电表的改装实验

合集下载

电表的改装与校准实验报告

电表的改装与校准实验报告

电表的改装与校准实验报告一、实验目的本实验旨在通过对电表进行改装和校准实验,探索电表的原理和使用方法,并确保电表的测量结果准确可靠。

二、实验器材和材料1. 电表:包括电压表、电流表和功率表等。

2. 电源:交流电源和直流电源。

3. 校准装置:例如可变电阻、标准电阻等。

4. 连接电源和电表的导线。

5. 实验记录表格。

三、实验步骤1. 改装电表:a) 准备一台电流表;b) 打开电表外壳,将电流表的指针和刻度盘取下;c) 将一根细铁丝加工成平直形,并加工一个圆环在其中;d) 将铁丝固定在电流表的指针处,并固定刻度盘回原位;e) 封闭电表外壳,改装完成。

2. 电表的校准:a) 将校准装置与电表相连,并将电表接通电源;b) 根据校准装置的设定,改变电流或电压的数值,记录电表的读数;c) 将校准数据与标准数据进行对比,计算出误差;d) 根据误差值调整电表的刻度,进行校准;e) 重复以上步骤,直至电表的测量结果与标准数据相匹配。

四、实验结果经过改装和校准实验,电表的读数稳定可靠。

校准结果显示,电表的误差在允许范围内,满足使用要求。

各项指标如下:1. 电压表的测量误差范围为±0.5%;2. 电流表的测量误差范围为±0.3%;3. 功率表的测量误差范围为±1.0%。

五、实验分析与讨论1. 改装电表的过程中,需要谨慎操作,确保改装后的电表外壳紧密封闭,以防止损坏或安全隐患。

2. 校准实验的精度依赖于所使用的校准装置的准确度,因此在实验过程中应选择准确可靠的校准装置。

3. 在实验过程中,应注意电表的额定测量范围,以免超过电表的测量能力,导致不准确的测量结果。

4. 实验数据的处理应严谨可靠,采用合适的数学方法计算误差,并根据误差结果进行适当的调整和校准。

六、实验结论通过改装和校准实验,电表的读数准确可靠。

实验结果表明,在标准条件下,电表的测量误差范围在允许范围内。

因此,我们可以使用这台电表进行准确的电量测量和计算。

电表的改装与校准实验报告

电表的改装与校准实验报告

电表的改装与校准实验报告一、实验目的。

本实验旨在通过对电表的改装和校准实验,了解电表的工作原理,掌握电表的改装和校准方法,提高实验者的实际动手能力和实验操作技能。

二、实验仪器和设备。

1. 电表。

2. 电源。

3. 多用表。

4. 电阻箱。

5. 电流源。

6. 电压源。

7. 变压器。

8. 示波器。

9. 电阻、电容、电感等元件。

三、实验原理。

电表是一种用来测量电流、电压和功率的仪器。

其基本工作原理是利用电流产生的磁场力和电压产生的电场力来测量电流和电压的大小。

改装电表主要是对电表的内部电路进行调整和优化,以提高其测量精度和稳定性。

校准电表则是通过对电表进行标准电流、电压和功率的输入,对电表的测量结果进行校准和修正,以确保其测量结果的准确性和可靠性。

四、实验步骤。

1. 拆卸电表外壳,观察电表内部结构和电路连接。

2. 根据电表的工作原理,对电表的内部电路进行改装,优化电路连接和元件选用。

3. 连接电源、多用表、电阻箱、电流源、电压源等设备,对改装后的电表进行校准实验。

4. 调节电流源和电压源的输出,对电表进行标准电流、电压和功率的输入,记录电表的测量结果。

5. 根据实验数据,对电表的测量结果进行分析和校准,修正电表的测量误差。

6. 对校准后的电表进行再次测量,验证校准效果。

五、实验结果与分析。

经过改装和校准实验,我们成功地提高了电表的测量精度和稳定性。

改装后的电表在测量标准电流、电压和功率时,测量结果与标准值的偏差较小,测量误差得到了有效的修正。

校准后的电表具有更高的测量准确性和可靠性,可以满足实际工程中对电流、电压和功率测量的要求。

六、实验总结。

通过本次实验,我们深入了解了电表的工作原理,掌握了电表的改装和校准方法。

在实验中,我们通过动手操作和实际测量,提高了实验者的实际动手能力和实验操作技能。

同时,我们也意识到了电表在实际应用中的重要性,以及对电表测量结果准确性和可靠性的要求。

在今后的工作和学习中,我们将进一步加强对电表相关知识的学习和掌握,不断提高自己的实验能力和实际操作技能。

电表改装与校准实验报告

电表改装与校准实验报告

电表改装与校准实验报告1. 引言电表是测量电能消耗的重要仪器,在电力系统中起到了至关重要的作用。

然而,由于设备老化、使用不当等原因,电表的准确性可能会受到影响。

因此,对电表进行改装与校准是必要的。

本实验旨在通过改装电表,并对其进行校准,提高电表的准确性。

2. 改装电表2.1 选取适当的电表在改装电表之前,我们需要选择合适的电表。

根据实验要求,我们选择了一款具备高精度、稳定性好的电表进行改装。

2.2 电表改装步骤1.打开电表外壳:使用螺丝刀拧开电表外壳上的螺丝。

2.识别电表内部结构:了解电表内部结构,确定需要改装的部分。

3.拆卸原有元件:将需要改装的元件进行拆卸,如电流互感器、电压互感器等。

4.安装改装元件:根据实验需求,选取合适的改装元件进行安装。

5.连接电线:将改装元件与电表内部电路进行适当的连接。

6.固定改装元件:使用螺丝将改装元件固定在电表内部。

7.关闭电表外壳:将电表外壳盖好,并拧紧螺丝。

3. 电表校准实验3.1 实验前准备在进行电表校准实验之前,我们需要做一些准备工作:1.确保实验室环境稳定,温度、湿度等因素不会对实验结果产生影响。

2.准备标准电源及标准电表:我们需要一台高精度的标准电源和一个经过准确校准的标准电表作为参考。

3.配置测试电路:根据实验需求配置相应的测试电路,包括电压源、电流源等。

3.2 校准步骤1.连接电路:根据实验需要,将待校准的电表与标准电源、标准电表以及测试电路连接起来。

2.校准电流测量:通过调节标准电源的输出,使电流在不同量级下均匀变化,记录待校准电表和标准电表的测量值,并进行比较。

3.校准电压测量:通过调节标准电源的输出,使电压在不同量级下均匀变化,记录待校准电表和标准电表的测量值,并进行比较。

4.校准功率测量:通过调节标准电源的输出,使功率在不同量级下均匀变化,记录待校准电表和标准电表的测量值,并进行比较。

5.校准能量测量:通过长时间稳定供电,记录待校准电表和标准电表的能量计量值,并进行比较。

电表改装实验总结

电表改装实验总结

电表改装实验总结引言电表改装是一项有意思且具有挑战性的实验。

在这项实验中,我们通过修改电表的电路结构和程序,使其能够更准确地测量电流和电压,以满足不同场景下的需求。

在本文中,我将分享我在进行电表改装实验过程中的一些经验和总结。

一、实验目标电表改装的目标是提升电表的准确性和可定制性。

具体来说,我们希望通过改装电表,使其能够在高电压和低电压环境下工作,同时能够测量直流电流和交流电流。

此外,我们还希望电表能够具备数据记录和远程监控能力,以方便使用者对电能消耗进行分析和管理。

二、实验步骤1. 分析电表原理:在开始改装之前,我们首先需要了解电表的工作原理。

通过深入研究电路结构和电表控制程序,我们可以更好地理解电表的测量原理,并为我们的改装工作打下基础。

2. 修改电路结构:根据我们的实验目标,我们需要对电表的电路结构进行修改。

具体来说,我们可以增加额外的传感器和滤波器,以增强电表的测量范围和准确性。

此外,我们还可以使用更精确的电流和电压传感器来替换原有的传感器。

3. 重写控制程序:改装电表不仅需要修改电路结构,还需要重新编写控制程序。

通过使用更高级的算法和精确的测量方法,我们可以提高电表的测量准确性和响应速度。

同时,我们还可以增加数据记录和远程监控功能,以满足用户的需求。

4. 实验验证:在完成电表改装后,我们需要进行实验验证来检查改装的效果。

通过与标准仪器的对比和多组实验数据的分析,我们可以评估改装后电表的测量精度和稳定性。

如果需要,我们还可以进行进一步的优化和调整,以获得更好的结果。

三、实验总结和收获通过进行电表改装实验,我收获了许多宝贵的经验和知识。

首先,我学会了分析电路结构和控制程序,以深入理解电表的工作原理。

其次,我学会了使用不同的传感器和算法来改善电表的测量性能。

最重要的是,我意识到了电表的改装是一项复杂的工作,需要综合运用电子技术、计算机编程和工程设计等多方面的知识。

在今后的工作中,我将继续探索电表改装的领域,并尝试结合物联网、人工智能等新技术,以进一步提升电表的功能和性能。

电表的改装和校准实验总结

电表的改装和校准实验总结

电表的改装和校准实验总结一、引言电表是我们日常生活中使用最为普遍的仪器之一,其作用是测量电流、电压和功率等电力参数。

然而,在长时间使用后,电表可能存在误差,需要进行改装和校准,以确保准确度。

本文将总结电表的改装和校准实验过程和结果。

二、改装实验1. 改装目的改装电表是为了提高其准确度和可靠性。

我们选择了一种常见的电表进行改装,选用的部件有:新一代电源供给模块、高精度ADC芯片和信号放大器。

改装后,电表将在测量电流、电压和功率等参数时更加精确。

2. 实验步骤首先,我们拆开了电表外壳,取下原有的电源供给模块,并安装新一代电源供给模块。

接着,我们连接高精度ADC芯片和信号放大器,确保信号输入到芯片和放大器后能够正确地转换和放大。

最后,将电表外壳重新装上,并进行电源调试和外观检查。

3. 实验结果经过实验,我们发现改装后的电表在测量电流、电压和功率等参数时,准确度有了明显的提高。

与改装前相比,改装后的电表误差范围在指定的允许误差范围内,且具有更好的稳定性和耐用性。

三、校准实验1. 校准目的校准电表是为了检验其测量结果与已知标准值之间的差异。

我们使用标准电压源和标准电流源,对电表进行校准,以便减小测量误差。

2. 实验步骤为了校准电表,我们首先将标准电压源与电表的电压输入端连接,并设置电压源的输出值为已知标准值。

然后,我们观察电表的读数,并记录其误差。

接着,我们将标准电流源与电表的电流输入端连接,并设置电流源的输出值为已知标准值。

同样地,我们观察电表的读数,并记录其误差。

最后,我们根据误差值进行调整,以使电表的测量结果更加准确。

3. 实验结果经过校准实验,我们发现电表在标准电压和标准电流输入下,测量结果与已知标准值之间的误差在可接受范围内。

校准后的电表具有良好的准确度和稳定性。

四、结论通过改装和校准实验,我们成功地提高了电表的准确度和可靠性。

改装后的电表在测量电流、电压和功率等参数时,误差范围在允许误差范围内。

改装电表实验报告

改装电表实验报告

改装电表实验报告引言:电表作为衡量家庭用电和电力行业用电的重要仪器,其准确性和稳定性对于实时监测和控制能源消耗具有重要意义。

在这个实验报告中,我们将探究如何通过改装电表来提高其功能和性能,为用户带来更好的能源管理体验。

一、改装电表的背景和目的在现代社会,节能意识逐渐增强,人们对能源消耗的关注度越来越高。

然而,传统的电表只能提供基本的用电量信息,难以满足用户对细节和实时数据的需求。

因此,我们有必要通过改装电表来实现更多功能,以便更好地监测和控制能源消耗。

二、改装电表的材料和方法1. 材料:- 电表(传统电表或智能电表)- Arduino开发板- 电流和电压传感器- LCD显示屏- 光电传感器- 电路板和导线等2. 方法:- 将Arduino开发板与电表相连,通过电流传感器和电压传感器测量实时电流和电压值;- 利用光电传感器检测电表上的旋转转盘,用于计算电表的用电量;- 通过编程,将测量到的电流和电压数据展示在LCD显示屏上;- 发送数据到云平台或个人电脑,以便用户远程查看和分析能源消耗情况。

三、改装电表的功能和性能提升1. 实时数据监测:通过改装电表,用户可以实时监测家庭或企业的用电量,随时了解电能的消耗状况,帮助用户调整使用行为,更好地节约能源。

2. 定制化统计分析:通过将电表数据发送到云平台或个人电脑,用户可以根据具体需求进行定制化的统计分析,例如按天、按周或按月绘制用电曲线图,帮助用户更好地了解自己的用电模式和变化趋势。

3. 异常报警功能:改装电表还可以设置异常报警功能,当用电量超过用户设置的警戒值时,系统会自动发送警报信息,提醒用户注意节约能源。

4. 提供优化建议:通过对用电数据的分析,改装电表还可以提供针对性的节能建议,帮助用户优化能源利用,减少浪费现象。

四、改装电表的应用前景1. 家庭用户:改装电表为家庭用户提供了更加智能化、便捷化的能源管理方式,帮助用户节约用电、降低能源消耗,实现绿色低碳生活。

电表改装实验报告总结

电表改装实验报告总结

电表改装实验报告总结电表改装实验报告总结引言:电表作为电力系统中的重要组成部分,用于测量电能的消耗和供给,是电力计费的基础。

然而,传统的电表在准确度和功能上存在一些局限性。

为了提高电表的性能和功能,我们进行了电表改装实验,并对实验结果进行了总结和分析。

一、实验目的本次实验的目的是对传统电表进行改装,提高其准确度和功能,以满足现代电力系统的需求。

具体目标包括:1. 提高电表的测量准确度;2. 增加电表的功能,如实时监测、远程读数等;3. 优化电表的结构和外观。

二、实验过程1. 选择合适的电表改装方案:我们通过调研和实验比较了多种电表改装方案,最终选择了基于物联网技术的改装方案,以实现远程监测和数据传输功能。

2. 改装电表硬件:我们对电表的硬件进行了改造,包括更换高精度测量元件、增加通信模块等,以提高测量准确度和功能。

3. 开发改装电表的软件:我们编写了相应的软件程序,实现了电表数据的实时监测、远程读数和数据传输等功能。

三、实验结果1. 测量准确度提高:经过改装后,电表的测量准确度得到了显著提高,误差范围在可接受的范围内。

2. 功能增加:改装后的电表具备了实时监测和远程读数的功能,用户可以通过手机或电脑随时查看电表数据,方便了电力管理和使用。

3. 结构和外观优化:我们对电表的结构和外观进行了优化设计,使其更加紧凑、美观,并增加了易操作性。

四、实验分析1. 改装方案选择的合理性:我们选择的基于物联网技术的改装方案,使得电表具备了更多的功能和便利性,适应了现代电力系统的需求。

2. 实验结果的可靠性:经过多次实验和数据对比,我们确认改装后的电表在测量准确度和功能方面的提升是可靠的。

3. 实验的局限性:由于实验时间和资源的限制,我们无法对所有类型的电表进行改装,因此实验结果可能不适用于所有电表型号。

五、实验总结通过本次电表改装实验,我们成功地提高了电表的测量准确度和功能,使其适应了现代电力系统的需求。

改装后的电表具备了实时监测、远程读数等功能,方便了电力管理和使用。

电表的改装与校正实验报告数据

电表的改装与校正实验报告数据

电表的改装与校正实验报告数据篇一:电表的改装与校正实验报告实验四电表的改装和校准实验目的1.掌握电表扩大量程的原理和方法; 2.能够对电表进行改装和校正; 3.理解电表准确度等级的含义。

实验仪器:微安表,滑线变阻器,电阻箱,直流稳压电源,毫安表,伏特表,开关等。

实验原理:常用的直流电流表和直流电压表都有一个共同部分,即表头。

表头通常是磁电式微安表。

根据分流和分压原理,将表头并联或串联适当阻值的电阻,即可改装成所需量程的电流表或电压表。

一将微安表改装成电流表微安表的量程Ig很小,在实际应用中,若测量较大的电流,就必须扩大量程。

扩大量程的方法是在微安表的两端并联一分流电阻RS。

如图1 所示,这样就使大部分被测电流从分流电阻上流过,而通过微安表的电流不超过原来的量程。

设微安表的量程为Ig,内阻为Rg,改装后的量程为I,由图1,根据欧姆定律可得,(I - Ig)RS= IgRg RS=设n = I /Ig, 则RS=Rgn?1IgRgI?Ig(1)由上式可见,要想将微安表的量程扩大原来量程的n 倍,那么只须在表头上并联一个分流电阻,其电阻值为RS= Rgn?1。

图1 图2二将微安表改装成电压表我们知道,微安表虽然可以测量电压,但是它的量程为IgRg,是很低的。

在实际应用中,为了能测量较高的电压,在微安表上串联一个附加电阻RH,如图2所示,这样就可使大部分电压降在串联附加电阻上,而微安表上的电压降很小,仍不超过原来的电压量程IgRg。

设微安表的量程为Ig,内阻为Rg,欲改装电压表的量程为U,由图2,根据欧姆定律可得,Ig(Rg+ RH)=U RH =三改装表的校准改装后的电表必须经过校准方可使用。

改装后的电流表和电压表的校准电路分别如图3和图4所示。

首先调好表头的机械零点,再把待校的电流表(电压表)与标准表接入图3(或图4)中。

然后一一校准各个刻度,同时记下待U? Rg(2)Ig校电流表(或电压表)的示值I(或U)和标准表的示值和IS(或US)。

电表改装与校准实验报告

电表改装与校准实验报告

电表改装与校准实验报告电表改装与校准实验报告引言:电表作为测量电能消耗的仪器,对于电力行业和家庭用电管理至关重要。

然而,由于长期使用或制造过程中的一些因素,电表的准确性可能会出现偏差。

为了保证电表的准确性,我们进行了电表改装与校准实验,以探索改进电表精度的方法。

一、实验目的本实验旨在通过改装电表,提高其准确性,并通过校准实验验证改装后电表的准确性。

二、实验材料与方法1. 实验材料:- 电表:我们选择了市场上常见的电能表进行改装与校准实验。

- 校准仪器:使用了高精度的电流表和电压表进行校准。

2. 实验方法:- 改装电表:我们首先对电表进行了改装,主要包括以下步骤:a. 清洁电表:将电表内部的灰尘和杂质清除干净,以确保准确读数。

b. 电路优化:对电表内部的电路进行优化,以提高电路的稳定性和准确性。

c. 磁场屏蔽:在电表周围添加磁场屏蔽材料,减少外部磁场对电表的干扰。

d. 温度补偿:根据电表使用环境的温度变化,进行温度补偿调整,以提高准确性。

- 校准实验:改装后的电表进行校准实验,主要包括以下步骤:a. 电流校准:通过将已知电流通过电表,并与高精度电流表进行对比,以确定电表的误差。

b. 电压校准:通过将已知电压输入电表,并与高精度电压表进行对比,以确定电表的误差。

c. 功率因数校准:通过将已知功率因数的负载连接到电表上,并与高精度功率因数表进行对比,以确定电表的误差。

三、实验结果与分析经过改装和校准实验后,我们得到了以下结果:1. 改装电表的准确性得到了显著提升。

在校准实验中,与高精度仪器对比后,改装电表的误差范围在允许范围内。

2. 温度补偿的应用对电表的准确性有重要影响。

通过对电表进行温度补偿调整,可以有效减少温度变化对电表读数的影响。

3. 磁场屏蔽的改进可以减少外部磁场对电表的干扰,提高电表的准确性。

四、实验结论通过电表改装与校准实验,我们得出以下结论:1. 改装电表可以显著提高其准确性,对于电力行业和家庭用电管理具有重要意义。

电表的改装与校正实验报告数据

电表的改装与校正实验报告数据

电表的改装与校正实验报告数据篇一:电表的改装与校正实验报告实验四电表的改装和校准实验目的1.掌握电表扩大量程的原理和方法; 2.能够对电表进行改装和校正; 3.理解电表准确度等级的含义。

实验仪器:微安表,滑线变阻器,电阻箱,直流稳压电源,毫安表,伏特表,开关等。

实验原理:常用的直流电流表和直流电压表都有一个共同部分,即表头。

表头通常是磁电式微安表。

根据分流和分压原理,将表头并联或串联适当阻值的电阻,即可改装成所需量程的电流表或电压表。

一将微安表改装成电流表微安表的量程Ig很小,在实际应用中,若测量较大的电流,就必须扩大量程。

扩大量程的方法是在微安表的两端并联一分流电阻RS。

如图1 所示,这样就使大部分被测电流从分流电阻上流过,而通过微安表的电流不超过原来的量程。

设微安表的量程为Ig,内阻为Rg,改装后的量程为I,由图1,根据欧姆定律可得,(I - Ig)RS= IgRg RS=设n = I /Ig, 则RS=Rgn?1IgRgI?Ig(1)由上式可见,要想将微安表的量程扩大原来量程的n 倍,那么只须在表头上并联一个分流电阻,其电阻值为RS= Rgn?1。

图1 图2二将微安表改装成电压表我们知道,微安表虽然可以测量电压,但是它的量程为IgRg,是很低的。

在实际应用中,为了能测量较高的电压,在微安表上串联一个附加电阻RH,如图2所示,这样就可使大部分电压降在串联附加电阻上,而微安表上的电压降很小,仍不超过原来的电压量程IgRg。

设微安表的量程为Ig,内阻为Rg,欲改装电压表的量程为U,由图2,根据欧姆定律可得,Ig(Rg+ RH)=U RH =三改装表的校准改装后的电表必须经过校准方可使用。

改装后的电流表和电压表的校准电路分别如图3和图4所示。

首先调好表头的机械零点,再把待校的电流表(电压表)与标准表接入图3(或图4)中。

然后一一校准各个刻度,同时记下待U? Rg(2)Ig校电流表(或电压表)的示值I(或U)和标准表的示值和IS(或US)。

电表改装及校准实验报告

电表改装及校准实验报告

电表改装及校准实验报告电表是用来测量电流、电压、电功率等参数的仪器,是电力系统中不可或缺的设备。

然而,在长期使用过程中,电表可能会出现误差或损坏,需要进行校准或维修。

本实验旨在以电表为对象,探究其改装和校准方法,以提高电表的准确性和可靠性。

一、电表改装1.替换电表内部元器件电表内部的元器件可能会因长期使用而老化或损坏,导致测量结果不准确。

因此,可以通过更换电容、电阻、电感等元器件来改善电表的准确性。

2.添加滤波器电表测量电流或电压时,可能会受到电源噪声、线路干扰等因素的影响,导致测量结果不准确。

因此,可以在电表的输入端添加滤波器,以减少外界干扰,提高电表的准确性。

3.安装校准装置电表的准确性可以通过校准来提高。

为了方便校准,可以在电表内部或外部安装校准装置,以便对电表进行定期校准。

二、电表校准1.校准前的准备工作在进行电表校准前,需要先了解所需校准的参数,确定校准方法和标准。

同时,还需要对校准设备进行检查和校准,以保证校准的准确性。

2.校准方法电表的校准方法一般分为手动校准和自动校准两种。

手动校准需要手动调整电表的校准电位器,以使电表的测量结果符合标准值。

自动校准则是通过校准设备自动调节电表的校准电位器,实现自动校准。

3.校准结果的判定在校准完成后,需要对校准结果进行判定。

一般来说,如果电表的测量误差在规定范围内,则校准结果合格。

如果超出规定范围,则需要重新校准或更换电表。

三、实验步骤1.拆卸电表外壳,检查电表内部元器件是否正常。

2.更换电表内部老化或损坏的元器件,如电容、电阻、电感等。

3.添加输入端滤波器,以减少外界干扰。

4.安装校准装置,方便定期校准电表。

5.进行电表的手动或自动校准,根据校准结果进行判定。

四、实验结论通过本次实验,我们了解了电表的改装和校准方法。

通过更换电表内部元器件、添加滤波器和安装校准装置,可以提高电表的准确性和可靠性。

同时,通过手动或自动校准,可以对电表进行定期校准,确保其测量结果的准确性。

电表改装实验报告

电表改装实验报告

电表改装实验报告一、实验目的本实验旨在通过改装电表,提高其测量精度和功能性能,同时探究电表改装对电量测量的影响,并评估改装效果。

二、实验原理电表是用来测量电流、电压和电能等电力参数的仪器。

改装电表可以通过更换内部电路、增加传感器等方式,提升电表的测量精度和功能性能。

三、实验材料和设备1. 电表2. 相关改装零件和元器件3. 电源4. 验电笔5. 电源线6. 接线板7. 计算机四、实验步骤1. 将电表与电源连接,并通过验电笔检查电源线是否正常。

2. 根据实验需求,选择合适的改装方式进行电表改装。

可以考虑更换电表内部元器件、增加传感器等方法。

3. 按照改装方案进行改装操作,确保操作准确无误。

4. 改装完成后,通过与原始电表进行对比测试,评估改装效果。

可以进行精度、稳定性、响应速度等方面的比较分析。

5. 将测试数据输入计算机,进行数据处理和分析,得出改装后的电表性能数据。

6. 根据实验结果撰写实验报告。

五、实验结果和分析经过电表改装后,我们对改装后的电表进行了各项性能测试和分析,结果如下:1. 测量精度提高:改装后的电表在测量精度方面表现出更高的可靠性和准确性。

2. 功能性能增强:改装后的电表不仅可以测量电流、电压和电能等电力参数,还具有其他附加功能,如功率因数、频率等的测量。

3. 实用性提升:改装后的电表在实际应用中具有更广泛的适用性,可以满足多种场景下的测量需求。

六、实验总结通过本次电表改装实验,我们成功地提高了电表的测量精度和功能性能,并验证了改装效果。

改装后的电表在实际应用中具有更多的优势和实用性,能够满足不同场景下的电力参数测量需求。

同时,我们也意识到改装过程中需要注意操作准确性和安全性,以确保改装的有效性和可靠性。

七、参考文献[未出现网址链接]以上就是本次电表改装实验报告的全文内容。

电表的改装和校准实验结论

电表的改装和校准实验结论

电表的改装和校准实验结论电表是电力系统中重要的测量仪器,其准确性直接关系到电力系统的稳定运行。

但是在长时间使用后,电表的准确性会逐渐降低,需要进行校准。

本文将介绍电表的改装和校准实验结论。

一、电表改装电表改装是指对原有电表进行改造,以提高电表的精度和灵敏度。

电表改装的方法有多种,在此我们简单介绍一种常用的改装方法。

1. 电流互感器改装电流互感器是电表中重要的组成部分,其主要作用是将高电流通过变比转换成低电流,以便电表进行测量。

但是在长时间使用后,电流互感器的铁心磁滞现象会导致电流测量出现误差。

因此,我们可以对电流互感器进行改装,以提高电表的测量精度。

改装方法如下:(1)拆开电流互感器,将铁心取出并用砂纸磨光。

(2)在铁心表面涂抹少量硅油,以减小磁滞。

(3)重新组装电流互感器,并对电表进行校准。

2. 磁场屏蔽改装电表在测量电流和电压时,会受到外界磁场的干扰,从而导致测量误差。

因此,我们可以对电表进行磁场屏蔽改装,以减小外界磁场的影响。

改造方法如下:(1)在电表周围固定一块磁性材料,以减小外界磁场的影响。

(2)重新对电表进行校准。

二、电表校准实验结论电表的校准是指对电表进行调整,以使其测量结果更加准确。

电表校准的方法有多种,在此我们介绍一种常用的校准方法。

1. 标准电压法校准标准电压法校准是指将标准电压加到电表上,以比较电表的测量值和标准电压的差异,进而进行校准。

校准步骤如下:(1)将标准电压加到电表上,并记录电表的测量值。

(2)比较电表的测量值和标准电压的差异,并进行校准。

校准实验结论如下:(1)在标准电压为220V时,电表的测量值误差在±0.5%以内。

(2)在标准电压为380V时,电表的测量值误差在±0.8%以内。

(3)在标准电压为660V时,电表的测量值误差在±1%以内。

结论表明,电表的测量精度在不同电压下有所差异,需要进行校准以提高精度。

电表是电力系统中重要的测量仪器,需要进行改装和校准以保证测量精度。

电表的改装和校准的实验报告

电表的改装和校准的实验报告

电表的改装和校准的实验报告电表的改装和校准的实验报告一、引言电表是我们日常生活中使用频率较高的电气仪器之一。

然而,由于市场上出售的电表存在一定的误差,为了保证电表的准确度,我们进行了电表的改装和校准实验。

本文将详细介绍实验的目的、方法、结果和讨论。

二、实验目的本次实验的主要目的是改装和校准电表,使其准确度达到标准要求。

通过实验,我们希望了解电表的工作原理,并掌握电表的改装和校准方法。

三、实验方法1. 改装电表为了改装电表,我们首先需要了解电表的结构和工作原理。

电表主要由电流线圈和电压线圈组成,通过测量电流和电压的变化来计算电能消耗。

在改装过程中,我们需要调整电流线圈和电压线圈的灵敏度,以提高电表的准确度。

2. 校准电表校准电表是为了确保其准确度。

我们使用标准电流源和标准电压源来校准电表。

首先,我们将标准电流源接入电表的电流线圈,调整电表读数与标准电流源的数值一致。

接下来,我们将标准电压源接入电表的电压线圈,同样调整电表读数与标准电压源的数值一致。

通过这样的校准过程,我们可以确保电表的准确度。

四、实验结果经过改装和校准后,我们成功地提高了电表的准确度。

在改装过程中,我们调整了电流线圈和电压线圈的灵敏度,使其适应不同的电流和电压变化。

在校准过程中,我们使用标准电流源和标准电压源,通过与电表读数进行比较,确保了电表的准确度。

五、讨论通过本次实验,我们深入了解了电表的工作原理和校准方法。

改装电表可以提高其准确度,使其更适应实际使用环境。

校准电表是确保电表准确度的重要步骤,通过与标准电流源和标准电压源进行比较,我们可以及时发现电表的误差并进行调整。

然而,需要注意的是,改装和校准电表需要一定的专业知识和技能,操作不当可能会导致电表损坏或不准确。

因此,在进行电表的改装和校准时,建议寻求专业人士的指导或进行相关培训。

六、结论通过本次实验,我们成功地改装和校准了电表,使其准确度达到标准要求。

通过调整电流线圈和电压线圈的灵敏度,并使用标准电流源和标准电压源进行校准,我们确保了电表的准确度。

电表改装实验报告

电表改装实验报告

电表改装实验报告一、实验目的1、了解电表的工作原理和基本结构。

2、掌握将微安表头改装成电流表和电压表的方法。

3、学会对改装电表进行校准和误差分析。

二、实验原理1、微安表头的内阻 Rg 和满偏电流 Ig 是表头的两个重要参数。

当表头通过满偏电流 Ig 时,表头两端的电压 Ug = IgRg。

2、改装成电流表:要将微安表头改装成量程为 I 的电流表,需要并联一个分流电阻 Rs。

根据并联电路的特点,有 IgRg =(I Ig)Rs,可求得 Rs = IgRg /(I Ig)。

3、改装成电压表:要将微安表头改装成量程为 U 的电压表,需要串联一个分压电阻 Rp。

根据串联电路的特点,有 U = Ig(Rg + Rp),可求得 Rp =(U / Ig) Rg 。

三、实验器材微安表头、电阻箱、滑动变阻器、直流电源、开关、导线若干、标准电流表、标准电压表。

四、实验步骤1、测量微安表头的内阻 Rg 和满偏电流 Ig按图连接电路,将电阻箱 R 接入电路,调节 R 的阻值,使微安表头满偏,记录此时电阻箱的阻值 R1。

然后将电阻箱与微安表头串联,再次调节电阻箱的阻值,使微安表头的示数为满偏的一半,记录此时电阻箱的阻值 R2。

则微安表头的内阻 Rg =(R1 + R2) / 2 。

保持电路不变,断开开关,将微安表头直接接在电源两端,逐渐增大电源电压,使微安表头满偏,记录此时的电流值,即为满偏电流Ig 。

2、将微安表头改装成电流表根据公式 Rs = IgRg /(I Ig),计算出分流电阻 Rs 的阻值。

选择合适的电阻箱作为 Rs ,与微安表头并联,组成量程为 I 的电流表。

3、将微安表头改装成电压表根据公式 Rp =(U / Ig) Rg ,计算出分压电阻 Rp 的阻值。

选择合适的电阻箱作为 Rp ,与微安表头串联,组成量程为 U 的电压表。

4、校准改装后的电表改装成电流表的校准:将改装后的电流表与标准电流表串联,接入电路,改变电路中的电流,记录标准电流表和改装电流表的示数,作出校准曲线。

电表的改装与校正实验报告

电表的改装与校正实验报告

电表的改装与校正实验报告电表的改装与校正实验报告引言:电表作为电力系统中的重要测量仪器,其准确性对于电力计量和收费具有重要意义。

然而,由于长期使用或其他原因,电表的准确性可能会出现偏差。

本实验旨在通过对电表的改装与校正,提高电表的准确性,确保电力计量的准确性和公正性。

一、改装设计与实施1.1 改装目的与原理电表的准确性主要受到电流互感器的影响,而电流互感器的线圈匝数与铁芯的质量和形状密切相关。

因此,我们决定对电流互感器进行改装,以提高电表的准确性。

1.2 改装步骤首先,我们拆卸了电表外壳,并将电流互感器取出。

然后,我们对电流互感器的线圈进行了重新绕制,确保匝数的准确性。

同时,我们对铁芯进行了磨削和抛光,以提高其质量和形状。

1.3 改装结果经过改装后,我们重新安装了电流互感器,并将电表外壳重新装上。

经过实验测试,改装后的电表准确性得到了显著提高,误差范围在可接受的范围内。

二、校正实验设计与实施2.1 校正目的与原理为了确保电表的准确性,我们进行了校正实验。

校正实验的原理是通过与标准电表进行比较,确定电表的误差,并进行相应的调整。

2.2 校正步骤首先,我们选取了一台经过校准的标准电表作为比较对象。

然后,我们将电表与标准电表同时连接到同一电路中,记录它们的读数。

根据读数的差异,我们计算出电表的误差,并进行相应的调整。

2.3 校正结果经过校正实验,我们确定了电表的误差,并进行了相应的调整。

校正后的电表准确性得到了进一步提高,误差范围更加接近于标准电表。

三、实验结果与讨论通过改装和校正实验,我们成功提高了电表的准确性。

然而,我们也发现了一些问题和限制。

首先,改装过程需要一定的技术和经验,不适合非专业人士进行。

其次,校正实验需要标准电表作为比较对象,而标准电表的准确性也需要定期检验和校准。

结论:通过本次实验,我们证明了电表的改装与校正可以有效提高电表的准确性。

然而,改装和校正过程需要专业人士的参与,并且需要定期检验和校准。

电表改装实验报告

电表改装实验报告

电表改装实验报告实验报告实验名称:电表改装一、实验目的1.学习和掌握电表改装的基本原理和方法;2.了解电表改装的步骤和注意事项;3.掌握电表校准的基本原理和方法;4.了解电表误差的来源和解决方法。

二、实验原理电表改装是将一个测量范围较小的电表改装成测量范围较大的电表。

通常情况下,我们使用的是电压表和电流表。

改装电表的原理是利用电阻、电容等元件来改变原电表的量程。

1.电压表改装原理电压表改装原理是利用电阻分压,将电阻与原电压表并联,从而扩大电压表的量程。

具体来说,假设原电压表的量程为U,则可以并联一个电阻R,使电阻上的电压为U1=U/n,其中n为分压比,可以通过计算得出。

原电压表的读书为Ux,则改装后电压表的读书为Ux+U1=Ux+U/n。

2.电流表改装原理电流表改装原理是利用电阻分流,将电阻与原电流表串联,从而扩大电流表的量程。

具体来说,假设原电流表的量程为I,则可以串联一个电阻R,使电阻上的电流为I1=I/n,其中n为分流比,可以通过计算得出。

原电流表的读书为Ix,则改装后电流表的读书为Ix-I1=Ix-I/n。

三、实验步骤1.准备材料和工具(1)电表改装所需材料和工具:电压表、电流表、电阻、电容、万用表等;(2)实验操作指南和相关文献资料。

2.实验操作步骤(1)按照操作指南和相关文献资料的要求,将电压表和电流表取出;(2)根据改装要求,将电阻、电容等元件接入电路中;(3)使用万用表检测电路是否正确;(4)根据实验指南或相关文献资料提供的公式计算分压比和分流比;(5)按照计算结果调整电阻、电容等元件的值;(6)将调整后的电表安装回电路中;(7)使用标准电表校准改装后的电表;(8)记录校准数据并分析误差。

四、实验结果与分析1.根据实验步骤改装电压表和电流表,记录下调整电阻、电容等元件的值;2.使用标准电表校准改装后的电表,记录下校准数据;3.分析误差来源主要包括系统误差和随机误差;4.根据误差来源采取相应措施提高改装电表的准确度。

电表的改装实验原理

电表的改装实验原理

电表的改装实验原理
电表的改装实验原理主要涉及到改变电表内部电路以实现不同的功能或提高读数的准确性。

具体原理如下:
1. 调整电表电路:在电表的电路中,通过适当调整电阻、电容或电感等元件的数值,可以改变电流、电压或功率的测量范围或灵敏度。

例如,加大电流互感器的绕组匝数,可以提高电表测量电流的上限。

2. 精度校正:通过对电表的校准电路进行调整,将电表的读数与标准值进行比对,并对误差进行修正,以提高电表的测量精度。

例如,使用标准电压源和电流源,对电表的量程进行校准,使其能够输出准确的读数。

3. 添加测量功能:通过在电表中添加额外的元件或电路,可以实现更多的测量功能。

例如,添加频率测量电路,可以测量交流电的频率;添加功率因数测量电路,可以测量电路中的功率因数。

4. 信号处理:通过使用信号处理电路,对电表输入的电信号进行滤波、放大、数字化等处理,以提高信号的质量和准确性。

例如,通过添加滤波电路可以减小电表读数的抖动,改善读数的稳定性。

总之,电表的改装实验原理是通过调整电路元件、校准电路、添加功能和信号处理等方式,提高电表的测量范围、准确性和功能,以满足不同的测量需求。

电表的改装实验报告

电表的改装实验报告

电表的改装实验报告一、实验背景电表是电能计量的重要工具,它能够记录电流和电压等信息,并输出电能的读数。

然而,传统的电表并不能满足现代社会对电能计量的需求,因此,一个新型的电能计量方案是非常必要的。

本实验旨在让学生通过改装电表,探究新型电能计量方案的可行性。

二、实验原理实验中采用的是Arduino开发板,它是一款开源的电路板,可以用于开发各种硬件应用程序。

改装电表的过程中,我们需要将Arduino与电表连接起来,然后编写程序,将电表的读数传输到Arduino中,再利用Arduino的网络连接功能将这些数据传输到云端。

三、实验步骤1. 拆卸电表外壳,将电表的线路板取出。

2. 将Arduino开发板与电表线路板连接起来,可以采用插针的方式进行连接。

3. 在Arduino IDE软件中编写程序,实现从电表读数的功能,并将读数传输到云端。

4. 在云端编写数据分析程序,对电表读数进行分析,提取出实时能耗数据、能源质量数据、电能监测数据等信息。

5. 结合实际需求,进行改进和优化。

四、实验结果在实验中,我们成功地将传统电表与Arduino开发板连接起来,并利用Arduino的网络连接功能将电表读数传输到云端。

经过数据分析,我们获得了实时能耗数据、能源质量数据、电能监测数据等多种信息。

这些数据可以用于电能监测、用电分析、能源优化等方面,对现代社会的节能减排和能源利用效率提高具有重要意义。

五、实验优化尽管实验结果较为理想,但是仍然存在一些问题和改进空间。

其中一个问题是,电表与Arduino的连接方式需要进行优化。

由于传统电表的线路板并不是针对Arduino的设计,因此连接过程较为手工化和复杂化。

未来,可以考虑设计新型电表,将它与Arduino 等开发板进行兼容性设计,从而更为方便地进行连接和改装。

六、总结本次电表的改装实验是一项有益的探究活动,它既拓展了学生的知识面,又切实探讨了现代电能计量方案的可行性。

实验结果表明,我们可以用Arduino开发板将传统电表改装成一个高效、智能、安全的电能计量工具,从而更好地满足现代社会的用电需求和减排优化要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理实验报告实验名称:电表的改装学院:安全与应急管理工程学院专业班级:安全工程1801学号:2018003921学生姓名:马晶晶实验成绩实验预习题成绩:一.判断题(每题1分,共5分)1.实际万用表可以测量直流电压。

(√)2.实际万用表不能测交流电压。

(×)3.在连接电路时,可以用万用表来检测导线是否导通。

(√)4.万用表不能测量电容。

(×)5.微安表可以改装成电压表,也可以改装成电流表,还可以改装成欧姆表。

(√)二.选择题(每题1分,共10分)1.将一个微安表改装成电压表时用 A 。

A.串联电路B. 并联电路2.将一个微安表改成电流表时用 B 。

A. 串联电路B. 并联电路3.将一个微安表改装成电流表,电流表的量程越大,则分流电阻的数值 A 。

A.越小B. 越大4.将一个微安表改装成电压表,电压表的量程越大,则分压电阻的数值 B 。

A.越小B. 越大5.一个电流表的满偏电流Ig=1mA,内阻为200Ω,要把它改装成一个量程为0.5A的电流表,则应在电流表上 B 。

A.并联一个200Ω的电阻B. 并联一个0.4Ω的电阻C. 串联一个0.4Ω的电阻D. 串联一个200Ω的电阻6.将下图的微安表改成电流表,实验中选择500µA的档位,将微安表改成10mA的电流表,当指针指在正中间时,待测的直流电流为 C 。

A.2mAB. 2.5mAC.5mAD.7.5mA7.一个电流表的满偏电流Ig=1mA,内阻Rg=500Ω,要把它改装成一个量程为10V的电压表,则电流表上应 C 。

A.串联一个10kΩ的电阻B. 并联一个10kΩ的电阻C. 串联一个9.5kΩ的电阻D. 并联一个9.5kΩ的电阻8.一个用满偏电流为3mA的电流表改装成的欧姆表,调零后用它测量500Ω的标准电阻时,指针恰好指在刻度盘的正中间,如用它测量一个未知电阻时,指针指在1mA处,则被测电阻的阻值为 A 。

A.1000ΩB. 5000ΩC. 1500ΩD. 2000Ω9.把一个量程为5mA的电流表改装成欧姆表R x1档,电流表的内阻是50Ω,电池的电动势是1.5V,经过调零之后测电阻,当欧姆表指针指到满偏的3/4位置时,被测电阻的阻值是 B 。

A.50ΩB. 100ΩC.16.7ΩD. 400Ω10.关于欧姆表,下列说法正确的是 C 。

A.刻度盘上的刻度是均匀的B.指针指在最左边,表示待测电阻为零C.指针指在最左边,表示待测电阻为无穷大D. 欧姆表可以精确的测量电阻原始数据记录成绩:表一电压表的改装表二电流表的改装表三欧姆表的改装(Ω)实验报告正文 成绩:一、实验名称:电表的改装 二、实验目的:1.掌握将微安表头改装成较大量程的电流表和电压表的原理与方法。

2.理解欧姆表测量电阻的原理,掌握用微安表头组装欧姆表的原理与方法。

3.学会用比较法校准电表。

三、实验仪器:1.5V 电池、微安表、六档位多档开关、三个99999.9型电阻箱、表笔、待测信号箱、单刀开关。

四、实验原理: 1.直流电流档当选择开关拨到mA 档时,万用表示一个多量程毫安表。

它是利用不同的分流电阻与表头并联,达到扩大量程的目的。

设电流表头原量程为Ig ,内阻为Rg ,扩程后的量程为I ,则分流电阻由式①决定。

Rs=IgI Rg Ig -*=11-N Rg ① 式中:Rs---不同量程时需并联的分流电阻;N---(N =IgI )为电表扩程的倍率。

由式①可知,电表扩程倍率越大,分流电阻越小。

电压扩程原理 电流扩程原理2.直流电压档档位选择开关拨至V 档时,万用表就是一个多量程直流电压表,电流表配上附加电阻0R 即可组成电压表,0R 的数值由式②决定0R =IgVm -Rg ②式中:Vm --需要改装成电压表的满量程值;Ig --电流表的满量程值(如50A 或100A )。

由式②可知,附加电阻0R 的大小由扩程后电压的满度值决定,量程越大,0R 就越大。

3.电阻(欧姆)档欧姆计的原理性电路图如图,其中虚线框部分为欧姆计,E 为电源(干电池),表头内阻为Rg ,满刻度电流为Ig ,R 为限流电阻,a 和b 为两接线柱(表笔 插孔),Rx 为待测电阻。

由欧姆定律可知,电路中的电流Ix 由式③决定: Ix=RxR Rg E++③对于给定的欧姆计(Rg ,R ,E 已给定),Ix 仅由Rx 决定,即Ix 与Rx 之间有一一对应的关系,如图。

在表头刻度上,将Ix 标示成Rx ,即成欧姆计。

由图和式③可知,当Rx 无穷大时,Ix = 0,指针指在Ix = 0处(对应于 Rx = ∞);当Rx = 0时,回路中电流最大,如式④。

电路设计时,使表头为满度值(对应于Rx=0)。

欧姆计的原理性电路图 Ix=I=Imax=RRg E+ ④ 由此可知:(1)当Rx=Rg+R 时,Ix=21Ig ,指针正好位于满刻度的一半,即欧姆计标尺的中心电阻值,它等于该欧姆计的总内阻。

这就是欧姆中心的意义,可将式③改写成式⑤: Ix=RxR E+Ω⑤ (2)改变中心电阻R Ω的值,即可改变电阻档的量程。

如R Ω= 100,测量范围为20至 500Ω;R Ω= 1000Ω,测量范围为200至 5000Ω,如此类推。

(3)Ig 与R Ω+Rx 是非线性关系,在实际测量时,在51R Ω<Rx<5R Ω的范围,测量才比较准确。

(4)由于电源在使用过程中会变化,因此用R 来经常调零(R 0= 0,Ix=Imax )。

五、实验内容:A.电压表的改装1.连接电路。

2.确认状态。

(保存电路)3.计算分压电阻R的数值,亦记录数据。

1实验中要求将微安表改装为量程为5V的电压表,必须使用微安表的500μA档位进行实验改装,对应表头内阻为560Ω。

4.调解电阻箱,使电阻箱的阻值等于计算的分压电阻值。

5.将表笔接到V上面的2个接线柱,断开开关,将微安表调零。

6.测量待测信号箱的未知电压值。

接通开关,测量出未知信号的直流电压值,亦将测量结果填写到数据表格中。

B.电流表的改装1.连接电路。

2.确认状态。

3.计算分流电阻R的数值,并记录数据。

1实验中要求将微安表改装为量程为10mA的电流表,必须使用微安表的500μA档位进行实验改装,内阻为560Ω。

4.调节电阻箱,使电阻箱的阻值等于计算的分流电阻值。

5.将改装好的电流表通过表笔连接到待测信号箱的“I”字上面的按线柱,断开电路,将微安表调零。

6.合上电路,测量待测信号箱的未知电流值,并将测量结果填写到数据表格中。

C.欧姆表的改装将微安表改装为量程比率为×l 的欧姆表 1.连接电路。

2.微安表调零。

3.欧姆档调零。

将1R (电阻箱1)调到最大,开关断开,表笔短接,调节电阻箱1,使电流表满偏,记下1R 的数值。

4.欧姆档校准。

调节开关导通,将表笔接到电阻箱3,使3R =100Ω,再调节2R (电阻箱2),使电流表指针恰好指在微安表下半部分表盘上标定好的100Ω刻度线,并记下2R 的数值。

5.将表笔接到电阻箱3上,分别测已知电阻40Ω,50Ω,60Ω, 并记录数据,验证电路的正确性。

6.将改装好的欧姆表通过表笔连接到待测信号箱的“Ω”字上面的接线柱,测量出待测信号箱上的未知电阻值,并将测量结果填写到数据表格中。

六、数据处理及结果:1.电压表的改装表一 电压表的改装由分压电阻公式可得:00'R R I V-=其中满偏电流0I =500μA 表头内阻R 0=560Ω;改装后电压表量程V=5V则'R =(5V/500μA -560Ω)=9440.0Ω接入待测未知电压后,读出表盘示数为51.0, 则待测未知电压为: V ’=(51.0/100)×5V=2.55V2.电流表的改装表二 电流表的改装由分流电阻公式可得:000''I I R I R -=其中满偏电流0I =500μA,表头内阻R 0=560Ω; 改装后的电流表量程'I =10mA,可得'R =(500μA×560Ω)/(10mA-500μA )=29.5Ω 接入待测未知电流后,读出表盘示数为78.0, 所以待测未知电流为:'I =(78.0/100)×10mA=7.80mA3.欧姆表的改装表三 欧姆表的改装(Ω)电阻箱1对应1R 为短接时调节的电阻,电阻箱2对应2R 为100Ω校准时调节的电阻,二者调节情况分别读图填入表格。

将电阻箱3调节至40Ω,50Ω,60Ω校准时均正确,接入未知电阻后估读为380.0Ω。

七、误差分析:1. 改装电流表时由于电阻箱精度不够,计算时四舍五入造成实际值与计算值不同而产生误差。

2. 调节21,R R 时可能因精度不够无法正好满偏或指于100Ω处。

3. 欧姆表读数时估读造成误差。

相关文档
最新文档