材料力学:第10章:应力状态分析_强度理论

合集下载

材料力学强度理论

材料力学强度理论

材料力学强度理论
材料力学强度理论是材料力学的一个重要分支,它研究材料在外力作用下的强
度和变形特性。

材料的强度是指材料抵抗破坏的能力,而变形特性则是指材料在外力作用下的形变行为。

强度理论的研究对于材料的设计、制备和应用具有重要意义。

首先,强度理论可以帮助我们了解材料的破坏机制。

材料在外力作用下会发生
破坏,而不同的材料在受力时表现出不同的破坏模式,比如拉伸、压缩、剪切等。

强度理论可以通过实验和理论分析,揭示材料在受力时的破坏机制,为材料的设计和选用提供依据。

其次,强度理论可以指导材料的合理使用。

在工程实践中,我们需要根据材料
的强度特性来选择合适的材料,并确定合理的使用条件。

强度理论可以帮助我们评估材料在特定工况下的承载能力,从而保证材料的安全可靠使用。

此外,强度理论还可以为材料的改进和优化提供指导。

通过对材料强度特性的
研究,我们可以发现材料的强度局限性,并提出改进的方案。

比如,可以通过合金化、热处理等手段来提高材料的强度,或者通过结构设计来减小应力集中,提高材料的抗破坏能力。

综上所述,材料力学强度理论是材料科学中的重要内容,它不仅可以帮助我们
了解材料的破坏机制,指导材料的合理使用,还可以为材料的改进和优化提供指导。

在未来的研究和工程实践中,我们需要进一步深入研究强度理论,不断提高材料的强度和可靠性,为社会发展和科技进步做出贡献。

材料力学四个强度理论

材料力学四个强度理论

四大强度准则理论:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

τmax=τ0。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

发生塑性破坏的条件为:所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]。

材料力学强度理论

材料力学强度理论

9 强度理论1、 脆性断裂和塑性屈服脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。

塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。

2、四种强度理论(1)最大拉应力理论(第一强度理论)材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:01σσ= (2)最大伸长拉应变理论(第二强度理论):无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 01εε=(3)最大切应力理论(第三强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值,即: 0max ττ=(4)形状改变比能理论(第四强度理论)无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:u u 0dd =强度准则的统一形式 [] σσ≤*其相当应力: r11σ=σr2123()σ=σ-μσ+σ r313σ=σ-σ222r41223311()()()2⎡⎤σ=σ-σ+σ-σ+σ-σ⎣⎦ 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。

9.1图9.1所示的两个单元体,已知正应力σ =165MPa ,切应力τ=110MPa 。

试求两个单元体的第三、第四强度理论表达式。

图9.1[解] (1)图9.1(a )所示单元体的为空间应力状态。

注意到外法线为y 及-y 的两个界面上没有切应力,因而y 方向是一个主方向,σ是主应力。

显然,主应力σ 对与y 轴平行的斜截面上的应力没有影响,因此在xoz 坐标平面内可以按照平面应力状态问题对待。

外法线为x 、z 轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a )所示单元体的三个主应力为:τστσσσ-===321、、,第三强度理论的相当应力为解题范例r4σ=()eq313165110275a σσσστ=-=+=+=MPa第四强度理论的相当应力为:()eq4a σ==252.0== MPa(2)图9.1(b)所示单元体,其主应力为第三强度理论的相当应力为:()eq31322055275b σσσ=-=+=MPa第四强度理论的相当应力为:()eq4a σ=252.0==MPa9.2一岩石试件的抗压强度为[]σ=14OMPa,E=55GPa, μ=0.25, 承受三向压缩。

材料力学应力和应变分析强度理论

材料力学应力和应变分析强度理论

§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y

x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP

材料力学应力状态分析强度理论

材料力学应力状态分析强度理论
断裂力学
断裂力学用于研究材料发生断裂时的力学行为,包括断裂韧性和断裂韧性指标。
断裂模式分析
通过对材料断裂模式的分析,了解材料在受到外力作用时如何发生破裂。
材料的强度
应力。 材料在受力过程中开始产生塑性变形的应力值。
材料在受到大幅度应力作用时发生破裂的强度。
由强度理论推导的材料设计
根据材料的强度特性,可以进行材料设计,以确保材料在使用过程中不超过其强度极限。
考虑材料疲劳的应力分析
1
疲劳寿命评估
扭转应力分析
扭转应力是材料在受扭转力作 用下的应力分布,对材料的扭 转能力和疲劳寿命影响较大。
应力分布分析
1 梁的应力分布
梁的应力分布分析可以 帮助了解梁在受力过程 中的强度和变形情况。
2 压力容器的应力分析 3 板的应力分布
压力容器的应力分析是 为了确保容器在承受压 力时不会发生破裂或变 形。
板的应力分布分析可用 于评估板在受力状态下 的强度和变形性能。
材料力学应力状态分析强 度理论
材料力学应力状态分析强度理论是研究材料受力情况及其强度特性的理论体 系,包括弹性理论、横向状态分析、应力分布分析等内容。
弹性理论
基本原理
材料在受力过程中 会发生变形,弹性 理论用于描述材料 的弹性性质和应变 的产生与传递。
弹性模量
弹性模量是衡量材 料对应力的响应能 力,不同材料具有 不同的弹性模量。
应力-应变关 系
弹性理论可以通过 应力-应变关系来描 述材料受力后的变 形情况。
限制条件
弹性理论是在一定 条件下适用的,需 要考虑材料的线性 弹性和小变形假设。
横向状态分析
横向力
横向状态分析用于研究材料在 受横向力作用下的变形和应力 分布。

材料力学 第10章 强度理论习题集

材料力学 第10章 强度理论习题集

B点的主应力为
1
y
pD
2
2
x
pD
4
3 p
33
对于薄壁圆筒,p与
pD 2

pD
4
相比很小,可忽略不计。则只
考虑外表面的应力状态即可。
采用第三强度理论
r3
1 3
pD
2
强度条件为
pD
2
[
]
采用第四强度理论
r4
1 2
1
2 2
2
3 2
3
1 2
3 pD
4
强度条件为
3 pD
4
[
]
max
T Wp
max
Ø弯曲
max
M Wz
max
[ ]
复杂应力状态下强度条件如何规定?
简 单 应 力 状 态
3
复杂应力状态下的强度条件是以强度理论为基础的。 本章介绍几个工程中常用的强度理论以及对应的强度条件。 进一步理解强度的涵义:强度是构件抵抗破坏的能力。 在载荷作用下,构件不能满足强度条件的情况可统称为强 度失效。
为什么β>45° ?
14
库仑(1773年)认为截面上的切应力τ与摩擦力ƒσ(正应力 与摩擦因数之积)的差达到某极限值时材料沿该截面破坏。
用公式表示为 f C
在不同的应力状态下,破坏面上的正应力σ与切应力τ在 坐 标系中确定了一条曲线,称为极限曲线。
曲线上的点必为破坏时三向应力圆中外圆上的点。
1
1 E
1
2
3
u
b
E
强度条件为
1
2
3
b
n
对于石料、混凝土、铸铁等脆性材料,应力

材料力学强度理论

材料力学强度理论

纵截面裂开,这与第
二强度理论旳论述
基本一致。
例6、填空题
危险点接近于三向均匀受拉旳塑性材
料,应选用 第一 强度理论进行计算,
因为此时材料旳破坏形式

脆性断。裂
例8、圆轴直径为d,材料旳弹性模量为E,泊松比为 ,为了测得轴端旳力偶m之值,但只有一枚电阻片。 (1)试设计电阻片粘贴旳位置和方向; (2) 若按照你所定旳位置和方向,已测得线应变为
(一)、有关脆断旳强度理论
1、最大拉应力理论(第一强度理论)
假定:不论材料内各点旳应力状态怎样, 只要有一点旳主应力σ1 到达单向拉伸断裂时旳 极限应力σu,材料即破坏。
在单向拉伸时,极限应力 σu =σb
失效条件可写为 σ1 ≥ σb
第一强度理论强度条件:
1 [ ]
[ ] b
n
第一强度理论—最大拉应力理论
(二)强度校核 先绘出C截面正应力分布图和剪应力分布图。
C截面
a.正应力强度校核(K1)点
max
k1
MC WZ
32 103 237 106
135Mpa 150Mpa
b.剪应力强度校核(K2)点
C截面
max
k2
FS hb
(200
100 103 22.8) 103 7 103
1 , 2 0, 3
第三强度理论旳强度条件为:
1 3 ( ) 2 [ ]
由此得: [ ]
2
剪切强度条件为: [ ]
按第三强度理论可求得: [ ] [ ]
2
第四强度理论旳强度条件为:
1
2
( 1 2 )2
( 2
3)2
( 3
1)2
3 [ ]

第12章 应力状态分析和强度理论—《材料力学》课程PTT精华版

第12章 应力状态分析和强度理论—《材料力学》课程PTT精华版
σα = σxcos2α σ ysin2α τxysin2α
12.2 平面应力状态分析
σα
=
σx
1 cos2α 2
σy
1 cos2α 2
τ xy sin 2α
σα
=
σx
σy 2
σx
σy 2
cos2α τxysin2α
同理,由 Ft = 0 得:
τα
=
σx
2
σy
sin2α
τ xy cos2α
一点的应力状态有三个主应力,
s2
s1
按其代数值排列:
σ1 σ2 σ3
4. 应力状态分类
s3
(1)单向应力状态:三个主应力中,有两个等于零,一
个不等于零的应力状态。
s
ss
s
F
F
12.1 引言
(2)二向应力状态:三个主应力中,有一个等于零,另 外两个不等于零的应力状态。
F
A
sx txy
z
B
sz
t zx t zy
2
s
A
2 Ax
CDE σ
Ay

sx
=
σx
σy 2
σx
σy 2
cos2α
τxysin2α
=
σα
同理可以证明:
Aα D
=
σx
2
σy
sin2α
τ xy cos2α
=
τα
12.2 平面应力状态分析
tyx t txy
4. 应力圆的特点
sy tyx
n
s
sx
t
sx txy
sy
t
s
t
A

材料力学第六版答案第10章

材料力学第六版答案第10章

第十章 组合变形的强度计算10-1图示为梁的各种截面形状,设横向力P 的作用线如图示虚线位置,试问哪些为平面弯曲?哪些为斜弯曲?并指出截面上危险点的位置。

(a ) (b) (c) (d) 斜弯曲 平面弯曲 平面弯曲 斜弯曲弯心()()弯心弯心()()斜弯曲 弯扭组合 平面弯曲 斜弯曲“×”为危险点位置。

10-2矩形截面木制简支梁AB ,在跨度中点C 承受一与垂直方向成ϕ=15°的集中力P =10 kN 作用如图示,已知木材的弹性模量MPa 100.14⨯=E 。

试确定①截面上中性轴的位置;②危险截面上的最大正应力;③C 点的总挠度的大小和方向。

解:66.915cos 10cos =⨯==οϕP P y KN59.215sin 10sin =⨯==οϕP P z KN4310122015=⨯=z J 4cm 3310cm W z =335625121520cm J y =⨯=3750cm W y =25.74366.94max =⨯==l P M y z KN-M 94.14359.24m ax =⨯==l P M z y KN-MMPaW M W M yy z z 84.9107501094.110101025.763633maxmax max=⨯⨯+⨯⨯=+=--σ 中性轴:οο47.2515tan 562510tan tan tan 411=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-=--ϕαy z J J 2849333105434.0101010104831066.948--⨯=⨯⨯⨯⨯⨯⨯==z y y EJ l P f m28933310259.010562510104831059.248--⨯=⨯⨯⨯⨯⨯⨯==y z z EJ l P f m 602.0259.05434.022=+=f cm方向⊥中性轴:ο47.25=α10-3 矩形截面木材悬臂梁受力如图示,P 1=800 N ,P 2=1600 N 。

应力状态分析和强度理论

应力状态分析和强度理论

03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。

清华出版社工程力学答案-第10章应力状态与强度理论及其工程应用

清华出版社工程力学答案-第10章应力状态与强度理论及其工程应用

eBook工程力学习题详细解答教师用书(第10章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题10-1 习题10-2 习题10-3 习题10-4 习题10-5 习题10-6 习题10-7 习题10-8 习题10-9 习题10-10 习题10-11 习题10-12(a)(a1)x ′习题10-1a 解图工程力学习题详细解答之十第10章 应力状态与强度理论及其工程应用10-1 木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。

试求:1.面内平行于木纹方向的剪应力; 2.垂直于木纹方向的正应力。

(a )题 解:1.平行于木纹方向的剪应力:6.0))15(2cos(0))15(2sin(2)6.1(4=°−×⋅+°−×−−−=′′y x τMPa 2.垂直于木纹方向的正应力:84.30))15(2cos(2)6.1(42)6.1(4−=+°−×−−−+−+−=′x σMPa(b )题 解:(a) 1.25 MPa(b)习题10-1图100 MPa60ºABCσxxyτ1.平行于木纹方向的剪应力:08.1))15(2cos(25.1−=°−×−=′′y x τMPa2.垂直于木纹方向的正应力:625.0))15(2sin()25.1(−=°−×−−=′x σMPa10-2 层合板构件中微元受力如图所示,各层板之间用胶粘接,接缝方向如图中所示。

若已知胶层剪应力不得超过1MPa 。

试分析是否满足这一要求。

解:2(1)sin(2(60))0.5cos(2(60)) 1.552θτ−−=×−°+⋅×−°=−MPa || 1.55MPa 1θτ=>MPa ,不满足。

四大强度理论

四大强度理论

第10章强度理论10、1 强度理论的概念构件的强度问题就是材料力学所研究的最基本问题之一。

通常认为当构件承受的载荷达到一定大小时,其材料就会在应力状态最危险的一点处首先发生破坏。

故为了保证构件能正常地工作,必须找出材料进入危险状态的原因,并根据一定的强度条件设计或校核构件的截面尺寸。

各种材料因强度不足而引起的失效现象就是不同的。

如以普通碳钢为代表的塑性材料,以发生屈服现象、出现塑性变形为失效的标志。

对以铸铁为代表的脆性材料,失效现象则就是突然断裂。

在单向受力情况下,出现塑性变形时的屈服点σ与发生断裂s时的强度极限σ可由实验测定。

sσ与bσ统称为失效应力,以安全系数除失效应力得到b许用应力[]σ,于就是建立强度条件[]σσ≤可见,在单向应力状态下,强度条件都就是以实验为基础的。

实际构件危险点的应力状态往往不就是单向的。

实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。

常用的方法就是把材料加工成薄壁圆筒(图10-1),在内压p作用下,筒壁为二向应力状态。

如再配以轴向拉力F,可使两个主应力之比等于各种预定的数值。

这种薄壁筒试验除作用内压与轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。

此外,还有一些实现复杂应力状态的其她实验方法。

尽管如此,要完全复现实际中遇到的各种复杂应力状态并不容易。

况且复杂应力状态中应力组合的方式与比值又有各种可能。

如果象单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。

由于技术上的困难与工作的繁重,往往就是难以实现的。

解决这类问题,经常就是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。

图10-1经过分析与归纳发现,尽管失效现象比较复杂,强度不足引起的失效现象主要还就是屈服与断裂两种类型。

同时,衡量受力与变形程度的量又有应力、应变与变形能等。

人们在长期的生产活动中,综合分析材料的失效现象与资料,对强度失效提出各种假说。

《工程力学》第 10 章 应力状态理论和强度理论

《工程力学》第 10 章 应力状态理论和强度理论

作应力圆:(1) 注意截面的选取
(2) 注意应力的符号,特别是剪应力 求斜截面上的应力: (1) (2) (3) (4) (5) 找准起始点 角度的旋转以C为圆心 旋转方向相同 2倍角的关系 应力的符号
工程力学电子教案
应力状态理论和强度理论
18
角度的取值范围和对应关系:

y


x
D 2 2 Dx
工程力学电子教案
应力状态理论和强度理论
12
T
T
T I
F
FS
F
x

X

X

M y IZ
QSZ IZb

X

M


X
Y

X

X
工程力学电子教案
应力状态理论和强度理论
13
§10-2 平面应力状态分析


X
Y

Y


x
X
y y
x

X
X
x

Y

Y
1. 求斜截面上的应力
y
平面应力状 态 n
0
dA ( xdA cos ) cos ( xdA cos ) sin ( ydA sin ) sin ( ydA sin ) cos 0
工程力学电子教案
应力状态理论和强度理论
15
y
y
n

Y


X
X


dA
Y



X
x

p
X


x

四大强度理论

四大强度理论

第10章强度理论10.1 强度理论的概念构件的强度问题是材料力学所研究的最基本问题之一。

通常认为当构件承受的载荷达到一定大小时,其材料就会在应力状态最危险的一点处首先发生破坏。

故为了保证构件能正常地工作,必须找出材料进入危险状态的原因,并根据一定的强度条件设计或校核构件的截面尺寸。

各种材料因强度不足而引起的失效现象是不同的。

如以普通碳钢为代表的塑性材料,以发生屈服现象、出现塑性变形为失效的标志。

对以铸铁为代表的脆性材料,失效现象则是突然断裂。

在单向受力情况下,出现塑性变形时的屈服点σ和发生断裂时s的强度极限σ可由实验测定。

sσ和bσ统称为失效应力,以安全系数除失效应力得到b许用应力[]σ,于是建立强度条件[]σσ≤可见,在单向应力状态下,强度条件都是以实验为基础的。

实际构件危险点的应力状态往往不是单向的。

实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。

常用的方法是把材料加工成薄壁圆筒(图10-1),在内压p 作用下,筒壁为二向应力状态。

如再配以轴向拉力F,可使两个主应力之比等于各种预定的数值。

这种薄壁筒试验除作用内压和轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。

此外,还有一些实现复杂应力状态的其他实验方法。

尽管如此,要完全复现实际中遇到的各种复杂应力状态并不容易。

况且复杂应力状态中应力组合的方式和比值又有各种可能。

如果象单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。

由于技术上的困难和工作的繁重,往往是难以实现的。

解决这类问题,经常是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。

图10-1经过分析和归纳发现,尽管失效现象比较复杂,强度不足引起的失效现象主要还是屈服和断裂两种类型。

同时,衡量受力和变形程度的量又有应力、应变和变形能等。

人们在长期的生产活动中,综合分析材料的失效现象和资料,对强度失效提出各种假说。

材料力学各章知识点

材料力学各章知识点

P14
杭州电子科技大学机械设计与车辆工程研究所
材料力学
期末串讲
弯 曲 变 形
多余约束 超静定梁
超静定次数
P15
杭州电子科技大学机械设计与车辆工程研究所
材料力学
应力状态 的概念 一点的应力状态 主应力 1
期末串讲
应 力 应 变 分 析 、 强 度 理 论
2 3
单向应力状态
二向应力状态 三向应力状态
扭转的 概念
外力作用特点
变形特点 扭 转
M e 9549
外力偶矩
截面法确定 扭矩图表示 纯剪切
P7
P n

T T 2 r02 t 2 A 0 t
杭州电子科技大学机械设计与车辆工程研究所
材料力学
切应力剪切 胡克定律 切应变 剪切胡克定律
期末串讲
R L
G
剪切应变能
扭 转
(rad/m)
P8
杭州电子科技大学机械设计与车辆工程研究所
材料力学
期末串讲
受力特征:外力的作用线垂直于杆轴线
弯曲变形
变形特征:变形前为直线的轴线,变形后为曲线 可动铰支座
支座基本形式
弯 曲 内 力 受弯杆件 的简化 静定梁基本形式
固定铰支座 固定端 集中力
载荷的简化
集中力偶 分布载荷 简支梁 外伸梁 悬臂梁
应力状态的分类
二向应力 状态分析
解析法 图解法
max x y 1 min 2 2
tan 2 0 2 xy

2 4 x y xy 2
x y
P16
杭州电子科技大学机械设计与车辆工程研究所
材料力学

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论

材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。

在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。

材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。

应力有三个分量:法向应力、剪应力和旋转应力。

法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。

应力状态的描述可以用应力矢量来表示。

应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。

常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。

平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。

强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。

常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。

最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。

实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。

材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。

为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。

综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。

通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。

材料力学课件第十一章应力状态分析和强度理论

材料力学课件第十一章应力状态分析和强度理论

n
薄壁圆筒的横截面面积
πD 2 F p 4

p
A πD
πD 2 F p 4 pD A πD 4
n
D
第十一章
"
p
应力状态和强度理论
(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象
直径平面
FN

FN
d
y
D Fy 0 0 pl 2 sin d plD pD 2 l plD 0 2
2
3 1
1
3 2
第十一章
4.主平面 切应力为零的截面 5.主应力
应力状态和强度理论
主面上的正应力
说明:一点处必定存在这样的一个单元体, 三个相互垂直的面 均为主平面, 三个互相垂直的主应力分别记为1 ,2 , 3 且规定按 代数值大小的顺序来排列, 即
1 2 3

F k
n
(2)当 = 45°时, max 2 min (3)当 = -45° 时, (4)当 = 90°时, 0,


x
2 0
k
11.2
二向和三向应力状态的实例
m n
分析薄壁圆筒受内压时的应力状态

z
y
D
p
m
l
n
(1)沿圆筒轴线作用于筒底的总压力为F
F

k
F
k n
p cos cos
2
F
沿截面切线方向的切应力

k pα
x
p sin

2
sin2


  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( y , y )

y
§10-3 平面应力状态主应力及最大剪应力

( x , x )

( y , y )
例:分别用解析法和图解法求图示单元体的 (1)指定斜截面上的正应力和剪应力; (2)主应力值及主方向,并画在单元体上; (3)最大剪应力值。 单位:MPa
解:(一)使用解析法求解
x 80MPa, x 60MPa, x y

y 40MPa = 30 x y
cos 2 x sin 2
2 2 102 MPa x y sin 2 x cos 2 2 22.0MPa
max x y 105 x y max x y x y 2 105 MPa 2 x 65 MPa 2 2 x min 2 2 min 65 1 105MPa, 2 0, 3 65MPa 1 105MPa, 2 0, 3 65MPa 2 x tan 2 0 2 x 1 tan 2 0 x y 1 max 105 x y 0 22.5 0 22.5 或112.5 0 22.5态的概念
P
P



m
m


P
A B C D E
A D
B E
C
• 主平面 :剪应力为零的平面
• 主应力 :主平面上的正应力 • 主方向 :主平面的法线方向
• 可以证明:通过受力构件内的任一点,一定
存在三个互相垂直的主平面。 • 三个主应力用σ1、 σ2 、 σ3 表示,按代数值 大小顺序排列,即 σ1 ≥ σ2 ≥ σ3
2
应力圆
莫尔(Mohr)圆
下面根据已知单元体上的应力 σx、 σy 、τx画应 力圆
y
y
x
y

( x , x )
x
y
x
x x
( y , y )

y
下面利用应力圆求任意斜截面上的应力
y
y

x
y
n
( , )

x
2
( x , x )
x
y
x x
平面,分别作用着最大和最小剪应力
max min
x y 2 x 2
2
2 x tan 2 0 x y
x y tan 2 1 2 x
1 tan 2 1 ctg 2 0 tan 2 0
2 1 2 0 90 即 1 0 45
用完全相似的方法可确定剪应力的极值 x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
x y tan 2 1 2 x
1 、 1 90 , 它们确定两个互相垂直的
应力状态的分类:
• 单向应力状态:三个主应力中只有一个不等
于零
• 二向应力状态(平面应力状态):两个主应
力不等于零
• 三向应力状态(空间应力状态):三个主应
力皆不等于零
• 单向应力状态也称为简单应力状态
• 二向和三向应力状态统称为复杂应力状态
圆筒形薄壁压力容器,内径为 D、壁厚为 t,承
受内力p作用
§10-2
y y
平面应力状态下的应力分析 y
yx xy
y y
x
x
x
x x
一、解析法
y
y
x
y
n

x
x
y
x x
y
x

x
y
y
n


A Acos
Asin
σ:拉应力为正
τ:顺时针转动为正
α :逆时针转动为正
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
2
x y x y 2 2 x 2 2

x y x y 2 2 x 2 2
2 2

x y 圆心坐标为 , 0 2 x y 2 半径为 x 2
p
pD 2t pD 4t
pD 1 2t pD 2 4t
p
3 0
圆球形薄壁容器,壁厚为 t,内径为D,承受内压p作用。

p

N 4 Dt A pD 4t
p
D
2
pD 1 2 4t 3 0
圆杆受扭转和拉伸共同作用
m
P
P m


N 4P 2 A d 16 m T Wt d 3
即:最大和最小剪应力所在平面与 主平面的夹角为45
二、图解法

xx yy
2 2 x y

x y
2
cos 2 x sin 2
(1)

2
2
2
sin 2 x cos 2
( 2)
(1) (2) , 得
2
( x x0 ) 2 ( y y0 ) 2 R 2
x y d 2 sin 2 x cos 2 d 2 d 若 0 时,能使 0 d x y sin 2 0 x cos 2 0 0 2
x y x y cos 2 x sin 2 和 都是的函数。利用上式便可确 2 2 定正应力和剪应力的极值 x y sin 2 x cos 2 2
2 x tan 2 0 x y
0 、 0 90 , 它们确定两个互相垂直
的平面,其中一个是最大正应力所在 平面,另一个是最小正应力所在平面
max min

x y
2
x y 2 x 2
2
d ( x y ) cos 2 2 x sin 2 d d 若 1 时,能使 0 d ( x y ) cos 2 1 2 x sin 2 1 0
相关文档
最新文档