磨削技术的发展及关键技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磨削技术的发展及关键技术

周志雄,邓朝晖,陈根余,宓海青

(湖南大学,长沙市,410082)

1 磨削技术发展概述

一般来讲,按砂轮线速度V s的高低将磨削分为普通磨削(V s V45 m/s)、高速磨削

(45 150 m/s)。按磨削精度将磨削分为普通磨削、精密磨削(加工精度1卩m~ 0.1卩m表面粗糙度R0.2卩m- 0.1卩m)、超精密磨削(加工精度v 0.1卩m ,表面粗糙度艮三0.025卩m)。按磨削效率将磨削分为普通磨削、高效磨削。高效磨削包括高速磨削、超高速磨削、缓进给磨削、高效深切磨削(HEDG)砂带磨削、快速短行程磨削、高速重负荷磨削。

高速高效磨削、超高速磨削在欧洲、美国和日本等一些工业发达国家发展很快,如德国的Aa chen大学、Bremm大学、美国的Connecticut大学等,有的在实验室完成了乂为250 m/ s、350 m/s、400 m/s的实验。据报道,德国Aachen大学正在进行目标为500 m/s 的磨削实验研究。在实用磨削方面,日本已有V s=200 m/s 的磨床在工业中应用。

我国对高速磨削及磨具的研究已有多年的历史,如湖南大学在70年代末期便进行了80m/s、1 20 m/s 的磨削工艺实验;前几年,某大学也计划开展250 m/s 的磨削研究(但至今尚未见到这方面的报道),所以说有些高速磨削技术还只是实验而已,尚未走出实验室,技术还远没有成熟,特别是超高速磨削的研究还开展得很少。在实际应用中,砂轮线速度V s 一般还是45〜60 m/s。

国内外都采用超精密磨削、精密修整、微细磨料磨具进行亚微M级以下切深磨

削的研究,以获得亚微M级的尺寸精度。微细磨料磨削,用于超精密镜面磨削的树脂结合剂砂轮的金刚石磨粒平均直径可小至4卩m日本用激光在研磨过的人造单晶金刚石上切出大量等高性一致的微小切刃,对硬脆材料进行精密磨削加工,效果很好。超硬材料微粉砂轮超精密磨削主要用于磨削难加工材料,精度可达0.025卩m日本开发了电解在线修整(ELID)超精密镜面磨削技术,使得用超细微(或超微粉)超硬磨料制造砂轮成为可能,可实现硬脆材料的高精度、高效率的超精密磨削。作平面研磨运动的双端面精密磨削技术,其加工精度、切除率都比研磨高得多,且可获得很高的平面度。电泳磨削技术也是一种新的超精密及纳M 磨削技术。

随着磨削技术的发展,磨床在加工机床中也占有相当大的比例。据1997 年欧洲机床展览会(E MO)的调查数据表明,25%勺企业认为磨削是他们应用的最主要的加工技术,车削只占23%,钻削占22%,其它占8%;而磨床在企业中占机床的比例高达42% 车床占23% 铣床占22% 钻床占14% 我国从1949〜1998年,开发生产的通用磨床有1800多种,专用磨床有几百种,磨床的拥有量占金属切削机床总拥有量的13%左右。可见,磨削技术及磨床在机械制造业中占有极其重要的位

为什么磨削技术会不断地发展?主要原因如下:

(1)加工精度高由于磨削具有其它加工方法无法比拟的特点,如砂轮上参与切削的磨粒多,切削刃多且几何形状不同;仅在较小的局部产生加工应力;磨具对断续切削、工件硬度的变化不很敏感;砂轮可实现在线修锐等,因而可使加工件获得很高的加工精度。

(2)加工效率高如缓进给深磨,一次磨削深度可达到0〜25 mm如将砂轮修整成所需形状,一次便可磨出所需的工件形状。而当V s 进一步提高后,其加工效率则更高。

(3)工程材料不断发展许多材料(如陶瓷材料、玻璃材料等)在工业中的应用不断扩大,有些材料只能采用磨削加工,需要有新的磨削技术及磨削工艺与之相适应。

⑷新的磨料磨具如人造金刚石砂轮、CBN砂轮的出现,扩大了磨削加工的应用范围。

(5) 相关技术的发展如砂轮制造技术、控制技术、运动部件的驱动技术、支撑技术等,促进了磨削技术及磨削装备的发展。

总之,磨削技术发展很快,在机械加工中起着非常重要的作用。目前,磨削技术的发展趋势是,发展超硬磨料磨具,研究精密及超精密磨削、高速高效磨削机理并开发其新的磨削工艺技术,研制高精度、高刚性的自动化磨床。

2 磨削的关键技术研究就磨削而言,特别就高速高效磨削、精密及超精密磨削而言,其涉及的内容广泛,不仅包括磨削本身的技术,也集中了其它相关的技术。关键技术介绍如下:

2.1磨削机理及磨削工艺的研究通过对磨削机理和磨削工艺的研究,揭示各种磨削过程、磨削现象的本质,找出其

变化规律,例如,磨削力、磨削功率、磨削热及磨削温度的分布、切屑的形成过程、磨削烧伤、磨削表面完整性等的影响因素和条件;不同工件材料(特别是难加工材料和特殊功能材料)和磨削条件的最佳磨削参数;磨具的磨损,新型磨具材料的磨削性能等,只有通过磨削机理和磨削工艺的研究,才能确定最佳的磨削范围,获取最佳的磨削参数。

对普通磨削而言,在磨削机理和磨削工艺方面已开展了广泛而深入的研究。在精密及超精密磨削、高速高效磨削的磨削机理和磨削工艺方面,针对不同的工程材料(如陶瓷和玻

璃)国内外开展了一些研究,但还很不全面,尚未形成完整的理论体系,还需进行广泛的研究,找出其内在的规律。可见,需要进一步研究的重点有,①磨削过程、磨削现象(如磨削力、磨削温度、磨削烧伤及裂纹等)的研究;②磨削工艺参数优化的研究;③不同材料(常用材料)的磨削机理的研究;④ 磨削过程的计算机模拟与仿真的研究。

2.2高速、高精度主轴单元制造技术主轴单元包括主轴动力源、主轴、轴承和机架几个部分,它影响着加工系统的精度、稳定性及应用范围,其动力学性能及稳定性对高速高效磨削、精密超精密磨削起着关键的作用。

提高砂轮线速度主要是提高砂轮主轴的转速,特别是在砂轮直径受到限制的场合(如内圆磨削)。因而,适应于高精度、高速及超高速磨床的主轴单元是磨床的关键部件。而对于高速高精度主轴单元系统,应该是刚性好,回转精度高,运转时温升小、稳定性好、可靠,功耗低,寿命长,同时,成本也应适中。要满足这些要求,主轴的制造及动平衡,主轴的支撑(轴承),主轴系统的润滑和冷却,系统的刚性等是很重要的。

国外主轴单元技术的发展很快,有些公司专门提供各种功能的主轴单元部件,这种主轴单元部件可以方便地配置到加工中心、超高速切削机床上。近年来高速和超高速磨床越来越多地用电主轴作为其主轴单元部件,如美国福特公司和Ingersoll 公司推出的加工中心,其主轴单元就是用的电主轴,其功率为65 kW,最高转速达15 000 r/min ,电机的响应时间很短;在EMO'97 上,电主轴是机床

制造技术中最热门的功能部件,参展商达36 家;美国Landis 公司的超高速曲轴、凸轮轴磨床的砂轮主轴,也都用电主轴。

目前,国内主轴单元的速度大约在10 000 r/min 以下,且其精度、刚性及稳定性有待于考验和提高。同时,缺乏高速、高精度、大功率的主轴单元(电主轴)。需要进一步研究的重点如下:①大功率、高转速和高精度的驱动系统的研究与开发;②高刚性、高精度、高转速重负荷的轴承或支承件的研究与开发;③高

速、高刚性、高精度的砂轮主轴和工件头架主轴的制造技术。

2.3精密、高速进给单元制造技术进给单元包括伺服驱动部件、滚动单元、位置监测单元等。进给单元是使砂轮保持正常工作的必要条件,也是评价高速、高效及超高速磨床性能的重要指标之一,因此,要求进给单元运转灵活,分辨率高,定位精度高,没有爬行,有较大的移动范围(既要适合空行程时的快进给,又要适应加工时的小进给或者微进给),既要有较大的加速度,又要有足够大的推力,刚性高,动态响应快,定位精度好。

数控机床普遍采用旋转电机(交直流伺服电机)与滚动丝杠组合的轴向进给方案。但随着高速高精度加工的发展,国内外都普遍采用了直线伺服电机直接驱动技术,高动态性能的直线电机结合数字控制技术,可达到较高的调整质量,也可满足上述要求,如德国西门子公司就在CIMT'97 作了直线电机120 m/min 高速进给的表演,而该公司的直线电机最大进给速度可达200 m/min, 其最大推力可达6600 N,最大位移距离为504 mm又如日本三井精机公司生产的高速工具磨床,主轴上下移动(行程25 mm采用直线电机后,可达400次/min,是原来的2倍,加工效率提高3〜4倍。我国国产数控进给系统(特别是高速、高

相关文档
最新文档