2014年考研数学三真题与答案解析

合集下载

2014【考研数三】真题及解析

2014【考研数三】真题及解析

2014年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( ) (A )2n aa >(B )2n a a <(C )1n a a n >-(D )1n a a n<+(2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+(C )1siny x x =+ (D )21sin y x x=+(4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥ (D )当'()0f x ≤时,()()f x g x ≥(5)行列式0000000ab a bcd cd =(A )2()ad bc - (B )2()ad bc -- (C )2222a dbc - (D )2222b c a d -(6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设123,,X X X 为来自正态总体2(0,)N σ服从的分布为 (A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。

2014年全国考研数学三真题及解析.doc

2014年全国考研数学三真题及解析.doc

2014年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( ) (A )2n aa >(B )2n a a <(C )1n a a n >-(D )1n a a n<+(2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+(C )1sin y x x =+ (D )21sin y x x=+(3) (A ) (B ) (C ) (D )(4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥ (D )当'()0f x ≤时,()()f x g x ≥(5)行列式0000000ab a bcd cd =(A )2()ad bc - (B )2()ad bc -- (C )2222a dbc - (D )2222b c a d -(6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设123,,X X X 为来自正态总体2(0,)N σ服从的分布为 (A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。

2014考研数学三真题及答案

2014考研数学三真题及答案

2014 年全国硕士研究生入学统一考试数学三试题一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上. (1)设 lim a n = a , 且 a ≠ 0, 则当 n 充分大时有()(A ) a n >2(B ) a n <2 1(C ) a n > a -n (D ) a n< a + 1 n(2)下列曲线有渐近线的是( )(A ) y = x + sin x (B ) y = x 2+ sin x (C ) y = x + sin 1x(D ) y = x 2+ sin 1x(3)设 P (x) = a + bx + cx 2 + dx3,当 x → 0 时,若P (x) - tanx 是比 x 3高阶的无穷小,则下列试题中错误的是 (A ) a = 0 (B ) b = 1 (C ) c = 0 1 (D ) d =6(4)设函数 f (x ) 具有二阶导数, g (x ) = (A )当 f '(x ) ≥ 0 时, f (x ) ≥ g (x ) (B )当 f '(x ) ≥ 0 时, f (x ) ≤ g (x ) (C )当 f '(x ) ≤ 0 时, f (x ) ≥ g (x ) (D )当 f '(x ) ≤ 0 时, f (x ) ≥ g (x )f (0)(1 - x ) + f (1)x ,则在区间[0,1] 上( )a a0 a b 0 a 0 0 b (5)行列式=0 c d 0 c 0 0 d(A ) (ad - bc )2(B ) -(ad - bc )2(C ) a 2 d 2- b 2c2(D ) b 2c 2 - a 2 d 2(6)设 a 1 , a 2 , a 3 均为 3 维向量,则对任意常数 k , l ,向量组α1 + k α3 ,α2 + l α3 线性无关是向量组α1,α2 ,α3 线性无关的 (A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件(7)设随机事件 A 与 B 相互独立,且 P (B )=0.5,P(A-B)=0.3,求 P (B-A )=( )(A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设 X , X , X 为来自正态总体N (0,σ2) 的简单随机样本,则统计量X 1 - X 2123分布为 (A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上. (9)设某商品的需求函数为 Q = 40 - 2P (P 为商品价格),则该商品的边际收益为 。

2014年全国硕士研究生入学统一考试数学三试题及答案解析

2014年全国硕士研究生入学统一考试数学三试题及答案解析

2162014年全国硕士研究生入学统一考试数学三试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出四个选项中,只有一个选项符合题目要求的,请将所选项的字母填在答题纸指定位置上。

(1)设lim ,0n a a a =≠且,则当n 充分大时有( ) (A )n a >||2a (B )||||2n a a <(C) 1n a a n>-(D) 1n a a n<+解lim n x a a →∞=0.N N s t n N ε+∴∀>∃∈∀>时,有||n a a ε-<即 .||||||||n n a a a a a a εεεε-<<+⇒-≤≤+取||3a ε=. 有 2||||32n a a a ≥> (2)下列曲线有渐近线的是 (A )sin y x x =+(B)2sin y x x =+(C)1sin y x x =+(D)21sin y x x =+解 1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]limsin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==217y x ∴=是1sin y x x=+的斜渐近线(3)设()220P x a bx cx dx x =+++→,当时,若tan P x x -()是比3x 高阶的无穷小,则下列试题中错误的是( ) (A )0a = (B )1b =(C )0c =(D )16d =解:由泰勒公式331tan ()3x x x O x =++得 23333001(1)()()()tan 3lim lim 0x x a b x cx d x o x P x x x x→→+-++-+-==10,1,0,,3a b c d ====故选(D ).(4)设函数f x ()具有二阶导数,011g x f x f x =-+()()()(),则在区间[0,1]上( )(A )0f x f x g x '≥≥当()时,()()(B )0f x f x g x '≥≤当()时,()() (C )0f x f x g x ''≤≥当()时,()()(D )0f x f x g x ''≤≤当()时,()()解 当()0f x "≥时,()f x 是凹函数而()g x 是连接()()0,0f 与()()1,1f 的直线段,故。

2014考研数学三真题及答案(精)

2014考研数学三真题及答案(精)

2014年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设lim ,n a a =且0,a ≠则当n 充分大时有( )(A )2n a a >(B )2n a a <(C )1n a a n >-(D )1n a a n<+(2)下列曲线有渐近线的是( ) (A )sin y x x =+ (B )2sin y x x =+(C )1siny x x =+ (D )21sin y x x=+(3)设23(x)a P bx cx dx =+++ ,当0x → 时,若(x)tanx P - 是比x 3高阶的无穷小,则下列试题中错误的是 (A )0a = (B )1b = (C )0c = (D )16d =(4)设函数()f x 具有二阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]上( ) (A )当'()0f x ≥时,()()f x g x ≥ (B )当'()0f x ≥时,()()f x g x ≤ (C )当'()0f x ≤时,()()f x g x ≥(D )当'()0f x ≤时,()()f x g x ≥(5)行列式00000000ab a bcd cd= (A )2()ad bc - (B )2()ad bc -- (C )2222a d b c - (D )2222b c a d -(6)设123,,a a a 均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的 (A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件(D )既非充分也非必要条件(7)设随机事件A 与B 相互独立,且P (B )=0.5,P(A-B)=0.3,求P (B-A )=( ) (A )0.1 (B )0.2 (C )0.3 (D )0.4(8)设123,,X X X 为来自正态总体2(0,)N σ服从的分布为(A )F (1,1) (B )F (2,1) (C )t(1) (D )t(2)二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)设某商品的需求函数为402Q P =-(P 为商品价格),则该商品的边际收益为_________。

2014年考研数学三真题及答案解析

2014年考研数学三真题及答案解析

x
y
f (0) 0 ,求 f u 的表达式
.
(18)(本题满分 10 分)
求幂级数 (n 1)(n 3)xn 的收敛域及和函数。 n0
(19)(本题满分 10 分)
设函数 f (x), g(x) 在区间[a,b] 上连续,且 f (x) 单调增加, 0 g(x) 1,证明:
x
(I) 0 g(t)dt x a, x [a,b]; a
线性无关的 (A)必要非充分条件 (B)充分非必要条件 (C)充分必要条件 (D)既非充分也非必要条件 (7)设随机事件 A 与 B 相互独立,且 P(B)=0.5,P(A-B)=0.3,求 P(B-A)=( ) (A)0.1 (B)0.2 (C)0.3 (D)0.4
(8)设
X1,
X2,
X3 为来自正态总体 N (0, 2 ) 的简单随机样本,则统计量
1 1
1 0 0
1Hale Waihona Puke 与001
0
0
1
2
相似。
n
第5页
(22)(本题满分 11 分)
设随机变量
X
的概率分布为
1
P{X=1}=P{X=2}=
,在给定 X
i 的条件下,随机变量
Y
服从均匀分布
2
U (0,i)(i 1, 2)
(1)求 Y 的分布函数 FY ( y)
(2)求 EY
(23)(本题满分 11 分)
2x
(14)设总体
X
的概率密度为
f
(x; )
3
2
0
x 2 ,其中 是未知参数, X1, X 2 ,..., X n , 为来自
其它
n

2014年考研数学三真题与答案解析

2014年考研数学三真题与答案解析

2014年考研数学三真题与解析一、选择题 1—8小题.每小题4分,共32分.1.设0≠=∞→a a n n lim ,则当n 充分大时,下列正确的有( )(A )2a a n >(B )2a a n <(C )n a a n 1-> (D)na a n 1+< 【详解】因为0≠=∞→a a n n lim ,所以0>∀ε,N ∃,当N n >时,有ε<-a a n ,即εε+<<-a a a n ,εε+≤<-a a a n ,取2a =ε,则知2a a n >,所以选择(A )2.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2 (C )xx y 1sin += (D )xx y 12sin += 【分析】只需要判断哪个曲线有斜渐近线就可以. 【详解】对于x x y 1sin +=,可知1=∞→x y x lim且01==-∞→∞→xx y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )3.设32dx cx bx a x P +++=)(,则当0→x 时,若x x P tan )(-是比3x 高阶的无穷小,则下列选项中错误的是( )(A )0=a (B )1=b (C )0=c (D )61=d 【详解】只要熟练记忆当0→x 时)(tan 3331x o x x x ++=,显然31010====d c b a ,,,,应该选(D ) 4.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的. 显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,而())()(x f x x f =+-211λλ,故当0≥'')(x f 时,曲线是凹的,即())()()()(212111x f x f x x f λλλλ+-≤+-,也就是)()(x g x f ≤,应该选(D )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是)()(x g x f ≤,应该选(D )5.行列式dc d c ba b a00000000等于(A )2)(bc ad - (B )2)(bc ad -- (C )2222c bd a - (D )2222c bd a +- 【详解】20000000000000000)()()(bc ad bc ad bc bc ad ad dc b a bcd c b a ad dc c ba b d c d b a a dcd c ba b a--=-+--=+-=+-=应该选(B ).6.设321ααα,, 是三维向量,则对任意的常数l k ,,向量31ααk +,32ααl +线性无关是向量321ααα,,线性无关的(A )必要而非充分条件 (B )充分而非必要条件 (C )充分必要条件 (D ) 非充分非必要条件 【详解】若向量321ααα,,线性无关,则(31ααk +,32ααl +)K l k ),,(),,(3213211001αααααα=⎪⎪⎪⎭⎫ ⎝⎛=,对任意的常数l k ,,矩阵K 的秩都等于2,所以向量31ααk +,32ααl +一定线性无关.而当⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=000010001321ααα,,时,对任意的常数l k ,,向量31ααk +,32ααl +线性无关,但321ααα,,线性相关;故选择(A ). 7.设事件A ,B 想到独立,3050.)(,.)(=-=B A P B P 则=-)(A B P ( )(A )0.1 (B )0.2 (C )0.3 (D )0.4【详解】)(.)(.)()()()()()(.)(A P A P A P B P A P A P AB P A P B A P 505030=-=-=-==-. 所以60.)(=A P ,=-)(A B P 205050.)(..)()(=-=-A P AB P B P .故选择(B ). 8.设321X X X ,,为来自正态总体),(20σN 的简单随机样本,则统计量3212X X X S -=服从的分布是(A )),(11F (B )),(12F (C ) )(1t (D ))(2t 【详解】232132122XX X X X X S -=-=,显然),(~10221N X X σ-,)(~12223χσX ,且),(~10221N X X σ-与)(~12223χσX 相互独立,从而)(~1222223212321321t X X X XX X X X X S σσ-=-=-=故应该选择(C ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设某商品的需求函数为p Q 240-=(p 为商品的价格),则该商品的边际收益为 . 【详解】2240p p pQ p R -==)(,边际收益p p R 440-=)('.10.设D 是由曲线01=+xy 与直线0=+y x 及2=y 所围成的有界区域,则D 的面积为 . 【详解】22112101ln +=+=⎰⎰⎰⎰--yydx dy dx dy S11.设412=⎰ax dx xe ,则=a . 【详解】411241244120202+-=-==⎰)(|)(a e x e dx xe a ax ax .所以.21=a12.二次积分=⎪⎪⎭⎫ ⎝⎛-⎰⎰dx e xe dy y y x 11022. 【详解】)()(12111010101010100110101102222222222-==+-=--=-=⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e dy ye dy ye dy e e dy y e dy x e x d dx e dy dy x e dx dx e x e dy y y y dxx xy x x y y x y y x 13.设二次型3231222132142x x x ax x x x x x f ++-=),,(的负惯性指数是1,则a 的取值范围是 . 【详解】由配方法可知232232231323122213214242xa x x ax x x x x ax x x x x x f )()()(),,(-+--+=++-=由于负惯性指数为1,故必须要求042≥-a ,所以a 的取值范围是[]22,-.14.设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其它,,),(02322θθθθx xx f ,其中θ是未知参数,n X X X ,,, 21是来自总体的简单样本,若∑=ni iXC12是2θ的无偏估计,则常数C = .【详解】22222532θθθθ==⎰2dx x x X E )(,所以21225θCn X C E n i i =⎪⎪⎭⎫ ⎝⎛∑=,由于∑=ni i X C 12是2θ的无偏估计,故125=Cn,nC 52=. 三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限. 【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy y x y x x )sin(22π 【详解】由对称性可得432112121212022222222-==+=+++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰D D DD dr r r d dxd y x dxdy y x y x y x dxd y x y x y dxd y x y x x πθπππππsin )sin()sin()()sin()sin(17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足x x e y e z yzx z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u x cos =,则)cos ()(y e f u f z x ==,y e u f y e u f xze uf xzx x y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z xx x cos )('sin )(",sin )('-=∂∂-=∂∂2222; x x x e y e f e u f yzx z 222222)cos (")("==∂∂+∂∂ 由条件xx e y e z yz x z 222224)cos (+=∂∂+∂∂,可知u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程.对应齐次方程的通解为:u u e C e C u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*. 故非齐次方程通解为u e C eC u f u u412221-+=-)(.将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 18.(本题满分10分) 求幂级数∑∞=++031n nxn n ))((的收敛域、和函数.【详解】 由于11=+∞→nn n a a lim,所以得到收敛半径1=R .当1±=x 时,级数的一般项不趋于零,是发散的,所以收敛域为()11,-. 令和函数)(x S =∑∞=++031n nxn n ))((,则3211121112131111234)('"'")())(()()(x xx x x x x x x n x n n x n n x S n n n n n nn nn n--=⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=++++=++=∑∑∑∑∑∞=+∞=+∞=∞=∞=19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (1) []b a x a x dt t g xa,,)(∈-≤≤⎰0;(2)⎰⎰≤⎰+ba dtt g a adx x g x f dx x f ba )()()()(.【详解】(1)证明:因为10≤≤)(x g ,所以[]b a x dt dt t g dx xax axa,)(∈≤≤⎰⎰⎰10.即[]b a x a x dt t g xa,,)(∈-≤≤⎰0.(2)令⎰⎰⎰-=+xa dtt g a axadu u f du u g u f x F )()()()()(,则可知0=)(a F ,且⎪⎭⎫ ⎝⎛+-=⎰xa dt t g a f x g x g x f x F )()()()()(',因为,)(a x dt t g xa-≤≤⎰0且)(x f 单调增加,所以)()()(x f a x a f dt t g a f xa=-+≤⎪⎭⎫ ⎝⎛+⎰.从而0=-≥⎪⎭⎫ ⎝⎛+-=⎰)()()()()()()()()('x f x g x g x f dt t g a f x g x g x f x F xa , []b a x ,∈也是)(x F 在[]b a ,单调增加,则0=≥)()(a F b F ,即得到⎰⎰≤⎰+badtt g a adx x g x f dx x f ba )()()()(.20.(本题满分11分)设⎪⎪⎪⎭⎫⎝⎛---=302111104321A ,E 为三阶单位矩阵.(1) 求方程组0=AX 的一个基础解系; (2) 求满足E AB =的所有矩阵.【详解】(1)对系数矩阵A 进行初等行变换如下:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛---=310020101001310011104321134011104321302111104321A ,得到方程组0=AX 同解方程组⎪⎩⎪⎨⎧==-=43424132xx x x x x 得到0=AX 的一个基础解系⎪⎪⎪⎪⎪⎭⎫⎝⎛-=13211ξ.(2)显然B 矩阵是一个34⨯矩阵,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=444333222111z y x z y x z y x z y x B 对矩阵)(AE 进行进行初等行变换如下:⎪⎪⎪⎭⎫⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛---=141310013120101621001141310001011100014321101134001011100014321100302101011100014321)(AE由方程组可得矩阵B 对应的三列分别为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321011214321c x x x x ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321043624321c y y y y ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321011134321c z z z z , 即满足E AB =的所有矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛++-+-++-+-----=321321321321313431212321162c c cc c c c c c c c c B 其中321c c c ,,为任意常数. 21.(本题满分11分)证明n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似. 【详解】证明:设=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111,=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100. 分别求两个矩阵的特征值和特征向量如下:1111111111--=---------=-n n A E λλλλλλ)( ,所以A 的n 个特征值为0321====n n λλλλ ,;而且A 是实对称矩阵,所以一定可以对角化.且⎪⎪⎪⎪⎪⎭⎫⎝⎛00 λ~A ;1002010--=---=-n n nB E λλλλλλ)(所以B 的n 个特征值也为0321====n n λλλλ ,;对于1-n 重特征值0=λ,由于矩阵B B E -=-)(0的秩显然为1,所以矩阵B 对应1-n 重特征值0=λ的特征向量应该有1-n 个线性无关,进一步矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且⎪⎪⎪⎪⎪⎭⎫⎝⎛00 λ~B 从而可知n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111 与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似. 22.(本题满分11分)设随机变量X 的分布为2121====)()(X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布210,),,(=i i U .(1) 求Y 的分布函数; (2) 求期望).(Y E 【详解】(1)分布函数())/()/()()/()()/(),(),()()(2121221121=≤+=≤===≤+==≤==≤+=≤=≤=X y Y P X y Y P X P X y Y P X P X y Y P X y Y P X y Y P y Y P y F当0<y 时,0=)(y F ;当10<≤y 时,y y y y F 4322121=+=)(; 当21<≤y 时,214122121+=+=y y y F )(; 当2≥y 时,1=)(y F . 所以分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<≤<=2121421104300y y y y y y y F ,,,,)( (2)概率密度函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<<==其它,,,)(')(021411043y y y F y f ,434432110=+=⎰⎰dy y ydy Y E )(.23.(本题满分11分)设随机变量X ,Y 的概率分布相同,X 的概率分布为321310====)(,)(X P X P ,且X ,Y 的相关系数21=XY ρ. (1) 求二维随机变量),(Y X 的联合概率分布; (2) 求概率)(1≤+Y X P .[详解]由于X ,Y 的概率分布相同,故321310====)(,)(X P X P ,321310====)(,)(Y P Y P , 显然32==EY EX ,92==DY DX 相关系数()929421-=-===XY E DYDX EXEY XY E DY DX Y X COV XY )(),(ρ,所以95=)(XY E . 而),()(1111==⨯⨯=Y X P XY E ,所以9511===),(Y X P ,从而得到),(Y X 的联合概率分布:11 9511===),(Y X P ,9110===),(Y X P ,9101===),(Y X P ,9200===),(Y X P (2).),()()(94111111===-=>+-=≤+Y X P Y X P Y X P。

2014数三考研真题答案

2014数三考研真题答案

2014数三考研真题答案2014年数学三考研真题答案一、选择题1. 答案:B解析:根据题意及图片可知,直线AB与x轴和y轴的交点分别为A(0, -3)和B(4, 0)。

直线AB的斜率可以通过斜率公式计算:$$k =\frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - (-3)}{4 - 0} = \frac{3}{4}$$2. 答案:D解析:已知函数f(x)的定义域为[-2, 3],求函数f(g(-1))的值。

根据g(x)定义可得g(-1) = 1。

将g(-1)代入f(x)中,得到f(1) = 1 + 2 = 3。

3. 答案:D解析:根据题意,有三种颜色的糖果分别为红、蓝、黄。

根据已知条件可得:2个黄色糖果的重量等于5个蓝色糖果的重量,5个蓝色糖果加2个黄色糖果的重量等于7个红色糖果的重量。

设蓝色糖果的重量为x,黄色糖果的重量为y,红色糖果的重量为z。

根据上述条件,列出方程组:\[\begin{equation}\begin{cases}2y = 5x \\5x + 2y = 7z\end{cases}\end{equation}\]解方程组可得z = 5x。

4. 答案:C解析:已知函数f(x)和g(x)的定义域均为实数集,对于任意实数x,有f(g(x)) = f(x + 1) + 5。

因此,f(g(4)) = f(5) + 5 = 3 + 5 = 8。

5. 答案:B解析:根据题意,甲、乙两人每天上课时间和休息时间之和均为12小时,记甲的上课时间为x小时,乙的上课时间为y小时,则甲的休息时间为12 - x小时,乙的休息时间为12 - y小时。

根据题意可得方程:$$\frac{x}{12} + \frac{y}{12} + \frac{12 - x}{3} + \frac{12 - y}{3} =12$$整理方程可得:x + y = 36。

二、填空题1. 答案:-9解析:给定等差数列的第一项a = 3,公差d = 2,可使用等差数列通项公式an = a + (n - 1)d来求解。

2014年数学三真题答案解析

2014年数学三真题答案解析

解 区域D的图形如右图所示,面积
s=J:[—�-(-y)] dy
xy=-1
I: =(f —lny)
X
y=-x
=— 3 — ln 2. 2
( 1 1 、丿
1 2_

n+ 』二二 由于r xe2xdx =产(2x — 1) 1· =产(2a —
0
4
0
4
4
4,
得a
.1
=—
2
e- 1 (1 2)
2
解 如右图所示,则
因为nl-im=
lan+if = lim
I an f
n-=
(n+Z)(n+4) =
(n+1)(n+3)
l, 所以收敛半径R=
l.
=
=
当x = 士1时,因级数�(n+l)(n+3)及�(n+DCn+3)(— 1)"发散,
n�o
n�o
故收敛域为(- 1,1),
(沁
r。 t 设S(x)= �(n+1)(n+3)x勹X E(— 1,1)'
n -0
=
=
则 5 (t)dt= (n+3)x n+l= �(n+2)X n+I +�X n+l ,
n �O
n -0
n -0
其中�X n+l= n �O
l
X -x'
言 (�J: 勹二 (n+2)X n+l=
2
(n+2)t
n+ 1
dt)
= 1
(
l� x)'=

2014年全国硕士研究生入学考试数学三真题完整版及答案解析

2014年全国硕士研究生入学考试数学三真题完整版及答案解析

3
32
(2)下列曲线有渐近线的是
(A) y = x + sin x (B) y = x2 + sin x
(C) y = x + sin 1
(D)
x
y = x2 + sin 1 x
【解析】 a
=
lim
f
(x)
=
lim
x + sin
1 x
=
lim(1 +
1 sin
1)
=1
x→∞ x
x→∞
x
x→∞ x x
0 k
0
1 l
知,
(D)既非充分也非必
α1,α2 ,α3
线性无关时,因为
1 0
0
≠0
0
所以α1 + kα3,α2 + lα3 线性无关 反之不成立. 如当α3 = 0 ,且α1 与α2 线性无关时,α1,α2 ,α3 线性相关
【答案】A
(7)设随机事件 A 与 B 相互独立,且 P(B)=0.5,P(A-B)=0.3,则 P(B-A)=( )
b = lim[ f (x) − ax] = lim[x + sin 1 − x] = lim sin 1 = 0
x→∞ 是 y = x + sin 1 的斜渐近线 x
(3)设 P ( x) = a + bx + cx2 + dx2,当x → 0 时,若 P(x)− tan x 是比 x3 高阶的
∴P(B-A)=P(B)-P(BA)=0.5-0.3=0.2
【答案】B
(8)设 X1,X2,X3 为来自正态总体 N(0,σ 2 )的简单随机样本,则统计量 S = X1 − X 2 服 2 X3

2014考研数学三真题答案

2014考研数学三真题答案

2014年全国硕士研究生入学统一考试数学三试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)D (2)B (3) (4)D (5)B (6)A (7)(B ) (8)(C )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)p dpdR440-= (10)223ln - (11)21=a(12))e (121-(13)[-2,2] (14)25n三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)【答案】全国统一服务热线:400—668—2155 精勤求学 自强不息2121111111110202211212112=-=--=--=--=--=+--++→→+∞→+∞→+∞→+∞→⎰⎰⎰u e lim u u e lim x )e (x lim ,xu x)e (x lim xtdtdt t )e (lim)xln(x dt ]t )e (t [limu u u u x x xx xx xxx 则令(16)【答案】4321312*********12021202120212021-=⋅-=+⋅+-=-+-=+-=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ππππππθπθθθθππρπρππρρθθθθππρρθθθθπρπρρθθθθρρθρθρπρθρθd )(d sin cos cos )d cos cos (d sin cos cos cos d d sin cos cos d sin d sin cos cos d sin cos sin cos d(17)【答案】y cos e )y cos e (f xEx x '=∂∂ )y cos (e )y cos e (f y sin e )y cos e (f yE )y sin (e )y cos e (f yEy cos e )y cos e (f y cos e )y cos e (f x Exx x x x x x x x x -'+''=∂∂-'=∂∂'+''=∂∂22222222ycos e )y cos e (f )y cos e (f e )y cos e E (e )y cos e (f y Ex E x x x x x x x +=''+=''=∂∂+∂∂44222222令u y cos e x=, 则u )u (f )u (f +=''4, 故)C ,C (,ue C eC )u (f u u为任意常数2122214-+=-由,)(f ,)(f 0000='=得4161622ue e )u (f u u --=-(18)【答案】 由13142=++++∞→)n )(n ()n )(n (limn ,得1=R当1=x 时,∑∞=++031n )n )(n (发散,当1-=x 时,∑∞=++-0311n n)n )(n ()(发散,故收敛域为),(11-。

2014考研数学三真题及答案

2014考研数学三真题及答案

1
2 (13)设二次型 f ( x1 , x2 , x3 ) x12 x2 2ax1 x3 4 x2 x3 的负惯性指数为 1,则 a 的取
值范围是_________
2x ( 14 )设总体 X 的概率密度为 f ( x; ) 3 2 0
X1 , X 2 ,..., X n , 为来自总体
1 0 0 1 0 0 与 1 0 0
1 2 相似。 n
1 ,在给定 X i 的条件下,随机 2
1 2 设随机变量 X 与 Y 的概率分布相同, X 的概率分布为 P{ X 0} , P{ X 1} , 3 3 1 且 X 与 Y 的相关系数 XY 2 (1) 求(X,Y)的概率分布
2

2
1
cos d )
(17) 【答案】
E f ( e x cos y )e x cos y x
2E f ( e x cos y )e 2 x cos 2 y f ( e x cos y )e x cos y 2 x E f ( e x cos y )e x ( sin y ) y 2E f ( e x cos y )e 2 x sin 2 y f ( e x cos y )e x ( cos y ) 2 y
x 0 时, s( x ) 3 ,故和函数 s( x )
(19)【答案】
3 x , x ( 1, 1) ( 1 x )3
x x x
证明:1)因为 0 g( x ) 1,所以有定积分比较定理可知,
0dt
a
a
g( t )dt 1dt ,即
a
0 g( t )dt x a 。

2014年考研数学三真题答案解析(pdf)

2014年考研数学三真题答案解析(pdf)

=h. m
e"
—1 1
= —.
u-o+ 2u
2
(16)解
』 J1 xsin(rc: 二) dxdy=
cos() d() • r rsinrc:rdr
x+ y
o cos0十sin()
1
D
t =厂 由于 o
cos0 d() cos0十sin0
sin0 d() o cos0十sin0
=』厂 cos0 + sin() d()
2014 年
对任意的常数K小矩阵A的秩都为 2,
+ + 所以若向量a 口 a 2 ,a3线性无关,则a1 ka3,a 2 la3 一 定线性无关.
�m 而当a,�[:],a,
,a,�[�]'寸
+ + 对任意的常数k,l,向量a1 ka3,a 2 la3线性无关,但a1 ,a 2 ,a3线性相关.故应选A.
—34, O<y<l,
八(y)=�14— , l冬y<2,
『 』: J: 』 o, 其他.
EY= =y八(y)dy — ¾ydy+
-ydy=¾
(23) 解 C I)设(X,Y)的概率分布为
。1
。�
b
a
l
c
d
由题设条件知
3) EX=EY=了2 ,DX=DY
=
2 了
(1

2
2 勹
Cov(X,Y)=E(XY)— EX• EY=P{X=l,Y =l} —— 49 .
又因为 f(x) 单调增加,且 g(x)�O,
所以F'(x) < O,从而F(x)在区间[a,b]上单调减少.

2014年考研数学三真题与解析

2014年考研数学三真题与解析

三、解答题 15. (本题满分 10 分) 求极限 xlim

x 1
1
( t 2 (e t 1) t )dt 1 x ln(1 ) x
2

【分析】 . 先用等价无穷小代换简化分母, 然后利用洛必达法则求未定型极 限.
5
【详解】
x
lim
x 1
1
( t 2 (e t 1) t )dt x 2 ln(1 1 ) x
(B)充分而非必要条件 (D) 非充分非必要条件
,对任意的常数 k , l ,矩阵
的秩都等于 2,所以向量 1 k 3 , 2 l 3 一定线性无关.
1 0 0 而当 1 0 , 2 1 , 3 0 时,对任意的常数 k , l ,向量 1 k 3 , 2 l 3 线性 0 0 0
f (1 ) x1 x 2 f ( x ) ,
故当 f ( x ) 0 时,曲线是凹的,即 f (1 ) x1 x 2 (1 ) f ( x1 ) f ( x 2 ) ,也就是
f ( x ) g ( x ) ,应该选(D)
【详解 2】如果对曲线在区间 [a , b] 上凹凸的定义不熟悉的话,可令
2
13.设二次型 f ( x1 , x 2 , x3 ) x12 x 22 2ax1 x3 4 x 2 x3 的负惯性指数是 1,则 a 的取 值范围是 【详解】由配方法可知
2 f ( x1 , x 2 , x 3 ) x12 x 2 2ax1 x 3 4 x 2 x 3 2 ( x1 ax 3 ) 2 ( x 2 2 x 3 ) 2 ( 4 a 2 ) x 3

2014年考研数学三试题及答案解析

2014年考研数学三试题及答案解析

2014年全国硕士研究生入学统一考试数学(三)试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出四个选项中,只有一个选项符合题目要求的,请将所选项的字母填在答题纸指定位置上。

(1)设lim ,0n n a a a →∞=≠且,则当n 充分大时有( )(A )n a >||2a (B )||||2n a a <(C) 1n a a n>-(D) 1n a a n<+答案:(A)【解析】方法1:lim 0,lim 0,=2n n n n aa a a a ε→∞→∞=≠∴=>取,则当n 充分大时,3,,22n n n a aa a a a a εεε-<-<-<<<即,故(A )正确。

方法2:lim n n a a →∞=N N n N ε+∴∀>∃∈∀>使,有||n a a ε-<即 ||||||.0,222n n a a a a a a a a a εεε-<<+≠∴=<<+可取,则a-不论a >0或a <0,都有||2n a a >,选A(2)下列曲线有渐近线的是 (A )sin y x x =+(B)2sin y x x =+(C)1sin y x x =+(D)21sin y x x=+【答案】C【解析】1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]lim sin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==∴y=x 是y=x +1sin x的斜渐近线注:渐近线有3种:水平、垂直、斜渐近线。

本题中(A)(B)(D)都没有渐近线,(C)只有一条斜渐近线。

(3)设()220P x a bx cx dx x =+++→,当时,若tan Px x -()是比3x 高阶的无穷小,则下列试题中错误的是( )(A )0a = (B )1b = (C )0c = (D )16d =【答案】D【解析】法1:由泰勒公式331tan 0()3x x x x =++得 23333001(1)()()()tan 3lim lim 0x x a b x cx d x o x P x x x x→→+-++-+-== 10,1,0,,3a b c d ====故选(D ).法2:由条件及洛必达法则可得222320000()tan 23sec lim tan 0,0,lim lim ,limsec 1,3x x x x P x x b cx dx x x a x x x →→→→-++-====知又 故b =1,同理,再用洛比达法则可得20262sec tan lim 06x c dx x x x→+-⋅=,0c =,13d =,故选(D ).(4)设函数f x ()具有二阶导数,011g x f x f x =-+()()()(),则在区间[0,1]上( )(A )0f x f x g x '≥≥当()时,()()(B )0f x f x g x '≥≤当()时,()()(C)当()0f x ''≥时,()()f x g x ≥. (D)当()0f x ''≥时,()()f x g x ≤【答案】D【解析】方法1:(利用函数的凹凸性)当() 0f x "≥时,()f x 是凹函数 而()g x 是连接()()0,0f 与()1,1f ()的直线段,如右图 故()()f xg x ≤方法2:(利用函数的单调性)()()()h x g x f x =-令,则(0)(1)0h h ==,由洛尔定理知,(0,1)()0,h ξξ'∃∈=,使若()0f x ''≥,则()0,()h x h x '''≤单调递减, 当(0,)x ξ∈时,()()0h x h ξ''≥=,()h x 单调递增,()(0)0,g(x)()h x h f x ≥=≥即; 当(,1)x ξ∈时,()()0h x h ξ''≤=,()h x 单调递减,()(1)0,g(x)()h x h f x ≥=≥即;注:当0f x '≥()时,只能说明()f x 是单调增加的,但增加的方式可能是以凸的形式,也可能是以凹的形式,若是前者,则()()f x g x ≥,此时(A)成立,如()f x x =;若是后者,则()()f x g x ≤,此时(B)成立,如2()f x x =.(5)行列式00000000a b abc d cd=( ) (A )2ad bc -() (B )2ad bc --()(C )2222a dbc -(D )2222b c a d -【解析】004000a b ab c d cd按第行展开c ·(-1)4+1440000(1)0000a b a bb d acd c d++- =-c ·b (-1)3+2a b c d +d ·a (-1)2+1a b c d=()·ad bc bc ad ad bc ---() =()()()2ad bc bc ad ad bc --=--【答案】B(6)设1α,2α,3α均为3维向量,则对任意常数,,k l 向量组1323 k l αααα++,线性无关是向量组1α ,2α,3α线性无关的( ) (A )必要非充分条件.(B)充分非必要条件.(C )充分必要条件.(D)既非充分也非必要条件.【答案】A【解析】先看充分性是否成立:取特例:123(1,0,0),(0,1,0),(0,0,0)TTTααα===,则对任意常数,k l , 1323,k l αααα++线性无关,而123,,ααα线性相关(含零向量的任何向量组线性相关),故充分性不成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年考研数学三真题与解析一、选择题 1—8小题.每小题4分,共32分.1.设0≠=∞→a a n n lim ,则当n 充分大时,下列正确的有( )(A )2a a n >(B )2a a n <(C )n a a n 1-> (D)na a n 1+< 【详解】因为0≠=∞→a a n n lim ,所以0>∀ε,N ∃,当N n >时,有ε<-a a n ,即εε+<<-a a a n ,εε+≤<-a a a n ,取2a =ε,则知2a a n >,所以选择(A )2.下列曲线有渐近线的是(A )x x y sin += (B )x x y sin +=2 (C )xx y 1sin += (D )xx y 12sin += 【分析】只需要判断哪个曲线有斜渐近线就可以. 【详解】对于x x y 1sin +=,可知1=∞→x y x lim且01==-∞→∞→xx y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )3.设32dx cx bx a x P +++=)(,则当0→x 时,若x x P tan )(-是比3x 高阶的无穷小,则下列选项中错误的是( )(A )0=a (B )1=b (C )0=c (D )61=d 【详解】只要熟练记忆当0→x 时)(tan 3331x o x x x ++=,显然31010====d c b a ,,,,应该选(D ) 4.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的. 显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,而())()(x f x x f =+-211λλ,故当0≥'')(x f 时,曲线是凹的,即())()()()(212111x f x f x x f λλλλ+-≤+-,也就是)()(x g x f ≤,应该选(D )【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是)()(x g x f ≤,应该选(D )5.行列式dc d c ba b a00000000等于(A )2)(bc ad - (B )2)(bc ad -- (C )2222c bd a - (D )2222c bd a +- 【详解】20000000000000000)()()(bc ad bc ad bc bc ad ad dc b a bcd c b a ad dc c ba b d c d b a a dcd c ba b a--=-+--=+-=+-=应该选(B ).6.设321ααα,, 是三维向量,则对任意的常数l k ,,向量31ααk +,32ααl +线性无关是向量321ααα,,线性无关的(A )必要而非充分条件 (B )充分而非必要条件 (C )充分必要条件 (D ) 非充分非必要条件 【详解】若向量321ααα,,线性无关,则(31ααk +,32ααl +)K l k ),,(),,(3213211001αααααα=⎪⎪⎪⎭⎫ ⎝⎛=,对任意的常数l k ,,矩阵K 的秩都等于2,所以向量31ααk +,32ααl +一定线性无关.而当⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=000010001321ααα,,时,对任意的常数l k ,,向量31ααk +,32ααl +线性无关,但321ααα,,线性相关;故选择(A ). 7.设事件A ,B 想到独立,3050.)(,.)(=-=B A P B P 则=-)(A B P ( )(A )0.1 (B )0.2 (C )0.3 (D )0.4【详解】)(.)(.)()()()()()(.)(A P A P A P B P A P A P AB P A P B A P 505030=-=-=-==-. 所以60.)(=A P ,=-)(A B P 205050.)(..)()(=-=-A P AB P B P .故选择(B ). 8.设321X X X ,,为来自正态总体),(20σN 的简单随机样本,则统计量3212X X X S -=服从的分布是(A )),(11F (B )),(12F (C ) )(1t (D ))(2t 【详解】232132122XX X X X X S -=-=,显然),(~10221N X X σ-,)(~12223χσX ,且),(~10221N X X σ-与)(~12223χσX 相互独立,从而)(~1222223212321321t X X X XX X X X X S σσ-=-=-=故应该选择(C ).二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.设某商品的需求函数为p Q 240-=(p 为商品的价格),则该商品的边际收益为 . 【详解】2240p p pQ p R -==)(,边际收益p p R 440-=)('.10.设D 是由曲线01=+xy 与直线0=+y x 及2=y 所围成的有界区域,则D 的面积为 . 【详解】22112101ln +=+=⎰⎰⎰⎰--yydx dy dx dy S11.设412=⎰ax dx xe ,则=a . 【详解】411241244120202+-=-==⎰)(|)(a e x e dx xe a ax ax .所以.21=a12.二次积分=⎪⎪⎭⎫ ⎝⎛-⎰⎰dx e xe dy y y x 11022. 【详解】)()(12111010101010100110101102222222222-==+-=--=-=⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰e dy ye dy ye dy e e dy y e dy x e x d dx e dy dy x e dx dx e x e dy y y y dxx xy x x y y x y y x 13.设二次型3231222132142x x x ax x x x x x f ++-=),,(的负惯性指数是1,则a 的取值范围是 . 【详解】由配方法可知232232231323122213214242xa x x ax x x x x ax x x x x x f )()()(),,(-+--+=++-=由于负惯性指数为1,故必须要求042≥-a ,所以a 的取值范围是[]22,-.14.设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其它,,),(02322θθθθx xx f ,其中θ是未知参数,n X X X ,,, 21是来自总体的简单样本,若∑=ni iXC12是2θ的无偏估计,则常数C = .【详解】22222532θθθθ==⎰2dx x x X E )(,所以21225θCn X C E n i i =⎪⎪⎭⎫ ⎝⎛∑=,由于∑=ni i X C 12是2θ的无偏估计,故125=Cn,nC 52=. 三、解答题15.(本题满分10分)求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.【分析】.先用等价无穷小代换简化分母,然后利用洛必达法则求未定型极限. 【详解】21121111111222121122112=⎪⎭⎫ ⎝⎛-++=--=--=+--∞→∞→+∞→+∞→⎰⎰x x o x x x x e x xdtt e t x x dtt e t x xx xtx x tx )((lim ))((lim ))((lim)ln())((lim16.(本题满分10分)设平面区域{}004122≥≥≤+≤=y x y x y x D .,|),(.计算⎰⎰++Ddxdy y x y x x )sin(22π 【详解】由对称性可得432112121212022222222-==+=+++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰D D DD dr r r d dxd y x dxdy y x y x y x dxd y x y x y dxd y x y x x πθπππππsin )sin()sin()()sin()sin(17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足x x e y e z yzx z 222224)c o s (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.【详解】设y e u x cos =,则)cos ()(y e f u f z x ==,y e u f y e u f xze uf xzx x y x cos )('cos )(",)('cos +=∂∂=∂∂2222; y e u f y e u f yz y e u f y z xx x cos )('sin )(",sin )('-=∂∂-=∂∂2222; x x x e y e f e u f yzx z 222222)cos (")("==∂∂+∂∂ 由条件xx e y e z yz x z 222224)cos (+=∂∂+∂∂,可知u u f u f +=)()("4这是一个二阶常用系数线性非齐次方程.对应齐次方程的通解为:u u e C e C u f 2221-+=)(其中21C C ,为任意常数.对应非齐次方程特解可求得为u y 41-=*. 故非齐次方程通解为u e C eC u f u u412221-+=-)(.将初始条件0000==)(',)(f f 代入,可得16116121-==C C ,. 所以)(u f 的表达式为u e e u f u u 4116116122--=-)(. 18.(本题满分10分) 求幂级数∑∞=++031n nxn n ))((的收敛域、和函数.【详解】 由于11=+∞→nn n a a lim,所以得到收敛半径1=R .当1±=x 时,级数的一般项不趋于零,是发散的,所以收敛域为()11,-. 令和函数)(x S =∑∞=++031n nxn n ))((,则3211121112131111234)('"'")())(()()(x xx x x x x x x n x n n x n n x S n n n n n nn nn n--=⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=++++=++=∑∑∑∑∑∞=+∞=+∞=∞=∞=19.(本题满分10分)设函数)(),(x g x f 在区间[]b a .上连续,且)(x f 单调增加,10≤≤)(x g ,证明: (1) []b a x a x dt t g xa,,)(∈-≤≤⎰0;(2)⎰⎰≤⎰+ba dtt g a adx x g x f dx x f ba )()()()(.【详解】(1)证明:因为10≤≤)(x g ,所以[]b a x dt dt t g dx xax axa,)(∈≤≤⎰⎰⎰10.即[]b a x a x dt t g xa,,)(∈-≤≤⎰0.(2)令⎰⎰⎰-=+xa dtt g a axadu u f du u g u f x F )()()()()(,则可知0=)(a F ,且⎪⎭⎫ ⎝⎛+-=⎰xa dt t g a f x g x g x f x F )()()()()(',因为,)(a x dt t g xa-≤≤⎰0且)(x f 单调增加,所以)()()(x f a x a f dt t g a f xa=-+≤⎪⎭⎫ ⎝⎛+⎰.从而0=-≥⎪⎭⎫ ⎝⎛+-=⎰)()()()()()()()()('x f x g x g x f dt t g a f x g x g x f x F xa , []b a x ,∈也是)(x F 在[]b a ,单调增加,则0=≥)()(a F b F ,即得到⎰⎰≤⎰+badtt g a adx x g x f dx x f ba )()()()(.20.(本题满分11分)设⎪⎪⎪⎭⎫⎝⎛---=302111104321A ,E 为三阶单位矩阵.(1) 求方程组0=AX 的一个基础解系; (2) 求满足E AB =的所有矩阵.【详解】(1)对系数矩阵A 进行初等行变换如下:⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛---=310020101001310011104321134011104321302111104321A ,得到方程组0=AX 同解方程组⎪⎩⎪⎨⎧==-=43424132xx x x x x 得到0=AX 的一个基础解系⎪⎪⎪⎪⎪⎭⎫⎝⎛-=13211ξ.(2)显然B 矩阵是一个34⨯矩阵,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=444333222111z y x z y x z y x z y x B 对矩阵)(AE 进行进行初等行变换如下:⎪⎪⎪⎭⎫⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛---=141310013120101621001141310001011100014321101134001011100014321100302101011100014321)(AE由方程组可得矩阵B 对应的三列分别为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321011214321c x x x x ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321043624321c y y y y ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1321011134321c z z z z , 即满足E AB =的所有矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛++-+-++-+-----=321321321321313431212321162c c cc c c c c c c c c B 其中321c c c ,,为任意常数. 21.(本题满分11分)证明n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似. 【详解】证明:设=A ⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111,=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100. 分别求两个矩阵的特征值和特征向量如下:1111111111--=---------=-n n A E λλλλλλ)( ,所以A 的n 个特征值为0321====n n λλλλ ,;而且A 是实对称矩阵,所以一定可以对角化.且⎪⎪⎪⎪⎪⎭⎫⎝⎛00 λ~A ;1002010--=---=-n n nB E λλλλλλ)(所以B 的n 个特征值也为0321====n n λλλλ ,;对于1-n 重特征值0=λ,由于矩阵B B E -=-)(0的秩显然为1,所以矩阵B 对应1-n 重特征值0=λ的特征向量应该有1-n 个线性无关,进一步矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且⎪⎪⎪⎪⎪⎭⎫⎝⎛00 λ~B 从而可知n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111 与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似. 22.(本题满分11分)设随机变量X 的分布为2121====)()(X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布210,),,(=i i U .(1) 求Y 的分布函数; (2) 求期望).(Y E 【详解】(1)分布函数())/()/()()/()()/(),(),()()(2121221121=≤+=≤===≤+==≤==≤+=≤=≤=X y Y P X y Y P X P X y Y P X P X y Y P X y Y P X y Y P y Y P y F当0<y 时,0=)(y F ;当10<≤y 时,y y y y F 4322121=+=)(; 当21<≤y 时,214122121+=+=y y y F )(; 当2≥y 时,1=)(y F . 所以分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<≤<=2121421104300y y y y y y y F ,,,,)( (2)概率密度函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<<==其它,,,)(')(021411043y y y F y f ,434432110=+=⎰⎰dy y ydy Y E )(.23.(本题满分11分)设随机变量X ,Y 的概率分布相同,X 的概率分布为321310====)(,)(X P X P ,且X ,Y 的相关系数21=XY ρ. (1) 求二维随机变量),(Y X 的联合概率分布; (2) 求概率)(1≤+Y X P .[详解]由于X ,Y 的概率分布相同,故321310====)(,)(X P X P ,321310====)(,)(Y P Y P , 显然32==EY EX ,92==DY DX 相关系数()929421-=-===XY E DYDX EXEY XY E DY DX Y X COV XY )(),(ρ,所以95=)(XY E . 而),()(1111==⨯⨯=Y X P XY E ,所以9511===),(Y X P ,从而得到),(Y X 的联合概率分布:11 9511===),(Y X P ,9110===),(Y X P ,9101===),(Y X P ,9200===),(Y X P (2).),()()(94111111===-=>+-=≤+Y X P Y X P Y X P。

相关文档
最新文档