有理数的乘法课件
合集下载
1.9.1 有理数的乘法法则 课件(17张PPT) 华东师大版(2024)数学七年级上册
所得的积是原来的积的相反数.
合作探究
相反数
试一试1:3×(-2) = ?-6 与 3×2 = 6 对比. 相反数
= (-2) + (-2) + (-2)
相反数
试一试2:(-3)×(-2) = ?6 与 (-3)×2 = -6 对比.
相反数
相反数
与 3 × (-2) = -6 对比呢?
知识总结
思考1:类比有理数加法的运算步骤,应用有理数乘 法法则进行计算时,应按照怎样的顺序进行计算?
位置
方向 向东为正方向,向西为负
距离 这时小虫位于原来位置的西边 6 m 处. 写成算式是:(-3)×2 = -6.
比较问题 l、问题 2 中的两个算式:左边的乘数有什么 不同,所得的积又有什么改变?你有什么发现?
相反数
3×2 = 6
(-3)×2 = -6
相反数
总结 两数相乘,若把一个乘数换成它的相反数,则
35
-35
90
90
180
180
100 -100
2. 计算: 解:
3. 气象观测统计资料表明,在一般情况下,高度每上升 1 km,气温下降 6 ℃. 已知甲地现在地面气温为 21 ℃, 问甲地上空 9 km 处的气温大约是多少?
解:(-6)×9 = -54, 21 + (-54) = -33.
答:甲地上空 9 km 处的气温大约为 -33 ℃.
2 有理数的乘法的应用
典例精析
例3 用正负数表示气温的变化量,上升为正,下降为 负. 登山队攀登一座山峰,每登高 1 km,气温的变化量 为 -6 ℃,登高 3 km 后,气温有什么变化?
解:(-6)×3 = -18. 答:登高 3 km 后,气温下降 18 ℃.
合作探究
相反数
试一试1:3×(-2) = ?-6 与 3×2 = 6 对比. 相反数
= (-2) + (-2) + (-2)
相反数
试一试2:(-3)×(-2) = ?6 与 (-3)×2 = -6 对比.
相反数
相反数
与 3 × (-2) = -6 对比呢?
知识总结
思考1:类比有理数加法的运算步骤,应用有理数乘 法法则进行计算时,应按照怎样的顺序进行计算?
位置
方向 向东为正方向,向西为负
距离 这时小虫位于原来位置的西边 6 m 处. 写成算式是:(-3)×2 = -6.
比较问题 l、问题 2 中的两个算式:左边的乘数有什么 不同,所得的积又有什么改变?你有什么发现?
相反数
3×2 = 6
(-3)×2 = -6
相反数
总结 两数相乘,若把一个乘数换成它的相反数,则
35
-35
90
90
180
180
100 -100
2. 计算: 解:
3. 气象观测统计资料表明,在一般情况下,高度每上升 1 km,气温下降 6 ℃. 已知甲地现在地面气温为 21 ℃, 问甲地上空 9 km 处的气温大约是多少?
解:(-6)×9 = -54, 21 + (-54) = -33.
答:甲地上空 9 km 处的气温大约为 -33 ℃.
2 有理数的乘法的应用
典例精析
例3 用正负数表示气温的变化量,上升为正,下降为 负. 登山队攀登一座山峰,每登高 1 km,气温的变化量 为 -6 ℃,登高 3 km 后,气温有什么变化?
解:(-6)×3 = -18. 答:登高 3 km 后,气温下降 18 ℃.
《有理数的乘除法》_优秀课件
第1课时 有理数的乘法法则
【归纳总结】求一个数的倒数的方法:
名称
方法
真分数的倒数
颠倒分子和分母的位置
整数的倒数 把整数看成分母为 1 的分数,再求倒数
带分数的倒数 把带分数化成假分数,再求倒数
小数的倒数
把小数化为分数,再求倒数
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【解析】根据定义,要求 a(a≠0)的倒数,只需求1a即可,或根据乘积
是 1 的两个数互为倒数来求.
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
解:(1)因为(-2)×-12=1,所以-2
知识目标 目标突破 总结反思
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
知识目标
1.经历依次减小乘法中某个因数的值,观察、类比所得算式和 结果的过程,理解有理数的乘法法则,会进行有理数的乘法.
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
知识点二 倒数的概念
概念:乘积是____1____的两个数互为倒数.
求法:数 a(a≠0)的倒数是____1____,其中 0 没有倒数(因
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
有理数的乘法 课件(共21张PPT)人教版初中数学七年级上册
探究3
(3)如果蜗牛在直线l上以每分钟2 cm的速度向
右爬行,3分钟前它在什么位置?
2
-6
-4
-2
0
2l
位置结果:3分钟前在l上点O 左 边 6 cm处
算式表示:(+2)×(-3)=(-6).
探究4
(4)如果蜗牛在直线l上以每分钟2 cm的速度向 左爬行,3分钟前它在什么位置?
2
-2
0
2
4
6l
位置结果:3钟分前在l上点O右 边 6 cm处
• (3)几个数相乘时,如果有一个因数是0,则积为 0。
• (4)乘积是1的两个有理数互为倒数。
作业
• 课本51页习题2.10第一题
正
7.8×(-8.1)×0×(-19.6)
零
几个有理数相乘,因数都不为 0 时,积的符号怎 样确定? 有一因数为 0 时,积是多少?
归纳总结
1.几个不等于零的数相乘,积的符号由负因数的个数 决定: a.当负因数有_奇__数__个时,积为负; 奇负偶正 b.当负因数有_偶__数__个时,积为正. 2.几个数相乘,如果其中有因数为0,__积__等__于__0_
练一练
1的倒数为 1
-1的倒数为 -1
0.2的倒数为 5
-0.2的倒数为 -5
2 的倒数为 3
3
2
2 的倒数为 3
3 2
0有没有倒数 零没有倒数
1
思考:a的倒数是 对吗?
a
(a≠0时,a的倒数是1 ) a
例3 已知a与b互为相反数,c与d互为倒数,m的 绝对值为6,求 a b -cd+|m|的值.
2.2.1 有理数的乘法
学习目标
1.掌握有理数的乘法法则并能进行熟练地运算. (重点)
2.2.1.1有理数乘法法则 课件(共55张PPT) 七年级数学上册
要点归纳: 几个不等于零的数相乘,积的符号由 _负__因__数__的__个__数__决定. 当负因数有_奇__数__个时,积为负;
} 当负因数有_偶__数__个时,积为正. 奇负偶正
几个数相乘,如果其中有因数为0,_积__等__于__0__
新知探究
3.倒数
计算并观察结果有何特点?
(1)1 ×2; 2
总结归纳
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相
乘.任何数与0相乘,都得0.
如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘 (-5)X(-3)=15.
一断 二定 三算
讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
分层练习-拓展
21. 我们学习了有理数的加法法则与有理数的乘法法则.在学 习此内容时,掌握了法则,同时也学会了分类思考. (1)若 ab =6,则 a + b 的结果可能是 ①② ;(填序号) ①正数;②负数;③0. 点拨:因为 ab =6,所以 a , b 同号.当 a , b 同为正 数时, a + b >0;当 a , b 同为负数时, a + b <0.
15.如图是一个简单的数值运算程序,当输入 x 的值为 1 时,则输出的数值
为2 .
输 入 x → ×-1 → +3 → 输 出
分层练习-巩固
16.计算: (1)214×(-197);
解:原式=-4;
(2)135×(-343);
} 当负因数有_偶__数__个时,积为正. 奇负偶正
几个数相乘,如果其中有因数为0,_积__等__于__0__
新知探究
3.倒数
计算并观察结果有何特点?
(1)1 ×2; 2
总结归纳
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相
乘.任何数与0相乘,都得0.
如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘 (-5)X(-3)=15.
一断 二定 三算
讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
分层练习-拓展
21. 我们学习了有理数的加法法则与有理数的乘法法则.在学 习此内容时,掌握了法则,同时也学会了分类思考. (1)若 ab =6,则 a + b 的结果可能是 ①② ;(填序号) ①正数;②负数;③0. 点拨:因为 ab =6,所以 a , b 同号.当 a , b 同为正 数时, a + b >0;当 a , b 同为负数时, a + b <0.
15.如图是一个简单的数值运算程序,当输入 x 的值为 1 时,则输出的数值
为2 .
输 入 x → ×-1 → +3 → 输 出
分层练习-巩固
16.计算: (1)214×(-197);
解:原式=-4;
(2)135×(-343);
1.3.1有理数的乘法(一)(课件)六年级数学上册(沪教版2024)
(-2)×(-4)=+(2×4)=8.
绝对值相乘
新课讲授
从符号和绝对值两个角度观察上述所有算式,可以归纳如下: 正数乘正数,积是正数;正数乘负数,积是负数;负数乘正数,
积也是负数,负数乘负数,积是正数。积的绝对值等于各乘数绝对值 的积。
正数 × 正数 = 正数
正数 × 负数 = 负数
负数 × 正数 = 负数
负数 × 负数 = 正数
新课讲授
有理数的乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘, 任何数与0相乘,积为0.
典例分析
例1 计算: (1)5×(-3);
1 (2)(-4)×2;
解:(1)5×(-3)=-(5×3)=-15
1
1
(2)(-4)×2=-(4×2)=-2
(3)(-85)×(-34)=85×34=65 (4)38×(-2.4)=-(38×152)=-190
有理数乘法法则的理解和应用。
3 难点
有理数乘法运算中符号的判断。
新课导入
自然数的乘法:50×2= 100
正分数的乘法:3×5= 5
8 6 16
乘数中出现负有理数的 乘法运算如何进行呢?
新课讲授
思考
根据乘法的意义填空,并比较下列各组算式中,一个数乘1或-1,所得的积 有什么特点?
2×1=1+1=2,2×(-1)=(-1)+(-1)= -2 ; 3×1=1+1+1=3,3×(-1)=(-1)+(-1)+(-1)= -3 ;
(1)这20袋玉米秸秆中,质量最大是 10.5 千克;
(2)与标准质量相比,这20袋玉米秸秆总计多少千克?
学以致用
基础巩固题
绝对值相乘
新课讲授
从符号和绝对值两个角度观察上述所有算式,可以归纳如下: 正数乘正数,积是正数;正数乘负数,积是负数;负数乘正数,
积也是负数,负数乘负数,积是正数。积的绝对值等于各乘数绝对值 的积。
正数 × 正数 = 正数
正数 × 负数 = 负数
负数 × 正数 = 负数
负数 × 负数 = 正数
新课讲授
有理数的乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘, 任何数与0相乘,积为0.
典例分析
例1 计算: (1)5×(-3);
1 (2)(-4)×2;
解:(1)5×(-3)=-(5×3)=-15
1
1
(2)(-4)×2=-(4×2)=-2
(3)(-85)×(-34)=85×34=65 (4)38×(-2.4)=-(38×152)=-190
有理数乘法法则的理解和应用。
3 难点
有理数乘法运算中符号的判断。
新课导入
自然数的乘法:50×2= 100
正分数的乘法:3×5= 5
8 6 16
乘数中出现负有理数的 乘法运算如何进行呢?
新课讲授
思考
根据乘法的意义填空,并比较下列各组算式中,一个数乘1或-1,所得的积 有什么特点?
2×1=1+1=2,2×(-1)=(-1)+(-1)= -2 ; 3×1=1+1+1=3,3×(-1)=(-1)+(-1)+(-1)= -3 ;
(1)这20袋玉米秸秆中,质量最大是 10.5 千克;
(2)与标准质量相比,这20袋玉米秸秆总计多少千克?
学以致用
基础巩固题
有理数的乘法2-PPT课件
4. 若 a > 0 , b < 0 , c < 0 , 则 a b c > 0. ( 对 )
计算:
( 1/100 – 1)(1/99 – 1)(1/98 – 1)…(1/2 – 1)
解:原式=
(-99/100)×(- 98/99)×(-97/98)×…×(-1/2)
= - (99/100 × 98/99 × 97/98 × … × ½ )
(2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74)
解: (1) (-10) × 1/3 ×0.1 ×6 = [(-10) × 0.1]×( 1/3 × 6) = ( -1 ) × 2 = -2
(2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74) = [ ( -6 ) × ( - 1/3)] × 37/10 ×( - 5/74) = 2 × [ 37/10 × ( - 5/74)]
= 2 ×( - ¼) = - 1/2
(1) (-10) × 1/3 ×0.1 ×6 = - 2 (2) (-10) × ( -1/3) ×0.1 ×6 = 2 (3)(-10) × ( -1/3) ×( - 0.1) ×6 = - 2 (4) (-10) ×( - 1) ×( - 0.1 ) × ( - 6 ) = 乘法法则是什么? 2.如何进行有理数的乘法运算?
3.小学时候大家学过乘法的那些运算律? 学过: 乘法交换律 ,乘法结合律,乘法分配律
有理数乘法法则:
两数相乘,同号得正,异号得负, 并把绝对值相乘。
任何数和零相乘,都得 0 .
根据有理数的乘法法则,我们得出计算两个 不为0的数相乘步骤为:
1. 先确定积的符号。 2.计算积的绝对值。
计算:
( 1/100 – 1)(1/99 – 1)(1/98 – 1)…(1/2 – 1)
解:原式=
(-99/100)×(- 98/99)×(-97/98)×…×(-1/2)
= - (99/100 × 98/99 × 97/98 × … × ½ )
(2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74)
解: (1) (-10) × 1/3 ×0.1 ×6 = [(-10) × 0.1]×( 1/3 × 6) = ( -1 ) × 2 = -2
(2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74) = [ ( -6 ) × ( - 1/3)] × 37/10 ×( - 5/74) = 2 × [ 37/10 × ( - 5/74)]
= 2 ×( - ¼) = - 1/2
(1) (-10) × 1/3 ×0.1 ×6 = - 2 (2) (-10) × ( -1/3) ×0.1 ×6 = 2 (3)(-10) × ( -1/3) ×( - 0.1) ×6 = - 2 (4) (-10) ×( - 1) ×( - 0.1 ) × ( - 6 ) = 乘法法则是什么? 2.如何进行有理数的乘法运算?
3.小学时候大家学过乘法的那些运算律? 学过: 乘法交换律 ,乘法结合律,乘法分配律
有理数乘法法则:
两数相乘,同号得正,异号得负, 并把绝对值相乘。
任何数和零相乘,都得 0 .
根据有理数的乘法法则,我们得出计算两个 不为0的数相乘步骤为:
1. 先确定积的符号。 2.计算积的绝对值。
有理数的乘法人教版七年级数学上册PPT精品课件
解:由题意得,a+b=0,cd=1,|m|=6, m=±6. 所以原式=m×0-1+6=5. 故m(a+b)-cd+|m| 的值为5.
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
有理数的乘除与乘方课件2024-2025学年人教版数学七年级上册
速度向“西”骑了五分钟到达书店,小明五分钟前在书店的什么位置?
0
1
2
3
4
5
6
7
8
9
10
有理数的乘法
2
×
=
10
(-2)×(-5)=
10
(-2)×
2
5
5
=(-10)
×(-5)=(-10)
1、有理数的乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘。(任何数同0相乘,都得0)
有理数的乘法
例1 填空或计算
小明家在学校的什么位置?
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
有理数的乘法
小明到家后有点无聊,决定和朋友一起骑车去公园玩,小明和朋友以每分钟
2km的速度向“东”骑了五分钟到达公园,小明五分钟在公园的什么位置?
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
有理数的乘法
小明和朋友在公园游玩结束后,小明想去书店买几本书,小明以每分钟2km的
有理数的乘除
与乘方
初中数学
初一
有理数的乘法
CONTENTS
目
录
01
有理数的乘法
02
有理数的除法
03
有理数的乘方
有理数的乘法
神清气爽的清晨,小明需要到学校上课,小明骑着自行车以每分钟2km的速度向
“东”行驶了5分钟后到达学校,学校在小明家什么位置?
0
1
2
3
4
5
6
7
有理数的乘法法则+课件+人教版七年级数学上册
因数 因数 积的符号 积的绝对值 积
+3 +3
+
9
9
+3 +2
+
6
6
+3 +1
+
3
3
+3 0
0
0
正数乘正数积的符号为_正_;
积的绝对值等于各因数绝对值相_乘_.
正数乘0积为_0_;
-3×3=-9, -3×2=-6, -3×1=-3, -3×0=0.
因数 因数 积的符号 积的绝对值 积
-3 +3
-
9
3×(-1)= -3 3×(-2)= -6 3×(-3)= -9
3×(-4)= -12
(-3)×(-1)= 3 (-3)×(-2)= 6 (-3)×(-3)= 9
(-3)×(-4)= 12
寻找规律
①正数乘正数积为_正_数; ②负数乘正数积为_负_数;
③正数乘负数积为_负_数; ④负数乘负数积为_正_数; 积的绝对值等于各因数绝对值相_乘_. ⑤0与任何数相乘结果是 0 . →1.两数相乘,同号得正,异号得负,并把绝对值相乘. →2.任何数同0相乘,都得0.
为更有效的开展抢险救援工作,研究者发现抢险前后水库当中 的水位变化具有如下规律:抢险前的水位每天升高3厘米,抢险 后的水位每天下降3厘米,抢险之前,3天的水位总变化情况如何? 抢险之后,3天的水位的总变化又如何?
第三天 第二天 第一天
第一天 第二天 第三天
抢险前的水库
抢险后的水库
合作探究
抢险之前:
-9
-3 +2
-
6
-6
-3 +1
-
3
有理数的乘法(第1课时) (共24张PPT)
零没有倒数
智能闯关
第一关
计算: ① 12×(- 5) ② (- 8)×(- 7)
-60
5 ③ () 0 6
5 ④ (- 4.8)× (- ) 24
56
0
1
第二关
写出下列各数的倒数:
1 ; 4 1 1 2 2 3
-15;
1 15
0.7;
10 7
4
第三关
用“>、<、=”填空。 ①、如果a >0,b >0,则a×b________0 > ;
1.4 有理数的乘法(第1课时) 1.天上升3cm
第四天 第三天 第二天 第一天
乙水库的水位每 天下降3cm
第一天 第二天 第三天 第四天
乙 甲 思考:4天后,甲、乙水库的水位总变化 量各是多少?
如果用正号表示水位上升,用负号表 示水位下降,那么4天后 解:甲水库的水位变化量为: 3+3+3+3 =12 (厘米) =3×4
解: 6
答:气温下降18℃。
例题反馈
乙水库的水位每天下降 3cm ,上升记 为正,下降记为负,4天后,乙水库水位 变化量是多少?
第一天
第二天
第三天 第四天
解(-3)Χ 4 =-(3Χ4) =-12 答:乙水库水位 下降12cm.
乙
知识点2 倒数及其意义
一口深3.5米的深井,一只青蛙从井底沿井壁往 上爬,第一次爬了0.7米又下滑了0.1米,第二次往上 爬了0.42米又下滑了0.15米,第三次往上爬了1.25米 又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1
米,第五次往上爬了0.65米.
问题:小青蛙爬出井了吗?
义务教育教科书
智能闯关
第一关
计算: ① 12×(- 5) ② (- 8)×(- 7)
-60
5 ③ () 0 6
5 ④ (- 4.8)× (- ) 24
56
0
1
第二关
写出下列各数的倒数:
1 ; 4 1 1 2 2 3
-15;
1 15
0.7;
10 7
4
第三关
用“>、<、=”填空。 ①、如果a >0,b >0,则a×b________0 > ;
1.4 有理数的乘法(第1课时) 1.天上升3cm
第四天 第三天 第二天 第一天
乙水库的水位每 天下降3cm
第一天 第二天 第三天 第四天
乙 甲 思考:4天后,甲、乙水库的水位总变化 量各是多少?
如果用正号表示水位上升,用负号表 示水位下降,那么4天后 解:甲水库的水位变化量为: 3+3+3+3 =12 (厘米) =3×4
解: 6
答:气温下降18℃。
例题反馈
乙水库的水位每天下降 3cm ,上升记 为正,下降记为负,4天后,乙水库水位 变化量是多少?
第一天
第二天
第三天 第四天
解(-3)Χ 4 =-(3Χ4) =-12 答:乙水库水位 下降12cm.
乙
知识点2 倒数及其意义
一口深3.5米的深井,一只青蛙从井底沿井壁往 上爬,第一次爬了0.7米又下滑了0.1米,第二次往上 爬了0.42米又下滑了0.15米,第三次往上爬了1.25米 又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1
米,第五次往上爬了0.65米.
问题:小青蛙爬出井了吗?
义务教育教科书
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
01:29:59
口答:
3 6 3 (-1) ,(-1) ,-(-2) ,
4 3 3 -(-2) ,(-3) ,-[-(-1)] ,
-(-1)2n,-(-1)2n+1.
01:29:59
小结:
我们要搞清乘方、幂、底数、 指数的概念和有理数乘方运算的方 法.
01:29:59
再
01:29:59
见
01:29:59
练习P 111,2
乘方运算的符号规则: (1)正数的任何数次幂是正数. (2)负数的偶次幂是正数; 负数的奇数次幂是负数。 (3)0的任何次幂是0;1的任何次幂是1.
01:29:59
讨论:
(1)2×32和(2×3)2有什么区别? 各等于什么? (2)32和23有什么区别?各等于什 么 (3)-34和(-3)4有什么区别?各等 于什么?
有理数的乘方
初一数学组 kugealiu@
01:29:59
2、几个不等于零的有理数相 时,积的符号是如何确定的?
答:(1) 同号得正(正正得正,负负得正); (2) 异号得负; (3) 有零因子得零.
01:29:59
(2)正方形的边长为2,则面积是多少?若边 长为 a 呢?其面 积为多少?如果正方体每条边 长为a,那正方体的体积怎么计算呢?
01:29:59
一、复习
1、小学里一个数的平方和一个 数的立方是如何定义的?
答: a• a叫做a2,读作a的平方(或a的 二次方),即a2=a•a . a • a • a叫做a3 ,读作a的立方(或 a三次方),即a3=a•a•a.
01:29:59
我们把a • a记作a2,a • a • a记作a3. 同样,把(-2)×(-2)×(-2)×(-2) ×(-2)记作(-2)5. 一般地,我们有: n 个相同的因数 a 相乘,即a • a • … • a,记作an.反过来,也 有 (+0.2)4=(+0.2)×(+0.2)×(+0.2)×(+0.2) , (-a)n=(-a) (-a) (-a)… (-a).
01:29:59
六种运算及其结果
运算
加 减
乘 积
除 商
乘方 幂
运算结果 和 差
01:29:59
例1 计算:
(1)(-2)3 ; (2)(-2)4. 解:(1)(-2)3 =(-2)(-2)(-2) =-8; (2)(-2)4 =(-2)(-2)(-2)(-2) =16. 注意:表示负数的乘方,书写时一定要把整 个负数(连同符号)用括号括起来.
01:29:59
有理数的乘方 这种求n个相同因数的的积的运 算,叫做乘方,乘方的结果叫做幂. 在an中,a叫做底数,n叫做指数, an读做a的n 次方.an看做是a 的n次方 的结果时,也可读做a的n 次幂.数
指数
a的n次方
01:29:59
或
a的n 次幂
4 9
一个数可以看作是这个数本身的一次方. 例如,5就是51.
边长为2的正方形面积为2 2=2 4
2
边长为a的正方形面积为a a=a
2
边长为a的正方体的体积为a a a=a
二.
01:29:59
3
猜想:你会求n个相同因数 a 的积吗?
3、口答下列各题
(1) (-2)×(-5)×(-9)
.
(2) (-2)× (-2)× (-2)× (-2) (3) (+3) ×(+3) ×(+3) ×(+3) ×(+3) . 4、上题中(2)、(3)的乘法各有什么 特点?它们是否有共同特点?
口答:
3 6 3 (-1) ,(-1) ,-(-2) ,
4 3 3 -(-2) ,(-3) ,-[-(-1)] ,
-(-1)2n,-(-1)2n+1.
01:29:59
小结:
我们要搞清乘方、幂、底数、 指数的概念和有理数乘方运算的方 法.
01:29:59
再
01:29:59
见
01:29:59
练习P 111,2
乘方运算的符号规则: (1)正数的任何数次幂是正数. (2)负数的偶次幂是正数; 负数的奇数次幂是负数。 (3)0的任何次幂是0;1的任何次幂是1.
01:29:59
讨论:
(1)2×32和(2×3)2有什么区别? 各等于什么? (2)32和23有什么区别?各等于什 么 (3)-34和(-3)4有什么区别?各等 于什么?
有理数的乘方
初一数学组 kugealiu@
01:29:59
2、几个不等于零的有理数相 时,积的符号是如何确定的?
答:(1) 同号得正(正正得正,负负得正); (2) 异号得负; (3) 有零因子得零.
01:29:59
(2)正方形的边长为2,则面积是多少?若边 长为 a 呢?其面 积为多少?如果正方体每条边 长为a,那正方体的体积怎么计算呢?
01:29:59
一、复习
1、小学里一个数的平方和一个 数的立方是如何定义的?
答: a• a叫做a2,读作a的平方(或a的 二次方),即a2=a•a . a • a • a叫做a3 ,读作a的立方(或 a三次方),即a3=a•a•a.
01:29:59
我们把a • a记作a2,a • a • a记作a3. 同样,把(-2)×(-2)×(-2)×(-2) ×(-2)记作(-2)5. 一般地,我们有: n 个相同的因数 a 相乘,即a • a • … • a,记作an.反过来,也 有 (+0.2)4=(+0.2)×(+0.2)×(+0.2)×(+0.2) , (-a)n=(-a) (-a) (-a)… (-a).
01:29:59
六种运算及其结果
运算
加 减
乘 积
除 商
乘方 幂
运算结果 和 差
01:29:59
例1 计算:
(1)(-2)3 ; (2)(-2)4. 解:(1)(-2)3 =(-2)(-2)(-2) =-8; (2)(-2)4 =(-2)(-2)(-2)(-2) =16. 注意:表示负数的乘方,书写时一定要把整 个负数(连同符号)用括号括起来.
01:29:59
有理数的乘方 这种求n个相同因数的的积的运 算,叫做乘方,乘方的结果叫做幂. 在an中,a叫做底数,n叫做指数, an读做a的n 次方.an看做是a 的n次方 的结果时,也可读做a的n 次幂.数
指数
a的n次方
01:29:59
或
a的n 次幂
4 9
一个数可以看作是这个数本身的一次方. 例如,5就是51.
边长为2的正方形面积为2 2=2 4
2
边长为a的正方形面积为a a=a
2
边长为a的正方体的体积为a a a=a
二.
01:29:59
3
猜想:你会求n个相同因数 a 的积吗?
3、口答下列各题
(1) (-2)×(-5)×(-9)
.
(2) (-2)× (-2)× (-2)× (-2) (3) (+3) ×(+3) ×(+3) ×(+3) ×(+3) . 4、上题中(2)、(3)的乘法各有什么 特点?它们是否有共同特点?