工程力学——空间力系和重心
工程力学(高教版)教案:4.1 力的投影与分解
第四章 空间力系作用在物体上各力的作用线不在同一平面内,称该力系为空间力系。
按各力的作用在空间的位置关系,空间力系可分为空间汇交力系、空间平行力系和空间任意力系。
前几章介绍的各种力系都是空间力系的特例。
第一节 力的投影与分解一、力在空间直角坐标轴上的投影已知力F 与x 轴如图4-1(a)所示,过力F 的两端点A 、B 分别作垂直于x 轴的平面M 及N ,与x 轴交于a 、b ,则线段ab 冠以正号或负号称为力F 在x 轴上的投影,即F x =±ab符号规定:若从a 到b 的方向与x 轴的正向一致取正号,反之取负号。
已知力F 与平面Q ,如图4-1(b)所示。
过力的两端点A 、B 分别作平面Q 的垂直线AA ′、BB ′,则矢量B A ''称为力F 在平面Q 上的投影。
应注意的是力在平面上的投影是矢量,而力在轴上的投影是代数量。
(a) (b)图4- 1图4-2现在讨论力F 在空间直角坐标系Oxy 中的情况。
如图4-2(a)所示,过力F 的端点A 、B 分别作x 、y 、z 三轴的垂直平面,则由力在轴上的投影的定义知,OA 、OB 、O C 就是力F 在x 、y 、z 轴上的投影。
设力F 与x 、y 、z 所夹的角分别是α、β、γ,则力F 在空间直角坐标轴上的投影为:⎪⎭⎪⎬⎫±=±=±=γβαcos cos cos F F F F F F z y x (4-1)用这种方法计算力在轴上的投影的方法称为直接投影法。
一般情况下,不易全部找到力与三个轴的夹角,设已知力F 与z 轴夹角为γ ,可先将力投影到坐标平面Oxy 上,然后再投影到坐标轴x 、y 上,如图4-2(b )所示。
设力F 在Oxy 平面上的投影为F xy 与x 轴间的夹角为θ,则⎪⎭⎪⎬⎫±=±=±=γθγθγcos sin sin cos sin F F F F F F z y x (4-2)用这种方法计算力在轴上的投影称为二次投影法。
大学工程力学重点知识点总结—期末考试、考研必备!!
工程力学重点总结—期末考试、考研必备!!第一章静力学的基本概念和公理受力图一、刚体P2刚体:在力的作用下不会发生形变的物体。
力的三要素:大小、方向、作用点。
平衡:物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1、力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2、二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。
3、加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4、作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。
5、刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力1、柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体。
2、光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力。
3、光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定。
4、链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。
工程力学第五章 空间力系
cos(k, MO (F ))
Mz MO (F )
0.25
§4 - 3 空间力系向一点简化
仍设物体上只作用三个力F1 、 F2 和 F3 , 它们组成空间任意力系,在空间内任意取一 O 点,
分别将三力向此点简化。
右击
三按钮功能相同
O点称为简化中心;
R’ =F1’ + F2’ + F3’; M = M1 + M2 + M3 ; 对于力的数目为 n 的空间任意力系,推广为:
解:受力分析如图
W = 200N
∑X = 0, XA + XB-T cos30ºsin30 º= 0 ∑Y = 0, YA - T cos30 ºcos30 º= 0 ∑Z = 0, ZA + ZB - W + T sin30 º= 0
d MO MO sin
R
R
4、空间力系简化为平衡的情形
主矢R’ = 0;主矩M O = 0
§4 - 5 空间力系的平衡方程
由: R ( X )2 (Y)2 ( Z)2 0
MO [ M x (F )]2 [ M y (F )]2 [ M z (F )]2 0
合力矩定理
MO
O
O
O R’
R” d R’
d
R
R
R =∑Fi ,d= |MO| / R
∵力偶(R,R’’)的矩MO等于R 对O点的矩,即
MO = MO(R) ,而又有 MO = ∑MO(F)
∴得关系式
MO( R ) = ∑MO(F )
即:空间任意力系的合力对于任意一点的矩等于
各分力对同一点的矩的矢量和。
阴影部分的面积。
工程力学:第2章 力系的简化
F1sin45 F2sin45 0 FAsin30 F1cos45 cos30 F2 cos45 cos30 0 FAcos30 F1cos45 sin30 F2cos45 sin30 P 0
B FB1
相同的均质杆围成正方形,求绳EF的拉力。
要求:
用最少的方 程求出绳EF受 的力
FAy
FAx
A
E
P
FDy
FDx
D
G
P
B
F
P
C
FDy FDx
D
G
P
FDy FDx
D
FCy FCx
C
FBx FT
G
P
FBy
B
F
P
C
例3-3
q
FAx A
M B
2a
P
FAy
4a
FB
ll
30
F
M
3l P
q
例3-4
F
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故这时,主矩与简化中心O无关。
③ FR≠0,MO =0,即简化为一个作用于简化中心的合力。这时,
简化结果就是合力(这个力系的合力), FR FR 。(此时
与简化中心有关,换个简化中心,主矩不为零)
④ FR 0, MO 0 ,为最一般的情况。此种情况还可以继续 简化为一个合力 FR 。
FAy
B FB1x
C
M
B
D
Cr
•
E
A
300 F E
FA
FT
C
F A1
FA
求:销钉A所受的力
M
B D
FD D C
工程力学(一)重点考点及试题解析
《工程力学(一)》串讲讲义】课程介绍一、课程的设置、性质及特点《工程力学(一)》课程,是全国高等教育自学考试机械等专业必考的一门专业课,要求掌握各种基本概念、基本理论、基本方法,包括主要的各种公式。
在考试中出现的考题不难,但基本概念涉及比较广泛,学员在学习的过程中要熟练掌握各章的基本概念、公式、例题。
本课程的性质及特点:1.一门专业基础课,且部分专科、本科专业都共同学习本课程;2.工程力学(一)课程依据《理论力学》、《材料力学》基本内容而编写,全面介绍静力学、运动学、动力学以及材料力学。
按重要性以及出题分值分布,这几部分的重要性排序依次是:材料力学、静力学、运动学、动力学。
二、教材的选用工程力学(一)课程所选用教材是全国高等教育自学考试指定教材(机械类专业),该书由蔡怀崇、张克猛主编,机械工业出版社出版(2008年版)。
三、章节体系依据《理论力学》、《材料力学》基本体系进行,依次是第1篇理论力学第1章静力学的基本概念和公理受力图第2章平面汇交力系第3章力矩平面力偶系第4章平面任意力系第5章空间力系重心第6章点的运动第7章刚体基本运动第8章质点动力学基础第9章刚体动力学基础第10章动能定理第2篇材料力学第11章材料力学的基本概念第12章轴向拉伸与压缩第13章剪切第14章扭转第15章弯曲内力第16章弯曲应力第17章弯曲变形第18章组合变形第19章压杆的稳定性第20章动载荷第21章交变应力●静力学公理和物体受力分析静力学公理:二力平衡公理:作用在刚体上的二力使刚体平衡的充要条件是:大小相等、方向相反、作用在一条直线上。
应用此公理,可进行简单的受力分析。
加减平衡力系公理:在作用于刚体的已知力系中加上或减去任何平衡力系,并不改变原力系对刚体的效应。
力的平行四边形法则:作用于物体上某一点的两力,可以合成为一个合力,合力亦作用于该点上,合力的大小和方向可由这两个力为邻边所构成的平行四边形的对角线确定。
力的可传性原理:作用于刚体上的力可沿其作用线移至同一刚体内任意一点,并不改变其对于刚体的效应。
空间力系和重心.ppt
有各力在任意相互垂直的三个坐标轴的每一个轴上的
投影的代数和等于零,以及力系对于这三个坐标轴的
矩的代数和分别等于零。
Fx 0 Fy 0
Fz 0
Mx F 0 My F 0 Mz F 0
§5.4 空间平行力系的中心和物体的重心
一、空间平行力系的中心
若空间力系各合力的作用线相互平行称为空间平行 力系。若力系为一合力,合力的作用点,即是平行力系 的中心。
式中,Rx、Ry、Rz表示合力在各轴上的投影。
已知各力在坐标轴上的投影,则合力的大小和方 向可按下式求得
R Rx2 Ry2 Rz2
2
2
2
Fx Fy Fz
cos Fx / R cos Fy / R
cos Fz / R
式中,α、β、γ分别表示合力与x、y、z轴正向 的夹角。
二、重心的概念
重力的作用点即是空间平行力系的中心,称为物体 的重心。
三、重心和形心的坐标公式
物体重心C的坐标公式为
xC
x i .Wi W
yC
y i .Wi W
zC
z i.Wi W
四、求重心的方法
几种常用的方法:
1.对称法 2.积分法 3.组合法
(按照右手螺旋法则决定之)
空间力对轴的矩等于零的条件
1、力通过轴线
FLeabharlann Fz2、力与轴线平行
Fy Fx
二、合力矩定理
力对轴的矩的解析表示式为
Mx F Fz.yA Fy.zA My F Fx.zA Fz.xA
Mz F Fy.xA Fx.yA
§ 5.3 空间力系的平衡方程及应用
空间任意力系平衡的必要和充分条件是:力系中所
可求出力F 的大小和方
工程力学第五章:重心及形心
W x
i i
yC
y
W Wi yi
zi xC xi
zC
zC
W Wi zi W
yC
x
有影响,可使物体
被分割成任意个部分进行计算。通常,对均质连续的物体 通常对物体在极限情况下 (n-∞)进行分割, 此时重心坐标 公式转化成积分形式。
2 R sin 3
y
R
2 C
x
扇形形心为
xC 2 R sin 3
y
当α为90°时,扇形为半圆
R C
x
xC
2 R sin
2 4R 3 3 2
对这类常用的简单几何图形和均质物体的重心或形心位置,均 可采用积分法进行求解。也可直接查询工程手册的形心表。
常 见 平 面 图 形 的 形 心 公 式 表
C
C
C
2. 积分法
例2:求半径为R,顶角为2 的扇形的形心。
如图所示建立参考直角坐标系,x为对称轴 yC 0
y
微元部分的面积为:
A
d
1 1 2 dA dL R R d 2 2
dA
O
C
B
扇形形心为
2 微元部分的形心坐标:x R cos 3 2 1 2 xdA R cos R d 3 2 A x x C 2 A R 2 2 1 3 R cos d 3 R 2 sin 2 R 3
M z ( FR ) M z ( F1 ) M z ( F2 ) M z ( Fn ) M z ( Fi )
即:空间力系的合力对某一轴的矩,等于力系中所有 分力对同一轴的矩的代数和。
工程力学:第三章 空间问题的受力分析
。CDB平面与水平
面间的夹角
,物重
。如起重杆的重量不计,试求
起重杆所受的压力和绳子的拉力。
解:取起重杆AB与 重物为研究对象。
取坐标轴如图所示。 由已知条件知:
列平衡方程 解得
§3-3 力对轴的矩 力F对z轴的矩就是分力Fxy 对点O的矩, 即
力对轴的矩是力使刚体绕该 轴转动效果的度量、是一个 代数量。
空间力偶系平衡的必要和充分条件是:该力偶系的合力偶矩等 于零,亦即所有力偶矩矢的矢量和等于零,即
由上式,有 欲使上式成立,必须同时满足
空间力偶系未知量)
空间力偶系平衡的必要和充分条件为:该力偶系中所有各力偶 矩矢在三个坐标轴上投影的代数和分别等于零。
§3-5 空间任意力系的平衡方程
可将上述条件写成空间任意力系的平衡方程
注:1.与平面力系相同,空间力系的平衡方程也有其它的形式。 2.六个独立的平衡方程,求解六个未知量。 3.可以从空间任意力系的普遍平衡规律中导出特殊情况的 平衡规律,例如空间平行力系、空间汇交力系和平面任意 力系等平衡方程。
例:设物体受一空间平行力系作用。 令z轴与这些力平行,则
绝对值: 该力在垂直于该轴的平面上的投影对于 这个平面与该轴的交点的矩的大小。
正负号: 从z轴正端来看,若力的这个投影使物体绕该轴 按逆时针转向转动,则取正号,反之取负号。
也可按右手螺旋规则来确定其正负号,如图所 示,姆指指向与z轴一致为正,反之为负。
当力与轴在同一平面时,力对该轴的矩等于零:
(1)当力与轴相交时 (此时h=0);
(三个方程,可 求解三个未知量)
空间汇交力系平衡的必要和充分条件为:该力系中所有各力 在三个坐标轴上的投影的代数和分别等于零。
工程力学第五章 空间力系(2)
14
下面用积分法求物体的重心实例: [例] 求半径为R,顶角为2 的均质圆弧的重心。
解:由于对称关系,该圆弧重心必在Ox轴,即yC=0。取微段
dL Rd
x Rcos
x dL L xC L
O
2 cos R d
2R
xC
Rsin
物体分割的越多,每一小部分体积越小,求得的重心
Pxi xC ,
位置就越准确。在极限情况下,(n),常用积分法求物
体的重心位置。
9
设i表示第i个小部分每单位体积的重量,⊿Vi第i个小 体积,则
Pi i Vi
代入上式并取极限,可得:
xdV ydV zdV V V V xC , yC , zC P P P
Pi zi PzC Pi zi , zC
P
综合上述得重心坐标公式为:
Pi xi Pi yi Pi zi xC , yC , zC P P P
12
若以△Pi= △mig , P=Mg 代入上式可得质心公式
m i x i mi yi mi zi xC , yC , zC M M M
空 间 汇 交 力 系
X 0 Y 0 Z 0
空 间 轴 力 系
X 0 m y 0 mz 0
∥x
19
X 0
面空 的间 力 系 ∥xoy
Y 0 m x 0 m y 0 mz 0
X 0 Y 0 m x 0 m y 0 mz 0 m x' 0
m y 0; Pz 50100Q x 0,Q 746( N )
3
m z A 0; 300Px 50Py 200X B 50Q cos200 0, X B 437( N ) X 0; X A X B Px Q cos200 0, X A 729( N ) m x A 0; 200Z B 300Pz 50Q sin200 0, Z B 2040( N ) Z 0; Z A Z B Pz Q sin200 0, Z A 385( N )
工程力学之空间力系和重心
工程力学4.1力在空间坐标轴上的投影4.2力对轴的矩·合力矩定理4.3 空间任意力系的平衡方程4.4 平行力系的中心物体的重心工程中常常存在着很多各力的作用线不在同一平面内的力系,即空间力系,空间力系是最一般的力系。
(a)图为空间汇交力系;(b)图为空间任意力系;在(b)图中去了风力即为空间平行力系。
迎面风力侧面风力b4.1 力在空间坐标轴上的投影4.1.1力在空间的表示:力的三要素:大小、方向、作用点(线)大小:作用点:在物体的哪点就是哪点方向:①由α、β、g 三个方向角确定②由仰角θ与俯角ϕ来确定。
F F=4.1 力在空间坐标轴上的投影4.1.1力在空间的表示:1、一次投影法(直接投影法)由图可知:cos ,cos ,cos x y z F X F F Y F F Z F αβg==⋅==⋅==⋅4.1.2力在空间坐标轴上的投影2、二次投影法(间接投影法)当力与各轴正向夹角不易确定时,可先将投影到xy 面上,然后再投影到x 、y 轴上,即Fsin cos cos cos cos x xy F X F F F g ϕϕθϕ==⋅⋅=⋅=⋅⋅sin sin sin cos sin y xy F Y F F F g ϕϕθϕ==⋅⋅=⋅=⋅⋅cos sin z F Z F F g θ==⋅=⋅ 4.2 力对轴的矩⋅合力矩定理一、力对轴的矩的概念与计算定义:()()2''z O xy xy m F m F F d OA B ==±⋅=∆的面积由于力和都不能使门转动,所以得出力与轴平行或相交时,力对轴之矩为零。
亦即力与轴共面时,力对轴之矩为零。
y F z F 力对轴的矩是力使刚体绕该轴转动效应的度量,是代数量,其大小等于在垂直于转轴的平面内的分量的大小和它与转轴间垂直距离的乘积,其正负号按右手规则确定,即大拇指方向与轴的正向一致的为正,反之为负。
4.2.2合力矩定理与平面力系情况类同,空间力系的合力矩定理为:12()()()()()z z z z n z i m R m F m F m F m F =+++=∑即:空间力系的合力对某一轴的矩,等于力系中所有各分力对同一轴的矩的代数和。
工程力学-第五章
F F
sin γ cos φ
sin
γ
sin
φ
Fz F cos γ
应当指出:力在坐标轴上的投影是代数量,有正、负两种可能;而力在平面上的投影为矢量。
5.1.3 空间汇交力系的合成与平衡条件
1.空间汇交力系的合成
设有空间汇交力系 F1,F2,…,Fn,利用力的四边形法则,可将其逐步合成为合力矢 R,
某轴之矩等于各分力对同轴的矩的代数和,即
M x FR M x F1 M x F2 M y FR M y F1 M y F2 M z FR M z F1 M z F2
Mx My
Fn Fn
Mx My
FFii
M
z
Fn
M
z
Fi
5.2.3 空间力系的合力矩定理
如图所示,设力F的作用线沿AB,O点为矩心,则力对 这一点之矩可用矢量来表示,称为力矩矢,用MO(F)表 示。力矩矢MO(F)的始端为O点,它的模(即大小)等 于力F与力臂d的乘积,方位垂直于力F与矩心O所决定的平 面,指向可用右手法则来确定。于是可得:
MO (F ) Fd 2A OAB
5.2.1 力对点之矩
5.1.3 空间汇交力系的合成与平衡条件
例 5-1 如图所示,在正方体的顶角 A 和 B 处分别作用有力 F1 和 F2,试求此二力在 x,y,z 轴上的
投影。
F1x F1 sin cos F1
2 3
1 2
3
3
F1
解:首先,求 F1 在 x,y,z 轴上的投影,即 F1y F1 sin sin F1
5.2.4 力对点之矩与力对轴之矩的关系
以矩心 O 为原点,取直角坐标系 Oxyz,如图所示。设力 F 在各坐标轴上的投影为 Fx,Fy,Fz;力作 用点 A 的坐标为(x,y,z),则有 F Fxi Fy j Fzk
工程力学 第2版 第4章 空间力系的平衡问题及其重心
yi
,zC
Ai
A
zi
3.物体重心的计算方法
➢ 对称法 ➢ 组合法
①分割法 若一个物体由几个简单形状的物体组合而成,而这些物体的重心是 已知的,则整个物体的重心位置就可用公式求出。 ②负面积法 若在物体或薄板内切去一部分,需要求出余下部分物体的重心时,仍 然可以用组合法,只是切去部分的面积应取为负值。
简单形状物体的重心可查表得出,对于形状复杂或质量分布
不均匀的物体很难用计算的方法求其重心,此时可用实验方法
测定重心位置。
➢ 实验法:
<1>悬挂法
<2>称重法
谢谢欣赏
解各平面平衡力系,即可求解原空间力系。
80 P2 z º
x
y
在解决新问题时,同学们应先 思考已有的知识,在已有知识 的基础上找出解决新问题的方 法,希望同学们能够积极思考, 提高解决问题的能力。
步骤: ①建空间坐标系,作出各轴承的约束反力(轴承的反力视主动 力的类型而定,沿坐标轴方向)。 ②作侧视图,求未知的主动力(或力偶)。若主动力全部已知, 则无需作此视图。 ③作主视图,求轴承铅垂方向的反力。 ④作俯视图,求轴承水平方向的反力。
4.2 形心和重心
1.物体的重心坐标公式
如果把物体的重力都看成为平行力系,则
求重心问重心坐标公式题就是求平行力系
的中心问题。
xC
Gi xi
G
yC
Gi yi
G
zC
Gi zi
G
2.均质物体的重心坐标公式
立体:
xC
Vi
V
xi
,
yC
Vi
V
yi
,zC
Vi
V
空间力系与重心
轴上的力和力矩平衡条件。只有当这六个方程同时满足时,空间一般力
系才处于平衡状态。
04
重心位置确定方法
几何法确定重心位置
01
02
03
悬挂法
将物体悬挂于一点,通过 测量悬线的长度和方向, 利用几何关系确定重心位 置。
支撑法
将物体支撑于两点,测量 支撑点的位置和支撑力的 大小,通过几何关系求解 重心位置。
度的基础。
06
重心在工程中应用举例
建筑结构稳定性分析
重心位置与结构稳定性
案例分析
在建筑设计中,通过调整结构布局和 构件尺寸,可以改变结构的重心位置, 从而提高结构的稳定性。
以高层建筑为例,通过优化结构布局 和构件设计,降低重心高度,提高结 构的整体稳定性。
地震作用下的重心影响
地震时,建筑物受到水平地震力的作 用,重心位置的高低直接影响结构的 抗震性能。
THANKS
感谢观看
航空航天领域应用
重心与飞行器稳定性
在航空航天领域,飞行器的重心位置对其稳定性和操控性 具有重要影响。合理设计重心位置可以提高飞行器的稳定 性和操控性。
重心与燃料消耗
飞行器的重心位置不仅影响稳定性和操控性,还影响燃料 消耗。通过优化重心位置可以降低飞行器的燃料消耗。
案例分析
以飞机设计为例,通过精确计算和调整机身、机翼等部件 的质量和布局,实现重心的合理分布,提高飞机的稳定性 和经济性。
力多边形封闭
如果将各力矢量按照一定顺序首 尾相接,可以形成一个封闭的力 多边形,这也是空间汇交力系平 衡的一个必要条件。
空间平行力系平衡条件
各力在任意轴上的投影之和为零
对于空间平行力系,所有力在任意选定的轴上的投影之和必须为零,这是平衡 的一个必要条件。
《工程力学》空间力系与重心
Fz F cos
F
Fxy
F sin
Fx Fy
Fxy cos F sin cos Fxy sin F sin sin
(3-2)
反之,如果已知力F在x、y、z三个坐标轴上的投影 Fx 、Fy 、Fz
F Fx2y Fz2 Fx2 Fy2 Fz2
,也可以求出F的大小和方向。其形式为 (3-3)
FX 0, F1 sin 45 F2 sin 45 0 FY 0, FA sin 30 F1 cos45 cos30 F2 cos45 cos30 0 FZ 0, F1 cos45 sin 30 F2 cos45 sin 30 FA cos30 P 0
求解上面的三个平衡方程,得
所以
zc
Gi zi G
由以上得到重心坐标的一般公式为:
xc
Gi xi G
yc
Gi yi G
zc
Gi zi G
(3-12)
xc
mi xi M
在式(3-12)中,如以
Gi
mi g、G Mg
代入,在分子和分母中消去g,即得到公式:
yc
mi
M
yi
zc
mi zi M
设有一个空间力F,作用点A的坐标为(x,y,z),该力在三个坐标轴上的分力大小(即该力在x,y,z轴
上的投影)分别为Fx , Fy , Fz ,则该力对三个坐标轴的矩为(证明从略)
M M
x y
(F (F
) )
yFz zFx
zFy xFz
M
z
(F
)
xFy
yFx
(3-8)
例3-3 如图3-5所示,手柄ABCD在平面内,在D点作用一个力F,该力平行于xz平面,已知F=200N, 30,AB= 20cm,BC=30cm,CD=15cm,试求F对x,y,z轴之矩。
工程力学第5节 物体的重心
解 将偏心块挖空的圆孔 视为“负面积”,于是偏心 块的面积可以视为由半径为 R的大半圆、半径为 r1 的小 半圆和半径为 r2 的小圆(负 面积)共三部分组成。 取坐标系 Oxy,其中 Oy 轴为对称轴。根据对称 性,偏心块的形心 C 必在对称轴 Oy 上,所以有:
xC 0mm
半径为 R 的大半圆
xC
Gi xi
i 1 n
n
Gi
i 1
; yC
Gi yi
i 1 n
n
Gi
i 1
; zC
Gi zi
i 1 n
n
Gi
i 1
xC yC zC
lim Gi xi
n i 1 n
n
G lim Gi yi
n i 1 n
gxdV V V gdV gydV V V gdV gzdV V V gdV
重心的一般公式
G lim Gi zi
n i 1
G
式中 为物体的密度, g 为重力加速度, g 为单位体积所受的重力,dV 是微单元的体积。
对于匀质的物体来说, g 常数,其重心公式
重心公式 注意
xdV V xdV V xC V V dV ydV V ydV V yC V V dV zdV V zdV V A2
30 300 (225 30) 30 14850 mm
2
由组合形体的形心计算公式
xC yC
Ai xi
i 1 n
n
A
i 0
900015 5850127.5 59.3mm 14850 9000150 585015 96.8mm 14850
工程力学_陈天富 冯贤桂编著_重庆大学出版社_第三章
例题3-1 如图所示,已知手柄的A点作用力F=500N。求力F在三个坐标轴上
的投影及对三个坐标轴之矩。(单位:mm)
解:
作辅助坐标系Ax'y'z',先将 F 沿z'
轴和Ax'y'面分解,再将Fxy沿 x'、y'轴 分解。根据分力和投影的关系可得力F 在三个坐标轴上的投影:
Fz =Fsin 60 =433.01N
3.1.1 直接投影法
z
已知力与 x、y、z 轴夹角、、。
若把力沿直角坐标轴分解,
90
Fz
x
i
k
分力与投影之间的关系: F β
j
Fy
y
Fx Fxi
Fy Fy j
Fz Fz k
Fx
O
力的解析表达式为:
F F x i F y j Fz k
试求匀速提升重为10kN的物体时,皮带的张力和两个轴承的约束力。
解:
研究对象: 皮带轮、鼓轮、轴以及重物
F
x
0
FA x FB x FT 1 co s 3 0 FT 2 co s 3 0 0 F A z F B z FT 1 sin 3 0 FT 2 sin 3 0 P 0
P
Q
2Q a 3r
300N
在载荷Q作用下,圆桌要翻倒时,C腿将离开地面,使FC=0。 因此,若要圆桌不翻到,必须FC≥0。 解得:
a
FC
1 3
P Q
2Q a 3r
0
P
Qr 2Q
600 1500 500
2 1500
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5.2
5.1.2 力在空间直角坐标轴的投影
根据已知条件的不同,空间力F在直角坐标轴上的 投影,一般有两种计算方法。
1. 直接投影法
如果已知力 F 与空间直角坐标系 Oxyz 的三个轴的
正向夹角分别为 , 和 ,如图 5.2 所示,以 F 为对
角线,以 x,y 和 z 轴为棱作直角六面体,由图中看出,
第5章 空间力系和重心
第5章 空间力系和重心
5.1 力沿空间直角坐标轴的分解和投影 5.2 空间汇交力系的平衡方程及其应用 5.3 力对轴之矩 5.4 空间任意力系的平衡方程及应用 5.5 空间任意力系的平衡问题转化为平
面问题的解法 5.6 物体重心和平面图形的形心
5.1 力沿空间直角坐标轴的分解和投影
图 5.4 中 为压力角, 为斜齿轮的螺旋角。试计算圆
周力 F 、径向力 Fr 和轴向力 Fa 的大小。 分析:求解 F 、Fr 和 Fa 的大小,实质上就是求力
F 在空间 3 个坐标轴上的投影。因为只知道 和 ,故
使用二次投影法求解。
图5.4
解:(1) 建立如图 5.4(a)所示直角坐标系 Axyz。 (2) 将啮合力 FN 向平面 Axy 投影得 Fxy,如图 5.4(b), 其大小为
式中,Fix,Fiy,Fiz 分
别为 Fi 在 x,y,z 轴
的投影。
图5.5
合力
FR= Fi = Fixi + Fiy j + Fizk
(5-7)
式中,i,j,k 的系数应分别为合力 FR 在各坐标轴上 的投影。
FRx= Fix FRy= Fiy FRz= Fiz
(5-8)
即合力在某一坐标轴上的投影等于力系中所有分 力在同一坐标轴上的投影的代数和,这就是空间力系 的合力投影定理。
式中, , , 分别为合力 FR 与轴 x,y,z 正向间的
夹角,而合力 FR 的作用线过力系的汇交点 O。
5.2.2 空间汇交力系的平衡方程及应用
由于空间汇交力系合成的结果是一合力,因此空
间汇交力系平衡的充分与必要条件是:该力系的合力等
于零,即
FR = Fi=0 FRx= Fix =0
(5-10)
此六面体的三棱边长度正好就是 F 在 x,y 和 z 三轴上的
投影值,分别记成 Fx,Fy,Fz,显然有
Fx= F cos Fy= F cos
(5-2)
Fz= F cos
2. 二次投影法 在有些问题中,不容易找到全部力与每个坐标轴的 夹角,此时可先将力投影到坐标面上,然后再投影到坐
标轴上。如图 5.3 所示,已知力 F 与 z 轴的夹角为 , 与 z 轴组成的平面与 x 轴的夹角为 ,而与 x 轴、y 轴的
(5-3) 图5.3
反之,如果力 F 在 3 个坐标轴上的投影是已知的, 则可以求此力的大小和方向。力 F 的大小为
F= Fx2 Fy2 Fz2
其方向余弦为 cos = Fx F
cos = Fy
F
cos = Fz
F
(5-4) (5-5)
例5-1 如图 5.4(a)所示,一斜齿圆柱齿轮传动时, 受到另一齿轮对它作用的啮合力 FN,FN 沿齿廓在接触 处的公法线方向,且垂直于过 A 点的齿面的切面。
5.2 空间汇交力系的平衡方程及其应用
5.2.1 空间汇交力系的简化
设作用于刚体的空间力系 F1,F2,…,Fn 汇交于同 一点 O,如图 5.5 所示,选力系汇交点 O 为原点,建立
空间坐标系 Oxyz,把各力用分解表达式表示,即
Fi=Fixi+Fiy j+Fizk (i=1,2,…,n)
(5-6)
亦即 FRy= Fiy =0
(5-11)
FRz= Fiz =0
于是得出结论,空间汇交力系平衡的充分与必要 条件是:该力系中所有的分力在 x,y,z 3 个坐标轴 上投影的代数和分别等于零。
例5-2 如图 5.6(a)所示,用起重杆吊起重物。 起重杆的 A 端通过球铰支座固定在地面上,而 B 端则 用分别固定在墙上 C 和 D 点的绳 CB 和 DB 拉住,CD 连线平行于 x 轴。已知 CE=EB=DE, = 30 ,CBD 平面与水平面间的夹角为 30 ,如图 5.6(b)所示,物重 W=10kN。如 果起重杆 的重量不计 ,试求起 重杆所受 的压力和绳子的拉力。
5.1.1 力沿空间直角坐标轴的分解
按照矢量的运算法则,可将一个力分解成两个或两 个以上的分力。最常用的是将一个力分解成为沿直角坐标 轴x,y,z的分力。设有力F,根据矢量分解公式有
F=Fx i +Fy j +Fzk (5-1) 式中,i,j,k是沿坐标轴 正向的单位矢量,如图5.2所示, Fx,Fy,Fz分别是力F在x,y,z 轴上的投影。
夹角未知,欲求力 F 在 x 轴、y 轴上的投影,可先将力 F 投影到直角坐标平面 Oxy 上,得到分力 Fxy,然后再 把这个分力 Fxy 投影到 x 轴、y 轴上,则有
Fx=Fsin cos Fy =Fsin sin Fz =F cos
应该注意:力在坐标 轴上的投影是代数量,而在 平面上的投影是矢量。这时 因为Fxy的方向不能像在轴上 的投影那样可简单地用正负 号来表明,而必须用矢量来 表示。
求得合力的投影 FRx、FRy、FRz 后,则合力 FR 的大小及 方向余弦为
( ) ( ) ( ) FR = FRx2 FRy2 FRz2
Fix 2
Fiy 2
Fiz 2
cos FRx Fix
FR
FR
cos FRy Fiy
FR
FR
cos FRz FizFR NhomakorabeaFR
(5-9)
Fxy=FN cos (3) 将啮合力 FN 向 z 轴投影得径向力 Fr,如图 5.4(c) 其大小为
Fr=FN sin
(4) 将 Fxy 向 x、y 轴上投影,可以求得轴向力 Fa 和周
向力 Fτ 的大小为
Fa = Fxysin =FNcos sin Fτ= Fxycos =FNcos cos
图5.6
解:(1) 选 AB 杆为研究对象,画出主动力和约束反力。 (2) 根据力系特点,建立坐标系,如图 5.6(a)所示。 (3) 列平衡方程
FRx= Fix =0
F1cos 45 +F2cos135 =0