人教新版 八年级上册数学 第12章 全等三角形 专项训练
人教版八年级上册第12章《全等三角形》综合专项基础与提高练习(含答案)
人教版八年级上册第12章《全等三角形》综合专项基础与提高练习姓名学号(含答案)基础型(一):1.如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=28°,求∠CAO的度数.2.如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E.F、G分别是OA、OB上的点,且PF=PG,DF=EG.(1)求证:OC是∠AOB的平分线.(2)若PF∥OB,且PF=8,∠AOB=30°,求PE的长.3.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.4.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P放在射线OM上,两直角边分别与OA,OB交于点C,D.(1)证明:PC=PD.(2)若OP=4,求OC+OD的长度.5.已知:如图,∠ACB=∠DCE,AC=BC,CD=CE,AD交BC于点F,连结BE.(1)求证:△ACD≌△BCE.(2)延长AD交BE于点H,若∠ACB=30°,求∠BHF的度数.6.在△ABC中,AD为△ABC的角平分线.(1)如图1,∠C=90°,∠B=45°,点E在边AB上,AE=AC,请直接写出图中所有与BE相等的线段.(2)如图2,∠C≠90°,如果∠C=2∠B,求证:AB=AC+CD.7.如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.(1)求证:△AEF≌△CEB.(2)猜想:AF与CD之间存在怎样的数量关系?请说明理由.8.如图,在△ABC与△ABD中,AC=BD,∠C=∠D=90°,AD与BC交于点E.(1)求证:BC=AD.(2)若AC=6,BC=8,求△ACE的周长.9.如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,设点P的运动时间为t秒,且t≤5.(1)PC=cm(用含t的代数式表示).(2)如图2,当点P从点B开始运动的同时,点Q从点C出发,以vcm/s的速度沿CD 向点D运动,是否存在这样的v值,使得以A、B、P为顶点的三角形与以P、Q、C为顶点的三角形全等?若存在,请求出v的值;若不存在,请说明理由.10.如图,点B、E、C、F在一条直线上,AC与DE交于点G,∠A=∠D=90°,AC=DF,BE =CF.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠F=30°,GE=2,求CE.提高型(一):1.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE,BE,延长AE交BC的延长线于点F.(1)求证:△DAE≌△CFE;(2)若BE⊥AF,求证:AB=BC+AD.2.如图所示,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE.(1)求证:△BCE≌△AHE.(2)求证:AH=2CD.3.如图,在△ACD中,E为边CD上一点,F为AD的中点,过点A作AB∥CD,交EF的延长线于点B.(1)求证:BF=EF;(2)若AB=6,DE=3CE,求CD的长.4.如图,在△ABC中,∠A=60°,∠ABC、∠ACB的平分线分别交AC、AB于点D、E,CE、BD相交于点F,连接DE.(1)若AC=BC=6,求DE的长;(2)求证:BE+CD=BC.5.如图,已知Rt△ABC≌Rt△ADE(对应顶点字母顺序相同),∠ABC=∠ADE=90°,BC 与DE交于F.(1)不添加辅助线,直接找出图中其他的全等三角形;(2)求证:CF=EF.6.如图,AB∥CD,AB=CD,点E和点F在线段BC上,∠A=∠D.(1)求证:AE=DF.(2)若BC=16,EF=6,求BE的长.7.如图,AB=AD,AC=AE,∠BAD=∠CAE,点E在BC上,AB,DE相交于点F.(1)求证:△ABC≌△ADE;(2)求证:∠BEF=∠CAE.8.如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.(1)求证:△ABC≌△EDF.(2)连结AD、BE,求证:AD=EB.9.如图,△ABC的高为AD.△A'B'C'的高为A'D',且A'D'=AD.现有①②③三个条件:①∠B=∠B',∠C=∠C';②∠B=∠B',AB=A'B';③BC=B'C',AB=A'B'.分别添加以上三个条件中的一个,如果能判定△ABC≌△A'B'C',写出序号,并画图证明;如果不能判定△ABC≌△A'B'C',写出序号,并画出相应的反例图形.10.阅读下面材料:数学课上,老师给出了如下问题:如图,AD为△ABC中线,点E在AC上,BE交AD于点F,AE=EF.求证:AC=BF.经过讨论,同学们得到以下两种思路:思路一如图①,添加辅助线后依据SAS可证得△ADC≌△GDB,再利用AE=EF可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.思路二如图②,添加辅助线后并利用AE=EF可证得∠G=∠BFG=∠AFE=∠FAE,再依据AAS可以进一步证得△ADC≌△GDB,从而证明结论.完成下面问题:(1)①思路一的辅助线的作法是:;②思路二的辅助线的作法是:.(2)请你给出一种不同于以上两种思路的证明方法(要求:只写出辅助线的作法,并画出相应的图形,不需要写出证明过程).参考答案基础型:1.证明:(1)∵∠C=∠D=90°,∴△ACB和△BDA都是直角三角形,在Rt△ACB和Rt△BDA中,AD=BC,AB=BA,∴Rt△ACB≌Rt△BDA(HL);(2)在Rt△ACB中,∵∠ABC=28°,∴∠CAB=90°﹣28°=62°,由(1)可知△ACB≌△BDA,∴∠BAD=∠ABC=28°,∴∠CAO=∠CAB﹣∠BAD=62°﹣28°=34°.2.解:(1)证明:在Rt△PFD和Rt△PGE中,,∴Rt△PFD≌Rt△PGE(HL),∴PD=PE,∵P是OC上一点,PD⊥OA,PE⊥OB,∴OC是∠AOB的平分线.(2)∵PF∥OB,∠AOB=30°,∴∠PFD=∠AOB=30°,在Rt△PDF中,.3.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.4.证明:(1)如图,过点P作PE⊥OA于点E,PF⊥OB于点F,∴∠PEC=∠PFD=90°.∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°.而∠PDO+∠PDF=180°,∴∠PCE=∠PDF在△PCE和△PDF中∴△PCE≌△PDF(AAS)∴PC=PD;(2)∵∠AOB=90°,OM平分∠AOB,∴△POE与△POF为等腰直角三角形,∴OE=PE=PF=OF,∵OP=4,∴OE=2,由(1)知△PCE≌△PDF∴CE=DF∴OC+OD=OE+OF=2OE=4.5.证明:(1)∵∠ACB=∠DCE,∴∠ACB+∠DCB=∠DCE+∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS);(2)∵△ACD≌△BCE,∴∠A=∠B,∵∠BFH=∠AFC,∴∠BHF=∠ACB,∵∠ACB=30°,∴∠BHF=30°.6.解:(1)与BE相等的线段是DE和DC,理由:∵AD为△ABC的角平分线,∴∠CAD=∠EAD,在△AED和△ACD中∴△AED≌△ACD(SAS),∴DE=DC,∠DEA=∠C=90°,∴∠DEB=90°,∵∠B=45°,∴∠B=∠BDE,∴BE=DE,∴BE=DE=DC,即与BE相等的线段是DE和DC;(2)在AB上截取AE=AC,连接DE,∵AD为△ABC的角平分线,∴∠CAD=∠EAD,在在△AED和△ACD中∴△AED≌△ACD(SAS),∴∠C=∠AED,CD=ED,∵∠C=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB,∴EB=CD,∵AB=AE+EB,∴AB=AC+CD.7.(1)证明:∵AD⊥BC,CE⊥AB,∴∠AEF=∠BEC=∠ADB=90°,∴∠EAF+∠B=∠B+∠BCE=90°,即∠EAF=∠BCE.在△AEF和△CEB中,,∴△AEF≌△CEB(ASA).(2)解:AF=2CD.理由:由(1)得AF=BC.∵AB=AC,AD⊥BC,∴BC=2CD,∴AF=2CD.8.(1)证明:∵∠C=∠D=90°,∴△ABC与△ABD都是直角三角形,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD;(2)解:由(1)知Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD,∴AE=BE,∴△ACE的周长=AC+AE+CE=AC+BE+CE=AC+BC=6+8=14.9.解:(1)BP=2t,则PC=10﹣2t;故答案为(10﹣2t);(2)存在.分两种情况讨论:①当BP=CQ,AB=PC时,△ABP≌△PCQ.因为AB=6,所以PC=6.所以BP﹣10﹣6=4,即2t=4.解得t=2.因为CQ=BP=4,v×2=4,所以v=2.②当BA=CQ,PB=PC时,△ABP≌△QCP.因为PB=PC,所以BP=PC=BC=5,即2t=5.解得t=2.5.因为CQ=BA=6,即v×2.5=6,解得v=2.4.综上所述,当v=2.4或2时,△ABP与△PQC全等.10.(1)∵BE=BF∴BE+CE=CF+CE即BC=EF在Rt△ABC和Rt△DEF中∴Rt△ABC≌Rt△DEF(HL)(2)∵Rt△ABC≌Rt△DEF∴∠ACE=∠F∵∠F=30°∴∠ACE=30°∴AC∥DF∴∠CGE=∠D∵∠D=90°∴∠CGE=90°∵在Rt△CGE中,∠ACB=30°,GE=2∴CE=2GE=4提高型:1.解:(1)∵AD∥BC,∴∠D=∠ECF,∠DAE=∠F,∵点E为CD的中点,∴ED=EC,∴△DAE≌△CFE(AAS);(2)∵△DAE≌△CFE,∴AE=EF,AD=CF,∵BE⊥AF,∴AB=BF,∵BF=BC+CF,CF=AD,∴AB=BC+AD.2.证明:(1)∵AB=AC,AD⊥BC,∴BC=2BD,∠1+∠C=90°,∵BE⊥AC,∴∠2+∠C=90°,∴∠1=∠2,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),(2)∵△AEH≌△BEC∴AH=BC,∵AB=AC,AD⊥BC,∴BD=CD,∴AH=2BD.3.(1)证明:∵AB∥CD,∴∠ABF=∠DEF,∠BAF=∠D,∵∴△AFB≌△DFE(AAS),∴BF=EF;(2)解:∵△AFB≌△DFE,∴AB=DE=6,∵DE=3CE,∴CE=2.∴CD=CE+DE=2+6=8.4.解:(1)∵AC=BC,∠A=60°,∴△ABC为等边三角形,∴AC=AB,又∵BD、CE分别是∠ABC、∠ACB的平分线,∴D、E分别是AC、AB的中点,∴AD=AE,∴△ADE为等边三角形,∴DE=AE=3;(2)证明:在BC上截取BH=BE,∵BD平分∠ABC,∴∠ABD=∠CBD,∵BF=BF∴△EBF≌△HBF(SAS),∴∠EFB=∠HFB=60°.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD,∠ACE=∠BCE,∴∠CBD+∠BCE=60°,∴∠BFE=60°,∴∠CFB=120°,∴∠CFH=60°,∴∠CFH=∠CFD=60°,∵CF=CF,∴△CDF≌△CHF(ASA).∴CD=CH,∵CH+BH=BC,∴BE+CD=BC.5.解:(1)其它的全等三角形有△ACD≌△AEB,△DCF≌△BEF.(2)证明:∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB﹣∠DAB=∠EAD﹣∠DAB,∴∠CAD=∠EAB,∴△ACD≌△AEB,∴CD=EB,∠ADC=∠ABE,又∵∠ADE=∠ABC,∴∠CDF=∠EBF,又∵∠DFC=∠BFE,∴△DCF≌△BEF(AAS),∴CE=EF.6.(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴AE=DF.(2)解:∵△ABE≌△DCF,∴BE=CF,BF=CE,∵BF+CE=BC﹣EF=16﹣6=10,∴2BF=10,∴BF=5,∴BE=BF+EF=5+6=11.7.证明:(1)∵∠BAD=∠CAE,∴∠BAD+∠BAE=∠CAE+∠BAE,即∠DAE=∠BAC,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS);(2)∵△ABC≌△ADE,∴∠B=∠D,∵∠BFE=∠DFA,∴∠BEF=∠BAD,∴∠BEF=∠CAE.8.证明:(1)∵AC⊥BD,EF⊥BD∴△ABC和△DEF是直角三角形又∵CD=BF∴CD+CF=BF+CF,即DF=BC,在Rt△DEF和Rt△BAC中∴Rt△ABC≌Rt△EDF.(2)∵△ABC≌△EDF,∴AC=EF∵AC⊥BD,EF⊥BD∴∠ACD=∠EFB,在△ACD和△EFB中.∴△ACD≌△EFB(SAS)∴AD=BE.9.解:①能判定△ABC≌△A'B'C',证明如下:如图1,∵AD=A'D',∠B=∠B',∠ADB=∠A'D'B',∴△ABD≌△A'B'D'(AAS),∴AB=A'B',又∠B=∠B',∠C=∠C',∴△ABC≌△A'B'C'(AAS);②不能判定△ABC≌△A'B'C',对应的反例如图2所示.(只要C'在射线B'D'上,且B'C'≠BC均可)③不能判定△ABC≌△A'B'C',对应的反例如图3所示.10.解:(1)①延长AD至点G,使DG=AD,连接BG,如图①,理由如下:∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(SAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠G,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.故答案为:延长AD至点G,使DG=AD,连接BG;②作BG=BF交AD的延长线于点G,如图②.理由如下:∵BG=BF,∴∠G=∠BFG,∵AE=EF,∴∠EAF=∠EFA,∵∠EFA=∠BFG,∴∠G=∠EAF,在△ADC和△GDB中,,∴△ADC≌△GDB(AAS),∴AC=BG,∴AC=BF;故答案为:作BG=BF交AD的延长线于点G;(2)作BG∥AC交AD的延长线于G,如图③所示:则∠G=∠CAD,∵AD为△ABC中线,∴BD=CD,在△ADC和△GDB中,,∴△ADC≌△GDB(AAS),∴AC=BG,∵AE=EF,∴∠CAD=∠EFA,∵∠BFG=∠EFA,∠G=∠CAD,∴∠G=∠BFG,∴BG=BF,∴AC=BF.。
八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)
八年级数学上册《第十二章全等三角形》练习题-带答案(人教版)姓名班级学号成绩一、选择题:1.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.SAS B.ASA C.SSS D.AAS 2.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均错误3.如图,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.如图,AC是△ABC和△ADC的公共边,要判定△ABC≌△ADC,还需要补充的条件不能是()A.AB=AD,∠1=∠2,B.AB=AD,∠3=∠4C .∠1=∠2,∠3=∠4D .∠1=∠2, ∠B=∠D5.如图,AD 是ABC 的中线,//CE AB 交AD 的延长于点E ,AB=5,AC=7,则AD 的取值可能是( )A .3B .6C .8D .126.如图,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,FC||AB ,AB=5,BD=1,则CF 的长度为( )A .2B .2.5C .4D .57.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .208.如图,在△ABC 中,点D 为BC 的中点,△AEF 的边EF 过点C ,且AE=EF ,AB ∥EF ,AD 平分∠BAE ,CE=3,AB=13,则CF=( )A .10B .8C .7D .6二、填空题: 9.如图,在 ACB 中 ACB 90︒∠= , AC BC = 点 C 的坐标为 ()2,0- ,点 A 的坐标为 ()8,3- ,点 B 的坐标是 .10.如图,在ABC 中45ABC ∠=︒,F 是高AD 和BE 的交点8AC =cm ,则线段BF 的长度为 .11.如图,D 为Rt △ABC 中斜边BC 上的一点,且BD=AB ,过D 作BC 的垂线,交AC 于E ,若AE=12cm ,则DE 的长为 cm .12.如图,在△ABC 中,点M 、N 是∠ABC 与∠ACB 三等分线的交点,若∠A=60°,则∠BMN 的度数是 .三、解答题:13.已知,如图,∠C =∠D =90°,E 是CD 的中点,AE 平分∠DAB.求证:BE 平分∠ABC.14.如图,要测量池塘两岸相对的两点A,B 的距离,可以在池塘外取AB 的垂线BF 上的两点C,D,使BC=CD,再画出BF 的垂线DE,使E 与A,C 在一条直线上,这时测得DE 的长就是AB 的长。
2022学年人教版八年级数学上册第12章《全等三角形》测试卷附答案解析
2022-2023学年八年级数学上册第12章《全等三角形》测试卷一、选择题(每小题3分,共30分)1.如图,两个三角形为全等三角形,则∠α的度数是()A.72°B.60°C.58°D.50°第1题图第2题图第3题图2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD3.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SAS B.SSS C.ASA D.AAS4.工人师傅常用角尺平分一个任意角.做法如下:如图所示,∠AOB是一个任意角在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的道理是()A.HLB.SSSC.SASD.ASA第4题图第5题图第6题图5.如图,已知∠MAN=55°,点B为AN上一点.用尺规按如下过程作图:以点A为圆心,以任意长为半径作弧,交AN于点D,交AM于点E;以点B为圆心,以AD为半径作弧,交AB于点F;以点F为圆心,以DE为半径作弧,交前面的弧于点G;连接BG并延长交AM于点C.则∠BCM的度数为()A.70°B.110°C.125°D.130°6.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②7.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,下列选项正确的是()A.PQ≥5B.PQ>5C.PQ<5D.PQ≤58.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处第8题图第9题图第10题图9.如图,在Rt△ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N 为圆心,大于MN 的长为半径画弧,两弧交于点P,作射线AP 交边BC 于点D,若CD=4,AB=15,则△ABD 的面积是()A.15B.30C.45D.6010.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(每小题3分,共15分)11.如图,Rt△ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD,则∠A′DB 为.第11题图第12题图第13题图12.已知,如图,∠AOB=60°,CD⊥OA 于D,CE⊥OB 于E,若CD=CE,则∠COD+∠AOB=度.13.如图在等腰Rt△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE⊥AB 于E,若AB=10,则△BDE 的周长等于.14.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP=.第14题图第15题图15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,DE⊥AB 于E.则下列结论:①CD=ED,②AC+BE=AB,③∠BDE=∠BAC,④AD 平分∠CDE,⑤S △ABD :S △ACD =AB:AC,其中正确的是.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.17.(9分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.18.(9分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.19.(9分)已知如图AD为△ABC上的高,E为AC上一点BE交AD于F且有BF=AC,FD=CD.求证:(1)△ADC≌△BDF;(2)BE⊥AC.20.(9分)图为人民公园的荷花池,现要测量此荷花池两旁A、B两棵树间的距离(不能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB的长(要求画出草图,写出测量方案和理由).21.(10分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?22.(10分)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.23.(11分)(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.第十二章全等三角形单元测试卷参考答案一、选择题1.A2.D3.C 4.B5.B6.C7.A8.D9.B10.D 二、填空题11.10°12.90°13.1014.6或12.15.①②③④⑤.三、解答题16.证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.17.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.18.(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.19.证明:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°.又∵BF=AC,FD=CD,∴△ADC≌△BDF(HL).(2)∵△ADC≌△BDF,∴∠EBC=∠DAC.又∵∠DAC+∠ACD=90°,∴∠EBC+∠ACD=90°.∴BE⊥AC.20.解:分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.理由:由上面可知:PC=BC,QC=AC,又∠PCQ=∠BCA,∴△PCQ≌△BCA∴AB=PQ.21.解:(1)△BPD≌△CQP,理由如下:∵t=1s,∴BP=CQ=3×1=3(cm),∵AB=10cm,点D 为AB 的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5(cm),∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD 和△CQP 中,∴△BPD≌△CQP(SAS);(2)∵v P ≠v Q ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4,CQ=BD=5,∴点P,点Q 运动的时间t==(s),∴v Q ===(cm/s),答:当点Q 的运动速度为cm/s,能够使△BPD 与△CQP 全等.22.解(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD 和Rt△ACE 中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.23.解:(1)△ABC 与△AEG 面积相等.理由:过点C 作CM⊥AB 于M,过点G 作GN⊥EA 交EA 延长线于N,则∠AMC=∠ANG=90°,∵四边形ABDE 和四边形ACFG 都是正方形,∴∠BAE=∠CAG=90°,AB=AE,AC=AG,∵∠BAE+∠CAG+∠BAC+∠EAG=360°,∴∠BAC+∠EAG=180°,∵∠EAG+∠GAN=180°,∴∠BAC=∠GAN,在△ACM 和△AGN 中,,∴△ACM≌△AGN,∴CM=GN,∵S △ABC =AB•CM,S △AEG =AE•GN,∴S △ABC =S △AEG ,(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.∴这条小路的面积为(a+2b)平方米.。
人教版八年级上册数学 第12章 全等三角形 等线夹半角模型 专项训练
等线夹半角模型基本图形:指的是一个大角夹着一个大小只有它的一半的角.常见类型:①90°夹45°;②120°夹60°;③2α°夹α°.板块一90°角夹45°角典例精讲例1.如图,B(4,4),.BC⊥y轴于点C,BA⊥x轴于点A,E为BC上一动点(不与B,C重合),F为AB上一动点,且满足.∠OEF=∠AOE,,在运动过程中,△BEF的周长变吗?若不变求其值;若变化求其变化范围.例2.正方形ABCD中,E,F分别是BC,CD上的点,∠EAF=45°.(1)求证:EF=BE+DF;(2)求证:EA平分∠BEF,FA平分∠DFE.实战演练1.如图,四边形ABCD中,AB=AD,∠BAD=∠C=90°,,E,F分别为BC,CD上的点,∠EAF=45°..探究E F,BE,DF之间的数量关系并证明.D2.如图,在平面直角坐标系中,已知点A(0,2),B(2,0),点C在.∠ABO的平分线上,∠ACO=67.5°,求∠AOC的度数.3.在例1的条件下,若点E在BC的延长线上,点F在CD的延长线上,其余条件不变.(1)探究EF和BE,DF三条线段之间的数量关系并证明;(2)探究∠AFD与∠AFE之间的数量关系并证明.板块二120°角夹60°角典例精讲例1.如图,四边形ABCD中,BC=CD,∠BCD=120°,,E,F分别为AB,AD上的点,∠ECF=∠A=60°.(1)求证:.EF=BE+DF;(2)求证:点C在.∠BAD的平分线上.实战演练(1)如图1,将例题中点E移至BA延长线上,点F移至AD延长线上,其余条件不变,写出EF和BE,DF 之间的数量关系并证明;(2)如图2,将例题中点E移至AB延长线上,点F移至DA延长线上,其余条件不变,写出EF和BE,DF 之间的数量关系并证明.板块三2α°角夹α°角典例精讲基本模型:如图1,四边形ABCD中,点E为AB上一点,点F为AD上一点,具备以下三个条件:①CB=CD;②∠BCD=2∠ECF;③∠B+∠D=180°(或∠A+∠BCD=180°).基本结论:①EF=BE+DF;②EC平分∠BEF,FC平分∠DFE.当点E,F分别移到AB,AD延长线或反向延长线上时,E F=BE-DF或EF=DF-BE.方法技巧:①延长AD至点G(若点E,F在延长线上一般在长线段上截取),使DG=BE,连接CG;②证明△BCE≌△DCG(SA S),全等条件:∠B+∠ADC=180°得∠CDG=∠B,CB=CD,DG=BE;∴CG=CE,∠3=∠1;③证明△ECF≌△GCF(SAS).由∠3=∠1得∠ECG=∠BCD=2∠ECF,得∠ECF=∠GCF.又CE=CG,CF公共,∴△ECF≌△GCF(SAS),得EF=FG=DG+DF=B E+DF.由△ECF≌△GCF得∠CFE=∠CFD,得FC平分∠DFE;∠BEC=∠G=∠CEF得EC平分∠BEF.本质特征:①等腰三角形腰的旋转;②通过旋转对剩余半角进行拼凑;③产生一组旋转全等和一组轴对称全等;④旋转全等的旋转角度为2α;⑤对角互补使夹半角模型产生一组“截长补短”的相应结论.实战演练如图,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°.(1)求证:DA平分∠CDE;(2)求证:∠BAE=2∠CAD.。
人教版八年级数学上册第十二章《全等三角形》测试题(含答案)
人教版八年级数学上册第十二章《全等三角形》测试题(含答案)一、选择题:1、如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC2、如图,点C在∠DAB的内部,CD⊥AD于D,CB⊥AB于B,CD=CB那么Rt△ADC ≌Rt△ABC的理由是()A.SSS B. ASA C. SAS D. HL3、下列说法正确的有()①角平分线上任意一点到角两边的距离相等②到一个角两边的距离相等的点在这个角的平分线上③三角形三个角平分线的交点到三个顶点的距离相等④三角形三条角平分线的交点到三边的距离相等A、1个B、2个C、3个D、4个4、在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠A=∠D D.AB=DE5、如图,D、E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48度,则∠ADP等于()度。
A.42 B.48 C .52 D.586、如图,△AEC≌△BED,点D在AC边上,∠1=∠2,AE和BD相交于点O.下列说法:(1)若∠B=∠A,则BE∥AC;(2)若BE=AC,则BE∥AC;(3)若△ECD≌△EOD,∠1=36°,则BE∥AC.其中正确的有()个.A.3个B.2个C.1个D.0个7、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°8、如图所示,AD、BC相交于点O,已知∠A=∠C,要根据“ASA”证明△AOB≌△COD,还要添加一个条件是()A. AB=CDB. AO=COC.BO=DOD.∠ABO=∠CDO9、如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为()A.15 B.12.5 C.14.5 D.1710、如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°11、如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()A.∠C=∠ABC B.BA=BGC.AE=CE D. AF=FD12、如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二、填空题:13、点O是△ABC内一点,且点O到三边的距离相等,∠BAC=60°,则∠BOC的度数为 .14、如图:在△ABC中,∠B=∠C=50°,D是BC的中点,DE⊥AB,DF⊥AC,则∠BAD= 。
人教版八年级数学上册《第十二章 全等三角形》测试卷-带参考答案
人教版八年级数学上册《第十二章全等三角形》测试卷-带参考答案一、选择题1.如图,已知△ABC≌△CDE,下列结论中不正确的()A.AC=CE B.∠BAC=∠DCE C.∠ACB=∠ECD D.∠B=∠D2.下列命题属于假命题的是()A.全等三角形的对应边相等B.全等三角形的对应角相等C.三个角分别相等的两个三角形全等D.三条边分别相等的两个三角形全等3.如图,在△ABE和△ACD中,点D,E分别在AB,AC边上,且CD与BE相交于点O,AB=AC若要判定△ABE≌△ACD,则添加的条件不可能是()A.∠ABE=∠ACD B.AD=AE C.∠ADC=∠AEB D.BE=CD4.老师上课用磁力小棒设计了一个平分角的仪器,用它可以平分一个已知角.其中AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD沿着这个角的两边放下,利用全等三角形的性质就能说明射线AC是这个角的平分线.这里判定△ABC和△ADC是全等三角形的依据是()A.SSS B.ASA C.SAS D.AAS5.已知,如图所示,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形A.1 B.2 C.3 D.46.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若CD=10,则点D到AB的距离是()A.8 B.9 C.10 D.117.如图,EB交AC于点M,交CF于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF.下列结论:①∠1=∠2②CD=BD③△AFN≌△BDN④AM=AN.其中所以正确结论的序号是()A.①②③B.①②④C.①③④D.②③④8.如图,在△ABC中,AB=3,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC 于M、N,则△AMN的周长为()A.4 B.6 C.7 D.8二、填空题9.已知图中的两个三角形全等,则∠1等于度.10.如图,已知∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE垂足点分别是D,E,AD=5,BE=2,则DE的长为.11.如图,在△ACB中∠ACB=90°,AC=BC点C的坐标为(−2,0),点A的坐标为(−8,3),点B的坐标是.12.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=5,DC=6,则△ABD的面积为.13.如图,在△ABC中,∠ACB=90°,AC=BC,D为AB的中点,点M、N分别在AC、CB的延长线上,且MD⊥DN,连MN.若∠DMC=15°,BN=1,则MN的长是.三、解答题14.如图,∠1=∠2,AB=AE,AC=AD.求证:BC=ED.15.如图,AD是∠BAC的平分线,DE⊥AE,DF⊥AC,垂足为F,且BD=CD,求证:AB+CF=AE。
人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案
人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
人教版八年级数学上册试题 第12章 全等三角形单元测试(含答案)
第12章全等三角形单元测试一.选择题(共12小题,满分48分,每小题4分)1.下列各组两个图形属于全等图形的是( )A.B.C.D.2.下列说法中正确的是( )A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去5.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10B.7C.5D.47.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是( )A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF8.(4分)下列各组条件,不能判定△ABC≌△DEF的是( )A.AB=DE,∠B=∠E,∠C=∠F B.AB=DE,BC=EF,AC=DFC.AB=DE,AC=DF,∠B=∠E D.AB=DE,AC=DF,∠B=∠E=90°9.如图,在△ABC中,AB=4,AC=7,延长中线AD至E,使DE=AD,连结CE,则△CDE的周长可能是( )A.9B.10C.11D.1210.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A.90°B.120°C.135°D.150°11.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )A.1B.6C.3D.1212.如图,方格中△ABC的三个顶点分别在正方形的顶点(格点上),这样的三角形叫格点三角形,图中可以画出与△ABC全等的格点三角形共有( )个.(不含△ABC)A.28B.29C.30D二.填空题(共4小题,满分16分,每小题4分)13.已知:△ABC≌△DEF,若∠ABC=65°,则∠DEF= .14.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 .15.(4分)沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C走到D的过程中,通过隔离带的空隙P,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,AB∥PM ∥CD,相邻两平行线间的距离相等,AC,BD相交于P,PD⊥CD垂足为D.已知CD=16米.请根据上述信息求标语AB的长度 .16.(4分)如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为 ;第n个三角形中以A n为顶点的底角的度数为 .三.解答题(共8小题,满分86分)17.(8分)如图,点B,F,C,E在一条直线上,BD=CF,AB=EF,AC=ED.求证:△ABC≌△EFD.18.(8分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌△CFE.19.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.20.(10分)如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.21.(12分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.22.(12分)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件 ,使①中的结论仍然成立,并说明理由;(2)如图3,若线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.23.(12分)在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.(1)如图1,当点D是BC边上的中点时,S△ABD:S△ACD= ;(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n 的代数式表示);(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S=6,那么S△ABC= .△BDE24.(14分)如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC= cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.答案一.选择题B .C .D .C .A .C .D .C .D .C.C .D .二.填空题13.65°.14.5.15.16米.16.17.5°,70°2n −1.三.解答题17.证明:∵BD =CF ,∴BD +DC =CF +DC .∴BC =FD .在△ABC 和△EFD 中,{AB =EFAC =ED BC =FD,∴△ABC ≌△EFD (SSS ).18.证明:∵FC ∥AB ,∴∠A =∠FCE ,∠ADE =∠F ,在△ADE 与△CFE 中:∵{∠A =∠FCE∠ADE =∠F DE =EF,∴△ADE ≌△CFE (AAS ).19.证明:∵D 是BC 的中点,∴BD =CD ,∵DE ⊥AB ,DF ⊥AC ,∴△BED 和△CFD 都是直角三角形,在△BED 和△CFD 中,{BD =CD BE =CF ,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).20.(1)证明:∵AD平分∠BAC,∠C=90°,DE⊥AB于E,∴DE=DC.在Rt△CDF与Rt△EDB中,{DF=DBDC=DE,∴Rt△CDF≌Rt△EDB(HL),∴CF=EB.(2)解:设CF=x,则AE=12﹣x,∵AD平分∠BAC,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,{AD=ADCD=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,即8+x=12﹣x,解得x=2,即CF=2.21.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中{DM=DMEM=CM∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.22.解:(1)∵∠BEC=∠CFA=α=90°,∴∠BCE+∠CBE=180°﹣∠BEC=90°.又∵∠BCA=∠BCE+∠ACF=90°,∴∠CBE=∠ACF.在△BCE和△CAF中,{∠BEC=∠CFA,∠CBE=∠ACF,BC=AC.∴△BCE≌△CAF(AAS).∴BE=CF.(2)α+∠BCA=180°,理由如下:∵∠BEC=∠CFA=α,∴∠BEF=180°﹣∠BEC=180°﹣α.又∵∠BEF=∠EBC+∠BCE,∴∠EBC+∠BCE=180°﹣α.又∵α+∠BCA=180°,∴∠BCA=180°﹣α.∴∠BCA=∠BCE+∠ACF=180°﹣α.∴∠EBC=∠FCA.在△BCE和△CAF中,{∠CBE=∠ACF,∠BEC=∠CFA,BC=CA.∴△BCE≌△CAF(AAS).∴BE=CF.(3)EF=BE+AF,理由如下:∵∠BCA=α,∴∠BCE+∠ACF=180°﹣∠BCA=180°﹣α.又∵∠BEC=α,∴∠EBC+∠BCE=180°﹣∠BEC=180°﹣α.∴∠EBC=∠FCA.在△BEC和△CFA中,{∠EBC=∠FCA,∠BEC=∠FCA,BC=CA.∴△BEC≌△CFA(AAS).∴BE=CF,EC=FA.∴EF=EC+CF=FA+BE,即EF=BE+AF.23.解:(1)过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(12×BD×AE):(12×CD×AE)=1:1,故答案为:1:1;(2)过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(12×AB×DE):(12×AC×DF)=m:n;(3)∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=6,∴S△ABD=6,∵AC=2,AB=4,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,∴S△ACD=3,∴S△ABC=3+6=9,故答案为:9.24.解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,则PC=(10﹣2t)cm;故答案为:(10﹣2t);(2)当△ABP≌△DCP时,则BP=CP=5,故2t=5,解得:t=2.5;(3)①如图1,当△ABP≌△QCP,则BA=CQ,PB=PC,∵PB=PC,BC=5,∴BP=PC=122t=5,解得:t=2.5,BA=CQ=6,v×2.5=6,解得:v=2.4(cm/秒).②如图2,当△ABP≌△PCQ,则BP=CQ,AB=PC.∵AB=6,∴PC=6,∴BP=10﹣6=4,2t=4,解得:t=2,CQ=BP=4,v×2=4,解得:v=2;综上所述:当v=2.4cm/秒或2cm/秒时△ABP与△PQC全等.。
人教版八年级数学上册第十二章《全等三角形》测试带答案解析
人教版八年级数学上册第十二章《全等三角形》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,若3CD =,8AB =,则ABD △的面积是( )A .12B .10C .8D .62.小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程,他发现OCD 与'''O C D 全等,请你说明小华得到全等的依据是( )A .SSSB .SASC .ASAD .AAS 3.如图,OB 平分∠AOC ,D 、E 、F 分别是射线OA 、射线OB 、射线OC 上的点,D 、E 、F 与O 点都不重合,连接ED 、EF 若添加下列条件中的某一个.就能使DOE ≅FOE ,你认为要添加的那个条件是( )A .OD =OEB .OE =OFC .∠ODE =∠OED D .∠ODE =∠OFE 4D E BC,,12110,60AD AE BE CD BAE ==∠=∠∠=︒=︒,则BAC ∠的度数为( )A .90°B .80°C .70°D .60°5.如图,在Rt ABC 中,90ACB ∠=︒,按以下步骤作图:①以B 为圆心,任意长为半径作弧,分别交BA 、BC 于M 、N 两点;②分别以M 、N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线BP ,交边AC 于D 点,若5,3AB BC ==,则线段CD 的长为( )A .32B .53C .43D .856.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是( )A .图2B .图1与图2C .图1与图3D .图2与图37.如图,在△ABC 中,∠A =90°,BE 是△ABC 的角平分线,ED ⊥BC 于点D ,CD =4,△CDE 周长为12,则AC 的长是( )8.如图,点E 是△ABC 内一点,∠AEB =90°,AE 平分∠BAC ,D 是边AB 的中点,延长线段DE 交边BC 于点F ,若AB =6,EF =1,则线段AC 的长为( )A .7B .8C .9D .109.如图,AI 、BI 、CI 分别平分BAC ∠、ABC ∠、ACB ∠,ID BC ⊥,ABC 的周长为18,3ID =,则ABC 的面积为( )A .18B .30C .24D .2710.数学课上老师布置了“测量锥形瓶内部底面的内径”的探究任务,善思小组想到了以下方案:如图,用螺丝钉将两根小棒AD ,BC 的中点O 固定,只要测得C ,D 之间的距离,就可知道内径AB 的长度.此方案依据的数学定理或基本事实是( )A .边角边B .三角形中位线定理C .边边边D .全等三角形的对应角相等11.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②2180ABC APC ∠+∠=︒;③2BAC BPC ∠=∠;④PAC MAP NCP S S S ∆∆∆=+.其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.如图,在四边形ABCD 中,AD ∥BC .若∠DAB 的角平分线AE 交CD 于E ,连接BE ,且BE 边平分∠ABC ,得到如下结论:①∠AEB =90°;②BC +AD =AB ;③BE =12CD ;④BC =CE ;⑤若AB =x ,则BE 的取值范围为0<BE <x ,那么以上结论正确的是( )A .①②③B .②③④C .①④⑤D .①②⑤二、填空题13.如图,ABC DCB △≌△,若AB =4cm ,BC =6cm ,AC =5cm ,则DC =________cm .14.嘉淇为了测量建筑物墙壁AB 的高度,采用了如图所示的方法:①把一根足够长的竹竿AC 的顶端对齐建筑物顶端A ,末端落在地面C 处;②把竹竿顶端沿AB 下滑至点D ,使DB =_____,此时竹竿末端落在地面E 处;③测得EB 的长度,就是AB 的高度.以上测量方法直接利用了全等三角形的判定方法 _____(用字母表示).15.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 的长是_____.16.如图,任意画一个60BAC ∠=︒的ABC ,再分别作ABC 的两条角平分线BE 和CD ,BE 和CD 交于点P ,连结AP .有以下结论:①AP 平分BAC ∠;②PD PE =;③BD CE BC =+;④PBD PCE PBC S S S +=.其中正确的序号是_____.三、解答题17.如图,点E 、F 在线段BC 上,//AB CD ,A D ∠=∠,BE CF =,证明:AE DF =.18.如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .19.如图,点E ,F 在线段AD 上,AB ∥CD ,B C ∠=∠,BE CF =.求证:AF DE =.20.如图,ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE CF ∥.(1)求证:BDE △≌CDF ;(2)若15AE =,8AF =,试求DE 的长.21.如图,已知ABC 中,2C B ∠=∠.(1)请用基本尺规作图:作∠BAC 的角平分线交BC 于点D ,在AB 上取一点E ,使AE =AC ,连接DE .(不写作法,不下结论,保留作图痕迹);(2)在(1)所作的图形中,求证:AB AC CD =+.请完成下面的证明过程:证明:∵AD 平分BAC ∠,∴DAC ∠=______,在EAD 与CAD 中AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()SAS EAD CAD ≌△△,∴______C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+______,且2C B ∠=∠,∴B BDE=,∠=∠,∴BE DE∴BE=______,=+.∵AB AE BE=+,∴AB AC CD22.如图,在△ABC和△DCB中,∠A=∠D,AC和DB相交于点O,OA=OD.(1)AB=DC;(2)△ABC≌△DCB.23.如图,已知△ABC≌△DEF,AF=5cm.(1)求CD的长.(2)AB与DE平行吗?为什么?解:(1)∵△ABC≌△DEF(已知),∴AC=DF(),∴AC﹣FC=DF﹣FC(等式性质)即=∵AF=5cm∴=5cm(2)∵△ABC≌△DEF(已知)∴∠A=()∴AB()24.在△ABC中,AB=BC,∠ABC=90°,点D为BC上一点,BF⊥AD于点E,交AC于点F,连接DF.(1)如图①,当AD平分∠BAC时,①AB与AF相等吗?为什么?②判断DF与AC的位置关系,并说明理由;(2)如图②,当点D为BC的中点时,试说明:∠FDC=∠ADB.25.如图1,在△ABC中,∠BAC=90°,AB=AC,点D在边AC上,CD⊥DE,且CD =DE,连接BE,取BE的中点F,连接DF.(1)请直接写出∠ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中∠ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;②如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.参考答案:1.A【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边的距离相等可得DE =CD =2,然后根据三角形的面积公式求解即可.【详解】解:如图,过点D 作DE ⊥AB 于E ,∵AD 是∠BAC 的角平分线,90C ∠=︒,CD =3,∴DE =CD =3,∵AB =8,∴△ABD 的面积118312.22AB DE =⋅=⨯⨯= 故选A.【点睛】本题主要考查角了平分线的性质,掌握角平分线上的点到角两边的距离相等是解答本题的关键.2.A【分析】利用全等三角形的判定定理即可求解.【详解】解:在OCD ∆和O C D '''∆中, OD O D OC O C DC D C '''''=⎧'⎪=⎨⎪=⎩,()OCD O C D SSS '''∴∆≅∆.故选:A .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.3.D【分析】根据OB 平分∠AOC 得∠AOB =∠BOC ,又因为OE 是公共边,根据全等三角形的判断即可得出结果.【详解】解:∵OB 平分∠AOC∴∠AOB =∠BOC当△DOE ≌△FOE 时,可得以下结论:OD =OF ,DE =EF ,∠ODE =∠OFE ,∠OED =∠OEF .A 答案中OD 与OE 不是△DOE ≌△FOE 的对应边,A 不正确;B 答案中OE 与OF 不是△DOE ≌△FOE 的对应边,B 不正确;C 答案中,∠ODE 与∠OED 不是△DOE ≌△FOE 的对应角,C 不正确;D 答案中,若∠ODE =∠OFE ,在△DOE 和△FOE 中,DOE FOE OE OEODE OFE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△DOE ≌△FOE (AAS )∴D 答案正确.故选:D .【点睛】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.4.B【分析】先证明BD =CE ,然后证明△ADB ≌△AEC ,∠ADE =∠AED =70°,得到∠BAD =∠CAE ,根据三角形内角和定理求出∠DAE =40°,从而求出∠BAD 的度数即可得到答案.【详解】解:∵BE =CD ,∴BE -DE =CD -DE ,即BD =CE ,∵∠1=∠2=110°,AD =AE ,∴△ADB ≌△AEC (SAS ),∠ADE =∠AED =70°,∴∠BAD =∠CAE ,∠DAE =180°-∠ADE -∠AED =40°,∵∠BAE =60°,∴∠BAD =∠CAE =20°,∴∠BAC =80°,故选B .【点睛】本题主要考查了全等三角形的性质与判定,邻补角互补,三角形内角和定理,熟知全等三角形的性质与判定条件是解题的关键.5.A【分析】利用基本作图得BD平分∠ABC,过D点作DE⊥AB于E,如图,根据角平分线的性质得到则DE=DC,再利用勾股定理计算出AC=4,然后利用面积法得到12•DE×5+12•CD×3=12×3×4,最后解方程即可.【详解】解:由作法得BD平分∠ABC,过D点作DE⊥AB于E,如图,则DE=DC,在Rt△ABC中,AC BC222253=4,∵S△ABD+S△BCD=S△ABC,∴12•DE×5+12•CD×3=12×3×4,即5CD+3CD=12,∴CD=32,故选:A.【点睛】本题考查了基本作图:作解平分线,角平分线的性质,勾股定理,熟练掌握基本作图(作已知角的角平分线),角平分线的性质是解题的关键.6.C【分析】利用基本作图可对图1和图2进行判断;利用基本作图和全等三角形的判定与性质、角平分线性质定理的逆定理对图3进行判断.【详解】在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,根据作法可知:AE =AF ,AM =AN ,在△AMF 和△ANE 中,AF AE MAF NAE AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△AMF ≌△ANE (SAS ),∴∠AMD =∠AND ,∵AE =AF ,AM =AN ,∴ME =NF ,在△MDE 和△NDF 中,MDE NDF AMD AND ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NDF (AAS ),MDE NDF S S ∴=△△所以D 点到AM 和AN 的距离相等,∴AD 平分∠BAC .综上,能判断射线AD 平分∠BAC 的是图1和图3.故选:C .【点睛】本题考查了作图-基本作图,全等三角形的判定与性质,角平分线的判定,解决本题的关键是掌握角平分线的作法.7.B【分析】根据角平分线的性质得到AE =DE ,根据三角形的周长公式计算,得到答案.【详解】解:∵BE 是△ABC 的角平分线,ED ⊥BC ,∠A =90°,∴AE =DE ,∵△CDE 的周长为12,CD =4,∴DE +EC =8,∴AC =AE +EC =8,故选:B .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.B【分析】延长BE 交AC 于H ,证明HAE BAE ∆≅∆,根据全等三角形的性质求出AH ,根据三角形中位线定理解答即可.【详解】解:延长BE 交AC 于H , AE 平分BAC ∠,HAE BAE ∴∠=∠,在HAE ∆和BAE ∆中,HAE BAE AE AEAEH AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()HAE BAE ASA ∴∆≅∆,6AH AB ∴==,HE BE =,HE BE =,AD DB =,//DF AC ∴,HE BE =,22HC EF ∴==,8AC AH HC ∴=+=,故选:B .【点睛】本题考查的是全等三角形的判定和性质、三角形中位线定理,掌握全等三角形的判定定理和性质定理是解题的关键.9.D【分析】过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,利用角平分线的性质得到IE =IF =ID =3,然后根据三角形面积公式得到ABC IAB IBC IAC S S S S =++△△△△,据此即可求得.【详解】解:过I 点作IE ⊥AB 于点E ,IF ⊥AC 于点F ,如图,∵AI ,BI ,CI 分别平分∠BAC ,∠ABC ,∠ACB ,∴IE =IF =ID =3,∴ABC IAB IBC IAC S S S S =++△△△△111333222AB BC AC =⨯⨯+⨯⨯+⨯⨯ 3()2AB BC AC =++ 3182=⨯ 27=故选:D .【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形的面积.10.A【分析】根据O 是AD 与BC 的中点,得到OA =OD ,OB =OC ,根据∠AOB =∠DOC ,推出△AOB ≌△DOC ,是SAS .【详解】∵O 是AD 与BC 的中点,∴OA =OD ,OB =OC ,∵∠AOB =∠DOC ,∴△AOB ≌△DOC (SAS).故选A .【点睛】本题考查了测量原理,解决此类问题的关键是根据测量方法和工具推导测量原理.11.D【分析】过点P 作PD ⊥AC 于D ,根据角平分线的判定定理和性质定理判断①;证明Rt △P AM ≌Rt △P AD ,根据全等三角形的性质得出∠APM =∠APD ,同理得出∠CPD =∠CPN ,可判断②;根据三角形的外角性质判断③;根据全等三角形的性质判断④.【详解】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PN =PD ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △P AM 和Rt △P AD 中,PM PD PA PA=⎧⎨=⎩, ∴Rt △P AM ≌Rt △P AD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵PC 平分∠FCA ,BP 平分∠ABC ,∴∠ACF =∠ABC +∠BAC =2∠PCN ,∠PCN =12∠ABC +∠BPC , ∴()1122PCN ABC BPC ABC BAC ∠=∠+∠=∠+∠ ∴∠BAC =2∠BPC ,③正确;④由②可知Rt △P AM ≌Rt △P AD (HL ),Rt △PCD ≌Rt △PCN (HL )∴S △APD =S △APM ,S △CPD =S △CPN ,∴S △APM +S △CPN =S △APC ,故④正确,故选:D【点睛】本题考查的是角平分线的性质、全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.12.D【分析】根据两直线平行,同旁内角互补可得∠ABC +∠BAD =180°,又BE 、AE 都是角平分线,可以推出∠ABE +∠BAE =90°,从而得到∠AEB =90°,然后延长AE 交BC 的延长线于点F ,先证明△ABE 与△FBE 全等,再根据全等三角形对应边相等得到AE =EF ,然后证明△AED 与△FEC 全等,从而可以证明①②⑤正确,AB 与CD 不一定相等,所以③④不正确.【详解】解:∵AD ∥BC ,∴∠ABC +∠BAD =180°,∵AE 、BE 分别是∠BAD 与∠ABC 的平分线,∴∠BAE =12∠BAD ,∠ABE =12∠ABC ,∴∠BAE +∠ABE =12(∠BAD +∠ABC )=90°,∴∠AEB =180°﹣(∠BAE +∠ABE )=180°﹣90°=90°,故①小题正确;如图,延长AE 交BC 延长线于F ,∵∠AEB =90°,∴BE ⊥AF ,∵BE 平分∠ABC ,∴∠ABE =∠FBE ,在△ABE 与△FBE 中,90ABE FBE BE BEAEB FEB ∠∠⎧⎪⎨⎪∠∠︒⎩==== , ∴△ABE ≌△FBE (ASA ),∴AB =BF ,AE =FE ,∵AD ∥BC ,∴∠EAD =∠F ,在△ADE 与△FCE 中,EAD F AE FE AED FEC ∠∠⎧⎪⎨⎪∠∠⎩=== ,∴△ADE ≌△FCE (ASA ),∴AD =CF ,∴AB =BF =BC +CF =BC +AD ,故②小题正确;∵△ADE ≌△FCE ,∴CE =DE ,即点E 为CD 的中点,∵BE 与CE 不一定相等∴BE 与12CD 不一定相等,故③小题错误;若AD =BC ,则CE 是Rt △BEF 斜边上的中线,则BC =CE ,∵AD 与BC 不一定相等,∴BC 与CE 不一定相等,故④小题错误;∵BF =AB =x ,BE ⊥EF ,∴BE 的取值范围为0<BE <x ,故⑤小题正确.综上所述,正确的有①②⑤.故选:D .【点睛】本题主要考查了全等三角形的判定及性质,平行线的性质,角平分线的定义,证明BE ⊥AF 并作出辅助线是解题的关键,本题难度较大,对同学们的能力要求较高. 13.4【分析】由ABC DCB △≌△,可得AB =DC ,已知AB =4cm ,即可得DC 的长度,做题时要找准对应边.【详解】解:∵ABC DCB △≌△,∴AB =DC =4cm .故答案为4.【点睛】本题考查了全等三角形的性质,题中条件虽多但找到相应关系即可得解,不需要用到所有条件,关键是找准对应边.14. CB ##BC HL【分析】根据题意,将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌即可求解.【详解】解:由③可得将AB 的长度转化为EB 的长度,证明Rt Rt ABC EBD ≌,故把竹竿顶端沿AB 下滑至点D ,使DB =CB ,证明90,,ABC EBD AC ED DB CB ∠=∠=︒==,∴Rt Rt ABC EBD ≌(HL )故答案为:CB ,HL .【点睛】本题考查了HL 证明三角形全等,全等三角形的性质,掌握HL 的性质与判定是解题的关键.15.3【分析】根据角平分线上的点到角的两边距离相等可得DE =DF ,再根据三角形的面积公式列式计算即可得解.【详解】解:过D 作DF ⊥AC 于F ,∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∴S △ABC =12AB ×DE +12AC ×DF =12×4×2+12AC ×2=7,解得AC =3.故答案为:3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键. 16.①②③④【分析】首先由三角形内角和定理和角平分线得出PBC PCB ∠+∠的度数,再由三角形内角和定理可求出120BPC ∠=︒可知120DPE ∠=︒,过点P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,由角平分线的性质可知AP 是BAC ∠的平分线,由此判断①;由全等三角形的判定定理可得出PFD PGE ≌,由此判断②;由三角形全等的判定定理可得出BHP BFP ≌,CHP CGP ≌,然后根据全等三角形推出BC BD CE =+,由此判断③,根据全等可得PBD S 、PCE S 和PBC S 的关系,由此判断④,由此即可解答本题.【详解】∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,60BAC ∠=︒, ∴11(180)(18060)6022BA B C PBC PC ︒-∠=︒+∠-︒=∠=︒, ∴()180********BPC PBC PCB ∠=︒-∠+∠=︒-︒=︒,∴120DPE ∠=︒,过点P 作PF AB ⊥于F 点,PG ⊥AC 于G 点,PH ⊥BC 于H 点,∵BE ,CD 分别是ABC ∠和ACB ∠的平分线,PF AB ⊥,PG AC ⊥,PH BC ⊥, ∴PF PH PG ==,∴AP 平分BAC ∠,故①正确;由①可知:PF PH PG ==,∵60BAC ∠=︒,90AFP AGP ∠=∠=︒,∴120FPG ∠=︒,∵120DPE ∠=︒,∴DPF DPE EPF FPG EPF EPG ∠=∠-∠=∠-∠=∠,∴PFD PGE ASA ≌(), ∴PD PE =,故②正确;又∵BP BP =,PF PH =,∴()Rt BHP Rt BFP HL ≌,同理:Rt CHP Rt CGP ≌,∴BH BD DF =+,CH CE GE =-,两式相加得:+=++BH CH BD DF CE GE -,∵PFD PGE ASA ≌(), ∴DF GE =,∴BD CE BC =+,故③正确;∵PF PH PG ==,∴PBD △,PCE ,PBC △,的高相等,∵BD CE BC =+,∴PBD PCE PBC S S S +=,故④正确;故答案是:①②③④.【点睛】本题主要考查全等三角形的判定和性质定理,角平分线的性质定理以及四边形内角为360°等知识,添加辅助线,构造全等三角形,是解题的关键.17.见解析【分析】利用AAS 证明△ABE ≌△DCF ,即可得到结论.【详解】证明:∵//AB CD ,∴∠B =∠C ,∵A D ∠=∠,BE CF =,∴△ABE ≌△DCF (AAS ),∴AE DF =.【点睛】此题考查全等三角形的判定及性质,熟记全等三角形的判定定理是解题的关键.18.证明见解析【分析】利用角边角证明△CDE ≌△ABC ,即可证明DE =BC .【详解】证明:∵DE ∥AB ,∴∠EDC =∠B .又∵CD =AB ,∠DCE =∠A ,∴△CDE ≌△ABC (ASA).∴DE =BC .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定是本题的关键.19.见详解【分析】由题意易得A D ∠=∠,然后可证ABE DCF △≌△,进而问题可求证.【详解】证明:∵AB ∥CD ,∴A D ∠=∠,∵B C ∠=∠,BE CF =,∴ABE DCF △≌△(AAS ),∴AE DF =,∵,AF AE EF DE DF EF =-=-,∴AF DE =.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.20.(1)见解析; (2)72;【分析】(1)根据两直线平行内错角相等;全等三角形的判定(角角边);即可证明;(2)由(1)结论计算线段差即可解答;(1)证明:∵BE ∥CF ,∴∠BED =∠CFD ,∵∠BDE =∠CDF ,BD =CD ,∴△BDE ≌△CDF (AAS );(2)解:由(1)结论可得DE =DF ,∵EF =AE -AF =15-8=7,∴DE =72; 【点睛】本题考查了平行线的性质,全等三角形的判定(AAS )和性质;掌握全等三角形的判定和性质是解题关键.21.(1)见详解(2)∠DAE ,∠AED ,∠B ,CD【分析】(1)利用尺规作出角平分线及相等的线段,然后连接即可;(2)先证明()EAD CAD SAS ≌,再结合AED BDE ∠=∠+∠B ,且2C B ∠=∠,即可得到结论.【详解】(1)解:如图所示即为所求;(2)证明:∵AD 平分BAC ∠,∴DAC ∠=∠DAE ,在EAD 与CAD 中,AE AC EAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()EAD CAD SAS ≌,∴∠AED C =∠,DE CD =,AE =AC ,∵AED BDE ∠=∠+∠B ,且2C B ∠=∠,∴B BDE ∠=∠,∴BE DE =,∴BE =CD ,∵AB AE BE =+,∴AB AC CD =+.故答案是:∠DAE ,∠AED ,∠B ,CD .【点睛】本题主要考查尺规作图—基本作图,全等三角形的判定和性质,三角形外角的性质,熟练掌握全等三角形的判定和性质,是解题的关键.22.(1)证明见解析;(2)证明见解析【分析】(1)证明△ABO ≌△DCO (ASA ),即可得到结论;(2)由△ABO ≌△DCO ,得到OB =OC ,又OA =OD ,得到BD =AC ,又由∠A =∠D ,即可证得结论.【详解】(1)证明:在△ABO 与△DCO 中,A D OA ODAOB DOC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABO ≌△DCO (ASA )∴AB =DC ;(2)证明:∵△ABO ≌△DCO ,∴OB =OC ,∵OA =OD ,∴OB +OD =OC +OA ,∴BD =AC ,在△ABC 与△DCB 中,AC BD A D AB DC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ).【点睛】此题考查了全等三角形的判定和性质,熟练掌握并灵活选择全等三角形的判定方法是解题的关键.23.(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【分析】(1)根据△ABC ≌△DEF ,AF =5cm,可以得到CD =AF ,从而可以得到CD 的长;(2)根据△ABC ≌△DEF ,可以得到∠A =∠D ,从而可以得到AB 与DE 平行.【详解】解:(1)∵△ABC ≌△DEF (已知),∴AC =DF (全等三角形对应边相等),∴AC ﹣FC =DF ﹣FC (等式性质)即AF =CD ,∵AF =5cm∴CD =5cm ;(2)∵△ABC ≌△DEF (已知)∴∠A =∠D (全等三角形对应角相等)∴AB DE (内错角相等,两直线平行).故答案为:(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∠D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【点睛】本题考查全等三角形的性质和平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)①AB AF =,理由见解析;②DF AC ⊥,理由见解析;(2)见解析【分析】(1)①SAS 证明AEF AEB △≌△,即可推出AB AF =;②根据AD 垂直平分BF 可得BD DF =,进而SSS 证明ADF ADB ≌,可得90DFA DBA ∠=∠=︒,即可求解.(2)过点C 作CG BC ⊥,交BF 的延长线于点G ,ASA 证明ABD BCG △≌△,可得DB CG =,进而证明△FCG ≌FCD ()SAS ,得出FDC FGC ∠=∠,根据同角的余角相等,可得G ADB ∠=∠,等量代换可得∠FDC =∠ADB .(1)①AB AF=,理由如下,AD平分∠BAC,FAD BAE∴∠=∠,BF⊥AD,AEB AEF∠=∠∴,又AE AE=,∴AEF AEB△≌△,∴AB AF=;②DF AC⊥,理由如下,AEF AEB△≌△,EF EB∴=,又AD FB⊥,DF DB∴=,在ADF△与ADB中AD ADAF ABDF DB=⎧⎪=⎨⎪=⎩,∴ADF△≌ADB()SSS,90ABC∠=︒,∴90DFA DBA∠=∠=︒,即DF AC⊥;(2)过点C作CG BC⊥,交BF的延长线于点G,如图,90GCB DBA∴∠=∠=︒,BF AD⊥,90ABC∠=︒,∴90,90 GBD ADB ADB DAB∠+∠=︒∠+∠=︒,GBD DAB∴∠=∠,又AB BC=,∴ABD BCG △≌△()ASA ,DB CG ∴=,点D 为BC 的中点,BD CD ∴=12BC =, CG CD ∴=, ,90AB AC ABC =∠=︒,45ACB ∴∠=︒,45FCB FCG ∴∠=∠=︒,在△FCG 与FCD 中,CG CD GCF DCF CF CF =⎧⎪∠=∠⎨⎪=⎩,∴△FCG ≌FCD ()SAS ,FDC FGC ∴∠=∠,,CG CB AD BF ⊥⊥,FBD ADB FBD G ∴∠+∠=∠+∠,G ADB ∴∠=∠,∴∠FDC =∠ADB .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 25.(1)∠ADF =45°,ADDF ;(2)①成立,理由见解析;②1≤S △ADF ≤4.【分析】(1)延长DF 交AB 于H ,连接AF ,先证明△DEF ≌△HBF ,得BH =CD ,再证明△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;(2)①过B 作DE 的平行线交DF 延长线于H ,连接AH 、AF ,先证明△DEF ≌△HBF ,延长ED 交BC 于M ,再证明∠ACD =∠ABH ,得△ACD ≌△ABH ,得AD =AH ,等量代换可得∠DAH =90°,即△ADH 为等腰直角三角形,利用三线合一及等腰直角三角形边的关系即可得到结论;②先确定D 点的轨迹,求出AD 的最大值和最小值,代入S △ADF =214AD 求解即可.【详解】(1)解:∠ADF =45°,AD ,理由如下:延长DF 交AB 于H ,连接AF ,∵∠EDC =∠BAC =90°,∴DE ∥AB ,∴∠ABF =∠FED ,∵F 是BE 中点,∴BF =EF ,又∠BFH =∠DFE ,∴△DEF ≌△HBF ,∴BH =DE ,HF =FD ,∵DE =CD ,AB =AC ,∴BH =CD ,AH =AD ,∴△ADH 为等腰直角三角形,∴∠ADF =45°,又HF =FD ,∴AF ⊥DH ,∴∠F AD =∠ADF =45°,即△ADF 为等腰直角三角形,(2)解:①结论仍然成立,∠ADF=45°,AD DF,理由如下:过B作DE的平行线交DF延长线于H,连接AH、AF,如图所示,则∠FED=∠FBH,∠FHB=∠EFD,∵F是BE中点,∴BF=EF,∴△DEF≌△HBF,∴BH=DE,HF=FD,∵DE=CD,∴BH=CD,延长ED交BC于M,∵BH∥EM,∠EDC=90°,∴∠HBC+∠DCB=∠DMC+∠DCB=90°,又∵AB=AC,∠BAC=90°,∴∠ABC=45°,∴∠HBA+∠DCB=45°,∵∠ACD+∠DCB=45°,∴∠HBA=∠ACD,∴△ACD≌△ABH,∴AD=AH,∠BAH=∠CAD,∴∠CAD+∠DAB=∠BAH+∠DAB=90°,即∠HAD=90°,∴∠ADH=45°,∵HF=DF,∴AF⊥DF,即△ADF为等腰直角三角形,②由①知,S△ADF=12DF2=14AD2,由旋转知,当A、C、D共线时,且D在A、C之间时,AD取最小值为3-1=2,当A、C、D共线时,且C在A、D之间时,AD取最大值为3+1=4,∴1≤S△ADF≤4.【点睛】本题考查了等腰直角三角形性质及判定、全等三角形判定及性质、勾股定理等知识点.构造全等三角形及将面积的最值转化为线段的最值是解题关键.遇到题干中有“中点”时,采用平行线构造出对顶三角形全等是常用辅助线.。
人教版八年级数学上册 第12章 全等三角形 综合训练(含答案)
人教版八年级数学上册第12章全等三角形综合训练一、选择题1. 在如图所示的三角形中,与图中的△ABC全等的是()2. 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,BC =7,BD=4,则点D到AB的距离是()A.3 B.4C.5 D.73. 如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A. 2对B. 3对C. 4对D. 5对4. 如图,BE⊥AC,CF⊥AB,垂足分别是E,F.若BE=CF,则图中全等三角形有()A.1对B.2对C.3对D.4对5. 如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,则下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°6. 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25 B.5.5 C.7.5 D.12.57. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误8. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 69. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于()A.90°B.120 C.135°D.150°10. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()二、填空题11. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.12. △ABC的周长为8,面积为10,若其内部一点O到三边的距离相等,则点O 到AB的距离为________.13. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为________________________.14. 如图所示,AE=AD,∠B=∠C,BE=4,AD=5,则AC=.15. 要测量河岸相对两点A,B之间的距离,已知AB垂直于河岸BF,先在BF 上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是________米.16. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.17. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题18. 如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并证明.19. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.20. 如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,AD=DC =2.4,BC=4.1.(1)若∠ABE=150°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.F在AC上,DF=BE,AE=CF,∠AFD=∠CEB.求证:AD∥CB.22. 如图,已知△ABC 的周长是20 cm ,BO ,CO 分别平分∠ABC 和∠ACB ,OD ⊥BC于点D ,且OD =4 cm.求△ABC 的面积.人教版 八年级数学上册 第12章 全等三角形综合训练-答案一、选择题 1. 【答案】C2. 【答案】A3. 【答案】C 【解析】由题意可知,△ABD ≌△CBD ,△MON ≌△M ′ON ′,△DON ≌△BON ′,△DOM ≌△BOM ′共4对.4. 【答案】C[解析] ①∵BE ⊥AC ,CF ⊥AB ,∴∠CFB =∠BEC =90°.在Rt △BCF 和Rt △CBE 中,⎩⎨⎧CF =BE ,BC =CB ,∴Rt △BCF ≌Rt △CBE(HL).②∵BE ⊥AC ,CF ⊥AB ,∴∠AFC =∠AEB =90°.在△ABE 和△ACF 中,⎩⎨⎧∠AEB =∠AFC ,∠A =∠A ,BE =CF ,∴△ABE ≌△ACF(AAS).③设BE 与CF 相交于点O. ∵BE ⊥AC ,CF ⊥AB , ∴∠OFB =∠OEC =90°.∵△ABE ≌△ACF ,∴AB =AC ,AE =AF. ∴BF =CE.在△BOF 和△COE 中,⎩⎨⎧∠OFB =∠OEC ,∠BOF =∠COE ,BF =CE ,∴△BOF ≌△COE(AAS).5. 【答案】C[解析] ∵BE =CD ,∴BE -DE =CD -DE ,即BD =CE. 在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,BD =CE ,AD =AE ,∴△ABD ≌△ACE.由题意易证:△ABE ≌△ACD ,故A ,B 正确. 由△ABE ≌△ACD 可得∠B =∠C. ∵∠2=∠BAE +∠B ,∴∠B =∠2-∠BAE =110°-60°=50°. ∴∠C =∠B =50°. 故C 错误.∵△ABE ≌△ACD(已证),∴∠1=∠AED =180°-∠2=70°. 故D 正确.故选C.6. 【答案】D[解析] 如图,过点D 作DH ⊥AC 于点H.又∵AD 是△ABC 的角平分线,DF ⊥AB , ∴DF =DH.在Rt △ADF 和Rt △ADH 中,⎩⎨⎧AD =AD ,DF =DH ,∴Rt △ADF ≌Rt △ADH(HL). ∴S Rt △ADF =S Rt △ADH .在Rt △DEF 和Rt △DGH 中,⎩⎨⎧DE =DG ,DF =DH ,∴Rt △DEF ≌Rt △DGH(HL). ∴S Rt △DEF =S Rt △DGH .∵△ADG 和△AED 的面积分别为60和35, ∴35+S Rt △DEF =60-S Rt △DGH .∴S Rt △DEF =12.5.7. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.8. 【答案】B【解析】如解图,连接OC ,由已知条件易得∠A =∠OCE ,CO =AO ,∠DOE =∠COA ,∴∠DOE -∠COD =∠COA -∠COD ,即∠AOD =∠COE ,∴△AOD ≌△COE (ASA),∴AD =CE ,进而得CD +CE =CD +AD =AC=22AB =3,故选B.9. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.10. 【答案】C[解析] 选项A 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B 中由全等三角形的判定定理“SAS”证得图中两个小三角形全等. 选项C 中,如图①,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE. ∴∠FEC=∠BDE.这两个角所对的边是BE 和CF ,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D 中,如图②,∵∠DEC=∠B+∠BDE ,∴x °+∠FEC=x °+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C ,∴△BDE ≌△CEF .故能判定两个小三角形全等.二、填空题11. 【答案】∠B =∠D12. 【答案】2.5[解析] 设点O 到AB ,BC ,AC 的距离均为h ,∴S △ABC =12×8·h=10,解得h =2.5,即点O 到AB 的距离为2.5.13. 【答案】(4,0)或(4,4)或(0,4)14. 【答案】 915. 【答案】2016. 【答案】3[解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°. ∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE. ∵AE =AC -CE ,BC =2 cm ,EF =5 cm , ∴AE =5-2=3(cm).17. 【答案】32°[解析] ∵PD =PE =PF ,PD ⊥AB 交BA 的延长线于点D ,PE ⊥AC于点E ,PF ⊥BC 交BC 的延长线于点F , ∴CP 平分∠ACF ,BP 平分∠ABC.∴∠PCF =12∠ACF ,∠PBF =12∠ABC.∴∠BPC =∠PCF -∠PBF =12(∠ACF -∠ABC)=12∠BAC =32°.三、解答题18. 【答案】解:答案不唯一,如:添加∠BAC =∠DAC. 证明:在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(AAS).19. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=16,BC=10, ∴AB=CD=(AD-BC )=3.20. 【答案】解:(1)∵∠ABE =150°,∠DBC =30°, ∴∠ABD +∠CBE =120°.∵△ABC ≌△DBE ,∴∠ABC =∠DBE.∵∠ABD =∠ABC -∠DBC ,∠CBE =∠DBE -∠DBC , ∴∠ABD =∠CBE =60°, 即∠CBE 的度数为60°. (2)∵△ABC ≌△DBE ,∴DE =AC =AD +DC =4.8,BE =BC =4.1.∴△DCP 与△BPE 的周长和=DC +DP +BP +CP +PE +BE =DC +DE +BC +BE =15.4.21. 【答案】证明:∵AE =CF ,11 / 11 ∴AE -EF =CF -EF ,即AF =CE.在△ADF 和△CBE 中,⎩⎨⎧DF =BE ,∠AFD =∠CEB ,AF =CE ,∴△ADF ≌△CBE(SAS).∴∠A =∠C.∴AD ∥CB.22. 【答案】解:∵BO ,CO 分别平分∠ABC 和∠ACB ,∴点O 到AB ,AC ,BC 的距离相等.∵△ABC 的周长是20 cm ,OD ⊥BC 于点D ,且OD =4 cm ,∴S △ABC =12×20×4=40(cm 2).。
人教版八年级数学上册第12章-专项训练——巧构造全等三角形解决问题
类型一 巧用“角平分线法”构造全等三角形 1.如图,在△ABC 中,BE 是∠ABC 的平分线,AD ⊥BE 于点 D.求证:∠2=∠1+∠C.
证明:延长 AD 交 BC 于点 F. ∵AD⊥BE,∴∠ADB=∠FDB=90°. ∵BE 是∠ABC 的平分线,∴∠ABD=∠FBD. 又∵BD=BD,∴△ABD≌△FBD(ASA), ∴∠2=∠DFB. ∵∠DFB=∠1+∠C,∴∠2=∠1+∠C.
∵AC∥BD,∴∠C+∠D=180°. ∵∠5+∠6=180°,∴∠D=∠6. ∵∠6=∠D,∠3=∠4,BE=BE, ∴△BEF≌△BED, ∴BF=BD.∴AB=AF+BF=AC+BD.
类型三 巧用“反向延长法”构造全等三角形 3.如图,在△ABC 中,AC=BC,∠ACB=90°, D 是 AC 上一点,AE⊥BD 交 BD 的延长线于点 E,AE =12BD.求证:BD 是∠ABC 的平分线.
类型四 巧用“加倍法(折半法)”构造全等三角形 4.如图,已知 CE,CB 分别是△ABC,△ADC 的 中线,且 AB=AC,∠ACB=∠ABC.求证:CD=2CE.
证明:如答图,延长 CE 到点 F,使 EF=CE,则 CF=2CE,连接 BF.∵CE,CB 分别是△ABC,△ADC 的中线,∴AE=BE,AB=BD.∵AE=BE,∠AEC= ∠BEF,CE=EF,∴△AEC≌△BEF, 巧用“截长法(补短法)”构造全等三角形 2.如图,已知 AC∥BD,AE,BE 分别平分∠CAB 和∠DBA,点 E 在 CD 上.求证:AB=AC+BD.
证明:如答图,在 AB 上截取 AF=AC,连接 EF.
∵AE,BE 分别平分∠CAB 和∠DBA, ∴∠1=∠2,∠3=∠4. ∵AC=AF,∠1=∠2,AE=AE, ∴△ACE≌△AFE,∴∠C=∠5.
人教版八年级上册数学第12章《全等三角形》测试题【含答案】
一、选择题(每小题3分,共24分)1.如图1,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD及△APE全等的理由是()A.SSS B.SASC.SSA D.AAS2.装修工人在搬运中发现有一块三角形的陶瓷片不慎摔成了四块(如图2),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A.①B.②C.③ D.④3.有下列条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等.其中能判定两直角三角形全等的有()A.1个B.2个C.3个D.4个4.用直尺和圆规作一个角等于已知角的示意图如图3,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SASC.ASA D.AAS5.如图4,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形共有()A.1对B.2对C.3对D.4对6.如图5,点P是AB上任意一点,∠ABC=∠ABD,补充下列条件中的一个,不能得出△APC≌△APD的是()A.BC=BD B.AC=ADC.∠ACB=∠ADB D.∠CAB=∠DAB7.如图6,△ABC≌△EFD,则()A.AB=DE,AC=EF,BC=DFB.AB=DF,AC=DE,BC=EFC.AB=EF,AC=DE,BC=DFD.AB=EF,AC=DF,BC=DE8.如图7,用“AAS”直接判定△ACD≌△ABE,需要添加的条件是()A.∠ADC=∠AEB,∠C=∠BB.∠ADC=∠AEB,CD=BEC.AC=AB,AD=AED.AC=AB,∠C=∠B二、填空题(每小题4分,共32分)9.已知△ABC≌△DEF,BC=EF=6厘米,△ABC的面积为9平方厘米,则EF边上的高是__________厘米.10.如图8,已知AB=CD,∠ABD=∠CDB,则图中共有__________对全等三角形.11.在Rt△ABC和Rt△DEF中,AB=DE,∠A=∠D=90°,再补充一个条件__________,便可得Rt△ABC≌Rt△DEF.12. 如图9,如果△ABC≌△DEF,△DEF的周长是32 cm,DE=12 cm,EF=13 cm,则AC=__________.13.如图10,在△ABC中,∠C=90°,CB=4,延长CB至点D,使BD=AC,作∠BDE=90°,∠DBE=∠A,两角的另一边相交于点E,则DE的长为__________.14.如图11,点P到∠AOB两边的距离相等,若∠POB=30°,则∠AOB=__________.15.如图12,点D在AB上,点E在AC上,CD及BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=__________.16.如图13,已知△ABC,且点A(0,1),点C(4,3),如果要使△ABD及△ABC全等,则点D 的坐标是__________.三、解答题(共64分)17.(10分)如图14,已知AB=AE,∠1=∠2,∠B=∠E,BC及ED相等吗说明理由.18.(10分)如图15,若BE=CD,∠1=∠2,则BD及CE相等吗为什么19.(10分)如图16,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.△BEC及△CDA全等吗请说明理由.20.(10分)如图17,CF⊥AB于点F,BE⊥AC于点E,且CF,BE交于点D,BD=CD.求证:AD平分∠BAC.21.(12分)如图18,已知△ABC≌△ADE,BC及DE相交于点F,连接CD,EB.请你找出图中其他的全等三角形,并说明理由.22.(12分)如图19,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并说明理由.第十二章全等三角形测试题一、1.D 2.A 3.D 4.A 5.C 6.B 7.C 8.B二、9.3 10.311.答案不唯一,如AC=DF等12.7 cm 13.4 14.60° 15.20°16.(4,-1)或(-1,3)或(-1,-1)三、17.解:BC=ED.理由:因为∠1=∠2,所以∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.在△BAC及△EAD中,∠B=∠E,AB=AE,∠BAC=∠EAD,所以△BAC≌△EAD.所以BC=ED.18.解:相等.理由:因为∠1=∠2,所以180°-∠1=180°-∠2,即∠ADC=∠AEB.又BE=CD,∠A=∠A,所以△ABE≌△ACD.所以AB=AC,AE=AD.所以AB-AD=AC-AE,即BD=CE.19.解:△BEC≌△CDA.理由:因为BE⊥CE,AD⊥CE,所以∠BEC=∠CDA=90°.因为∠BCE+∠CBE=90°,∠BCE+∠ACD=90°,所以∠CBE=∠ACD.在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,CB=AC,所以△BEC≌△CDA. 20.解:因为CF⊥AB,BE⊥AC,所以∠CED=∠BFD=90°.又∠CDE=∠BDF, CD=BD,所以△ECD≌△FBD.所以DE=DF.又DF⊥AB,DE⊥AC,所以AD平分∠BAC.21.解:△ACD≌△AEB,△DCF≌△BEF.理由:因为△ABC≌△ADE,所以AC=AE,AB=AD,∠CAB=∠EAD.所以∠CAB-∠BAD=∠EAD-∠BAD,即∠CAD=∠EAB.所以△ACD≌△AEB(SAS).所以∠ACD=∠AEB,CD=EB.因为△ABC≌△ADE,所以∠ACB=∠AED.所以∠ACB-∠ACD=∠AED-∠AEB,即∠DCF=∠BEF.又∠DFC=∠BFE,所以△DCF≌△BEF(AAS).22.解:OE⊥AB.理由:在△ABC和△BAD中,AC=BD,∠BAC=∠ABD,AB=BA,所以△ABC≌△BAD.所以∠CBA=∠DAB,∠C=∠D.在△AOC和△BOD中,∠AOC=∠BOD,∠C=∠D,AC=BD,所以△AOC≌△BOD.所以OA=OB.在△AOE和△BOE中,OA=OB,∠OAE=∠OBE,AE=BE,所以△AOE≌△BOE.所以∠OEA=∠OEB=90°,即OE⊥AB.。
第12章+全等三角形全等模型(二)手拉手模型+专项训练++2024—2025学年人教版数学八年级上册
第11 讲全等模型(二)手拉手模型板块一初识手拉手模型(1)双等边三角形模型1 异侧双等边模型2 同侧双等边条件:AB=AC,AD=AE,∠BAC=∠DAE=60°结论:△ABD≌△ACE,∠BFC=∠BAC=60°典例精讲【例】如图,AB=AD,AC=AE,∠BAD=∠CAE=60°,,BE,CD 交于点P,连接AP.(1)求证:BE=CD;(2)求∠BPD 的度数;(3)求证:PA 平分∠DPE.实战演练如图,AB=AD,AE=AC,∠BAD=∠CAE=60°,直线BE,CD 交于点P,连接AP.(1)求证:BE=CD;(2)求∠BPA 的度数.初识手拉手模型(2)双等腰直角三角形模型 1 异侧双等腰直角三角形模型2 同侧双等腰直角三角形条件:AB=AC,AD=AE,∠BAC=∠DAE=90°结论:△ABD≌△ACE,BD⊥CE典例精讲【例】如图,AB=AC,AD=AE,∠BAC=∠DAE=90°,,连接BD,CE 交于点 P.(1)求证:△ABD≅△ACE;(2)判断 BD,CE 的关系并证明;(3)连接 PA,求∠APB的度数.实战演练如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.,点 D 在 CE 上,AF⊥CB,,垂足为F.(1)求证:BC⊥CE;(2)若BF=2,求CD-DE 的长.板块三初识手拉手模型(3)双等腰三角形条件:AB=AC,AD=AE,∠BAC=∠DAE结论:△ABD≌△ACE,∠BAC=∠BFC模型 1 异侧双等腰三角形模型 2 同侧双等腰三角形典例精讲【例】如图1,AB=AC,AD=AE,∠BAC=∠DAE=α,直线BD,CE 交于点 P,连接AP.(1)求证:BD=CE;(2)求∠APB 的度数(用α表示);(3)将图形旋转至如图2所示的位置,其余条件不变,直接写出∠APB= (用α表示).实战演练如图,AD=AB,AC=AE,∠DAB=∠EAC,G,F 分别为DC,BE 的中点.若∠DAB=α,探究∠AGF 与α的数量关系.板块四构造手拉手模型模型1 构双等边三角形模型 2 构双等腰直角三角形等边△ABC等腰直角△ABC,∠BAC=90°典例精讲题型一构双等边三角形【例1】如图,在△ABC中,AB=AC,∠ADB=∠BAC=60°.求.∠ADC的度数.题型二构双等腰直角三角形【例2】如图,在△ABC 中,.AB=AC,∠BAC=90°,∠ADB=45°.求∠ADC的度数.题型三构双等腰三角形【例3】如图,在.△ABC中,AB=AC,∠BAC=120°,∠ADB=30°.求∠ADC的度数.实战演练1.已知,在△ABC中,AB=AC,D 为BC上一点,AD=DE,∠ADE=∠BAC=α. (1)如图1,若α=90°,求∠DCE 的度数.(2)如图2,若α=120°,求∠DCE 的度数.2.如图,在△ABC中,AB=AC,∠ADB=∠ABC..求证:DA 平分.∠BDC.3.如图,P 为等边。
人教版八年级上册数学 第十二章 全等三角形解答题 专项训练
人教版八年级上册数学第十二章全等三角形解答题专项训练1.如图,在四边形ABCD中,AD=BC,AC与BD相交于点E.求证:∠DAC=∠CBD.2.如图,点A,D,B,E在一条直线上,AC=DF,AC∥DF.求证:BC=EF.3.如图,在四边形ABCD中,AD∥BC,连接AE、BE,BE⊥AE(1)请判断FC与AD的数量关系,并说明理由;(2)若AB=6,AD=2,求BC的长度.4.如图,在△ABC中,AC=BC,AE⊥CD于点E,BF⊥CD于点F,试判断AC与BC的位置关系,并说明理由.5.如图,点A、B、D、E在同一条直线上,AB=DE,BC∥EF.求证:△ABC≌△DEF.6.已知:如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:AE=AD.7.如图,AB=AE,AB∥DE,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.8.如图,AC是四边形ABCD的对角线,∠1=∠B,BE=CD,BF=CA(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.9.如图所示,AC垂直BC于C,AD垂直BD于D,CE垂直AB,DF垂直AB,F.求证:△BCE≌△ADF.10.已知:△ABC中,AC⊥BC,CE⊥AB于点E,过F作FD∥BC交AB于D.求证:AC=AD.11.如图所示,在四边形ABCD中,AD∥BC,连接AE、BE,延长AE交BC的延长线于点F.(1)判断FC与AD的数量关系,并说明理由;(2)若AB=BC+AD,则BE⊥AF吗?为什么?12.如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,BD的延长线与AC交于点G,与CE交于点F.(1)求证:BD=CE;(2)如图2,连接FA,小颖对该图形进行探究,请给出证明;若不正确13.(1)如图1,四边形ABCD中,∠A=∠C=90°,AB=BC,E、F分别在AD、CD上,求证:EF=AE+CF.(2)如图2,在题(1)中,若E、F分别在AD、DC的延长线上,求证:AE=EF+CF.14.如图1,在△ABC中,∠BAC=90°,AE是过A的一条直线,且B,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.15.将两块含45°角大小不同的直角三角板△COD和△AOB如图1摆放,连AC、BD.(1)求证:AC=BD;(2)将图1中的△COD绕点O顺时针旋转一定的角度到△C1OD1的位置(如图2),连接AC1,BD1,直线AC1与BD1,存在着什么样的位置关系,请下结论并说明理由.16.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,先阅读再解决后面的问题:原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,求证:EF=BE+DF.解题分析:由于AB=AD,我们可以延长CD到点G,使DG=BE,可证△ABE≌△ADG再证明△AFG≌△AFE,得EF=FG=DG+FD=BE+DF问题(1):如图2,在四边形ABCD中,∠B=∠D=90°,E、F分别是边BC、CD上的点∠BAD.求证:EF=BE+FD;问题(2):如图3,在四边形ABCD中,∠BAD=120°,AB=AD=1,且∠EAF=60°,求此时△CEF的周长.17.已知在△ABC中,∠BAC=90°,AB=AC(∠ABC=∠ACB=45°)(点D不与B,C重合),以AD为边在AD右侧作等腰Rt△ADF,连接CF.(1)观察猜想:如图1,当点D在线段BC上时,①BC与CF的位置关系为;②线段BC,CD,CF之间的数量关系为;(将结论直接写在横线上)(2)数学思考:如图2,当点D在线段CB的延长线上时,结论①,请给予证明;若不成立。
第12章 全等三角形 人教版数学八年级上册单元测试卷(含答案)
第十二章 全等三角形时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·浙江杭州余杭区期末)下列各组图形中,是全等三角形的是( ) A B C D2.(2022·山西运城盐湖区期中)如图,△ABC≌△DEC,点B,C,D在同一直线上.若CE=4,AC=7,则BD=( ) A.3B.8C.11 D.10(第2题)(第3题)3.如图是由边长为1的小正方形组成的网格,若△MNP≌△MEQ,则点Q(与点P不重合)可能是图中的( ) A.点A B.点B C.点C D.点D4.已知∠AOB,用尺规作∠A'O'B'等于∠AOB的作图痕迹如图所示,则判断∠AOB=∠A'O'B'所用到的三角形全等的判断方法是( )A.SSSB.SASC.ASAD.AAS5.(2022·北京东城区期末)下列已知条件,不能唯一确定△ABC的是( )A.∠A=60°,∠B=45°,AB=4B.∠A=30°,AB=5,BC=3C.∠B=60°,AB=6,BC=10D.∠C=90°,AB=5,BC=36.(2022·河南许昌期中)已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x的值为( )B.4C.3D.无法确定A.737.(2022·甘肃武威凉州区期末改编)如图,在△ABC中,∠C=90°,AD平分∠CAB交BC 于点D,DE⊥AB于点E,且AB=5cm,AC=3cm,BC=4cm,则△DEB的周长为( ) A.5cm B.6cm C.7cm D.8cm(第7题)(第8题)8.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=65°,则∠A=( )A.50°B.55°C.60°D.65°9.(2022·湖南衡阳期末改编)如图,OA平分∠NOP,OB平分∠MOP,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是( )A.AD+BC=ABB.点O是CD的中点C.∠AOB=90°D.∠CBO=∠BAO10.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD=( )A.110°B.125°C.130°D.155°二、填空题(共6小题,每小题3分,共18分)11.(2022·广东广州越秀区期中)如图为打碎的一块三角形玻璃,现在要去玻璃店配一块完全相同的玻璃,如果带了两块玻璃,其中有一块是②,那么另一块是 .(第11题)(第12题)12.(2022·北京东城区期末)如图,点B,D,E,C在同一直线上,若△ABD≌△ACE,BC=12,BD=3,则DE的长为 .13.(2022·安徽合肥蜀山区期末)如图,在△ABC中,点D,E分别为边AC,BC上的点,若AD=DE,AB=BE,∠A=70°,则∠CED= .(第13题)(第14题)14.(2022·广东珠海香洲区期末)如图,AD是△ABC的角平分线,DE⊥AB于点E,DF ⊥AC于点F.若S△ABC=21,DE=3,AB=9,则AC的长为 .15.(2022·湖北黄冈期中改编)已知在△ABC中,AB=4,中线AD=4,则AC的取值范围是 .16.(2022·江苏盐城段考改编)如图,已知四边形ABCD中,AB=12cm,BC=8cm,CD=14cm,∠B=∠C,点E为线段AB的中点.如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CD上由点C向点三、解答题(共6小题,共52分)17.(6分)(2021·江苏扬州邗江区期末)如图,点C,F在线段BE上,∠ABC=∠DEF= 90°,BC=EF,请添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”进行判定,需添加的条件是 ;根据“HL”进行判定,需添加的条件是 ;(2)请从(1)中选择一种,加以证明.18.(7分)(2021·重庆綦江区期末)如图,AD=CB,AB=CD,BE⊥AC于点E,DF⊥AC于点F.求证:(1)△ABC≌△CDA;(2)BE=DF.19.(9分)(2022·天津红桥区期末)如图,在△ABC中,AD是△ABC的中线,DE⊥AB, DF⊥AC,垂足分别为E,F.(1)若BE=CF,求证:AD是△ABC的角平分线.(2)若AD是△ABC的角平分线,求证:BE=CF.20.(9分)(2022·山东聊城期末)课间,小明拿着老师的等腰直角三角板(AC=CB,AC⊥BC)玩,不小心掉到两墙之间(墙与地面垂直),三角板的直角顶点恰好着地,且D,C,E三点在同一直线上,如图所示.(A,B,C,D,E五点在同一平面内)(1)求证:△ADC≌△CEB.(2)已知DE=35cm,且图中每块砖的厚度为a cm,请你帮小明求出每块砌墙砖块的厚度.21.(10分)(2022·重庆巴南区期中)(1)教材回顾:在人教版八年级上册数学教材P53的数学活动2中有这样一段描述:我们把两组邻边分别相等的四边形叫做“筝形”.如图(1),四边形ABCD是一个筝形,其中AD=CD,AB=CB,猜想筝形的对角线有什么性质(写出一条即可).并用全等三角形的知识证明你的猜想.(2)知识拓展:如图(2),如果D为△ABC内一点,BD平分∠ABC,AD=CD,证明:∠BAD=∠BCD. 图(1) 图(2)22.(11分)(2022·湖北天门期中)在△ABC中,AB=AC,点D是线段CB上的一动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图(1),当点D在线段CB上,∠BAC=90°时,∠DCE= °;(2)设∠BAC=α,∠DCE=β.①如图(2),当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图(3),当点D在线段CB的延长线上,∠BAC≠90°时,请将图(3)补充完整,并直接写出此时α与β之间的数量关系(不需要证明).图(1) 图(2)图(3)第十二章 全等三角形选择填空题答案速查12345678910B C D A B C B A D C11.①12.613.110°14.515.4<AC<1216.3或921.B B选项可根据“SAS”判定两三角形全等.2.C ∵△ABC≌△DEC,CE=4,AC=7,∴BC=CE=4,CD=AC=7,∴BD=BC+CD=4+7=11.3.D 图示速解4.A 如图,连接CD,C'D',因为在△COD和△C'O'D'中,CO=C'O',DO=D'O',CD=C'D',所以△COD≌△C'O'D'(SSS),所以∠AOB=∠A'O'B'.故选A.5.B 逐项分析如下.选项已知条件判定方法正误A∠A,∠B,AB 两角及其夹边“ASA”√B∠A,AB,BC 两边及其一边的对角✕C∠B,AB,BC 两边及其夹角“SAS”√D∠C=90°,AB,BC斜边和直角边“HL”√6.C ∵△ABC与△DEF全等,∴3+5+7=3+3x-2+2x-1,解得x=3.【题眼】若两个三角形全等,则这两个三角形的周长相等一题多解(分类讨论思想)△ABC 与△DEF 全等,可分以下两种情况讨论.(1)当边长为5的边的对应边长为3x-2时,则3x -2=5,2x -1=7,无解,不符合题意舍去.(2)当边长为5的边的对应边长为2x-1时,则2x -1=5,3x -2=7,解得x=3,符合题意.综上所述,x 的值为3.7.B ∵AD 平分∠CAB 交BC 于点D ,DE ⊥AB ,DC ⊥AC ,∴DC=DE.在Rt △ADC和Rt △ADE 中,AD =AD ,DC =DE ,∴Rt △ADC ≌Rt △ADE (HL),∴AE=AC=3cm,∴BE=AB-AE=5-3=2(cm),∴△DEB 的周长=BE+BD+DE=BE+BD+CD=BE+BC=2+4=6(cm).8.A 在△BDF 和△CED 中,BF =CD ,∠B =∠C ,BD =CE ,∴△BDF ≌△CED (SAS),∴∠BFD=∠CDE.∵∠FDE+∠EDC=∠B+∠BFD ,∴∠B=∠FDE=65°,∴∠A=180°-∠B-∠C=180°-65°-65°=50°.9.D (排除法)∵OA 平分∠NOP ,OB 平分∠MOP ,∴∠AOD=∠AOP=12∠DOE ,∠COB=∠EOB=12∠COE ,∴∠AOB=12(∠COE+∠DOE )=90°,故选项C 不合题意.在△AOD 和△AOE 中,∠AOD =∠AOE ,∠ADO =∠AEO ,AO =AO ,∴△AOD ≌△AOE (AAS),∴AE=AD ,OE=OD ,∠OAE=∠OAD.同理可得BC=BE ,CO=OE ,∴AB=AE+BE=AD+BC ,CO=OE=OD ,∴点O 是CD 的中点,故选项A,B 不合题意.故选D .10.C 在△ACD 和△BCE 中,AC =BC ,AD =BE ,CD =CE ,∴△ACD ≌△BCE (SSS),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(155°-55°)=50°.∵∠B+∠ACB=∠A+∠APB ,∴∠APB=∠ACB=50°,∴∠BPD=180°-50°=130°.11.① 带①②去,符合全等三角形的“ASA”判定方法.带②③去,仅保留了原三角形的一个角和部分边,带②④去,仅保留了原三角形的两个角和部分边,均不符合全等三角形的判定方法.故另一块是①.12.6 ∵△ABD ≌△ACE ,BD=3,∴CE=BD=3.∵BC=12,∴DE=BC-BD-CE=6.13.110° 在△ADB 与△EDB 中,AD =DE ,AB =BE ,DB =DB ,∴△ADB ≌△EDB (SSS),∴∠DEB=∠A=70°,∴∠CED=180°-∠DEB=110°.14.5 ∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=3.∵S △ABD +S △ACD =S △ABC ,∴12·AB ·DE+12·AC ·DF=21,即12×9×3+12×AC×3=21,∴AC=5.【注意】角平分线的性质15.4<AC<12 图示速解(“倍长中线”模型)如图,延长AD 到点E ,使DE=AD=4,连接CE.∵AD 是BC 边上的中线,∴BD=CD.在△ABD 和△ECD 中,BD =CD ,∠ADB =∠EDC ,AD =ED ,∴△ABD ≌△ECD (SAS),∴CE=AB=4.在△AEC 中,AE-CE<AC<AE+EC ,即8-4<AC<8+4,∴4<AC<12.16.3或92 (分类讨论思想)设点P 运动的时间为t s,则BP=3t cm,CP=(8-3t )cm,由∠B=∠C ,可分以下两种情况讨论.①当BE=CP=6cm,BP=CQ 时,△BPE ≌△CQP ,此时6=8-3t ,解得t=23,所以BP=CQ=2cm,此时点Q 的运动速度为2÷23=3(cm/s).②当BE=CQ=6cm,BP=CP 时,△BPE ≌△CPQ ,此时3t=8-3t ,解得t=43,此时点Q 的运动速度为6÷43=92(cm/s).17.【参考答案】(1)∠ACB=∠DFE AC=DF (4分)(2)选择添加条件AC=DF.证明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,AC=DF,BC=EF,∴Rt△ABC≌Rt△DEF(HL).(6分)一题多解(2)选择添加条件∠ACB=∠DFE.证明:在△ABC和△DEF中,∠ABC=∠DEF,BC=EF,∠ACB=∠DFE,∴△ABC≌△DEF(ASA).(6分) 18.【参考答案】证明:(1)在△ABC和△CDA中,CB=AD,AB=CD,AC=CA,∴△ABC≌△CDA(SSS).(3分) (2)∵△ABC≌△CDA,∴∠ACB=∠DAC.∵BE⊥AC,DF⊥AC,∴∠BEC=∠DFA=90°.(4分)在△AFD和△CEB中,∠DFA=∠BEC,∠DAF=∠BCE,DA=BC,∴△AFD≌△CEB(AAS),∴BE=DF.(7分) 19.(1)BD=CD,BE=CF Rt△BDE≌Rt△CDF→DE=DF→证得结论(2)Rt△BDE≌ Rt△CDF→BE= CF【参考答案】证明:(1)∵AD是△ABC的中线,∴BD=CD.∵DE⊥AB,DF⊥AC,∴△BDE,△CDF都是直角三角形.在Rt△BDE与Rt△CDF中,BD=CD,BE=CF,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF.(2分)∵DE⊥AB,DF⊥AC,∴AD是△ABC的角平分线.(4分)【关键】角的内部到角的两边的距离相等的点在角的平分线上(2)∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF.【关键】角平分线的性质∵AD是△ABC的中线,∴BD=CD.(6分)在Rt△BDE和Rt△CDF中,BD=CD,DE=DF,∴Rt△BDE≌Rt△CDF(HL),∴BE=CF.(9分) 20.【参考答案】(1)证明:由题意得AC=BC,∠ACB=90°,∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC. 【关键】同角的余角相等在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠BCE,AC=CB,∴△ADC≌△CEB(AAS).(5分)(2)由题意知,一块砌墙砖块的厚度为a cm,∴AD=4a,BE=3a.由(1)得△ADC≌△CEB,∴DC=BE=3a,CE=AD=4a,∴DC+CE=7a=35,解得a=5.答:每块砌墙砖块的厚度为5cm.(9分) 21.思路导图(1) △ADB≌△CDB(SSS)→∠ADO=∠CDO(2)过点D作DE⊥AB,DF⊥BC DE=DF Rt△ADE≌Rt△CDF→∠BAD=∠BCD【参考答案】(1)猜想:BD⊥AC,AO=OC.(写出一个即可)(2分)证明:在△ADB和△CDB中,AB=CB, AD=CD, BD=BD,∴△ADB≌△CDB(SSS),∴∠ADO=∠CDO.(3分)在△AOD和△COD中,AD=CD,∠ADO=∠CDO, OD=OD,∴△AOD≌△COD(SAS),(4分)∴∠AOD=∠COD,OA=OC,∴∠COD=90°,∴BD⊥AC.(5分) (2)证明:如图,分别过点D作DE⊥AB,DF⊥BC,垂足分别为E,F.(6分)∵BD平分∠ABC,∴DE=DF.(7分)在Rt△ADE和Rt△CDF中,DE=DF, AD=CD,∴Rt△ADE≌Rt△CDF(HL),∴∠BAD=∠BCD.(10分)22.思路导图【参考答案】(1)90(2分)解法提示:∵∠BAD+∠DAC=90°,∠DAC+∠CAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B.∵∠B+∠ACB=90°,∴∠DCE=∠ACE+∠ACB=90°.(2)①α+β=180°.证明:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE,(3分)在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS),(5分)∴∠B=∠ACE.∵∠B+∠ACB=180°-α,∴∠DCE=∠ACE+∠ACB=∠B+∠ACB=180°-α=β,∴α+β=180°.(7分)②如图所示.(9分)α=β.(11分)。
人教八年级数学上册第十二章全等三角形考点精题训练
(名师选题)人教八年级数学上册第十二章全等三角形考点精题训练单选题1、如图,在平面直角坐标系中,已知点A(0,4),B(2,0),在平面内有一点C(不与点B重合),使得△AOC与△AOB全等,这样的点C有()A.1个B.2个C.3个D.4个答案:C分析:画出图形即可得到答案.如图所示,满足条件的点有三个,分别为C1(-2,0),C2(-2,4),C3(2,4)故选:C小提示:本题考查了坐标与图形、三角形全等的判定,全等三角形的判定及图形坐标特征是解题的关键.2、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有()A.①②③B.①②④C.①③④D.①②③④答案:D分析:证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.小提示:本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.3、小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.在角的内部,到角的两边距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形的三条高交于一点D.三角形三边的垂直平分线交于一点答案:A分析:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,因为是两把完全相同的长方形直尺,可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB如图所示:过两把直尺的交点P作PF⊥BO与点F,由题意得PE⊥AO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.小提示:本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.4、如图:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,则下列说法正确的有几个()(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;(4)AE⊥DE.(5)DE=AEA.2个B.3个C.4个D.5答案:B分析:过点E作EF⊥AD垂足为点F,证明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,证明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.解:如图,过点E作EF⊥AD,垂足为点F,可得∠DFE=90°,则∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,{∠C=∠DFE∠CDE=∠FDEDE=DE,∴△DEF≌△DEC(AAS);∴CE =EF ,DC =DF ,∠CED =∠FED ,∵E 是BC 的中点,∴CE =EB ,∴EF =EB ,在Rt △ABE 和Rt △AFE 中,{EF =BE AE =AE, ∴Rt △AFE ≌Rt △ABE (HL );∴AF =AB ,∠FAE =∠BAE ,∠AEF =∠AEB ,∴AE 平分∠DAB ,故结论(1)正确,则AD =AF +DF =AB +CD ,故结论(3)正确;可得∠AED =∠FED +AEF =12∠FEC +12∠BEF =90°,即AE ⊥DE 故结论(4)正确.∵AB ≠CD ,AE ≠DE ,(5)错误,∴△EBA ≌△DCE 不可能成立,故结论(2)错误.综上所知正确的结论有3个.所以答案是:B .小提示:本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键.5、已知图中的两个三角形全等,则∠α等于( )A .72∘B .60∘C .58∘D .50∘答案:D分析:根据全等三角形的性质:全等三角形对应角相等,即可得到结论.∵ 图中的两个三角形全等,∠α 为a 和c 的夹角又∵第一个三角形中a和c的夹角为50°∴∠α=50°故选:D.小提示:本题考查了全等三角形的性质,准确找到对应角是解题的关键.6、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④答案:B分析:根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.解:①和③可以完全重合,因此全等的图形是①和③.故选:B.小提示:此题主要考查了全等图形,关键是掌握全等图形的概念.7、为了测量工件的内径,设计了如图所示的工具,点O为卡钳两柄的交点,且有OA=OB=OC=OD,只要量得CD之间的距离,就可知工件的内径AB.其数学原理是利用△AOB≌△COD,判断的依据是()A.SSSB.SASC.ASAD.AAS答案:B分析:利用“边角边”证明△ABO和△CDO全等,根据全等三角形对应边相等解答.解:在△ABO和△CDO中{OA=OC ∠AOB=COD OB=OD∴△ABO≌△CDO(SAS)故选B小提示:本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.8、如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED答案:B分析:根据全等三角形的性质即可得到结论.解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠ABC=∠ADE,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.故A,C,D选项错误,B选项正确,故选:B.小提示:本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9、如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD 的面积是()A.24B.30C.36D.42答案:B分析:过D作DE⊥AB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论.如图,过D作DE⊥AB交BA的延长线于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四边形ABCD的面积=S△ABD+SΔBCD=12AB⋅DE+12BC⋅CD=12×6×4+12×9×4=30故选B.小提示:本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.10、如图,点B,C,E在同一直线上,且AC=CE,∠B=∠D=90°,AC⊥CD,下列结论不一定成立的是()A.∠A=∠2B.∠A+∠E=90°C.BC=DE D.∠BCD=∠ACE答案:D分析:根据直角三角形的性质得出∠A=∠2,∠1=∠E,根据全等三角形的判定定理推出△ABC≌△CDE,再逐个判断即可.解:∵AC⊥CD,∴∠ACD=90°,∵∠B=90°,∴∠1+∠A=90°,∠1+∠2=90°,∴∠A=∠2,同理∠1=∠E,∵∠D=90°,∴∠E+∠2=∠A+∠E=90°,在△ABC和△CDE中,{∠A=∠2∠B=∠D AC=CE,∴△ABC≌△CDE(AAS),∴BC=DE,∴选项A、选项B,选项C都正确;根据已知条件推出∠A=∠2,∠E=∠1,但是∠1=∠2不能推出,而∠BCD=90°+∠1,∠ACE=90°+∠2,所以∠BCD=∠ACE不一定成立故选项D错误;故选:D.小提示:本题考查了全等三角形的判定定理和直角三角形的性质,能灵活运用知识点进行推理是解此题的关键,注意:全等三角形的判定定理有:ASA,SAS,AAS,SSS,两直角三角形全等,还有HL.填空题11、如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____,使△ABC≌△ADC.答案:∠D=∠B(答案不唯一)分析:本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.解:添加的条件为∠D=∠B,理由是:在△ABC和△ADC中,{∠BAC=∠DAC∠D=∠BAC=AC,∴△ABC≌△ADC(AAS),所以答案是:∠D=∠B.小提示:本题主要考查全等三角形的判定定理,能熟记全等三角形的判定定理是解决本题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.12、如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中△ABC是格点三角形,请你找出方格中所有与△ABC全等,且以A为顶点的格点三角形.这样的三角形共有_____个(△ABC除外).答案:5分析:根据全等三角形的判定及方格图的特征.认真观察图形可得答案.解:如图,根据平移,对称,可得与△ABC全等的三角形有5个,包括△ADE,△ANF,△ANG,△ACG,△AEF.所以答案是:5.小提示:本题考查全等三角形的判定,平移,对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.13、如图,四边形ABCD,连接BD,AB⊥AD,CE⊥BD,AB=CE,BD=CD.若AD=5,CD=7,则BE=________.答案:2分析:根据HL证明Rt△ABD≌Rt△ECD,可得ED=AD=5,根据BE=BD−ED即可求解.解:∵AB⊥AD,CE⊥BD,∴∠BAD=∠CED=90°,在Rt△ABD与Rt△ECD中,,{AB=CEBD=CD∴Rt△ABD≌Rt△ECD,∵AD=5,CD=7,∴ED=AD=5,BD=CD=7,∴BE=BD−ED=2所以答案是:2小提示:本题考查了全等三角形的性质与判定,掌握HL证明三角形全等是解题的关键.解答题14、如图,△ABE≌△DCE,点E在线段AD上,点F在CD延长线上,∠F=∠A,求证:AD∥BF.答案:证明见解析分析:由全等三角形的性质证明∠A=∠CDE,结合∠F=∠A,证明∠F=∠CDE,从而可得结论.解:∵△ABE≌△DCE,∴∠A=∠CDE,∵∠F=∠A,∴∠F=∠CDE,∴AD∥BF.小提示:本题考查的是全等三角形的性质,平行线的判定,证明∠F=∠CDE是解本题的关键.15、如图,已知AC,BD相交于点O,AB∥CD BF=DE,∠OAE=∠OCF.求证AE=CF.答案:见解析分析:由AB∥CD推出∠B=∠D,∠BAC=∠ACD,由BF=DE推出BE=DF,再由∠OAE=∠OCF推出∠BAE=∠DCF,最后由AAS判定出△ABE≌△CDF即可证得AE=CF.证明:∵AB∥CD∴∠B=∠D,∠BAC=∠ACD∵∠OAE=∠OCF又∵∠BAC=∠BAE+∠OAE,∠ACD=∠DCF+∠OCF∴∠BAE=∠DCF∵BF=DE又∵BF=BE+EF,DE=DF+EF∴BE=DF在△ABE和△CDF中,∵{∠B=∠D∠BAE=∠DCF BE=DF∴△ABE≌△CDF(AAS)∴AE=CF小提示:本题考查了全等三角形的判定定理——AAS,熟练掌握全等三角形的判定是解题关键.。
人教新版 八年级(上)数学 第12章 全等三角形 专项训练(含解析)
八年级(上)数学第12章全等三角形专项训练一.选择题(共10小题)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°2.如图,AC与DB交于点O,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠ACB=∠DBC3.如图,△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直4.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去5.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个6.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是()A.∠B=∠D B.BC=DE C.∠1=∠2D.AB=AD7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC8.如图,已知在△ABC中,AB=AC,∠A=50°,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A.55°B.60°C.65°D.70°9.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD=6,则图中阴影部分的面积为()A.12B.20C.24D.4810.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'二.填空题(共8小题)11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC≌△BAD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=12cm,则D到AB的距离为cm.15.如图,在Rt△ABC中,∠C=90°,AB=16,AD平分∠BAC交BC于点D,若CD=4,则△ABD的面积为.16.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是.17.如图,已知,在△ABC中,AB=AC,点D是BC中点,DE⊥AB于点E,DF⊥AC于点F,DE=3,则DF的长是.18.有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.经测量DE,EC,DC的长度分别为800m,500m,400m,则A,B之间的距离为m.三.解答题(共7小题)19.如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣=BF﹣BE()即=在△ABC和△DEF中,所以△ABC≌△DEF().20.已知:如图,E、F是AB上两点,AC∥BD,AC=BD,AE=BF,问:CF=DE吗?说明理由.21.如图,已知线段AC、BD相交于点E,连接AB、DC、BC,AE=DE,∠A=∠D.求证:△ABE≌△DCE.22.如图,已知在△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF.BE交FC于O 点,(1)求证:BE=CF;(2)当∠BAC=70°时,求∠BOC的度数.23.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.24.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.25.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB 上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.参考答案一.选择题(共10小题)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°解:∵△ABC≌△A'B'C',∴∠C=∠C′=24°,∵∠A=36°,∴∠B=180°﹣24°﹣36°=120°,故选:B.2.如图,AC与DB交于点O,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCB C.BO=CO,∠A=∠D D.AB=DC,∠ACB=∠DBC 解:A.在△ABC和△DCB中,∵,∴△ABC≌△DCB(SSS),故A选项不合题意;B.在△ABC和△DCB中,∵,∴△ABC≌△DCB(AAS),故B选项不合题意;C.∵BO=CO,∴∠ACB=∠DBC,在△ABC和△DCB中,∵,∴△ABC≌△DCB(AAS),故C选项不合题意;D.∵AB=DC,∠ACB=∠DBC,不能证明△ABC≌△DCB,故D选项符合题意;故选:D.3.如图,△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直解:∵△ABC≌△CDE,∴AC=CE,∠A=∠BCD,∠B=∠D,∠ACB=∠E,∴∠ACB+∠BCD=∠ACB+∠A,当∠B=∠D≠90°时,∠ACB+∠BCD=∠ACB+∠A≠90°,则∠ACE≠90°,即AC和CE不互相垂直,故选:B.4.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去解:带③去符合“角边角”可以配一块同样大小的三角板.故选:C.5.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个解:如图所示:一共有6个符合题意的点.故选:C.6.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是()A.∠B=∠D B.BC=DE C.∠1=∠2D.AB=AD解:A、添加∠B=∠D,由“AAS”可证△ABC≌△ADE,故选项A不合题意;B、添加BC=DE,由“SAS”可证△ABC≌△ADE,故选项B不合题意;C、添加∠1=∠2,由“ASA”可证△ABC≌△ADE,故选项C不合题意;D、添加AB=AD,不能证明△ABC≌△ADE,故选项D符合题意;故选:D.7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC解:过D点分别作AB、BC、AC的垂线,垂足分别为E、G、F,∵∠ABC、∠ACB外角的平分线相交于点D,∴ED=GD,GD=DF,∴ED=DF,∴AP平分∠CAB.故选:B.8.如图,已知在△ABC中,AB=AC,∠A=50°,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A.55°B.60°C.65°D.70°解:∵AB=AC,∠A=50°,∴∠B=∠C=65°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠CDE=∠BFD,∵∠CDF=∠B+∠BFD=∠CDE+∠EDF,∴∠EDF=∠B=65°,故选:C.9.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD =6,则图中阴影部分的面积为()A.12B.20C.24D.48解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,BD=BC,∵BC=8,∴BD=4,∵S△BEF=S△CEF,AD=6,∴S阴影=S△ADB=.故选:A.10.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'解:将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',可得:CD=C'D',A、下滑过程中,CC'与DD'不一定相等,说法错误;B、下滑过程中,当△OCD与△OD'C'全等时,CC'=DD',说法错误;C、若OC<OD,则下滑过程中,不存在某个位置使得CC'=DD',说法错误;D、若OC>OD,则下滑过程中,当△OCD与△OD'C'全等时,一定存在某个位置使得CC'=DD',说法正确;故选:D.二.填空题(共8小题)11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件AC=BD就可以判断△ABC≌△BAD.解:添加AC=BD,理由:∵∠C=∠D=90°,∴△ACB和△BDA都是直角三角形,在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL),故答案为:AC=BD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是7cm.解:∵△ABC≌△ADE,BC=7,∴DE=BC=7(cm),故答案为:7cm.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为100°.解:∵△ABC≌△ADE,∴∠D=∠B=40°,∴∠BED=∠A+∠D=60°+40°=100°,故答案为:100°.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=12cm,则D到AB的距离为4cm.解:过点D作DE⊥AB于E,∵BD:DC=2:1,BC=12,∴DC=4,∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DE=DC=4,即D到AB的距离为4cm,故答案为:4.15.如图,在Rt△ABC中,∠C=90°,AB=16,AD平分∠BAC交BC于点D,若CD=4,则△ABD的面积为32.解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=32,故答案为:32.16.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是7.解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,在△ADC和△AFC中,∵,∴△ADC≌△AFC(AAS),∴AD=AF,在△CBE≌△CBF中,∵,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE=5+2=7,故答案为:7.17.如图,已知,在△ABC中,AB=AC,点D是BC中点,DE⊥AB于点E,DF⊥AC于点F,DE=3,则DF的长是3.解:∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵点D是BC中点,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF=3,故答案为:3.18.有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.经测量DE,EC,DC的长度分别为800m,500m,400m,则A,B之间的距离为800m.解:在△ABC和△EDC中,∴△ABC≌△EDC(SAS),∴AB=DE=800.答:A,B之间的距离为800m.故答案是:800.三.解答题(共7小题)19.如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣BE=BF﹣BE(等式的性质)即BC=EF在△ABC和△DEF中,所以△ABC≌△DEF(ASA).解:因为CE=BF(已知),所以CE﹣BE=BF﹣BE(等式的性质),即BC=EF,在△ABC和△DEF中,所以△ABC≌△DEF(ASA).故答案为:BE;等式的性质;BC=EF;ASA.20.已知:如图,E、F是AB上两点,AC∥BD,AC=BD,AE=BF,问:CF=DE吗?说明理由.解:CF=DE,理由:∵AE=BF,∴AF=BE.∵AC∥BD,∴∠A=∠B.在△ACF和△BDE中,,∴△ACF≌△BDE(SAS).∴CF=DE.21.如图,已知线段AC、BD相交于点E,连接AB、DC、BC,AE=DE,∠A=∠D.求证:△ABE≌△DCE.【解答】证明:在△ABE和△DCE中,∵,∴△ABE≌△DCE(ASA).22.如图,已知在△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF.BE交FC于O 点,(1)求证:BE=CF;(2)当∠BAC=70°时,求∠BOC的度数.【解答】(1)证明:∵∠CAB=∠EAF,∴∠CAB+∠CAE=∠EAF+∠CAE,∴∠BAE=∠CAF,在△BAE和△CAF中∴△BAE≌△CAF(SAS),∴BE=CF;(2)∵△BAE≌△CAF,∴∠EBA=∠FCA,即∠DBA=∠OCD,∵∠BDA=∠ODC,∴∠BAD=∠COD,∵∠BAC=70°,∴∠BAD=70°,∴∠COD=70°,即∠BOC=70°.23.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.【解答】证明:(1)∵∠BAE=∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠C=∠E;(2)∵△ABC≌△ADE,∴∠B=∠D,在△ABM和△ADN中,,∴△ABM≌△ADN(ASA),∴AM=AN.24.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.解:(1)AD∥BE,理由:∵AB∥CD,∴∠B=∠DCE,∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE;(2)∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA).25.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB 上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是PC=PD.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.解:(1)PC=PD,理由:∵OM是∠AOB的平分线,∴PC=PD(角平分线上点到角两边的距离相等),故答案为:PC=PD;(2)证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)数学第12章全等三角形专项训练一.选择题(共10小题)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°2.如图,AC与DB交于点O,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠ACB=∠DBC3.如图,△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直4.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去5.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个6.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是()A.∠B=∠D B.BC=DE C.∠1=∠2 D.AB=AD 7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC 8.如图,已知在△ABC中,AB=AC,∠A=50°,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A.55°B.60°C.65°D.70°9.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD =6,则图中阴影部分的面积为()A.12 B.20 C.24 D.4810.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'二.填空题(共8小题)11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC≌△BAD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=12cm,则D到AB的距离为cm.15.如图,在Rt△ABC中,∠C=90°,AB=16,AD平分∠BAC交BC于点D,若CD=4,则△ABD的面积为.16.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是.17.如图,已知,在△ABC中,AB=AC,点D是BC中点,DE⊥AB于点E,DF⊥AC于点F,DE=3,则DF的长是.18.有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到D,使CD =CA,连接BC并延长到E,使CE=CB,连接DE.经测量DE,EC,DC的长度分别为800m,500m,400m,则A,B之间的距离为m.三.解答题(共7小题)19.如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣=BF﹣BE()即=在△ABC和△DEF中,所以△ABC≌△DEF().20.已知:如图,E、F是AB上两点,AC∥BD,AC=BD,AE=BF,问:CF=DE吗?说明理由.21.如图,已知线段AC、BD相交于点E,连接AB、DC、BC,AE=DE,∠A=∠D.求证:△ABE≌△DCE.22.如图,已知在△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF.BE交FC于O 点,(1)求证:BE=CF;(2)当∠BAC=70°时,求∠BOC的度数.23.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.24.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.25.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB 上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.参考答案一.选择题(共10小题)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°解:∵△ABC≌△A'B'C',∴∠C=∠C′=24°,∵∠A=36°,∴∠B=180°﹣24°﹣36°=120°,故选:B.2.如图,AC与DB交于点O,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCB C.BO=CO,∠A=∠D D.AB=DC,∠ACB=∠DBC 解:A.在△ABC和△DCB中,∵,∴△ABC≌△DCB(SSS),故A选项不合题意;B.在△ABC和△DCB中,∵,∴△ABC≌△DCB(AAS),故B选项不合题意;C.∵BO=CO,∴∠ACB=∠DBC,在△ABC和△DCB中,∵,∴△ABC≌△DCB(AAS),故C选项不合题意;D.∵AB=DC,∠ACB=∠DBC,不能证明△ABC≌△DCB,故D选项符合题意;故选:D.3.如图,△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直解:∵△ABC≌△CDE,∴AC=CE,∠A=∠BCD,∠B=∠D,∠ACB=∠E,∴∠ACB+∠BCD=∠ACB+∠A,当∠B=∠D≠90°时,∠ACB+∠BCD=∠ACB+∠A≠90°,则∠ACE≠90°,即AC和CE不互相垂直,故选:B.4.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去解:带③去符合“角边角”可以配一块同样大小的三角板.故选:C.5.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个解:如图所示:一共有6个符合题意的点.故选:C.6.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是()A.∠B=∠D B.BC=DE C.∠1=∠2 D.AB=AD解:A、添加∠B=∠D,由“AAS”可证△ABC≌△ADE,故选项A不合题意;B、添加BC=DE,由“SAS”可证△ABC≌△ADE,故选项B不合题意;C、添加∠1=∠2,由“ASA”可证△ABC≌△ADE,故选项C不合题意;D、添加AB=AD,不能证明△ABC≌△ADE,故选项D符合题意;故选:D.7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC解:过D点分别作AB、BC、AC的垂线,垂足分别为E、G、F,∵∠ABC、∠ACB外角的平分线相交于点D,∴ED=GD,GD=DF,∴ED=DF,∴AP平分∠CAB.故选:B.8.如图,已知在△ABC中,AB=AC,∠A=50°,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A.55°B.60°C.65°D.70°解:∵AB=AC,∠A=50°,∴∠B=∠C=65°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠CDE=∠BFD,∵∠CDF=∠B+∠BFD=∠CDE+∠EDF,∴∠EDF=∠B=65°,故选:C.9.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD =6,则图中阴影部分的面积为()A.12 B.20 C.24 D.48解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,BD=BC,∵BC=8,∴BD=4,∵S△BEF=S△CEF,AD=6,∴S阴影=S△ADB=.故选:A.10.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'解:将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',可得:CD=C'D',A、下滑过程中,CC'与DD'不一定相等,说法错误;B、下滑过程中,当△OCD与△OD'C'全等时,CC'=DD',说法错误;C、若OC<OD,则下滑过程中,不存在某个位置使得CC'=DD',说法错误;D、若OC>OD,则下滑过程中,当△OCD与△OD'C'全等时,一定存在某个位置使得CC'=DD',说法正确;故选:D.二.填空题(共8小题)11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件AC=BD就可以判断△ABC≌△BAD.解:添加AC=BD,理由:∵∠C=∠D=90°,∴△ACB和△BDA都是直角三角形,在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL),故答案为:AC=BD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是7cm.解:∵△ABC≌△ADE,BC=7,∴DE=BC=7(cm),故答案为:7cm.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为100°.解:∵△ABC≌△ADE,∴∠D=∠B=40°,∴∠BED=∠A+∠D=60°+40°=100°,故答案为:100°.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=12cm,则D到AB的距离为 4 cm.解:过点D作DE⊥AB于E,∵BD:DC=2:1,BC=12,∴DC=4,∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DE=DC=4,即D到AB的距离为4cm,故答案为:4.15.如图,在Rt△ABC中,∠C=90°,AB=16,AD平分∠BAC交BC于点D,若CD=4,则△ABD的面积为32 .解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=32,故答案为:32.16.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是7 .解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠FAC,∠FBC=∠EBC,在△ADC和△AFC中,∵,∴△ADC≌△AFC(AAS),∴AD=AF,在△CBE≌△CBF中,∵,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE=5+2=7,故答案为:7.17.如图,已知,在△ABC中,AB=AC,点D是BC中点,DE⊥AB于点E,DF⊥AC于点F,DE=3,则DF的长是 3 .解:∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵点D是BC中点,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF=3,故答案为:3.18.有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到D,使CD =CA,连接BC并延长到E,使CE=CB,连接DE.经测量DE,EC,DC的长度分别为800m,500m,400m,则A,B之间的距离为800 m.解:在△ABC和△EDC中,∴△ABC≌△EDC(SAS),∴AB=DE=800.答:A,B之间的距离为800m.故答案是:800.三.解答题(共7小题)19.如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣BE=BF﹣BE(等式的性质)即BC=EF在△ABC和△DEF中,所以△ABC≌△DEF(ASA).解:因为CE=BF(已知),所以CE﹣BE=BF﹣BE(等式的性质),即BC=EF,在△ABC和△DEF中,所以△ABC≌△DEF(ASA).故答案为:BE;等式的性质;BC=EF;ASA.20.已知:如图,E、F是AB上两点,AC∥BD,AC=BD,AE=BF,问:CF=DE吗?说明理由.解:CF=DE,理由:∵AE=BF,∴AF=BE.∵AC∥BD,∴∠A=∠B.在△ACF和△BDE中,,∴△ACF≌△BDE(SAS).∴CF=DE.21.如图,已知线段AC、BD相交于点E,连接AB、DC、BC,AE=DE,∠A=∠D.求证:△ABE≌△DCE.【解答】证明:在△ABE和△DCE中,∵,∴△ABE≌△DCE(ASA).22.如图,已知在△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF.BE交FC于O 点,(1)求证:BE=CF;(2)当∠BAC=70°时,求∠BOC的度数.【解答】(1)证明:∵∠CAB=∠EAF,∴∠CAB+∠CAE=∠EAF+∠CAE,∴∠BAE=∠CAF,在△BAE和△CAF中∴△BAE≌△CAF(SAS),∴BE=CF;(2)∵△BAE≌△CAF,∴∠EBA=∠FCA,即∠DBA=∠OCD,∵∠BDA=∠ODC,∴∠BAD=∠COD,∵∠BAC=70°,∴∠BAD=70°,∴∠COD=70°,即∠BOC=70°.23.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.【解答】证明:(1)∵∠BAE=∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠C=∠E;(2)∵△ABC≌△ADE,∴∠B=∠D,在△ABM和△ADN中,,∴△ABM≌△ADN(ASA),∴AM=AN.24.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.解:(1)AD∥BE,理由:∵AB∥CD,∴∠B=∠DCE,∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE;(2)∵O是CD的中点,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA).25.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB 上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是PC=PD.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.解:(1)PC=PD,理由:∵OM是∠AOB的平分线,∴PC=PD(角平分线上点到角两边的距离相等),故答案为:PC=PD;(2)证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.。