
AD=AD(公共边), ∴△ABD≌△ACD(SSS).
E
∴ ∠BAD=∠CAD,
B DC
在△ABE和△ACE中,
AB=AC (已知),
证明:在△ABC 和△DEC 中,
AC = DC(已知),
A
B
∠ACB =∠DCE (对顶角相等), CB=EC(已知),
·C
∴△ABC ≌△DEC(SAS).
E
D
∴AB =DE .(全等三角形的对应边相等)
巩固练习
如图,两车从南北方向的路段AB的A端出发,分别向东、
向西行进相同的距离,到达C,D两地.此时C,D到B的距
三边对应相等的两个三角形全等(可以简写为“边边边”或
“SSS”).
2.符号语言表达:
A
在△ABC和△ DEF中
AB=DE, BC=EF, CA=FD,
B
D
C
∴ △ABC ≌△ DEF.(SSS)
E
F
探究新知
【思考】除了SSS外,还有其他情况吗? 当两个三角形满足六个条件中的3个时,有四种情况:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学讲义(内部资料,严禁外传)八年级上第十一讲三角形11.1 与三角形有关的线段11.1.1 三角形的边11.1.2-11.1.3 三角形的高、中线、角平分线及三角形的稳定性11.2 与三角形有关的角11.2.1 三角形的内角11.2.2三角形的外角11.3 多边形及其内角和教学活动小结复习题11【知识精要】1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.三角形内角和性质的推理方法有多种,常见的有以下几种:(四)三角形的内角结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°(1)构造平角①可过A点作MN∥BC(如图)②可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°)注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.(五)三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,2题图D C B AE E A C B A C B A B C A B CE E 这两个角为对顶角,大小相等. 2.性质:①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. 如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B. ③三角形的一个外角与与之相邻的内角互补 3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角. (六)多边形 ①多边形的对角线2)3(-n n 条对角线 ②n 边形的内角和为(n -2)×180° ③多边形的外角和为360° 考点11.对下面每个三角形,过顶点A 画出中线,角平分线和高.考点21、下列说法错误的是( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点2、下列四个图形中,线段BE 是△ABC 的高的图形是( )3.如图3,在△ABC 中,点D 在BC 上,且AD=BD=CD ,AE 是BC 边上的高,若沿AE 所在直线折叠,点C 恰好落在点D 处,则∠B 等于( ) A .25° B.30° C.45° D.60° (1)CB AC B A (2)CB A(3)12.2 三角形全等的判定阅读与思考 全等与全等三角形 12.3 角的平分线的性质 教学活动 小结复习题11【知识精要】1、 能够____________的两个三角形叫做全等三角形。

互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

用符号“≌”表示全等。

2、 全等三角形的性质:_______相等、_______相等、_______相等、___________相等。

3、 全等三角形的判定:①边边边(SSS )_____________________________________________________________ ②边角边(SAS )_____________________________________________________________ ③角边角(ASA )_____________________________________________________________ ④角角边(AAS )_____________________________________________________________ ⑤斜边直角边(HL )___________________________________________________________ 4、角平分线的做法⑴以O 为圆心,以适当长为半径画弧,分别交OA 于点M , 交OB 于点N ;⑵分别以M 、N 为圆心,以大于21MN 的长为半径作弧, 在∠AOB 的内部两弧交于点C ;⑶过O 、C 两点作射线OC ,则射线OC 就是所求的角的平分线。

作图依据:构造△OMC ≌△ONC (SSS )5、角平分线的性质:________________________________________________________。

即角平分线→距离相等6、角平分线的判定:_________________________________________________________。

即距离相等→角平分线【方法破译】1. 证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,在根据选定的判定方法,确定还需要证明哪些相等的边或角,在设法对它们进行证明;2. 证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这是需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移,翻转,旋转,等倍延长中线,截取等等.3. 有角平分线时通常通过下列几种情况构造全等三角形。

【经典考例】【例1】如图,AB∥EF∥CD,∠ABC=90°,AB=CD.那么图中有全等三角形﹙﹚A.5对B.4对C.3对D.2对【变式题组】1.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等【例2】已知如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。

【变式题组】1.如图,AD﹑BE是锐角△ABC的高,相交于点O,若BO=AC,BC=7,CD=2,则AO的长为( )A.2 B. 3 C.4 D.5(第1题图)(第2题图)(第3题图)2.如图,在△ABC中,AB=AC,∠BAC=90°,AE是过A点的一条直线,AE⊥CE于E,BD⊥AE 于D,DE=4cm,CE=2cm,则BD=().3.已知:如上图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,求证:AB=FC.例3. 如图①,△ABC≌△DEF,将△ABC和△DEF的顶点B与顶点E重合,把△DEF绕点B 顺时针方向旋转,这时AC与DF相交于点O.⑴当△DEF旋转至如图②位置,点B (E),C,D在同一条直线上时, ∠AFD与∠DCA的数量关系是.⑵当△DEF旋转至如图③位置时, ⑴中的结论成立吗?请说明理由_________.图①图②图③【变式题组】1.如图,D,E分别为△ABC的AC,BC 边上的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处,若∠CDE=48°,则∠PAD等于( )A.42° B.48° C.52° D.58°2.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( )A.△ABC≌△DEFB.∠DEF=90°C.AC=DFD. EC=CF第1题图第2题图第3题图3.一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B,F,C,D,在同一直线上.⑴求证:AB⊥ED:⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】已知,如图,BD,CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB。

求证:⑴AP=AQ;②AP⊥AQ.【例5】如图,已知OD 平分∠AOB,在OA ,OB 边上截取OA=OB ,PM ⊥BD,PN ⊥AD.求证:PM=PN.【变式题组】1. 如图,CP ,BP 分别平分△ABC 的外角∠BCM,∠CBN.求证:点P 在∠BAC 的平分线上.2. 如图,BD 平分∠ABC,AB=BC,点P 是BD 延长线上的一点,PM ⊥AD,PN ⊥CD.求证:PM=PN.☆【例6】如图,在△ABC 中, ∠BAC=90°,AB=AC,BE 平分∠ABC,CE ⊥BE.求证:CE=21BD☆【变式题】如图,在△ABC 中, ∠B=60°,AD,CE 分别是∠BAC, ∠BCA 的平分线,AD,CE 相交于点F. ⑴请你判断FE 和FD 之间的数量关系,并说明理由; ⑵求证:AE+CD=AC.【基础演练】一、选择题1.下列说法错误的是( )A .全等三角形对应角所对的边是对应边B .全等三角形两对应边所夹的角是对应角C .如果两个三角形都与另一个三角形全等,那么这两个三角形也全等D .等边三角形都全等2.在⊿ABC 和⊿A /B /C /中,AB=A /B /,∠A=∠A /,若证⊿ABC≌⊿A /B /C /还要从下列条件中补选一个,错误的选法是( )A. ∠B=∠B /B. ∠C=∠C /C. BC=B /C /D. AC=A /C /3.下列各组条件中,不能判定△ABC ≌△A /B /C /的一组是( )A 、∠A=∠A /,∠B=∠B /,AB= A /B / B 、∠A=∠A / ,AB= A /B /,AC=A /C / C 、∠A=∠A / ,AB= A /B /,BC= B /C /D 、AB= A /B /, AC=A /C / ,BC= B /C /4.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A. 带①去B. 带②去C. 带③去D. 带①和②去 5.如图.从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CA =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个 为结论,则最多可以构成正确的结论的个数是( )A .1个B .2个C .3个D .4个6.有以下条件:①一锐角与一边对应相等;②两边对应相等; ③两锐角对应相等。

相关文档
最新文档