(完整版)新人教版七年级数学上册第一章知识点归纳及练习(最新整理)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 有理数复习

一、正数,负数的定义:大于0的数叫做正数;小于0的数叫做负数。注意:0既不是正数也不是负数。

练习:如果收入50元记作+50元,那么支出80元应该记作

二、有理数的分类: ①

② ⎪⎪⎩

⎨⎧⎩⎨

⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩

⎪⎨⎧⎩⎨

⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零

正整数

整数有理数例:观察下面9个数,并给它们进行分类.

5、5.

6、-6、-3.

7、0、3、-2、3/2、-1/2正整数: 零: 负整数: 正分数: 负分数:

三、数轴:数轴是规定了原点、正方向、单位长度的一条直线

.

例.在数轴上记出下列各数:

-5, -2.5,-1,+2,+3,

练习:1、若点A 在数轴上原点的左边,则A 点表示的数是( ) A 正数 B 负数 C 整数

2、数轴上表示两个数,________边的数总比________边的数大. A 、左边 右边 B 右边 左边

3、数轴上到原点距离5个单位长度的点表示的数是( ) A +5 B -5 C±5

4、下列说法不正确( )A 、数轴是一条直线 B 、数轴上所有的点并不都表示有理数

C 、在数轴上表示2和-2的点到原点的距离相等

D 、数轴上一定取向右为正方向5、在数轴上原点及原点左边的点所表示的数是( )A 、正数 B 、负数 C 、不是负数 D 、不是正数6在数轴上0与3之间(不包括0,3)还有 个数。( ) A 、、2个 B 、3个 C 、4个 D 、无数个

7、一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )A .+6 B .-3 C .+3 D .-9四、相反数:一般地a 的相反数是–a

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;

注意:0的相反数还是0; (2)相反数的和为0 (3)相反数的商为-1.

例:–3的相反数是: ;9的相反数是: ;–5+5= ;7÷(-7)= 练习:1. 判断:

(1)-5是5的相反数( );(2)5是-5的相反数( );(3)5与-5互为相反数( ); (4)-5是相反数( )

2.-1.6是____的相反数,___的相反数是0.3.3.下列几对数中互为相反数的一对为( ).A . 和 B . 与 C . 与

4.5的相反数是____;a 的相反数是___; a-b 的相反数是____ .5.若a=-13,则-a= ;若-a=-6,则a= .

五、绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值

(1)正数的绝对值等于它本身,(2)0的绝对值是0,(3)负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:

⎪⎩⎪

⎨⎧<-=>=)

0a (a )0a (0)0a (a a (3) | a |是重要的非负数,即|a|≥0;

(4)相反数的绝对值相等

例1.求下列各数绝对值:8.5、-5、 ,-0.3,0 ,- , -8.5 747

4例2. ; ;; ;; ___4

12=--___5=--___5=+-___5=-+___)3.0(=---练习:判断:

(1)一个数的绝对值是 2 ,则这数是2 。 ( ) (2)|5|=|-5|。 ( ) (3)|-0.3|=|0.3|。 ( ) (4)|3|>0。 ( )(5)|-1.4|>0。 ( )(6)有理数的绝对值一定是正数。 ( )(7)若a =b ,则|a|=|b|。 ( )(8)若|a|=|b|,则a =b 。 ( )(9)若|a|=-a ,则a 必为负数。 ( ) 

(10)互为相反数的两个数的绝对值相等。

填空:;(2)绝对值最小的数是______.

_____32)1(相反数是-(3)绝对值等于本身的数是_________;(4)绝对值小于3的正整数是_________六.倒数:乘积为1的两个数互为倒数;a×=1,则a 与互为倒数。a

1a

1注意:0没有倒数

例:-7的倒数 ;-的倒数 。

7

1

七、有理数比大小:

(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;

(3)两个负数比较,绝对值大的反而小;

(4)数轴上的两个数,右边的数总比左边的数大;

的大小。

,,,,,,.利用数轴,比较例0442

1

2215531---+

.

|3

1

|)3()5(;73218)4();2()1()3(02(2)31)1(-----+-----和和和;和;和比较各组数的大小练习:八. 有理数加法法则:X|k |b| 1 . c|o |m

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.

例:5+3=8;-5+(-3)=-8;5+(-3)=2;3+(-5)=-2;5+(-5)=0;-5+5=0

5+0=5;-5+0=-5

练习:1、有理数的加法:直接写出结果

(1)(-17)+(-15) (2)(+12)+(+14) (3)(+3)+(-5) (4)-0.3+4.7 (5)(-2)+2

九.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).十.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b )练习、有理数的减法:计算(1)(–14)–(+16) (2)(+6)–(–13)(3)(– 7)–(–10) (4)(+5)–(+9)(5)15–(–15) (6)0–13 (7)–16–38混合运算

(1)(-7)-(+5)+(-4)-(-10) (2) (-0.8)+1.2+(-0.7)-(+2.1)-(-0.8)+(+3.5)

强化练习一、填空题1.计算

(1)-31+41-65+73

=_____(2)31-65+32-61

=_____

2.-2+3-4=+______-______-______=+________-(_________)=+_____-_____=_____

3.已知:a=11,b=-12,c=-5计算:(1)a+b+c=_____(2)a -b+c=_____(3)a -(b+c)=_____(4)b -(a -c)=_____

4.将(-3)+(-2)-(+7)-(-6)去括号后可变形为_____.

5.-21与32

的相反数的绝对值之和是

______.

相关文档
最新文档