19.1.1变量与函数(第1课时)同步练习及答案解析

合集下载

《19.1.1 变量与函数》教案、同步练习

《19.1.1 变量与函数》教案、同步练习

第19章《19.1.1变量与函数》第19章《19.1.1变量与函数》售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1500;•日场x=205,则y=2050;晚场x=310,则y=3100.问题(2)中,通过试验可以看出:每当重物质量m确定一个值时,弹簧长度L•就随之确定一个值.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm.当m=10时,则L=15,当m=20时,则L=20.[师]很好,他说得非常正确.谢谢你.我们再来回顾活动二中的两个问题.看看它们中的变量又怎样呢?[生]活动二中的两个问题也都分别有两个变量.问题(1)中,很容易算出,当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r随之确定一个值,它们的关系为r=S.问题(2)中,我们可以根据题意,每确定一个矩形的一边长,•即可得出另一边长,再计算出矩形的面积.如:当x=1cm时,则S=1×(5-1)=4cm2,当x=2cm时,则S=2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当矩形长度x取定一个值时,面积S就随之确定一个值.[师]谢谢你,大家为他鼓掌.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,•对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.52[生]我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y•都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.[师]一般地,在一个变化过程中,如果有两个变量x与y,并且对于x•的每个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是自变量(independentvariable),y是x的函数(function).如果当x=a时,y=b,那么b•叫做当自变量的值为a时的函数值.据此我们可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,•年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.[活动一]活动内容设计:1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).设计意图:通过在计算器上操作及填表分析,进一步认识函数意义,经过对表中数据分析推理验证以至最后确定按键、写表达式逐步掌握列函数式的方法.教师活动:引导学生正确操作、分析思考、寻求理由证据,确定按键及函数关系式.学生活动:在教师引导下,1.经历操作、填表、分析、推理、确认等一系列过程,更加深刻理解函数意义.2.通过观察、讨论、分析、猜想、验证、确立等一系列过程,进一步掌握建立函数关系式的办法.活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.2.从表中两行数据中不难看出第三、四按键是1这两个键,且每个x•的值都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1《19.1.1变量与函数》同步练习一、单选题(共15题;共30分)1、物体从足够高的地方做自由落体运动,下降的高度h与时间t满足关系式h=gt2则3秒后物体下落的高度是(g取10)()A、15米B、30米C、45米D、60米2、下列关系式中,变量x=-1时,变量y=6的是()A、y=3x+3B、y=-3x+3C、y=3x–3D、y=-3x–33、如图,矩形的长和宽分别为8cm和4cm,截去一个宽为x的小矩形(阴影部分)后余下另一个矩形的面积S与x之间的关系可表示为().A、S=4xB、S=4(8-x)C、S=8(4-x)D、S=8x4、要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为( )。

【教育资料】2018 人教版数学八年级下册 第十九章 一次函数 19.1.1 变量与函数 同步课时练习题 含答案学

【教育资料】2018 人教版数学八年级下册 第十九章  一次函数  19.1.1  变量与函数 同步课时练习题 含答案学

2019 人教版数学八年级下册 第十九章 一次函数 19.1.1 变量与函数同步课时练习题1. 下列说法中,不正确的是( )A.函数不是数,而是一种关系B.多边形的内角和是边数的函数C.一天中时间是温度的函数D.一天中温度是时间的函数2. 下列各表达式不是表示y 是x 的函数的是( )A. B. C. D. 3. 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元/千克,买a 千橘子的总价为m 元,其中常量是 ,变量是 ;(2)周长C 与圆的半径r 之间的关系式是C =2πr ,其中常量是 ,变量是4. 若球体体积为V ,半径为R ,则V =343R π 其中变量是 、 ,常量是 .5. 计划购买50元的乒乓球,所能购买的总数n (个)与单价 a (元)的关系式是 ,其中变量是 ,常量是6. 汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是 ,其中的常量是 ,变量是 .7. 表格列出了一项实验的统计数据,表示小球从高度x (单位:m )落下时弹跳高度y (单位:m )与下落高的关系,据表可以写出的一个关系式是 .8. 下列关于变量x ,y 的关系式:①y =2x +3;②y =x 2+3;③y =2|x|;④;23x y =x y 1=(0)y x x =≥xy 18=y =⑤y2-3x=10,其中表示y 是x 的函数关系的是.9. 设路程为s,时间为t,速度为v,当v=60时,路程和时间的关系式为,这个关系式中,是常量,是变量,是的函数.10. 油箱中有油30kg,油从管道中匀速流出,1h流完,则油箱中剩余油量Q(kg)与流出时间t(min)之间的函数关系式是,自变量t的取值范围是 .11. 下列问题中,一个变量是否是另一个变量的函数?如果是,请指出自变量. (1)改变正方形的边长x,正方形的面积S 随之变化;(2)秀水村的耕地面积是106 m2,这个村人均占有耕地面积y(单位:m2)随这个村人数n 的变化而变化;(3)P是数轴上的一个动点,它到原点的距离记为x,它对应的实数为y,y 随x 的变化而变化.12. 已知函数(1)求当x=2,3,-3时,函数的值;(2)求当x取什么值时,函数的值为0.13. 汽车的油箱中有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子.(2)指出自变量x的取值范围;(3)汽车行驶200 km时,油箱中还有多少油?参考答案:1. C2. C3. (1) 5 a ,m (2) 2,π C , r4. V R5. a ,n 506. Q=40-5t 40,5 Q ,t7. y =0.5x8.9. s =60t 60 t 和s s t10. 11. 解:(1)S 是x 的函数,其中x 是自变量.(2)y 是n 的函数,其中n 是自变量.(3)y 不是x 的函数.12. 解:(1)当x =2时,y = ; 当x =3时,y = ;当x =-3时,y =7.43,π50n a =1302Q t =-060t ≤≤5242-2=22+1⨯12(2)令 解得x = 即当x = 时,y =0. 13. 解:(1) 函数关系式为: y = 50-0.1x(2) 由x ≥0及50-0.1x ≥0 得 0 ≤ x ≤ 500∴自变量的取值范围是0 ≤ x ≤ 500(3)当 x = 200时,函数 y 的值为y =50-0.1×200=30. 因此,当汽车行驶200 km 时,油箱中还有油30L.42=01x x -+,12。

《19.1 变量与函数》课件(含习题)

《19.1 变量与函数》课件(含习题)
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.

2024年第十九章-一次函数课堂练习题及答案第1课时-变量与常量(主书) (1)

2024年第十九章-一次函数课堂练习题及答案第1课时-变量与常量(主书) (1)

③变量和常量是相对而言的,在一定条件下可以相互转化;
④在一个变化过程中,变量只有2个,常量可以没有,也可能有多个
A.1个
B.2个
C.3个
D.4个
123456
第1课时 变量与常量
基础通关 能力突破 素养达标
用关系式表示常量与变量的关系 6.[2023·唐山迁安期中]下面说法中正确的是 ( C ) A.在圆的面积公式S=πr2中,常量是2,变量是S,π,r B.在匀速运动公式s=vt中,常量是1,变量是s,v,t
个等式中 ( D ) A.x是常量,y是常量
B.x是变量,y是常量
C.x是常量,y是变量
D.x是变量,y是变量
123456
第1课时 变量与常量
基础通关 能力突破 素养达标
5.下列关于常量和变量的说法中,正确的说法有 ( B )
①在一个变化过程中,允许出现多个变量和常量;
②变量就是变量,不可以转化为常量;
789
第1课时 变量与常量Βιβλιοθήκη 基础通关 能力突破 素养达标
8.如图,△ABC底边BC上的高是6cm,点C沿底边所在直线向点B运动时, 三角形的面积发生了变化. (1)如果三角形的底边长为x cm ,三角形的面积y cm2 可以表示为 ___y_=_3_x___; (2)在这个变化过程中变量是____x_,_y_____.
3.某年第一期国债存期为3年,年利率为p,不计复利.购买x元这期国债,
3年后可得利息y=3px元.在y,p,x中,变量的个数是( C )
A.0
B.1
C.2
D.3
123456
第1课时 变量与常量
基础通关 能力突破 素养达标
4.已知y与x之间的关系为y=x-1.显然,当x=1时,y=0;当x=2时,y=1.在这

人教版八年级下册数学课时练《19.1.1 变量与函数》(含答案)

人教版八年级下册数学课时练《19.1.1 变量与函数》(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!人教版八年级数学下册第十九章一次函数《19.1.1变量与函数》课时练一、选择题(共30分)1.(本题3分)下列关系式中,y 不是x 的函数的是()A .1y x =+B .22y x =C .y x =D .22y x =-2.(本题3分)设min (x ,y )表示x ,y 二个数中的最小值.例如min {0,2}=0,min {12,8}=8,则关于x 的函数y =min {3x ,-x +4}可以表示为()A .y =()3(1)41x x x x <ìí-+³îB .y =()4(1)31x x x x -+<ìí³îC .y =3xD .y =-x +43.(本题3分)如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为().A .32y x =B .23y x =C .12y x=D .18=y x 4.(本题3分)从边长为4cm 的正方形中挖去一个半径是x cm 的圆面,剩下的面积是2y cm ,则y 与x 的函数关系是()A .216y x p =-B .()22y x p =-C .()24y x p =+D .216y x p =-+5.(本题3分)在函数y =12x x --中,自变量x 的取值范围是()A .x ≥1B .x ≠2C .x ≥2D .x ≥1且x ≠26.(本题3分)在函数1y x =-中,自变量x 的取值范围是()A .1³xB .1x ¹C .1x >D .1x ³-7.(本题3分)当实数x 的取值使得2x -有意义时,函数y =4x +1中y 的取值范围是()A .y ≥-7B .y ≥9C .y >9D .y ≤98.(本题3分)弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系:x (kg )012345y (cm )1010.51111.51212.5下列说法不正确的是()A .x 与y 都是变量,且x 是自变量,y 是因变量B .物体质量每增加1kg ,弹簧长度y 增加0.5cmC .所挂物体质量为7kg 时,弹簧长度为13.5cmD .y 与x 的关系表达式是0.5y x=9.(本题3分)从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A .物体B .速度C .时间D .空气10.(本题3分)根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是﹣3,若输入x 的值是﹣8,则输出y 的值是()A .10B .14C .18D .22二、填空题(共15分)11.(本题3分)下列各项:①2y x =;②21y x =-;③22(0)y x x =³;④3(0)y xx =¹;具有函数关系(自变量为x )的是_____________.(填序号)12.(本题3分)周长为10cm 的等腰三角形,腰长y (cm )与底边长x (cm )之间的函数关系式是_____.13.(本题3分)在函数5x y x-=中,自变量x 的取值范围是______.14.(本题3分)若对于所有的实数x ,都有()()222x x f xf x -+=,则()2f =______.15.(本题3分)一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm .如果挂上的物体的总质量为x 千克时,弹簧的长度为为ycm ,那么y 与x 的关系可表示为y =______.三、解答题(共75分)16.(本题7分)小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的函数关系式,并求自变量x 的取值范围.17.(本题8分)为了增强居民的节水意识,某城区水价执行“阶梯式”计费,每月应缴水费y(元)与用水量x(t)之间的函数关系如图所示.若某用户去年5月缴水费18.05元,求该用户当月用水量.18.(本题8分)在等腰△ABC 中,底角为x (单位:度),顶角y (单位:度).(1)写出y 与x 的函数解析式;(2)求自变量x 的取值范围.19.(本题9分)如图,长方形ABCD 中,AB=4,BC=8.点P 在AB 上运动,设PB=x ,图中阴影部分的面积为y.(1)写出阴影部分的面积y 与x 之间的函数解析式和自变量x 的取值范围;(2)点P 在什么位置时,阴影部分的面积等于20?20.(本题10分)为了净化空气,美化校园环境,某学校计划在A ,B 两种树木中选择一种进行种植,已知A 种树木的单价是80元/棵,B 种树木的单价是72元/棵,且购买A 种树木有优惠,优惠方案是:购买超过20棵时,超出部分可以享受八折优惠.设学校准备购买树木x 棵(20x >),购买A 种树木和B 种树木花费的总金额分别为A y (元)和B y (元).(1)分别求出A y 、B y 与x 之间的函数关系式;(2)请你帮助该学校判断选择购买哪种树木更省钱.21.(本题10分)“五一”期间,小明和父母一起开车到距家200km 的景点旅游,出发前,汽车油箱内储油45L ,当行驶150km 时,发现油箱余油量为30L (假设行驶过程中汽车的耗油量是均匀的).(1)这个变化过程中哪个是自变量?哪个是因变量?(2)求该车平均每千米的耗油量,并写出行驶路程()x km 与剩余油量()Q L 的关系式;(3)当280x km =时,求剩余油量Q 的值.22.(本题11分)小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y 与所挂物体质量x 的几组对应值.所挂物体质量/kg x 012345y303234363840弹簧长度/cm(1)上表所反映的变化过程中的两个变量,___________是自变量,___________是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式;(3)当弹簧长度为100cm(在弹簧承受范围内)时,求所挂重物的质量.23.(本题12分)在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质0123456量x/kg弹簧长度1212.51313.51414.515 y/cm(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是(填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.参考答案1.B 2.A 3.A 4.D 5.D 6.A 7.B 8.D 9.C 10.C11.①②④12.y=-()15052x x +<<13.0x ¹14.015.10+1.5x16.802,2040y x x =-<<17.9吨18.(1)y=180-2x ;(2)由三角形内角和得0°<x <90°.19.(1)阴影部分的面积为:y=32-4x (0<x≤4);(2)PB=320.(1)()=6432020A y x x +>,()7220B y x x =>;(2)当2040x <<时,学校选择购买B 种树木更省钱;当40x =时,学校选择购买两种树木的花费一样;当40x >时,学校选择购买A 种树木更省钱.21.(1)(1)行驶路程x ,剩余油量Q ;(2)450.1Q x =-;(3)当280x =(千米)时,剩余油量Q 的值为17L22.(1)所挂物体质量,弹簧长度;(2)y =2x +30;(3)35kg 23.(1)③④;(2)y =0.5x +12(0≤x ≤18);(3)弹簧长度是17cm ;(4)所挂物体的质量为16kg .。

最新人教版初中八年级数学下册第19章变量与函数 课后同步练习题含答案解析

最新人教版初中八年级数学下册第19章变量与函数 课后同步练习题含答案解析

第十九章 一次函数19.1 函数19.1.1 变量与函数1. 下列说法中,不正确的是( )A.函数不是数,而是一种关系B.多边形的内角和是边数的函数C.一天中时间是温度的函数D.一天中温度是时间的函数 2. 下列各表达式不是表示y 是x 的函数的是( )A. B. C. D. 3. 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元/千克,买a 千橘子的总价为m 元,其中常量是 ,变量是 ;(2)周长C 与圆的半径r 之间的关系式是C =2πr ,其中常量是 ,变量是4. 若球体体积为V ,半径为R ,则V = 其中变量是 、 ,常量是 .5. 计划购买50元的乒乓球,所能购买的总数n (个)与单价 a (元)的关系式是 ,其中变量是 ,常量是6. 汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是 ,其中的常量是 ,变量是 .7. 表格列出了一项实验的统计数据,表示小球从高度x (单位:m )落下时弹跳高度y (单位:m )与下落高的关系,据表可以写出的一个关系式是 .8. 下列关于变量x ,y y =2x +3y =x 2+3y =2|x|;④;⑤y 2-3x =10,其中表示y 是x 的函数关系的是 . 9. 设路程为s ,时间为t ,速度为v ,当v =60时,路程和时间的关系式为 ,这个关系式中, 是常量, 是变量, 是 的函数.10. 油箱中有油30kg,油从管道中匀速流出,1h 流完,则油箱中剩余油量Q (kg )与流出时间t (min )之间的函数关系式是 ,自变量t 的取值范围是 .11. 下列问题中,一个变量是否是另一个变量的函数?如果是,请指出自变量. (1)改变正方形的边长 x ,正方形的面积 S 随之变化;(2)秀水村的耕地面积是106 m 2,这个村人均占有耕地面积 y (单位:m 2)随这个村人数 n 的变化而变化;(3)P 是数轴上的一个动点,它到原点的距离记为 x ,它对应的实数为 y ,y 随 x 的变化而变化.343R π23x y =x y 1=(0)y x x =≥xy 18=y =12. 已知函数 (1)求当x =2,3,-3时,函数的值; (2)求当x 取什么值时,函数的值为0.13. 汽车的油箱中有汽油50L ,如果不再加油,那么油箱中的油量y (单位:L )随行驶里程x (单位:km )的增加而减少,平均耗油量为0.1L/km. (1)写出表示y 与x 的函数关系的式子. (2)指出自变量x 的取值范围;(3)汽车行驶200 km 时,油箱中还有多少油?参考答案: 1. C 2. C3. (1) 5 a ,m (2) 2,π C , r4. V R5. a ,n 506. Q=40-5t 40,5 Q ,t7. y =0.5x8.9. s =60t 60 t 和s s t43,π50n a =130Q t=-42.1x y x -=+10. 11. 解:(1)S 是x 的函数,其中x 是自变量. (2)y 是n 的函数,其中n 是自变量. (3)y 不是x 的函数.12. 解:(1)当x =2时,y = ; 当x =3时,y = ;当x =-3时,y =7. (2)令 解得x = 即当x = 时,y =0. 13. 解:(1) 函数关系式为: y = 50-0.1x(2) 由x ≥0及50-0.1x ≥0 得 0 ≤ x ≤ 500 ∴自变量的取值范围是0 ≤ x ≤ 500(3)当 x = 200时,函数 y 的值为y =50-0.1×200=30. 因此,当汽车行驶200 km 时,油箱中还有油30L.19.1.2函数的图象(1)函数的图象一、选择题1.图中,表示y 是x 的函数图象是()2.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()5242-2=22+1⨯42=01x x -+,1212A.39.0℃B.38.2℃C.38.5℃D.37.8℃3.如图,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是()4.你一定知道“乌鸦喝水”的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水,但是还没解渴,瓶中水面下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地叫着飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是 ( )二、填空题5.星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;(2)小红在公共阅报栏看新闻一共用了______分;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;(4)小红从邮亭走回家用了______分,平均速度是______米/秒.三、解答题6.如图,下面的图象记录了某地一月份的温度随时间变化的情况,请你仔细观察图象回答下面的问题:(1)在这个问题中,变量分别是______,时间的取值范围是______;(2)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是_______时,温度在-3℃以下的持续时间为______小时;(3)你从图象中还能获得哪些信息?(写出1~2条即可)答:__________________________________________________.7.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图中的函数图象特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?8.(广州育才中学模拟)甲车速度为20米/秒,乙车速度为25米/秒。

人教版八年级数学下册19.1.1《变量与函数(1) 》习题含答案

人教版八年级数学下册19.1.1《变量与函数(1) 》习题含答案

19.1 函数19.1.1 变量与函数第1课时《常量和变量》习题含答案1、一种练习本每本0.5元,x本共付y元钱,那么0.5和y分别是()A、常量、常量B、常量、变量C、变量、常量D、变量、变量2、在圆的周长公式C=2πr中,下列说法正确的是()A、π,r是变量,2是常量B、 C是变量,2,π,r是常量C、 r是变量,2,π,C是常量D、 C,r是变量,2,π是常量3、一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A、xB、h、xC、V 、xD、x、h、V均为变量4、以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t 秒之间的关系式是h=v0t-4.9t2,在这个关系式中,常量、变量分别为()A、常量是4.9,变量是t,hB、常量是v0,2,变量是t,hC、常量是-4.9,v0,变量是t,h5、三角形的一边长为6cm,三角形的面积S(cm2)与这边上的高h(cm)之间的关系式为 .6、表格列出了一项实验的统计数据,表示小球从高度x(m)落下时,弹跳高度y(m)与小球高度x(m)的关系,据表写出y与x的关系式是 ,其中变量为,常量为 .7、一架雪橇沿一斜坡滑下,它在时间t(秒)滑下的距离S(米),由下面式子S=10t+2t2,假如滑到坡底的时间为8秒,斜坡长为米,其中式子中的变量是,常量是.8、如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC 与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N 点重合.试求出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.第8题图x 50 80 100 150y 25 40 50 759、由图形列表如下,设图形的周长为L,梯形的个数为n,回答问题:梯形个数n 1 2 3 4图形的周长L 5 9 13 17(1)写出L与n的关系式.(2)在这个变化过程中,变量、常量各是什么?(3)有11个梯形时,图形的周长是多少?10、在一个半径为20cm的圆上,从中挖去一个圆,当挖去圆半径由小变大时,剩下的一个圆环面积也随之发生变化,若挖去的圆的半径为x(cm),圆环的面积y(cm2).(1)在这个变化过程中,变量、常量各是什么?(2)写出y与x的关系式;(3)当挖去的圆的半径由1cm变化到10cm时,圆环的面积将发生怎样的变化?参考答案1、B2、D3、D4、C5、S=3h6、y=0.5x,变量是x,y,常量是0.57、208,变量是s,t,常量是10,28、由题意知,开始时A点与M点重合,让△ABC向右运动,两图形重合的长度为AM=xcm.∵∠BAC=45°,∴S阴影=12·AM·h=12AM2=12x2,则y=12x2,0≤x≤10.其中的常量为12,变量为重叠部分的面积ycm2与MA的长度xcm.9、(1)L=4n+1(2)变量是L,n,常量是4,1(3)4510、(1)变量是:挖去的圆的半径x,圆的面积y;(2)y=400π-πx2(3)圆环的面积将由399πcm2减小到300πcm2.。

第19章.一次函数--全品习题答案

第19章.一次函数--全品习题答案

19.1 函数19.1.1 变量与函数第1课时 变量(全品第61页) 教师详答1.A [解析] 由于100是不变的,所以是常量,而W 和n 是变化的,因此是变量.故选A . 2.y =0.5x 0.5 x ,y3.[全品导学号:07712121]S ,a 12,h4.解:(1)s =300-50t.(2)300,50是常量,t ,s 是变量.5.V ,R 43,π6.[全品导学号:07712122]解:S =12³3x =32x.常量:32;变量:S ,x.7.[全品导学号:07712123]解:(1)60是常量,S ,x 是变量. (2)R 是常量,V ,h 是变量.19.1 函数19.1.1 变量与函数第2课时 函数(全品第62页)教师详答1.D2.[全品导学号:07712124]C [解析] 根据函数的定义来判断,如果三角形的高一定,则给定一个底边长,相应地就确定了一个三角形的面积的值,所以①不具有函数关系;如果多边形给定一个边数值,相应地就确定了一个多边形的内角和的值,所以②具有函数关系;如果给定一个半径,相应地就确定了一个圆的面积,所以③具有函数关系;④中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,所以④具有函数关系.故选C .3.B [解析] 把x =a ,y =1代入,得1=2a -1,解得a =1. 4.解:(1)x 是自变量,y 是x 的函数.y =0.55x.(2)x 是自变量,y 是x 的函数.y =60x.(3)x 是自变量,Q 是x 的函数.Q =20+5x.5.D 6.x ≤237.[全品导学号:07712125]解:(1)Q =800-50t.(2)当抽完水时有0=800-50t ,解得t =16,所以自变量t 的取值范围为0≤t ≤16. (3)当t =10时,Q =800-50t =800-50³10=300(立方米). 答:10小时后,水池中还有300立方米的水.8.[全品导学号:07712126]解:m =n +19(1≤n ≤25,且n 为正整数). (1)m =2n +18 (2)m =3n +17(3)m =(n -1)b +a(1≤n ≤p ,且n 为正整数).19.1 函数 19.1.2 函数的图象第1课时 函数的图象及其画法(全品第63-64页)教师详答1.D2.(1)15 1.1 (2)10 (3)12 0.9 (4)18 (5)22253.[全品导学号:07712127]解:(1)时间t 路程s(2)由图可知:9时、12时所走的路程分别是4千米、15千米. (3)根据图象可得,该旅行者休息的时间为:10.5-10=0.5(时). (4)根据图象可得:(15-9)÷(12-10.5)=4(千米/时).答:他从休息后直至到达目的地这段时间的平均速度是4千米/时.4.C [解析] 根据函数图象的定义,如果点的坐标满足函数解析式,那么这个点就在这个函数的图象上,通过计算,可知选C .5.A [解析] 把x =2,y =3代入y =ax 2-x +1中,有3=4a -2+1,解得a =1.6.[全品导学号:07712128]5 [解析] 根据函数图象的定义知点P(3,m)和点Q(n ,2)都满足函数y =x +8的解析式,所以3+8=m ,n +8=2,解得m =11,n =-6,所以m +n =11+(-6)=5.7点(1,1),(2,3)在函数y =2x -1的图象上,点(-1,0),(-2,3)不在函数y =2x -1的图象上.8.[全品导学号:07712129]C [解析] 向上抛球的过程,球的速度开始最大,而后逐渐变为0,然后又增大,符合条件的图象是C .9.[全品导学号:07712130]C [解析] A 项,根据图象可得,乙前4秒行驶的路程为12³4=48(米),正确;B 项,根据图象可得,在0到8秒内甲的速度每秒增加4米,正确;C 项,根据图象可得,两车到第3秒时行驶的路程不相等,错误;D 项,在4至8秒内甲的速度都大于乙的速度,正确.故选C .10.80 [解析] 从图象可以看出,小明用20分钟行驶的路程是1600米,所以他步行回家的平均速度是80米/分.11(2)当x =-3时,y =12³(-3)2=2≠-2,∴点(-3,-2)不在函数y =12x 2的图象上.12.[全品导学号:07712131]解:(1)5 70 5 54 5(2)y 是x 的函数.理由:由图象可知,变量y 随着x 的变化而变化,同时对于每一个x ,按照图象,都有唯一的y 值与之相对应,符合函数的定义.(3)摩天轮的直径是70-5=65(m ).19.1 函数 19.1.2 函数的图象第2课时 实际问题中的函数图象(全品第65-66页)教师详答1.[全品导学号:07712132]C [解析] 两个变量之间,如果给定自变量一个值,另一个变量也有唯一的值与之对应,这样的两个变量之间的关系才是函数关系.选项中给定自变量x 一个值时,相应的另一个变量y 却得到了两个值.故C 项不能体现y 是x 的函数关系.2.B 3.B4.C [解析] 由题意知,前1小时路程随时间增大而增大,1小时后路程增加变快. 5.D [解析] 0<x ≤20,表示小强从家步行去车站,总路程为2千米,故A 正确;20<x ≤30,表示小强在车站等小明,用的时间是10分钟,故B 正确;30<x ≤60,表示两人一起乘公共汽车去学校,用的时间是30分钟,走的路程是15千米,所以公共汽车的平均速度是30千米/时,所以C 正确,D 不正确.6.C7.解:(1)声速与气温 气温 声速 气温 (2)随着T 的增大,v 也增大.(3)气温每升高5 ℃,声速增加3 m /s即气温每升高1 ℃,声速增加35m /s .∴v =331+35T.(4)当T =30 ℃时,v =331+35³30=331+18=349(m /s ),349³6=2094(m ).答:发生打雷的地方距小明大约有2094 m . 8.[全品导学号:07712133]D9.y =0.5x10.[全品导学号:07712134]8 [解析] 进水管进水的速度为20÷4=5(升/分),出水管出水的速度为5-(30-20)÷(12-4)=3.75(升/分),∴关闭进水管后,放完水经过的时间为30÷3.75=8(分).11.解:由题意可知s =240-30t(0≤t ≤8). 列表:函数图象如图所示:12.[全品导学号:07712135]; 当x >20时,y =3.3(x -20)+2.5³20=3.3x -16. (2)∵该户4月份的水费平均每吨2.8元, ∴该户4月份用水超过20吨.设该户4月份用水a 吨,根据题意,得 2.8a =3.3a -16,解得a =32. 答:该户4月份用水32吨.19.2 一次函数 19.2.1 正比例函数第1课时 正比例函数的概念(全品第67页)教师详答1.[全品导学号:07712136]D [解析] 路程=速度³时间,速度一定时,路程是时间的正比例函数.故选D .2.C3.A [解析] ∵y =x +2a -1是正比例函数,∴2a -1=0,解得a =12.故选A .4.y =-2x 正比例5.-236.-1 127.S =3x [解析] 由三角形的面积公式可得S =12³6x ,即S =3x.8.[解析] 判断一个函数是不是正比例函数,要看解析式能否转化为y =kx(k ≠0)的形式. 解:(1)y =28-5x ,y 不是x 的正比例函数.(2)y =x 2,y 不是x 的正比例函数.9.D [解析] 根据正比例函数的定义,形如y =kx(k ≠0)的函数是正比例函数.y =3x -1可转化为y +1=3x ,把y +1看成一个整体,则y +1与x 成正比例;y =-x 2中,k =-12,所以y 与x 成正比例;在y =2(x +1)中,把x +1看作一个整体时k =2,所以y 与x +1成正比例;在y =x +3中,把x +3看作一个整体时k =1,所以y 与x +3成正比例.综上可知D 项的说法不正确.故选D .10.[全品导学号:07712137]C11.[全品导学号:07712138]2 [解析] 由题意知y =2x +k -2,由正比例函数的定义得k -2=0,即k =2.12.[全品导学号:07712139]解:正比例函数必须满足y =kx(k 是常数,k ≠0)的形式,无常数项,所以解得所以函数解析式为y =-4x.19.2 一次函数 19.2.1 正比例函数第2课时 正比例函数的图象与性质(全品第68-69页)教师详答1.D [解析] 因为正比例函数y =kx(k ≠0)的图象是一条经过原点的直线,所以只有D 项的图象符合题意.故选D .2.B 3.B4.-2 [解析] 把(2,-4)代入y =kx ,得-4=2k ,解得k =-2. 5.[全品导学号:07712140]0.26.1 [解析] 因为函数图象过原点,所以-(4m -4)=0,解得m =1. 7.略 8.C9.A [解析] 由正比例函数的性质可知:当y 随x 的增大而减小时,k -1<0,即k <1.故选A .10.>11.[全品导学号:07712141][解析] 正比例函数的比例系数决定函数的增减性.解:(1)当5-2k>0,即k<52时,y 随x 的增大而增大.(2)当5-2k<0,即k>52时,y 随x 的增大而减小.12.D [解析] x 的取值为正整数,y 也为正整数.故选D .13.C [解析] 对于正比例函数y =kx ,当k<0时,y 随x 的增大而减小,所以当x 1<x 2时,y 1>y2,即y 1-y 2>0.14.[全品导学号:07712142]C [解析] 如图,过点A 作直线y =x 的垂线,当B 是垂足时,AB 最短.过点B 作BE ⊥OA ,垂足为E.因为直线y =x 是第一、三象限的平分线,所以∠AOB =45°.由AB ⊥OB ,可得∠OAB =∠AOB =45°,可得BO =AB.由BE ⊥OA ,可得AE =OE ,从而得BE =AE=OE =12,所以点B 的坐标为(-12,-12).15.减小 [解析] 点(2,-6)在正比例函数y =kx 的图象上,即当x =2时,y =-6,∴-6=2k ,解得k =-3.∵k <0,∴y 随x 的增大而减小.16.y =73x [解析] 根据正比例函数的概念,可得9t 2=1,解得t =±13.∵函数图象经过第一、三象限,∴1-4t>0,解得t<14,∴t =-13.将t =-13代入y =(1-4t)x9t 2,得y =73x.17.y =2x(答案不唯一) [解析] ∵正比例函数y =kx 的图象经过第一、三象限, ∴k >0,当k 取2时可得函数解析式为y =2x.18.[全品导学号:07712143]1319.解:(1)将x =1,y =2代入y =kx ,得k =2, 故正比例函数的解析式为y =2x.(2)当x =-1时,y =2³(-1)=-2. (3)∵0≤y ≤5,∴0≤2x ≤5,解得0≤x ≤52.20.[全品导学号:07712144]解:(1)函数的图象如图:(2)y 轴的夹角变小. (3)由(2)中的规律可知,k 1>k 2.周滚动练习(二)(全品第70-71页)教师详答1.B 2.C 3.C4.[全品导学号:07712145]C 5.C6.πr 2S 和r π7.二、四 0 -5 减小8.[全品导学号:07712146]2 [解析] 由题意知,当x =3时,y 与x 满足的解析式为y =-x +5.把x =3代入y =-x +5,得-3+5=2,所以当输入x =3时,输出的结果y =2.9.< [解析]∵P 1(1,y 1),P 2(2,y 2)是正比例函数y =13x 的图象上的两点,∴y 1=13,y 2=13³2=23.∵13<23,∴y 1<y 2. 10.x ≥-2且x ≠111.解:(1)y =0.1x. (2)x =28-5y. (3)y =4x. 其中(1)(3)中的y 是x 的正比例函数12.解:(1)观察图象可知:自变量x 的取值范围是0≤x ≤5. (2)观察图象可知:当x =5时,y 有最小值,最小值是2.5. (3)观察图象可知y 随着x 的增大而减小.13.[解析] 根据题意知小明和小刚行驶的时间是2.5小时,所以速度为502.5=20(千米/时),所以二人前1.5小时行驶了20³1.5=30(千米),修车后行驶的1小时行驶的路程为20千米,依此可画出图象.解:图象如图所示.14.解:(1)由题意得解得k =±2.当k 等于±2时,该函数是正比例函数.(2)当k =2时,正比例函数的图象经过第一、三象限,正比例函数的解析式为y =52x.(3)当k =-2时,正比例函数y 随x 的增大而减小,正比例函数的解析式为y =-32x.15.[全品导学号:07712147][解析] 两人行驶的路程s 是时间t 的函数.从图象可以看出骑自行车的人先出发却后到达乙地,行驶的路程都是100千米.解:(1)甲地与乙地相距100千米;骑摩托车的人用了2小时,骑自行车的人用了6小时;骑摩托车的人先到达乙地,早到了1小时.(2)骑自行车的人先匀速行驶了2小时,行驶40千米后休息了1小时,然后用3小时匀速到达乙地.骑摩托车的人在骑自行车的人出发3小时后出发,行驶2小时后到达乙地.(3)摩托车行驶的平均速度是50千米/时.19.2 一次函数19.2.2 一次函数第1课时一次函数的概念(全品第72页)教师详答1.C[解析] ①y=πx,②y=2x-1是一次函数,共2个.2.C3.[全品导学号:07712148]D4.5 -3 -3 55.6.D7.B8.[全品导学号:07712149]解:(1)当m=-3,n为任意实数时,它是一次函数.(2)当m=-3,n=2时,它是正比例函数.9.[全品导学号:07712150][解析] 从表格中可以看出一张方桌能坐4人,以后每多一张方桌可以多坐2个人.表中应填的数字为10,y与x之间的函数解析式是y=4+2(x-1)=2x +2.解:表中填10.(1)y=2x+2,y是x的一次函数.(2)把y=42代入y=2x+2中,得42=2x+2,解得x=20.答:需要20张这样的方桌.19.2 一次函数19.2.2 一次函数第2课时一次函数的图象与性质(全品第73-74页)教师详答1.A2.y=3x+2 [解析] 根据图象沿y轴向上平移的规律,得最终图象对应的函数解析式为y =3x-1+3=3x+2.3.C 4.D 5.C 6.D7.解:图象略.共同点:函数图象都是一条直线,且均交y轴于点(0,2).8.C9.A[解析] ∵k=-2<0,∴y随x的增大而减小.∵1<2,∴a>b.10.m>-211.四[解析] ∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0.∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.12.[全品导学号:07712151]解:(1)由1-3m=0且m-1≠0,得m=13.(2)把(0,2)代入,得1-3m=2,解得m=-13.(3)由m-1<0,得m<1.13.[全品导学号:07712152]C14.A[解析] 分四种情况:①当a>0,b>0时,直线y=ax+b和y=bx+a均经过第一、二、三象限,选项中不存在此情况;②当a>0,b<0时,直线y=ax+b经过第一、三、四象限,直线y=bx+a经过第一、二、四象限,选项A符合此条件;③当a<0,b>0时,直线y =ax+b经过第一、二、四象限,直线y=bx+a经过第一、三、四象限,选项中不存在此情况;④当a<0,b<0时,直线y=ax+b经过第二、三、四象限,直线y=bx+a经过第二、三、四象限,t选项不存在此情况.故选A.15.答案不唯一,如y=-x+3 [解析] 设一次函数的解析式为y=kx+b.因为一次函数的图象过点(0,3),所以b=3.又因为函数y随x的增大而减小,所以k<0.16.-6 [解析] 函数y=2x+3的图象与x轴的交点坐标是(-32,0),函数y=4x-b的图象与x轴的交点坐标是(b4,0),所以-32=b4,解得b=-6.17.解:当x=0时,y=-6.当y=0时,即-12x-6=0,解得x=-12.所以点A,B的坐标分别为(-12,0),(0,-6),所以OA=||-12=12,OB=||-6=6,所以S =12OA ²OB =12³12³6=36.19.[全品导学号:07712154][解析] (1)在图中描出表中已知四对对应值的点,分析四个点的排列位置,猜想它们在同一直线上,y 与x 之间是一次函数关系,从表中对应值发现:19=17³1+2,36=17³2+2,53=17³3+2,70=17³4+2,…,所以y 与x 之间的函数解析式不难求得.(2)中的问题可利用(1)中求得的函数解析式解决.解:(1)如图所示.猜想y 与x 之间是一次函数关系.y 关于x 的函数解析式为y =17x +2(x 为正整数). (2)由(1)得y 与x 之间的函数解析式为y =17x +2,当y =1000时,17x +2=1000,解得x =581217,而x 为正整数,所以x ≈59.答:每根彩纸链至少要用59个纸环.19.2 一次函数 19.2.2 一次函数第3课时 一次函数解析式的求法(全品第75-76页)教师详答1.2.A 3.D 4.C5.[全品导学号:07712155]D [解析] ∵点B 在正比例函数y =2x 的图象上,横坐标为1,∴y =2³1=2,∴B(1,2),设这个一次函数的解析式为y =kx +b.∵一次函数的图象过点A(0,3),与正比例函数y =2x 的图象相交于点B(1,2),∴可得出方程组解得∴这个一次函数的解析式为y =-x +3. 6.310.D [解析] 设直线y =-3x 向上平移后得到直线AB ,则直线AB 的函数解析式可设为y =-3x +k ,把(m ,n)代入得n =-3m +k ,解得k =3m +n , ∵3m +n =10,∴k =10,∴直线AB 的函数解析式为y =-3x +10. 故选D .11.[全品导学号:07712156]y =2x +2 [解析] 由图象知OA =2,在Rt △AOB 中,OB =(5)2-22=1,所以点B 的坐标为(-1,0).将A(0,2),B(-1,0)的坐标代入y =kx +b 中,解得k =2,b =2,所以函数解析式为y =2x +2.12.(-1,0) [解析] 如图,作出点A(2,3)关于x 轴对称的点C(2,-3),连接CB 交x 轴于点P ,且可求得直线CB 的函数解析式为y =-x -1,当y =0时,-x -1=0,解得x =-1,∴点P 的坐标是(-1,0).13.[全品导学号:07712157]-23或516.[全品导学号:07712158]73≤k ≤3 [解析] 若直线y =kx -k(k ≠0)过点(2,3),则3=2k -k ,解得k =3;若直线y =kx -k(k ≠0)过点(4,7),则7=4k -k ,解得:k =73.因为直线y =kx -k(k ≠0)与线段AB 有交点,所以k 的取值范围为73≤k ≤3.19.2 一次函数 19.2.2 一次函数第4课时 一次函数的应用(全品第77-78页)教师详答1.C2.y =0.3x +6(0≤x ≤5)运送到B港口的物资为(80-x)吨,Array从乙仓库运送到A港口的物资为(100-x)吨,运送到B港口的物资为50-(80-x)=(x-30)(吨),∴总运费y与x之间的函数解析式为y=14x+20(100-x)+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=-8x+2560,∵-8<0,∴y随x的增大而减小,∴当x=80时,总运费最低,当x=80时,y=-8³80+2560=1920,即最低费用为1920元.此时方案为:把甲仓库的物资全部运往A港口,再从乙仓库运往A港口20吨物资,乙仓库余下的全部物资运往B港口.7.[全品导学号:07712161]解:(1)∵从甲仓库运送到A港口的物资为x吨,∴从甲仓库周滚动练习(三)(全品第79-80页)教师详答1.D[解析] ∵k=2>0,b=1>0,根据一次函数的图象即可判断函数图象经过第一、二、三象限,不经过第四象限.故选D.2.B3.C[解析] A项,令y=-2x+1中的x=-1,则y=3,∴一次函数的图象不过点(-1,2),即A项不正确;B项,∵k=-2<0,b=1>0,∴一次函数的图象经过第一、二、四象限,即B项不正确;C项,∵k=-2<0,∴一次函数中的y随x的增大而减小.∵令y=-2x+1中的x=1,则y=-1,∴当x>1时,y<0成立,即C项正确;D.∵k=-2<0,∴一次函数中y随x的增大而减小,即D项不正确.故选C.4.C[解析] ∵正比例函数y=kx的图象经过点(2,-3),∴-3=2k,解得k=-32,∴正比例函数的解析式是y=-32x,四个选项中只有C选项的点在正比例函数y=-32x的图象上.故选C.5.B[解析] 因为正比例函数y=kx的图象过第二、四象限,所以k<0,因此一次函数y =x+k中y随x的增大而增大,且其图象与y轴负半轴相交,即函数图象位于第一、三、四象限.故选B.6.[全品导学号:07712163]C[解析] ①乙晚出发1小时.②乙出发3-1=2(时)后追上甲.③甲的速度是123=4(千米/时).④乙在距A地12千米处追上甲,且乙的速度快,所以乙先到达B地.综上可知,有3个说法正确.故选C.7.y=30x30 x和y8.≠1 -19.< [解析] 一次函数y=2x+1中y随x的增大而增大,所以若x1<x2,则y1<y2.10.(0,-3) [解析] 将直线y=3x+2沿y轴向下平移5个单位长度可得y=3x+2-5,即y=3x-3,∴平移后直线与y轴的交点坐标为(0,-3).11.三12.[全品导学号:07712164]5 [解析] 由题意可知:从甲地匀速驶往乙地,所用时间为3.2-0.5=2.7(时),返回的速度是它从甲地驶往乙地的速度的1.5倍,返回用的时间为2.7÷1.5=1.8(时),所以a=3.2+1.8=5.13.解:(1)∵k>0时,函数y随x的增大而增大,即2a+4>0,解得a>-2,b为任意实数.(2)∵k<0,b<0时,函数图象经过第二、三、四象限,∴2a+4<0,-(3-b)<0,解得a<-2,b<3,∴当a<-2,b<3时,函数图象经过第二、三、四象限.14.解:(1)把(1,4)代入y=kx+3,得k+3=4,解得k=1,即这个一次函数的解析式为y=x+3.(2)∵k=1,∴原不等式可化为x+3≤6,解得x≤3.15.解:由题意,得y=27x+3. 当x=20时,y=27³20+3=543.16.解:(1)(3900-3650)÷5=250÷5=50(米/分),即小丽步行的速度为50米/分.(18-15)³50=150(米).即学校与公交站台乙之间的距离为150米.(2)设过C,D两点的直线的函数解析式为y=kx+b.∵C(8,3650),D(15,150),∴当8≤x ≤15时,y =-500x +7650.17.[全品导学号:07712165]解:(1)∵直线y =2x +1与直线y =kx -1垂直, ∴2k =-1,解得k =-12.(2)∵过点A 的直线与直线y =-13x +3垂直,∴可设过点A 的直线所对应的函数解析式为y =3x +b. 把点A 的坐标(2,3)代入,得3=3³2+b ,解得b =-3, ∴该直线所对应的函数解析式为y =3x -3.19.2 一次函数19.2.3 一次函数与方程、不等式第1课时 一次函数与一元一次方程、不等式(全品第81-82页)教师详答1.C2.(-3,0) [解析] 因为关于x 的方程mx +n =0的解为x =-3,所以-3m +n =0,即对于函数y =mx +n ,当x =-3时,y =0,∴点(-3,0)是直线y =mx +n 与x 轴的交点.3.x =2 [解析] 因为点(2,3)在一次函数y =kx +b 的图象上,所以3=2k +b ,即关于x 的方程kx +b =3的解为x =2.4.x =-15.解:(1)x =2.(2)x =0.(3)x =-1.6.[解析] 方程2x -6=0的解可以利用函数y =2x -6的图象与x 轴的交点坐标求得. 解:函数y =2x -6的图象如图所示.从函数图象上可以看出直线y =2x -6与x 轴的交点坐标是(3,0),所以方程2x -6=0的解是x =3.7.C 8.B 9.C10.≥211.[全品导学号:07712166]解:函数y =2x +6的图象如图:(1)当x =-3时,y =0,所以方程2x +6=0的解为x =-3. (2)当x >-1时,y >4,所以不等式2x +6>4的解集为x >-1. (3)当-4≤x ≤-2时,-2≤y ≤2.12.B [解析] 将一次函数y =12x 的图象向上平移2个单位长度,平移后的图象所对应的函数解析式为y =12x +2.令y =0,解得x =-4;令x =0,解得y =2,画出其图象如图所示.∴若y >0,则x的取值范围是13.-4 -11 [解析] 由题意,得3x +1=2x -3,解得x =-4.当x =-4时,y =3x +1=-11.14.-1<x<2 [解析] 两函数图象都在x 轴上方的自变量的取值在-1和2之间,所以-1<x<2.15.[全品导学号:07712167]y<-2 [解析] 因为一次函数y =kx +b 的图象过点(0,-4),所以y =kx -4.将(2,0)代入y =kx -4,得0=2k -4,解得k =2,所以y =2x -4.当x =1时,y =2³1-4=-2.根据图象可得当x<1时,y<-2.17.[全品导学号:07712169]解:(1)根据表中的数据可知y 与x 满足正比例函数关系.设y =kx ,将x =100,y =40代入y =kx ,得k =0.4,所以y =0.4x ,其他几组值也符合该函数解析式,所以函数的解析式为y=0.4x.(2)y =0.15x +200. (3)如图所示:19.2 一次函数19.2.3 一次函数与方程、不等式第2课时 一次函数与二元一次方程组(全品第83页)教师详答1.A [解析] 方法一:图中的两条直线分别为直线y =5x -1和直线y =2x +5,分别代入y =0和x =0,可求出两条直线与x 轴、y 轴的交点坐标,根据交点坐标知A 项是正确的.方法二:首先根据k 的值排除C 项和D 项,然后由直线的倾斜程度考虑B 项是否正确,于是把B 项中的交点坐标(3,7)代入直线解析式中,发现不成立.故选A .2.D6.[全品导学号:07712171]D [解析] 直线y =-23x -3与y 轴的交点为(0,-3).当a=-3时,直线y =a 与y =-23x -3交于y 轴上的点(0,-3);当a<-3时,直线y =a 与y =-23x -3的交点在第四象限,所以选D .7.[全品导学号:07712172]解:直线AB 和直线CD 所对应的函数解析式分别为y =2x +6和y =-12x +1,∴直线AB 与直线CD 的交点坐标为(-2,2).8.[全品导学号:07712173]解:∵直线y =-43x +4与y 轴交于点A ,∴点A 的坐标为(0,4).∵直线y =45x +45与x 轴交于点C ,∴点C 的坐标为(-1,0).∵直线y =-43x +4与直线y=45x +45相交于点B ,∴点B 的坐标为(32,2).∵直线y =-43x +4与x 轴交于点D ,∴点D 的坐标为(3,0),∴△ACD 的面积为12³4³4=8,△BCD 的面积为12³4³2=4,∴△ABC 的面积为8-4=4.专题训练(三) 一次函数易错题(全品第84页)教师详答1.-2 [解析] 根据一次函数的定义,得错误!解得m =-2.2.解:已知正比例函数y =(m -1)x5-m 2的图象经过第二、四象限,∴m -1<0,5-m 2=1, 解得m =-2.3.x =1或x =-1 [解析] 在x 轴上到y 轴的距离为1的点的坐标为(1,0)或(-1,0),不要忽略任何一种情况.4.-3≤m <2 [解析] 由一次函数y =(m -2)x +m +3的图象不经过第三象限, 可知它经过第二、四象限或第一、二、四象限, ∴错误!或错误! 解得-3≤m <2.5.[全品导学号:07712174]解:一次函数y =kx +4的图象与y 轴、x 轴的交点坐标分别是(0,4),⎝ ⎛⎭⎪⎫-4k ,0,图象与两坐标轴围成的三角形的面积是12³4³⎪⎪⎪⎪⎪⎪-4k =16,解得k =±12.所以这个一次函数的解析式是y =12x +4或y =-12x +4.6.D 7.C 8.C9.[全品导学号:07712175]解:若y 随x 的增大而增大,则当x =-3时,y =-1;当x =2时,y =9.所以错误! 解得错误!所以k +b =7.若y 随x 的增大而减小,则当x =-3时,y =9;当x =2时,y =-1. 所以错误!解得错误! 所以k +b =1.综上所述,k +b 的值是7或1.19.3 课题学习 选择方案(全品第85-86页)教师详答1.B [解析] 两函数图象的交点坐标为(2,4),即售出2件产品时,售价相同;在交点左侧,乙家较便宜;在交点右侧,甲家较便宜;买1件产品时,乙家的售价为2元.故选B .2.169网费3.解:(1)方案一:y =0.95x ;方案二:y =0.9x +300.(2)∵0.95³5880=5586(元),0.9³5880+300=5592(元),∴选择方案一更省钱. 4.[全品导学号:07712176]解:(1)∵购买大型客车x 辆,∴购买中型客车(20-x)辆. 根据题意,得y =62x +40(20-x)=22x +800. (2)依题意得20-x <x.解得x >10.∵y =22x +800,y 随着x 的增大而增大,x 为整数,∴当x =11时,购车费用最省,为22³11+800=1042(万元). 此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,该方案所需费用为1042万元. 5.解:(1)设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元,根据题意,得答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m 件,则购进乙种商品(100-m)件,根据题意,得 m ≥4(100-m), 解得m ≥80.设卖完A ,B 两种商品商场的利润为w ,则w =(40-30)m +(90-70)(100-m)=-10m +2000,∵-10<0,w 随m 的增大而减小,∴当m =80时,w 取得最大值,最大利润为1200元. 故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元. 6.解:(1)由题意知: 当0<x ≤1时,y 甲=22x ;当x >1时,y 甲=22+15(x -1)=15x +7. y 乙=16x +3.(2)①当0<x ≤1时,令y 甲<y 乙,即22x <16x +3,解得0<x <12;令y 甲=y 乙,即22x =16x +3,解得x =12;令y 甲>y 乙,即22x >16x +3,解得12<x ≤1.②当x >1时,令y 甲<y 乙,即15x +7<16x +3, 解得x >4;令y 甲=y 乙,即15x +7=16x +3, 解得x =4;令y 甲>y 乙,即15x +7>16x +3, 解得1<x <4.综上可知:当12<x <4时,选乙快递公司省钱;当x =4或x =12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱.7.[全品导学号:07712177]解:(1)根据题意可知,参加演出的男生有x 人,参加演出的女生有(2x -100)人.总费用y 1(单位:元)和y 2(单位:元)与参演男生人数x 之间的函数解析式分别是:y 1=0.7[120x +100(2x -100)]+2200=224x -4800,y 2=0.8[100(3x -100)]=240x -8000.(2)当y 1>y 2时,即224x -4800>240x -8000,解得x <200; 当y 1=y 2时,即224x -4800=240x -8000,解得x =200; 当y 1<y 2时,即224x -4800<240x -8000,解得x >200.即当参演男生人数少于200人时,购买B 公司的服装比较合算;当参演男生人数等于200人时,购买两家公司的服装总费用相同,可在任一家公司购买;当参演男生人数多于200人时,购买A 公司的服装比较合算.8.[全品导学号:07712178]解:(1)y A =20x +25(200-x)=-5x +5000; y B =15(240-x)+18(60+x)=3x +4680.(2)∵y A -y B =(-5x +5000)-(3x +4680)=-8x +320. ∴当-8x +320>0,即x<40时,B 地的运费较少; 当-8x +320=0,即x =40时,两地的运费一样多; 当-8x +320<0,即x>40时,A 地的运费较少.(3)设两地运费之和为y 元,则y =y A +y B =(-5x +5000)+(3x +4680)=-2x +9680. 由题意知3x +4680≤4830, 解得x ≤50.∵-2<0,∴y 随x 的增大而减小, ∴x 为50时,y 有最小值,∴y 最小值=-2³50+9680=9580,∴在此情况下,当A 地运往甲、乙两仓库的猕猴桃分别为50吨、150吨;B 地运往甲、乙两仓库的猕猴桃分别为190吨、110吨时,才能使两地运费之和最少,最少费用是9580元.小结与思考(全品第87-88页)教师详答1.D 2.D 3.D4.D [解析] x =-3时,分母x +3为0,无意义.故选D . 5.y =2x -37.B [解析] 因为b <0,所以直线与y 轴交于负半轴.故选B .8.[全品导学号:07712179]B [解析] ∵直线y =-x +m 与y =nx +4n(n ≠0)的交点的横坐标为-2,直线y =nx +4n 与x 轴的交点坐标为(-4,0),∴关于x 的不等式组-x +m >nx +4n >0的解集为-4<x <-2,∴其整数解为-3.故选B . 9.一、三 [解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k<0,b<0,所以kb>0,所以正比例函数y =kbx 的图象经过第一、三象限.10.>11.[全品导学号:07712180] 25 [解析] 由题意,得b =a +5,d =c +5,所以a(c -d)-b(c -d)=(a -b)(c -d)=(-5)³(-5)=25.12.4 [解析] 如图,在△ABC 中,BC 为底,AO 为高,且高为2,面积为4,故△ABC 的底边BC =8÷2=4.因为点B 的坐标为(0,b 1),点C 的坐标为(0,b 2),所以b 1-b 2即是BC 的长.13.A14.解:(1)设工厂生产x 件A 产品,则生产(50-x)件B 产品.根据题意,得解得30≤x ≤32. ∵x 为整数,∴x =30,31,32,∴有三种生产方案:①A:30件,B:20件;②A:31件,B:19件;③A:32件,B:18件.(2)方法一:当生产A种产品30件,B种产品20件时,利润为30³80+20³120=4800(元).当生产A种产品31件,B种产品19件时,31³80+19³120=4760(元).当生产A种产品32件,B种产品18件时,32³80+18³120=4720(元).故当生产A种产品30件,B种产品20件时,获得的利润最大.方法二:B产品生产得越多获得的利润越大,即生产A种产品30件,B种产品20件时,最大利润为30³80+20³120=4800(元).15.[全品导学号:07712181]解:(1)y=4x大+210.(2)①当x大=6时,y=4³6+210=234,∴y=3x小+234.②根据题意,得3x小+234≤260,解得x小≤823,∵x小为自然数,∴x小最大为8,即最多能放入8个小球.本章中考演练(全品第89-90页)教师详答1.B[解析] 根据题意,从20分钟到30分钟在书店里看书,离家距离没有变化,是一条平行于x轴的线段.故选B.2.A[分析] 由题意,得x≥0且x-2≠0,解得x≥0且x≠2.故选A.3.[全品导学号:07712182]C[解析] ∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12³4³(6-x)=12-2x(0<x<6),∴选项C符合.故选C.4.A5.(-4,1)6.y=2x-2 [解析] 根据平移的规则可知:直线y=2x+1向下平移3个单位长度后所得直线的函数解析式为y=2x+1-3=2x-2.7.一[解析] ∵关于x的方程mx+3=4的解为x=1,∴m+3=4,解得m=1,∴直线y=(m-2)x-3为直线y=-x-3,∴直线y=(m-2)x-3一定不经过第一象限.8.二、四[解析] 由题意得|m|=1,且m-1≠0,解得m=-1,∴函数解析式为y=-2x.∵k=-2<0,∴该函数的图象经过第二、四象限.故答案为:二、四.9.-110.解:将x=-1,y=1代入y=kx+2,得1=-k+2,解得k=1.∴一次函数的解析式为y=x+2.当x=0时,y=2;当y=0时,x=-2,∴函数图象经过(0,2),(-2,0)两点,此函数图象如图所示.11.解:(1)∵点B 在直线l 2上, ∴4=2m ,∴m =2, ∴B(2,4).设直线l 1的函数解析式为y =kx +b ,∴直线l 1的函数解析式为y =12x +3.(2)可知C ⎝ ⎛⎭⎪⎫n ,12n +3,D(n ,2n), 当点C 在点D 上方时,有n2+3>2n ,解得n <2.12.解:(1)∵点A(2,0),AB =13,∴OB =AB 2-OA 2=3, ∴点B 的坐标为(0,3). (2)∵△ABC 的面积为4, ∴12³BC ³OA =4, ∴12³BC ³2=4,即BC =4. ∵OB =3,∴OC =4-3=1, ∴C(0,-1).设直线l 2的函数解析式为y =kx +b ,则∴该运动员从起点到第二次经过C 点所用的时间是7+68=75(分), ∴直线AB 经过(35,10.5),(75,2.1)两点. 设AB 所在直线的函数解析式为s =kt +b ,∴AB 所在直线的函数解析式为s =-0.21t +17.85.②该运动员跑完赛程用的时间即为直线AB 与x 轴交点的横坐标, ∴当s =0时,-0.21t +17.85=0,解得t =85. ∴该运动员跑完赛程用时85分钟.14.解:(1)设y B 关于x 的函数解析式为y B =k 1x +b(k 1≠0), 由线段EF 过点E(1,0)和点P(3,180),得∴y B 关于x 的函数解析式为y B =90x -90(1≤x ≤6). (2)设y A 关于x 的函数解析式为y A =k 2x(k 2≠0), 由题意,得180=3k 2,即k 2=60,∴y A =60x. 当x =5时,y A =5³60=300, 当x =6时,y B =90³6-90=450, 450-300=150(千克).答:如果A ,B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.自我综合评价(四)(全品第91-92页)教师详答1.D2.B [解析] 因为-2<0,所以y 随x 的增大而减小.因为3>-2,所以y 1<y 2. 3.B4.C [解析] 因为一次函数y =kx +b 的图象经过第二、三、四象限,所以k <0,b <0. 5.C 6.D7.x ≠1 [解析] 函数y =x +1x -1的自变量x 的取值范围是x -1≠0,即x ≠1.8.y =32x -29.x =2 [解析] 观察图象,由直线y =ax +b 与直线y =cx +d 相交于点(2,1),即可知关于x 的一元一次方程ax +b =cx +d 的解为直线y =ax +b 与直线y =cx +d 交点的横坐标,即x =2.10.4.5 [解析] 令x =0,可求直线l 1与y 轴的交点坐标是(0,4),直线l 2与y 轴的交点坐标是(0,-5),所以BC =4-(-5)=9.因为E ,F 分别是AB ,AC 的中点,所以EF =12BC =92.11.[全品导学号:07712184]0<m <3212.解:(1)设这个一次函数的解析式为y =kx +b , ∵该函数图象经过(-2,1)和(1,4)两点,∴这个一次函数的解析式为y =x +3. (2)当x =3时,y =3+3=6.13.解:(1)由y 1=-12x +1,可知当y =0时,x =2,∴点A 的坐标是(2,0), ∴AO =2.∵直线y 1=-12x +1与直线y 2=-32x 交于点B ,∴点B 的坐标是(-1,1.5), ∴△AOB 的面积=12³2³1.5=1.5.(2)由(1)可知交点B 的坐标是(-1,1.5), 由函数图象可知y 1>y 2时,x >-1. 14.[全品导学号:07712185]解:(1)令y =0,得x =-32,∴点A 的坐标为⎝ ⎛⎭⎪⎫-32,0. 令x =0,得y =3,∴点B 的坐标为(0,3). (2)设点P 的坐标为(x ,0), 依题意,得x =±3.∴点P 的坐标为(3,0)或(-3,0),∴S △ABP =12³⎝ ⎛⎭⎪⎫32+3³3=274,或S △ABP =12³⎝ ⎛⎭⎪⎫3-32³3=94,∴△ABP 的面积为274或94.15.解:(1)从小刚家到该景区乘车一共用了4 h . (2)设线段AB 所在直线的函数解析式为y =kx +b. ∵点A(1,80),B(3,320)在直线AB 上,∴y =120x -40(1≤x ≤3).(3)当x =2.5时,y =120³2.5-40=260, 380-260=120(km ).故小刚一家出发2.5小时时离目的地还有120 km . 16.解:(1)根据题意,得2000³2x +1600x +1000³(100-3x)≤170000. 解得x ≤261213. ∵x 为正整数, ∴x 最大为26. 答:商店至多可以购买冰箱26台.(2)设商店销售完这批家电后获得的利润为y 元,则y =(2300-2000)³2x +(1800-1600)x +(1100-1000)³(100-3x)=500x +10000. ∵k =500>0,∴y 随x 的增大而增大.∵x ≤261213且x 为正整数,∴当x =26时,y 取最大值,最大值为500³26+10000=23000.答:当购买冰箱26台时,商店销售完这批家电后获得的利润最大,最大利润为23000元.第十九章一次函数测试题。

人教版八(下)数学19.1 函数 第1课时 变量 同步练习

人教版八(下)数学19.1 函数 第1课时 变量 同步练习

19.1 函数第1课时变量基础训练知识点1常量与变量1.关于圆的周长公式C=2πr,下列说法正确的是()A.π,r是变量,2是常量B.C,r是变量,2,π是常量C.r是变量,2,π是常量D.C是变量,2,π,r是常量2.以21 m/s的速度向上抛一个小球,小球的高度h(m)与小球运动的时间t(s)之间的关系是h=21t-4.9t2.下列说法正确的是()A.4.9是常量,21,t,h是变量B.21, 4.9是常量,t,h是变量C.t,h是常量,21, 4.9是变量D.t,h是常量,4.9是变量3.下表是某报纸公布的世界人口数据情况:上表中的变量()A.仅有一个,是年份B.仅有一个,是人口数C.有两个,是人口数和年份D.一个也没有4.下列说法不正确的是()A.正方形的面积S=a2中有两个变量S,aB.圆的面积S=πR2中π是常量C.在一个关系式中用字母表示的量可能不是变量D.如果x=y,则x,y都是常量知识点2两个变量之间的关系5.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.y与x之间的关系是.在这个问题中, 是常量;是变量.6.用黑白两种颜色的正六边形地板砖按如图所示的规律拼成若干图案,则第n个图案中白色地板砖的总块数N与n之间的关系式为,其中常量是,变量是.7.中国电信公司最近推出的无线市话的收费标准为:前3 min(不足3 min按3 min计)收费0.2元,3 min后每分钟0.1元.则通话一次的时间x(min)(x>3)与这次通话费用y(元)之间的关系是()A.y=0.1xB.y=0.2+0.1xC.y=0.2+0.1(x-3)D.y=0.1x+0.5提升训练参考角度1利用关系式表示实际问题中变量间的关系8.某地区现有果树10 000棵,计划今后每年栽果树1 000棵.(1)试用含年数x(年)的式子表示果树总数y(棵),并指出其中的常量和变量;(2)预计到第五年该地区有多少棵果树?探究培优拔尖角度1 利用关系式表示几何中变量间的关系(数形结合思想)9.等腰△ABC的周长为10 cm,底边BC的长为y cm,腰AB的长为x cm.(1)写出变量y与x之间的关系式;(2)求x,y的取值范围.参考答案1.【答案】B解:圆的周长公式C=2πR中,C是因变量,R是自变量,2π为常量,故选B.2.【答案】B解:A、21是常量,故A错误;B、21,49是常量,t,h是变量,故B是正确;C、D、t、h是变量,21,4.9是常量,故C、D错误;故选:B.3.【答案】C4.【答案】D5.【答案】0.4;0.8;1.2;1.6;y=0.4x;0.4;x,y6.【答案】N=4n+2;4,2;N,n7.【答案】C8.解:(1)y=10 000+1 000x,其中常量为10 000,1 000,变量为x,y. (2)当x=5时,y=15 000.所以预计到第五年该地区有15 000棵果树.9.解:(1)由题意可得2x+y=10,所以y=10-2x.(2)由x,y均为线段,可得x>0,y>0,即10-2x>0.再由三角形三边关系,得2x>y,即2x>10-2x,所以自变量x应满足错误!未找到引用源。

人教版数学八年级下册19章-19.1.1变量与函数-第1课时练习(教师版).docx

人教版数学八年级下册19章-19.1.1变量与函数-第1课时练习(教师版).docx

初中数学试卷桑水出品八年级下册第十九章19.1.1变量与函数第1课时(练)一、选择题(每小题5分,共20分)1.一辆汽车以50 km/h的速度行驶,则行驶的路程s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是()A.50与sB.50与tC.s与tD.三者均为变量【答案】C【解析】此变化过程中保持不变的量是50,变化的量是s与t .故选C考点:常量和变量.2.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2B.变量是C,π,rC.变量是C,rD.常量是2,r【答案】C【解析】此变化过程中保持不变的量是2π,变化的量是C,r .故选C考点:常量和变量.3.下表是某报纸公布的世界人口数据情况:上表中的变量()A.仅有一个,是时间(年份)B.仅有一个,是人口数C.有两个,一个是人口数,另一个是年份D.一个变量也没有【答案】C【解析】此变化过程中变化的量是一个是人口数,另一个是年份, 故选C考点:常量和变量4.自由下落物体下落的高度h与下落的时间t之间的关系为h=gt2(g=9.8m/s2),在这个变化中,变量为()A.h,t B.h,g C.t,g D.t【答案】A【解析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h、t.故选:A考点:变量.二、填空题(每小题5分,共20分)5.三角形的一边长为8 cm,它的面积S(cm2)与这边上的高h(cm)之间的关系为________,其中常量是________,变量是________.【答案】S=4h4h,S【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h、S,不变的量为4.考点:常量和变量,三角形面积.6.已知x,y满足x-3y=1,用y表示x为______,其中变量为________,常量为________.【答案】x=3y+1x,y3,1【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为x,y,不变的量为x,y考点:常量和变量,函数.7.观察下表并填空:y与n【答案】y=2n·(2n-1)n,y【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,y=2n·(2n-1),变量为n,y考点:函数,常量和变量8.如果水的流速是50米/分,那么每分钟的流水量Q(立方米)与所选择的水管半径r(米)之间的关系式是Q =50πr2,其中变量是________,常量是________.【答案】r与Q50与π【解析】试题分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为r与Q, 常量是50与π.考点:常量和变量.三、简答题(每题30分,共60分)9.小刘在过14岁生日的时候,看到了爸爸为他记录的以前各周岁时的体重数值(如下表),你能看出小刘各周岁时的体重是如何变化的吗?在哪一段时间内体重增加最多?周岁1 2 3 4 5 6 7 8 9 10 11 12 13体重(千克)9.3 11.8 13.5 15.4 16.7 18.0 19.6 21.5 23.2 25.0 27.6 30.2 32.5【答案】随着年龄的增大,小刘的体重在增加.在10周岁以后体重增加较快.【解析】试题分析:此变化过程中变化的量是一个是年龄,另一个是体重.由表格得随着年龄的增大,小刘的体重在增加.在10周岁以后体重增加较快.考点:常量和变量.10.如图,长方形ABCD,试指出,当点P在边AD上从A向D移动时,•哪些线段的长度始终保持不变,哪些则发生了变化?哪些三角形的面积始终保持不变,•哪些也发生了变化?试分别举出如上述情况的两条线段与两个三角形.【答案】PA、PB、PC、PD的长度都是变化的,AB、BC、CD•的长度都是不变的;△PAB和△PCD的面积是变化的,△PBC的面积是不变的。

八年级下册数学第十九章练习册参考答案

八年级下册数学第十九章练习册参考答案

八年级下册数学第十九章练习册参考答案八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;c2、1,8,0.3;n,l3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)s=x(10-x),敞亮是10,变量是x,s(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)w=(n-2)×180°,常量是2,180°,变量是w,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)w=n²+1(3)常量是1,变量是n,w19.1.1变量与函数第2课时答案【基础知识】1、d2、b3、c4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)q=1000-60;(2)0≤t≤50/3(3)当t=10时,q=400(m²)(4)当q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、c2、d3、a4、d5、q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、s=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】1、b2、a3、b4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、b2、d3、c4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)c(2)a(3)b【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、a2、c3、c4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、b2、c3、c4、d5、d6、(1,2)7、>18、一条直线;09、0.2;增大9、x;减小;二、四10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点a在y=5/2x上,点b在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、c2、a3、a4、b5、>-2;一、三;6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45) 19.2.2一次函数第1课时答案【基础知识】1、d2、d3、c4、a5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)s=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、d2、a3、b4、d5、a6、b7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、d2、c3、a4、c5、66、(-3/2,0);x=-3/27、8、x24x,即02时,一半植树棵数多2、解:设团队中由游客x人,购买方式a、b得消费全额为ya元,yb元,由题意有:ya=20×0.8x=16x,yb=5×20+0.7×20(x-5)=14x+30.当16x=14x+30,即x=15时,两种方式一样,当16x>14x+30,即x>15时,选择方式b合算;当16x600+0.04x,即020000时,b公司工资待遇高.4、解:(1)y甲=1500+x,y乙=2.5x(2)图像略(3)当x=800时,y甲=2300,y乙=2000.∴选择乙印刷厂比较合算;当y=3000时,x甲=1500,x乙=1200.∴甲印刷厂印制的宣传材料多【探索研究】5、(1)200元(2)800页(3)有图象知,当每月复印页数在1200页左右时,y甲>y乙,∴选乙复印社合算第十九章综合练习答案一、选择#formattableid_0# 二、8、(3,0)(0,1)9、x≥-1且x≠010、-1;;211、略(答案不唯一)12、y=-2x+1;y=-2x-113、a>014、9三、15、y=x-516、y=x+317、图像略(1)(1,0)(2)当x>1时,y118、y=-3x+919、(1)m=3(2)-1/2≤m≤320、(1)4/3km/min(2)7min(3)s=2t-2021、提示:(1)设a型x套,b型(80-x)套,则2090≤25x+28×(80-x)≤2096,即48≤x≤50,∴有三种方案,即a型48套,b型32套;a型49套,b型31套;a型50套,b型30套(2)设利润为w万元,则w=(30-25)x+(34-28)(80-x),即w=-x+480,∴当x越小时,w越大.∴当x=48时,w=-48+480=432,∴a型48套,b型32套(3)w=(34-28)(80-x)+(30-25+a)x=(a-1)x+480,∴当a>1时,w=50(a-1)+480;当0∴当a>1时,a型50套,b型30套;当0。

一次函数.1-函数-第一课时-变量与函数-练习与答案

一次函数.1-函数-第一课时-变量与函数-练习与答案

第十九章一次函数11.1 函数第一课时 19.1.1变量与函数测试题基础知识:一、选择题1、某型号的汽车在路面上的制动距离s=错误!未找到引用源。

,其中变量是( )A、s,vB、s,v2C、sD、v2、函数y=错误!未找到引用源。

自变量x的取值范围是( )A、x≥1且x≠3B、x≥1C、x≠3D、x>1且x≠33、根据如图所示程序计算函数值,若输入的x的值为错误!未找到引用源。

,则输出的函数值为( )A、错误!未找到引用源。

B、错误!未找到引用源。

C、错误!未找到引用源。

D、错误!未找到引用源。

二、填空题4、函数y=错误!未找到引用源。

错误!未找到引用源。

中,自变量x的取值范围是。

5、购买一些签字笔,单价3元,总价为y元,签字笔为x支,y随x变化的关系式y= , 是自变量, 是的函数。

6、某水果批发市场香蕉的价格如表:购买香蕉数不超过20kg以上40kg(kg) 20kg 但不超过40kg 以上每kg价格8元7元6元若小强购买香蕉xkg(x大于40kg)付了y元,则y关于x的函数解析式为。

(写出自变量的取值范围)三、解答题7、下表给出了橘农王林去年橘子的销售额y(元)随橘子卖出质量x(kg)的变化的有关数据:卖出质量(kg) 1 2 3 4 5 6 7 8 9销售额(元) 2 4 6 8 10 12 14 16 18(1)上表反映了哪两个变量之间的关系?并写出函数的解析式。

(2)哪个是自变量?哪个是自变量的函数?(3)当橘子卖出5kg时,销售额是多少?(4)估计当橘子卖出50kg时,销售额是多少?8、已知一根长为20m的铁丝围成一个长方形,若宽为x,长为y:(1)求出y关于x的函数解析式。

(2)写出自变量x的取值范围。

(3)求当x=4时所对应的函数值。

巩固练习1、在一个变化过程中,数值发生__________的量叫做变量,数值始终__________的量叫做常量。

2、直角三角形两锐角的度数分别为x、y,其关系式为y=90-x,其中变量为__________,常量为__________。

人教版数学八年级下册:19.1.1 变量与函数 同步练习(附答案)

人教版数学八年级下册:19.1.1 变量与函数  同步练习(附答案)

19.1.1 变量与函数1.在圆周长公式C =2πR 中,下列说法正确的是( )A .π,R 是变量,2为常量B .R 是变量,2,π,C 为常量C .C 是变量,2,π,R 为常量D .C ,R 是变量,2,π为常量2.直角三角形两锐角分别为x °,y °,其关系式为y =90-x ,其中变量为 ,常量为 .3.写出下列问题中的变量和常量.(1)购买单价为5元的钢笔n 支,共花去y 元;(2)全班有50名同学,其中a 名男同学,b 名女同学;(3)汽车以60 km/h 的速度行驶了t h ,所走过的路程为s km.4.若93号汽油的售价为7.85元/升,则付款金额y(元)与购买数量x(升)之间的关系式为y=7.85x ,其中 是自变量, 是 的函数.5.下列关系式中,一定能称y 是x 的函数的是( )A .2x =y 2B .y =3x -1C.||y =23x D .y 2=3x -5 6.军军用50元钱去买单价是8元的笔记本,则他剩余的钱数Q(元)与他买这种笔记本的本数x(本)之间的关系式是( )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +507.当x =2和x =-3时,分别求下列函数的函数值.(1)y =3x +5;(2)y =2x 2-3x +2.8.函数y =1x +3的自变量x 的取值范围是( ) A .x >-3 B .x <3C .x ≠-3D .x ≠39.函数y =2x -4中,自变量x 的取值范围是 .10.某公交车每月的利润y(元)与乘客人数x(人)之间的函数关系式为y =2.5x -6 000,该公交车为使每月不亏损,则每月乘客量x 应满足的条件是 .11.函数y =1x +1中,自变量x 的取值范围是 . 12.函数y =1x -3+x -2的自变量x 的取值范围是( ) A .x ≥2且x ≠3 B .x ≥2C .x ≠3D .x >2且x ≠313.若等腰三角形的周长为60 cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值范围是( )A .y =60-2x(0<x<60)B .y =60-2x(0<x<30)C .y =12(60-x)(0<x<60) D .y =12(60-x)(0<x<30) 14.下列函数中,自变量x 的取值范围为x >1的是( )A .y =x -1B .y =1x -1 C .y =1x -1D .y =(x -1)0 15.根据如图所示的程序计算函数y 的值,若输入x 的值是7,则输出y 的值是-2.若输入x 的值是-8,则输出y 的值是( )A .5B .10C .19D .2116.圆的面积S =πr 2中,自变量r 的取值范围是 .17.求出下列函数中自变量x 的取值范围.(1)函数y =x 2-x +5中,x 的取值范围: ;(2)函数y =x 0x -1中,x 的取值范围: ;(3)函数y=2x+1x-3的自变量x的取值范围是;(4)函数y=31-2x中,x的取值范围:;(5)函数y=x-2+2-x中,x的取值范围:.18.已知函数f(x)=1x(x+1),其中f(a)表示当x=a时对应的函数值,如f(1)=11×2,f(2)=12×3,f(a)=1a(a+1),则f(1)+f(2)+f(3)+…+f(2 019)=.19.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t的取值范围;(3)10小时后,池中还有多少水?20.如图,长方形ABCD中,当点P在边AD(不包括A,D两点)上从A向D移动时,有些线段的长度和三角形的面积始终保持不变,而有些则发生了变化.(1)试分别写出长度变和不变的线段,面积变和不变的三角形;(2)假设长方形的长AD为10 cm,宽AB为4 cm,线段AP的长为x cm,分别写出你所列出的变化的线段PD的长度y,△PCD的面积S与x之间的函数解析式,并指出自变量的取值范围.参考答案:1.D2.直角三角形两锐角分别为x°,y°,其关系式为y=90-x,其中变量为x,y,常量为90.3.解:(1)y,n是变量,5是常量.(2)a,b是变量,50是常量.(3)s,t是变量,60是常量.4.若93号汽油的售价为7.85元/升,则付款金额y(元)与购买数量x(升)之间的关系式为y =7.85x,其中x是自变量,y是x的函数.5.B6.C7.解:(1)当x=2时,y=3×2+5=11;当x=-3时,y=3×(-3)+5=-4.(2)当x=2时,y=2×22-3×2+2=4;当x=-3时,y=2×(-3)2-3×(-3)+2=29.8.C9.x≥2.10.x≥2_400且x为整数.11.x>-1.12.A13.D14.B15.C16.圆的面积S=πr2中,自变量r的取值范围是r>0.17.求出下列函数中自变量x的取值范围.(1)函数y=x2-x+5中,x的取值范围:x为全体实数;(2)函数y=x0x-1中,x的取值范围:x≠0且x≠1;(3)函数y=2x+1x-3的自变量x的取值范围是x≥-12且x≠3;(4)函数y=31-2x中,x的取值范围:x为全体实数;(5)函数y=x-2+2-x中,x的取值范围:x=2.18. 2 0192 020. 19.解:(1)Q =800-50t.(2)抽完水时,0=800-50t ,得t =16,所以0≤t ≤16.(3)当t =10时,Q =800-50×10=300.答:10小时后,池中还有300立方米水.20.解:(1)长度变化的线段有:AP ,PD ,BP ,PC ;面积变化的三角形有:△APB ,△DCP ;长度不变的线段有:AB ,BC ,CD ,AD ;面积不变的三角形有:△BPC.(2)根据题意可知:PD =AD -AP ,AD =10 cm ,AP =x cm ,PD =y cm , ∴y =10-x ,其中0<x <10.根据题意可知:△PCD 的面积为12DC·PD , ∴S =12×4×(10-x),即S =20-2x. 其中0<x <10.。

人教版八年级数学下19.1.1 变量与函数第1课时作业同步练习含答案

人教版八年级数学下19.1.1 变量与函数第1课时作业同步练习含答案

第十九章一次函数19.1 变量与函数(1)第1课时【巩固提优】1.在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.C,π,r D.C,2π,r2.在圆的面积公式S=πR2中,常量与变量分别是()A.2是常量,S、π、R是变量B.π是常量,S、R是变量C.2是常量,R是变量D.2是常量,S、R是变量3.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是()A.a B.p C.S D.p,a4.小王从北京给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个问题中,变量是()A.小王、爷爷B.电话费、时间C.时间D.爷爷5.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η,t都是变量B.数100和η都是常量C.η和t是变量D.数100和t都是变量6.如图,长方形ABCD的长AD=10 cm,宽AB=6 cm,正方形PQRH的四个顶点分别在AD和CB上,如果正方形PQRH向右平移,在这个运动过程中,以下结论正确的是() A.正方形的边长是变量B.BP的长是常量C.长方形QBAR的面积是常量D.长方形QCDR与长方形ABPH的面积随BP的变化而变化第6题图第8题图7.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,是常量,是变量.8.如图,圆锥的底面半径r=2cm,当圆锥的高h由小到大变化时,圆锥的体积V也随之发生了变化,在这个变化过程中,变量是(圆锥体积公式:Vπr2h)9.假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为(填“常量”或“变量”).10.在3x﹣y=7中,变量是,常量是.把它写成用x的式子表示y的形式是.(1) 支撑物高度为40 cm 时,小车下滑的时间是多少? (2) 如果用h 表示支撑物高度,t 表示小车下滑时间,随着h 逐渐变大,t 的变化趋势是什么? (3) h 每增加10cm ,t 的变化情况相同吗? (4) 估计当h = 60cm 时,t 的值是什么?【能力拔高】 12.(1)设圆柱的底面半径r 不变,圆柱的体积V 与圆柱的高h 的关系式是2V r h π=,在这个式子中常量和变量分别是什么?(2)设圆柱的高h 不变,圆柱的体积V 与圆柱的底面半径r 的关系式2V r h π=中,常量和变量分别又是什么?13.在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体.下面是他测得的弹簧(2)填空:①当所挂的物体为3kg 时,弹簧长是 .不挂重物时,弹簧长是 . ②当所挂物体的质量为8kg (在弹簧的弹性限度范围内)时,弹簧长度是 . 14.△ABC 底边BC 上的高是6cm ,当三角形的顶点C 沿底边BC 向点B 运动时,三角形的面积发生了变化,如图所示(1)如果三角形的底边BC 长为x cm ,那么三角形的面积y cm 2可以表示为 ; (2)在这个变化过程中,常量是 ,变量是 ; (3)当底边长从12cm 变化到3cm 时,三角形的面积从 cm 2变化到 cm 2.CC BC C A参考答案1.B 2.B 3.B 4.B 5.C 6.D 7.10;x,y 8.V,h 9.常量10.x,y;y=3x-7 11.(1)2.13s;t值逐渐变小;不相同;(4)t的值约是1.65.12.(1)常量是π,2,底面半径r,变量是圆柱的高h与圆柱的体积V;(2)常量是π,圆柱的高h,变量是圆柱的底面半径r与圆柱的体积V.13.(1)弹簧长度y与2物体质量x;(2)①26;20;②36cm14.(1)y=3x ;(2)3;x与y (3)36,9。

2020年人教版数学八年级下册19.1.1变量与函数同步练习(解析版)

2020年人教版数学八年级下册19.1.1变量与函数同步练习(解析版)

19.1 函 数 19.1.1 变量与函数基础闯关全练1.一辆汽车以50 km/h 的速度行驶,行驶的路程s(km)与行驶的时间t(h)之间的关系式为s=50t ,其中变量是 ( )A .速度与路程B .速度与时间C .路程与时间D .三者均为变量 2.圆锥的底面半径r=2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是______.(圆锥的体积公式:V=31πr ²h ) 3.下列各关系中,不是函数关系的是 ( ) A .y=-x(x ≤0) B .y=±x (x ≥0)C .y=x (x ≥0)D .y=-x (x ≥O )4.某地海拔高度h 与温度T 之间的关系可用T=21-6h 来表示(温度单位:℃,海拔高度单位:km ),则该地区某海拔高度为2 km 的山顶上的温度为 ( )A .15℃B .9℃C .3℃D .7℃5.在函数y=3x+4中,当x=1时,函数值为_______,当x=_______时,函数值为10.6.函数y=11-x 中,自变量x 的取值范围是 ( )A .x ≠0B .x <1C .x >1D .x ≠1 7.下列函数中,自变量x 的取值范围是x >3的是 ( ) A .y=x-3 B .y=31-x C .y=3-x D .y=31-x 能力提升全练1.如图19-1-1-1所示,圆柱的高是3 cm ,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是________,因变量是____;(2)当底面半径由1 cm 变化到10 cm 时,圆柱的体积增加了____cm³.2.若函数y=⎩⎨⎧≤+),2(2),2(22>x x x x 则当函数值y=8时,自变量x 的值等于________.3.某剧院的观众席的座位分布呈扇形,且按下列方式设置:(1)按照上表所示的规律,当x 每增加1时,y 如何变化:(2)写出座位数y 与排数x 之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说出你的理由.三年模拟全练一、选择题1.下列关于变量x,y的关系:①y=x;②y²=X;③2x²=y,其中y是x的函数的有( )A.3个 B.2个 C.1个 D.O个2.下表反映的是某地区用电量x(千瓦时)与应交电费)y(元)之间的关系,下列说法不正确的是 ( )A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.若用电量为8千瓦时,则应交电费4.4元D.y不是x的函数二、填空题3.在函数y=1-x中,自变量x的取值范围是_______________________.4.声音在空气中传播的速度y(m/s)与气温x(℃)之间存在如下关系:y=x53+331.当气温x=22℃时,某人看到闪电5s后才听到雷声(光传播的时间忽略不计).则此人与闪电发生地相距____________m.五年中考全练一、选择题1.函数y=11-+xx中自变量x的取值范围是 ( )A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<1 2.根据如图19-1-1-2所示的程序计算函数y的值,当输入x的值是4或7时,输出的y的值相等,则6等于 ( )A.9 B.7 C.-9 D.-73.一名司机驾驶汽车从甲地去往乙地,他以80千米/小时的平均速度用了4小时到达乙地,当他按原路匀速返回时,汽车的速度v(千米/小时)与时间t(小时)的函数关系是 ( )A.v=320t B.v=t320 C.v=20t D.v=t20二、填空题4.函数y=11+x中自变量x的取值范围是__________.核心素养全练1.已知函数ƒ(x)=1+x2,其中ƒ(a)表示x=a时的函数值,如ƒ(1)=1+12,ƒ(2)=1+22,ƒ(a)=1+a2,则ƒ(1)•ƒ(2)•ƒ(3)•…•ƒ(100)=______.2.将一张长方形的纸对折,如图19-1-1-3①,可得到一条折痕,继续对折,对折时每条折痕与上次的折痕保持平行,如图19-1-1-3②,连续对折三次后,可以得到7条折痕,如图19-1-1-3③.回答下列问题:(1)对折四次可以得到_______条折痕:(2)写出折痕的条数y与对折次数x之间的函数关系式:(3)求出对折10次后的折痕条数. 第十九章一次函数19.1 函数19.1.1 变量与函数1.C在s=50t中路程随时间的变化而变化,所以行驶时间是自变量,行驶路程是因变量,速度为50 km/h,是常量.故选C.2.答案V,h解析在变化过程中,底面半径r=2 cm,不发生改变,是常量,体积V随高度h的变化而变化,故V,h为变量.3.B B选项,当x取正值时,y有两个对应值,故B选项中的关系不是函数关系.4.B把h=2代入T=21-6h,得T=21-6×2=9.故选B.5.答案7;2解析当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10.解得x=2.6.D根据分式有意义的条件得x-1≠0,解得x≠1.故选D.7.D A.x的取值范围是一切实数;B.x的取值范围是x≠3;C.x的取值范围是x ≥3;D.x的取值范围是x>3.1.答案(1)底面半径;体积(2)297π解析(1)根据函数的定义可知,对于底面半径的每个值,都有一个确定的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变量是体积.(2)体积增加了(π×10²-π×1²)×3=297πcm³.2.答案4或-6解析①当x≤2时,x²+2=8,解得x=-6;②当x >2时,2x=8,解得x=4. 综上,x 为-6或4.3.解析(1)由题表中的数据,可知当x 每增加1时,y 增加3. (2)由题意可得y=50+3(x-1)=3x+47(x 为正整数). (3)某一排不可能有90个座位. 理由:当y=3x+47=90时,解得x=343.因为x 是正整数,而343不是正整数,故某一排不可能有90个座位,一、选择题1.B 对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,对于①y=x ,③2x ²=y ,当x 每取一个值时,y 都有唯一确定的值与之对应,故选B .2.D .∵对于x 的每一个取值,y 都有唯一确定的值和它对应,∴y 是x 的函数,选项D 不正确,故选D . 二、填空题 3.答案x ≥1解析根据题意得x-1≥0,解得x ≥1.4.答案1721解析∵y=53x+331,∴当x=22时,y=53×22+331=344.2.∵某人看到闪电5 s 后才听到雷声,∴根据“路程=时间×速度”可得,路程s=5×344.2=1721 m .一、选择题1.A 由二次根式的定义,可知x+1≥0,即x ≥-1;由分式的分母不为零可得x-1≠0,即x ≠1,所以自变量x 的取值范围是x ≥-1且x ≠1,故选A .2.C ∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得b=-9.故选C . 3.B 根据公式“路程=速度×时间”可算得甲、乙两地之间的距离为320千米,再根据公式“速度=时间路程”可得v=t320, 二、填空题 4.答案x >-1解析由二次根式的定义可知,x+1≥0,由分式的分母不为零可知,1+x ≠0,故可得x >-1.1.答案5151解析∵ƒ(1)=1+xx x 22+=, ∴ƒ(1)•ƒ(2)•ƒ(3)•…•ƒ(100)=211021011001029910198100352413⨯⨯=⨯⨯⨯⋅⋅⋅⨯⨯⨯=5151. 2.解析(1)第一次对折:1=2-1.第二次对折:3=2²-1.第三次对折:7=2³-1.第四次对折:15=2⁴-1.所以对折四次可以得到15条折痕. (2)根据(1)可得到y=2ˣ-1(x 为正整数). (3)当x=10时,y=2¹⁰-1=1023,所以对折10次后的折痕条数为1023.。

新人教版八年级下《19.1.1变量与函数》课时练习含答案

新人教版八年级下《19.1.1变量与函数》课时练习含答案

14.某蓄水池的横断面示意图如图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下
面的图象能大致表示水的深度 h 和放水时间t 之间的关系的是( )
h
h
h
h
h
答案:A 知识点:函数的图像
O
tO
tO
tO
t
A.
B.
C.
D.
后,因怕耽误了上课,他比修车前加快了骑车的速度,下面四幅图中最能反映小明这段行程的是(

s
s
s
s
O A
t
O
B
t O C
t O D
t
答案:C 知识点:函数的图像
解析: 解答:开始的时候,小明速度不变,也就是直线的倾斜度不变;行驶至途中,车子因为故障停止前进,所以路程不
变,时间继续增加,因此这段过程应该是水平线;第三段加快速度,意味着直线倾斜度变大.综合看三段过程,整 个过程分为三个阶段,其中还有一段是水平的,所以应该选则 C 答案. 分析:这类函数图像问题,要注意横纵坐标的比值表示速度,速度变大直线变陡,速度变小直线变平.若是停止运
0,
1 3
-1,所以在函数图像上的有①③
分析:将 x 取相应的值,代入函数表达式,若 y 值与对应点的纵坐标一致,则该点在函数图像上;反之,则不在函
数图像上 5.下列给出的四个点中,在函数y=3x+1的图像上的是( ) A.(1,4) B.(0,-1) C.(2,-7) D.(-1,2)
答案:A
知识点:函数的图像
答案:A 知识点:函数自变量的取值范围 解析:
解答:二次根式有意义的条件是根号下被开方数非负,所以 x+2≥0,即 x≥ 2

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题一、选择题1.在圆的面积公式S =πr 2中,常量是(B )A .SB .πC .rD .S 和r2.小王计划用100元钱买乒乓球,所购买乒乓球的个数W(单位:个)与单价n(单位:元/个)的关系式W =100n 中(A )A .100是常量,W ,n 是变量B .100,W 是常量,n 是变量C .100,n 是常量,W 是变量D .无法确定3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是(D )A .金额B .数量C .单价D .金额和数量4.一个长方形的面积是10 cm 2,其长是a cm 2,宽是b cm 2,下列判断错误的是(B )A .10是常量B .10是变量C .b 是变量D .a 是变量5.下列关系式中,y 是x 的函数的是(B )A .2x =y 2B .y =3x -1C .||y =23xD .y 2=3x -56.下列变量间的关系不是函数关系的是(C )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径7.已知两个变量之间的函数关系式为y=-x+2,则当x=-1时,对应的y的值为(B)A.1 B.3C.-1 D.-38.在函数y=1x+3+4-x中,自变量x的取值范围是(D)A.x<4 B.x≥4且x≠-3C.x>4 D.x≤4且x≠-39.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是(D)A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60)D.y=12(60-x)(0<x<30)10.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是(C)A .5B .10C .19D .2111.函数y =2x -4的自变量x 的取值范围是(D )A .x <2B .x ≤2C .x >2D .x ≥2二、填空题12.如图,圆锥的底面半径r =2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是V ,h(圆锥体积公式:V =13πr 2h).13.某地某一时刻的地面温度为10 ℃,高度每增加1 km ,温度下降4 ℃,则有下列说法:①10 ℃是常量;②高度是变量;③温度是变量;④该地某一高度这一时刻的温度y(℃)与高度x(km )的关系式为y =10-4x.其中正确的是(D )A .①②③B .②③④C .①③④D .①②③④14.n 边形的内角和α°的公式是α=(n -2)·180,其中变量是n ,α,常量是2,180.15.用黑、白两种颜色的正六边形地板砖镶嵌成若干图案(如图),则第n 个图案中白色地板砖的总块数N(块)与n 之间的关系式是N =4n +2,其中常量是4,2,变量是N ,n .16.若92号汽油的售价为6.8元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,x是自变量,y是x的函数,其解析式为y=6.8x.17.函数y=1x-6中,自变量x的取值范围是x≠6.18.某公交车每月的利润y(元)与乘客人数x(人)之间的函数关系式为y=2.5x -6 000,该公交车为使每月不亏损,则每月乘客量x应满足的条件是x≥2__400且x为整数.19.对于函数y=6xx+3,当y=2时,x=32.20.若物体运动的路程s(米)与时间t(秒)的函数关系式为s=3t2+2t+1,则当t=4秒时,该物体运动的路程为57米.21.函数y=x+2x中,自变量x的取值范围是x≥-2且x≠0.22.函数y=x-2+(x-3)0中,自变量x的取值范围是x≥2且x≠3.三、解答题23.写出下列问题中的变量和常量:(1)购买单价为5元的钢笔n支,共花去y元;(2)全班50名同学,有a名男同学,b名女同学;(3)汽车以60 km/h的速度行驶了t h,所走过的路程为s km.解:(1)y,n是变量,5是常量.(2)a,b是变量,50是常量.(3)s,t是变量,60是常量.24.如图,已知m∥n,直线m,n之间的距离是3,△ABC的顶点A在直线m上,边BC在直线n上,设BC边的长为x,△ABC的面积为S,请用含x的式子表示S,并指出式子中的常量与变量.解:S=12×3x=32x.常量:3 2;变量:S,x.25.已知水池中有800立方米的水,每小时抽水50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t的取值范围;(3)10小时后,池中还有多少水?解:(1)Q=800-50t.(2)令y=0,则0=800-50t,解得t=16.∴0≤t≤16.(3)当t=10时,Q=800-50×10=300.答:10小时后,池中还有300立方米水.。

人教版八年级下册数学 19.1.1变量与函数 同步练习

人教版八年级下册数学  19.1.1变量与函数  同步练习

人教版八年级下册数学19.1.1变量与函数 同步练习一、选择题1. 函数y =√x−2x 中,自变量x 的取值范围是( )A. x ≠0B. x ≥2C. x >2且x ≠0D. x ≥2且x ≠02. 在球的体积公式V=43πr 3中,下列说法正确的是 ( )A. V,r 是变量,43,π是常量B. V,r 是变量,43是常量C. V,π,r 是变量,43是常量D. 以上都不对3. 下列各曲线中表示y 是x 的函数的是( ) A. B. C. D.4. 若函数y ={x 2+2(x ≤2),2x(x >2),则当函数值y=8时,自变量x 的值是( ) A. ±√6 B. 4 C. ±√6或4 D. 4或−√65. 如图是某市某天的温度随时间变化的图象,通过观察可知,下列说法中,错误的是( )A. 这天15时温度最高B. 这天21时温度是30℃C. 这天最高温度与最低温度的差是13℃D. 这天3时温度最低6.琪琪在电脑上打字录入文稿,录入一段时间后因事暂停,过了一小会,琪琪继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )A. AB. BC. CD. D7. 琪琪从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了琪琪在散步过程中离家的距离s(米)与散步所用时间t(分钟)之间的函数关系,根据图象,下列信息错误的是( )A. 琪琪看报用时8分钟B. 公共阅报栏距琪琪家200米C. 琪琪离家最远的距离为400米D. 琪琪从出发到回家共用时16分钟二、填空题8. 已知函数y =3x 2+1,那么x =√2时的函数值为________.9. 给出下列关于变量x,y 的关系式:①3x-y=6; ②y =2|x|; ③4x −3=y 2.其中,y 是x 的函数的是________.(填序号)10. 已知2x-y=1,把它写成y 是x 的函数形式是________.11. 某种储蓄的月利率为m%,存入1000元本金后,本息和y(元)与所存的月数x 之间的函数关系式为________.12. 一个正方形的边长为5 cm,它的边长减少x cm后得到的新正方形的周长为y cm,y与x的关系式为,自变量的取值范围为.13. 已知等腰三角形的周长是20,则腰长y与底边长x之间的函数关系式为,自变量x的取值范围是.14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为.三、解答题15. 求下列函数的自变量x的取值范围:(1)y=4; (2) y=x2−3x+2; (3)y=√2x−5.3x−216. 已知y与x之间的函数关系为y=2x-1.(1)求x=5时的函数值; (2)求y=5时对应的自变量x的值.17. 一盛满10吨水的水箱,每时流出0.5吨水.水箱中水量y(吨)与时间x(时)之间有什么函数关系?写出x的取值范围.18. 写出下列各问题所满足的关系式,并指出各个关系式中,哪些是常量,哪些是变量.(1)每本练习本0.6元,购买练习本所需的钱数m(元)与购买的本数n(本)之间的关系式;(2)用总长度为27 m的篱笆刚好围成一个矩形场地,矩形的面积S(m2)与一边长x(m)之间的关系式;(3)某种饮水机盛满20升水,打开阀门每分钟可流出0.2升水,饮水机中剩余水量y(升)与放水时间x(分钟)之间的关系式.19. 一个小球沿着一个斜坡向下滚动,其速度每秒增加2米,到达坡底时,小球的速度达到40米/秒.(1)求小球速度v(米/秒)与时间t(秒)的函数关系式,并求t的取值范围;(2)几秒时,小球的速度变为16米/秒?20. 从A地向B地打长途电话的收费标准为:3分钟内收取2.4元(包含3分钟),每超过一分钟多收1元.(1)写出应收电话费y(元)与打电话时间x(分钟)之间的函数关系式;(2)某人打5分钟电话应付多少钱?(3)某人付电话费8.4元,他打了多少分钟电话?21. 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,设D为BC上任意一点,点D不与B,C重合,且DC=x,若三角形ABD的面积为y.(1)请求出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x=6时,求三角形ABD的面积y.22. 如图是琪琪上学骑车途中速度与时间的关系.(1)他去上学共用了多长时间?最大速度是多少?(2)出发后的前10分钟,他的速度有什么变化?哪段时间匀速行驶?最后10分钟呢?。

人教版数学八年级下册练习:19.1.1 变量和函数第1课时

人教版数学八年级下册练习:19.1.1 变量和函数第1课时

第十九章 一次函数19.1.1 变量与函数(第1课时)基础导练1.下列关系式中,变量x= -1时,变量y=6的是( )A.y= 3x+3B.y= -3x+3C.y=3x – 3D.y= - 3x – 32.球的体积公式:V=34πr 3,r 表示球的半径,V 表示球的体积.当r=3时,V 的值为( )A.4 πB.12πC.36πD.π3.某商店售货时,在进货价的基础上加一定的利润,其数量x 与售价y 如下表示,根据表中所提供的信息,售价y 与售货数量x 的函数解析式为( ) 数量x(千克 )1 2 3 4 ··· 售价y(元) 8+0.4 16+0.8 24+1.2 32+1.6··· A.y=8.4x B.y= 8x +0.4 C.y=0.4x +8 D.y=8x4.正方体的棱长是a ,表面积为S ,那么S 与a 之间的函数解析式是( )A.S=4a 2B.S=a 3C.S=6a 2D.S=8a 25.一台机器开始工作时油箱中储油4升,如果每小时耗油0.5升,那么油箱中所剩油y (升)与它工作时间t(小时)之间的函数关系式是 .A.y=0.5tB.y= 4-0.5tC.y=4+0.5tD.y= 4/t6.在圆的周长和半径之间的关系式C=2πr 中,其中,_______是常量,_______是变量.7.有一棵树苗,刚栽下去时树高1.2米,以后每年长高0.2米,设x 年后树高为y 米,那么y 与x 之间的函数解析式为_______.8.某弹簧的自然长度为3cm ,在弹性限度内,所挂物体的质量x 每增加某1千克,弹簧长度y 增加0.5厘米. 则y=_______,其中的变量_______,常量_______.能力提升9.长方形的周长为18cm,长为ycm,宽为xcm.求y与x之间的函数解析式,并写出自变量x的取值范围.参考答案1.B2.C3.A4.C5.B6.2π r7.y=1.2+0.2x8.y=3+0.5x9.y=9-x x的取值范围为:0<x<9。

课时作业1:19.1.1变量与函数(1)

课时作业1:19.1.1变量与函数(1)

19.1.1变量与函数(1)1.若球体体积为V,半径为R,则V=43R3.其中变量是_______、_______,常量是________.2.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下温度是23℃,则温度y与上升高度x之间关系式为__________.3.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q升与行驶时间t小时的关系是_________.4.函数是研究()A.常量之间的对应关系的B.常量与变量之间的对应关系的C.变量与常量之间对应关系的D.变量之间的对应关系的5.下列变量间的关系不是函数关系的是()A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径6.判断下列变化过程中,两变量存在函数关系的是()A.x,y是变量,y=±2xB.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间7.在用图象表示变量之间的关系时,通常用水平方向的数轴上的点表示()A.因变量B.常量C.自变量D.函数8.下列各问题中,变量间是反比例函数关系的是()①三角形的面积S一定时,它的底a与这个底边上的高h的关系;②正三角形的面积与边长之间的关系;③直角三角形中两锐角间的关系;④当路程s一定时,时间t与速度v的关系.A.①②B.②③C.③④D.①④9.对于圆的周长公式C=2πR,下列说法中,正确的是()A.2π是变量B.2πR是常量C.C是R的函数D.该函数没有定义域10.下列各图给出了变量x与y之间的函数是()A.答案AB.答案BC.答案CD.答案D参考答案:1.VR43;2.y=23°-0.7100x;3.Q=40-5t.4.D5.C6.D7.C8.D9.C 10.D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.(6 分)球的体积 V 与半径 R 之间的关系式为 V=πR3,下列说法正确的是( )
A.变量为 V,R,常量为 π,3 B.变量为 V,R,常量为,π C.变量为 V,R,π,常量为 D.变量为 V,3R ,常量为 π
5.(14分)下表是小华做观察水的沸腾实验时所记录的数据: (1)时间是 8 分钟时,水的温度为 ;
() A.100是常量,W,n 是变量 C.100,n 是常量,W 是变量 【答案】A
B.100,W 是常量,n 是变量 D.无法确定
3.(6 分)自由下落物体下落的高度 h 与下落的时间 t 之间的关系为 h=gt2(g=9.8m/s2),在这个变化 中,变量为( ) A.h,t B.h,g C.t,g D.t 【答案】A 【解析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析. 在这个变化中,变量为 h、t. 故选:A
C.t,h 是常量,21,4.9是变量 D.t,h 是常量,4.9是变量
【答案】B 【解析】解:A、21是常量,故 A 错误;
B、21,4.9是常量,t,h 是变量,故 B 是正确;
C、D、t、h 是变量,21,4.9是常量,故 C、D 错误;
故选:B.
2.(6 分)小王计划用 100元钱买乒乓球,所购买球的个数 W(个)与单价 n(元)的关系式 中
一次函数
19.1 变量与函数(1)
(时间:25分,满分 60分)
班级
姓名
得分
1.(6 分)以 21m/s的速度向上抛一个小球,小球的高度 h(m)与小球运动的时间 t(s)之间的关系是 h=21t﹣4.9t2 .下列说法正确的是( )A.4.9是常量,21,t,h 是变量 B.21,4.9是常量,t,h 是变量
相关文档
最新文档