(完整版)利用洛必达法则来处理高考中的恒成立问题
最新利用洛必达法则来处理高考中的恒成立问题27105
利用洛必达法则来处理高考中的恒成立问题27105利用洛必达法则来处理高考中的恒成立问题近几年,随着新课标在全国的范围内的实施,高考命题也在悄悄发生变化,在命题组中高校教师占很重要的地位。
他们在命题时,会受到自身研究氛围的影响,有关高等数学背景的问题会逐渐增加丰富起来。
函数图像的凸凹性,导数中的拐点,拉格朗日中值定理,李普希茨条件,洛必达法则……特别是解答题中的函数与导数题,高等数学的观点尤其突出。
虽然高考考试没有要求学生掌握,但是可以利用已有的知识和方法来解决有关背景的问题。
例如2010年和2011年高考中的全国新课标卷中的第21题中的第○2步,由不等式恒成立来求参数的取值范围问题,用初等方法处理,分析难度大,变化技巧高。
但用洛必达法则来处理却可达到事半功倍的效果。
一.洛必达法则法则1 若函数f(x) 和g(x)满足下列条件:(1) «Skip Record If...»及«Skip Record If...»;(2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;(3)«Skip Record If...»,那么«Skip Record If...»=«Skip Record If...»。
法则2 若函数f(x) 和g(x)满足下列条件:(1)«Skip Record If...»及«Skip Record If...»;(2)«Skip Record If...»,f(x) 和g(x)在«Skip Record If...»与«Skip Record If...»上可导,且g'(x)≠0;(3)«Skip Record If...»,那么«Skip Record If...»=«Skip Record If...»。
高中数学《洛必达法则在不等式恒成立问题中的运用》
利用洛必达法则来处理高考中的恒成立问题(一)应用场景近些年高考函数与导数经常考查不等式恒成立问题求参数范围,此类问题主要采用分类讨论最值和参变分离求最值,由于含参讨论比较困难,因此学生更多选择参变分离来处理。
但有时分离后的函数的最值会在无意义点处或者趋近于无穷大。
此时利用洛必达法则可达到事半功倍的效果。
(二)知识链接洛必达法则: 若函数f(x) 和g(x)满足下列条件:(1) ()lim x a f x →=()lim 0x ag x →=(或∞); (2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
例:(1)lim x ®p 2sin x -1cos x //22(sin 1)cos 0lim lim 0(cos )sin 1x x x x x x ππ→→-====-- (00型) (2)1ln 1lim lim lim 01x x x x x x x →+∞→+∞→+∞=== (+∞+∞型)注意事项:①将上面公式中的x→a,x→∞换成x→+∞,x→-∞,洛必达法则也成立。
②洛必达法则可处理00,+∞+∞,-∞-∞等,着手求极限以前,首先要检查是否满足00,+∞+∞,-∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
③若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
(三)典例示范例1:(全国新课标理)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围。
用洛必达法则来处理高考中的恒成立问题
构造函数法在高中数学中是一种重要的思想方法,就是利用函数方法来研究解决有关函数问题,运用函数的观点去分析问题、解决问题。
它的精髓是通过建立函数关系或构造函数,再运用函数的图象和性质去分析问题、转化问题。
这对培养学生开阔思路,培养分析问题、解决问题和创新的能力是有益的.高考作为选拔性的考试,仍以考查通法性,通法为主,因此构造函数思想受到高考命题者的青睐,也是学生必须掌握的,对于一般常规的构造函数,学生很快就能拿下,但我们在教学中,我们发现有些构造函数法,光“重视通法、淡化特技”有时却很不容易,让我们先从以下的题求解谈起: 例1:(2010年全国卷 压轴题)设函数x e x f --=1)(,(1) 证明:当xx x f x +≥->1)(1时,; (2) 设当0≥x时,,1)(+≤ax x x f 求a 的取值范围。
这里略去第(1)小题,仅分析(2)本小题的通法就是利用函数方法求解最值。
尝试1:很多学生构造函数11)(+--=-ax x e x f x ,设求最大值,由于含参及问题内部暗藏的复杂性,必然导致该通法无功而返。
尝试2:当0=x时,不等式成立;当0>x 时,将原不等式参数分离,得a x e e x x≥--11,构造函数xe e x g xx 11)(--=,并设法求其最小值,该法是在求简意识指导下,对实施通法的进程所作出的调整,是我们教学中所大力倡导的可能使通法变简的良策,然而,受知识所限,中学生普遍难以实施该通法,解法如下:2222)1()1()(xe e x e x g x x x ---=',记x x e x e x h 22)1()(--=则);222()(2x x e e x h x x ---='记2222)(x x e x p x ---=,则x e x p x 222)(--=',),0(022)(>>-=''x e x p x 从而0)0()(='>'p x p ,故)(x h 在),0(∞+是增函数,所以0)0()(=>h x h ,即0)(>'x g ,)(x g 在),0(∞+也是增函数;又据洛必达法则,得lim 0→∆x =)(x g 212)1(1lim lim 00=++=-+-→∆→∆xe e xe e x e e xe xx x x x x x x x ,故21≤a ,又由原不等式在)+∞,0[上有意义,知必有0≥a ,综上所述,a 的取值范围是]21,0[这道高考题在构造函数过程中进行合理的变通,在数学教学中让学生抓住特征进行思考,就不会出现像标准答案那么奇妙的放缩,学生也容易对构造函数有更新的理解。
洛必达法则与恒成立问题
洛必达法则与恒成立问题洛必达法则的应用:若()()()0x x x g x f k ≥≥,令()()()0lim 0x x x g x f p x x ≥=→,此时()()0,000==x g x f ,故()()()()()()()0lim lim lim 000x x x g x f x g x f x g x f p x x x x x x ≥''''''===→→→,故当p k ≥时()()()0x x x g x f k ≥≥恒成立。
若()()()0x x x g x f k ≥≤恒成立,令()()()0lim 0x x x g x f p x x ≥=→,此时()()0,000==x g x f ,故()()()()()()()0lim lim lim 000x x x g x f x g x f x g x f p x x x x x x ≥''''''===→→→,故当p k ≤时()()()0x x x g x f k ≥≤恒成立。
注意:①()()()()()()()0lim lim lim 000x x x g x f x g x f x g x f p x x x x x x ≥''''''===→→→求导直到分母为非零数;②分母不为零后,不能再求导;③()()()()x g x f x g x f '''''',出现繁分式一定要化简。
例1:(2010新课标理改)设函数()012≥---=ax x e x f x 对[)+∞∈,0x 恒成立,求实数a 的取值范围。
分析:()22101x x e a ax x e x f x x --≤⇒≥---=()0≥x ,属于00类型,故可以利用洛必达法则求出a 的取值范围。
2023年高考数学复习:洛必达法则
lim
x→0+
ex2-x 1=xl→ im0+
e2x=12,故 a≤12.
综上,实数 a 的取值范围是-∞,12.
则h′(x)=xex-ex+1,
记φ(x)=h′(x),则φ′(x)=xex>0,
∴h′(x)在(0,+∞)上单调递增,h′(x)>h′(0)=0,
∴h(x)在(0,+∞)上单调递增,h(x)>h(0)=0,
∴g′(x)>0,g(x)在(0,+∞)上单调递增.
由洛必达法则知
lim
x→0+
ex-xx2-1=
gf′′xx=A(可连续使用).
例 已知函数f(x)=x2ln x-a(x2-1),a∈R.若当x≥1时,f(x)≥0恒成立, 求实数a的取值范围.
解 方法一 由f(x)=x2ln x-a(x2-1)≥0,
当x=1时,不等式成立,
当 x>1 时,a≤xx22-ln 1x, 令 g(x)=xx22-ln 1x(x>1),则 g′(x)=xx2- x21--122ln x,
因为 x>1,则(x2-1-2ln x)′=2x-2x>0,
故y=x2-1-2ln x在(1,+∞)上单调递增,
则y=x2-1-2ln x>0,
故
g′(x)=xx2- x21--122ln
x >0.
所以g(x)在(1,+∞)上单调递增.
则 g(x)>g(1),由洛必达法则知lim x→1
x2ln x x2-1
2 a 1
所以f(x)min=f( e 2 )
2 a 1
=(e 2
)2·2a2-1-a[( e
2a1 2
利用洛必达法则来处理高考中的恒成立问题(2021年整理)
(完整)利用洛必达法则来处理高考中的恒成立问题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)利用洛必达法则来处理高考中的恒成立问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)利用洛必达法则来处理高考中的恒成立问题(word版可编辑修改)的全部内容。
导数结合洛必达法则巧解高考压轴题2010年和2011年高考中的全国新课标卷中的第21题中的第错误!步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
洛必达法则简介:法则1 若函数f(x) 和g (x)满足下列条件:(1) ()lim 0x a f x →= 及()lim 0x ag x →=; (2)在点a 的去心邻域内,f (x ) 与g (x) 可导且g ’(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
法则2 若函数f (x) 和g(x )满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=; (2)0A ∃,f (x ) 和g (x)在(),A -∞与(),A +∞上可导,且g'(x )≠0;(3)()()lim x f x l g x →∞'=', 那么 ()()lim x f x g x →∞=()()lim x f x l g x →∞'='。
妙用洛必达法则-2023年新高考数学导数压轴题(解析版)
妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。
用洛必达定理来解决高考压轴题5页word
用洛必达定理来解决高考压轴题一.洛必达法则法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0;(3)()()lim x f x l g x →∞'=',那么 ()()lim x f x g x →∞=()()lim x f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()limx a f x l g x →'=', 那么 ()()limx af xg x →=()()limx af x lg x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a-→洛必达法则也成立。
○2洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
利用洛必达法则来处理高考中的恒成立问题
导数结合洛必达法则巧解高考压轴题法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=',那么 ()()limx af xg x →=()()limx af x lg x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A ∃ ,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g '(x)≠0; (3)()()limx f x l g x →∞'=',那么 ()()limx f x g x →∞=()()limx f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0; (3)()()limx af x lg x →'=',那么 ()()limx af xg x →=()()limx af x lg x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a -→洛必达法则也成立。
2.洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
3.在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
“洛必达法则”巧解高考恒成立问题
“洛必达法则”巧解高考恒成立问题程汉波 杨春波(华中师范大学 数学与统计学学院,湖北 武汉 430079)含参数的不等式恒成立问题是高考的一个难点与热点,历年高考中该问题层出不穷、精彩纷呈.参数分离——讨论最值(数形结合)是该类问题的惯用方法,然而,笔者发现一个奇特的现象是许多高考试题采用参数分离法求解入手容易,思路简单,但皆因中途函数在某区间内单调性或极值难以求出而致使解答半途而废.笔者研究后发现若借助高等数学中的洛必达法则往往能化险为夷,柳暗花明.本文结合近几年全国各地高考中的恒成立问题,谈谈“洛必达法则”在其中的美妙应用.以下定理在《数学分析》(《高等数学》)即可查到,故将其证明略去.定理 若函数()x f 、()x g 在定义域D 内可导,D a ∈,满足()()0==a g a f ,()a f '、()a g '存在且()0'≠a g ,则()()()()()()()()a g a f x g x f x g x f x g x f a x a x a x ''lim lim lim ===-+→→→.例1 (2012年湖南卷理22)已知函数()x e x f ax-=,其中0≠a .(1)若对一切R x ∈,()1≥x f 恒成立,求实数a 的取值范围.解:()1≥x f 等价于1+≥x e ax.当1-≤x 或0=x 时,不等式1+≥x e ax对一切R a ∈恒成立;当1->x 且0≠x 时,不等式1+≥x e ax等价于()1ln +≥x ax ,也即等价于:当01<<-x 时,()x x a 1ln +≤;当0>x 时,()x x a 1ln +≥.所以 ①一方面,()1111lim 1ln lim 00≤⇒=+=+≤--→→a x x x a x x ;()1111lim 1ln lim 00≥⇒=+=+≥++→→a x x x a x x .故1=a .②另一方面,当1=a 时,令()1--=x e x g x,则()1'-=xe x g ,当0<x 时,()0'<x g ;当0>x 时,()0'>x g ,所以()()()00min ==≥g x g x g ,即不等式1≥-x e x恒成立.综上:实数a 的取值范围为1=a .例2 (2012年天津卷理20)已知函数()()a x x x f +-=ln 的最小值为0,其中0>a . (1)求a 的值.(2)若对任意的),0[+∞∈x ,有()2kx x f ≤恒成立,求实数k 的最小值.解:易得1=a ,过程略去;()2kx x f ≤即为()21ln kx x x ≤+-.当0=x 时,即00=,不等式对一切R k ∈恒成立;只需考略0>x 的情形,原不等式即等价于()21ln x x x k +-≥对一切0>x 恒成立.所以,①一方面,()()21121lim 2111lim 1ln lim 2002=+=+-=+-≥+++→→→x x x xx x k x x x ; ②另一方面,当21=k 时,令()()1ln 212++-=x x x x g ,则()=++-=111'x x x g ()()00012=≥⇒≥+g x g x x ,所以()2211ln x x x ≤+-对一切0≥x 成立.显然当21≥k 时,不等式()22211ln kx x x x ≤≤+-对一切0≥x 恒成立. 综上:实数k 的最小值为21=k .例3 (2012年大纲全国卷理20)设函数()[]π,0,cos ∈+=x x ax x f . (1)讨论()x f 的单调性.(2)设()x x f sin 1+≤,求实数a 的取值范围.解:(1)略去;()x x f sin 1+≤即为x x ax cos sin 1-+≤.当0=x 时,即00=,不等式对一切R a ∈恒成立;只需考略0>x 的情形,原不等式即等价于xxx a cos sin 1-+≤对一切π≤<x 0恒成立.所以,①一方面,()11sin cos lim cos sin 1lim 00≤⇒=-=-+≤++→→a x x xxx a x x ;πππ22cos sin 1lim ≤⇒=-+≤-→a x x x a x .故π2≤a .②另一方面,当π2=a 时,()[]ππ,0,cos 2∈+=x x x x f当20π≤≤x 时,由x y sin =上的点与原点连线斜率大小关系易得π2sin ≥x x ,即x x π2sin ≥,所以()1sin cos 2+≤+=x x x x f π;当ππ≤≤x 2时,220ππ≤-≤x ,则()x x x x x x f sin 112sin 221cos 2+≤≤⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+≤+=ππππ.所以当π≤≤x 0时,有 ()1sin cos 2+≤+=x x x x f π成立.显然当π2≤a 时,()≤+≤+=x x x ax x f cos 2cos π1sin +x 对于π≤≤x 0恒成立.综上:实数a 的取值范围为π2≤a .例4 (2011年新课标全国卷理21)设函数()xbx x a x f ++=1ln ,曲线()x f y =在点()()11f ,处的切线方程为032=-+y x .(1)求b a ,的值.(2)如果当0>x 且1≠x 时,有()x kx x x f +->1ln ,求实数k 的取值范围. 解:(1)易得1,1==b a ,过程略去;()x k x x x f +->1ln 等价于1ln 212--<x xx k . ①一方面,1112lim 11ln 2lim 11ln 21lim 20020≤⇒=⎪⎭⎫ ⎝⎛+-=⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--≤+++→→→k x x x x x x x x k x x x ;0022ln 2lim 11ln 21lim 121≤⇒=⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛--≤→→k x x x x x k x x .故0≤k .②另一方面,当0=k 时,令()⎪⎪⎭⎫ ⎝⎛---=--=x x x x x x x x x g ln 2111ln 21222,考虑 ()x xx x h ln 212--=,则()()01211222'>-=-+=x x x x x h ,所以()x h 在0>x 且1≠x 上单调递增,于是,当10<<x 时,()()01=<h x h ,()()012>-=x h x xx g ;当1>x 时,()()01=>h x h ,()()012>-=x h x x x g ;所以不等式1ln 2102--<=x xx k 对于0>x 且1≠x 成立.显然,当0≤k 时,不等式1ln 2102--<≤x xx k 对于0>x 且1≠x 恒成立.综上:实数k 的取值范围为0≤k .例5 (2010年新课标全国卷理21)设函数()21ax x e x f x---=.(1)若0=a ,求()x f 的单调区间.(2)若当0≥x 时,()0≥x f ,求实数a 的取值范围.解:(1)略去;()0≥x f 即为x e ax x--≤12.当0=x 时,即00=,不等式对一切R a ∈恒成立;只需考略0>x 的情形,原不等式即等价于21x x e a x --≤对一切0>x 恒成立.所以,①一方面,21212lim 21lim 1lim 0020≤⇒==-=--≤+++→→→a e x e x x e a x x x x x x ;②另一方面,当21=a 时,令()2211x x e x g x---=,则()x e x g x --=1', ()()()()()000001''''=≥⇒=≥⇒≥-=g x g g x g e x g x ,所以x e x x--≤1212对于0≥x 成立.显然,当21≤a 时,不等式2121x x e a x --≤≤对一切0>x 恒成立.综上:实数a 的取值范围为21≤a . 例6 (2010年全国卷Ⅱ理22)设函数()xe xf --=1.(1)证明:当1->x 时,()1+≥x x x f . (2)设当0≥x 时,有()1+≤ax xx f ,求a 的取值范围. 解:(1)略去;分析两边函数正负情况易得0≥a .当0=x 时,即00=,不等式对一切R a ∈恒成立;只需考略0>x 的情形,原不等式即等价于()xx e x e x a ----+≤11对一切0>x 恒成立.所以,①一方面,()21212lim 11lim 11lim 000≤⇒=-=+--=--+≤---→---→--→+++a xe e e xe e e e x e x a x x x x x x x x x x x . ②另一方面,当21=a 时,不等式整理为()0122≥++-=xe e x x g x x ,由于 ()()()()()()000002,2122'''''=≥⇒=≥⇒>=+-=g x g g x g xe x g e xe x g xx x ,所以,()xx ex e x ----+≤1121对于0>x 成立.显然,当21≤a 时,不等式()x x e x e x a ----+≤≤1121对一切0>x 恒成立.综上;实数a 的取值范围为210≤≤a . 注:师生均反映该压轴题的标准答案完全是云里雾里,思路不好找,并且感觉拼凑痕迹明显,属于知道答案而写的答案。
利用洛必达法则来处理高考中的恒成立问题
利用洛必达法则来处理高考中的恒成立问题高考中的恒成立问题是一类常见的数学问题,其中包括利用洛必达法则(L'Hôpital's Rule)解决的问题。
洛必达法则是一种处理极限的方法,通过对函数的导数进行求导,来求解一些特定的极限。
在高考中,经常出现的恒成立问题包括函数的极限和导数的求解等。
首先,我们来了解一下洛必达法则的基本思想。
洛必达法则适用于以下形式的不定式极限:lim[f(x)/g(x)],其中x趋向于a,f(x)和g(x)为可导函数。
当直接计算极限的方式不可行或不方便时,洛必达法则可以帮助我们找到极限的解。
洛必达法则的常见形式有三种:0/0型、∞/∞型和∞-∞型。
接下来,我们将分别介绍这三种形式的洛必达法则,并举例说明如何应用。
第一种形式是0/0型,即函数f(x)和g(x)在极限点a处的函数值都趋于0。
洛必达法则的核心思想是对函数f(x)和g(x)同时求导,然后再求极限。
如果求导后的函数依然满足0/0型的形式,我们可以继续应用洛必达法则,直到求导后的函数不再满足0/0型为止。
例如,我们来计算极限lim[(1-cosx)/x],其中x趋向于0。
这个极限的形式是0/0型,我们无法直接计算。
首先,对分子和分母同时求导,得到lim[sinx/1],依然是0/0型。
再次应用洛必达法则,继续求导,得到lim[cosx/0],这时分母变为0,不再满足0/0型。
因此,我们可以得出极限的结果为1第二种形式是∞/∞型,即函数f(x)和g(x)在极限点a处的函数值都趋于无穷大。
处理这种形式的洛必达法则与0/0型类似,只需对函数f(x)和g(x)同时求导,并再次应用洛必达法则,直到求导后的函数不再满足∞/∞型。
例如,我们来计算极限lim[(x^2+1)/(2x^2+3)],其中x趋向于无穷大。
这个极限的形式是∞/∞型,我们无法直接计算。
首先,对分子和分母同时求导,得到lim[2x/(4x)],依然是∞/∞型。
“洛必达法则”巧解高考恒成立问题
“洛必达法则”巧解高考恒成立问题“洛必达法则”巧解高考恒成立问题程汉波杨春波(华中师范大学数学与统计学学院,湖北武汉 430079)含参数的不等式恒成立问题是高考的一个难点与热点,历年高考中该问题层出不穷、精彩纷呈.参数分离——讨论最值(数形结合)是该类问题的惯用方法,然而,笔者发现一个奇特的现象是许多高考试题采用参数分离法求解入手容易,思路简单,但皆因中途函数在某区间内单调性或极值难以求出而致使解答半途而废.笔者研究后发现若借助高等数学中的洛必达法则往往能化险为夷,柳暗花明.本文结合近几年全国各地高考中的恒成立问题,谈谈“洛必达法则”在其中的美妙应用.以下定理在《数学分析》(《高等数学》)即可查到,故将其证明略去.定理若函数()x f 、()x g 在定义域D 内可导,D a ∈,满足()()0==a g a f ,()a f '、()a g '存在且()0'≠a g ,则()()()()()()()()a g a f x g x f x g x f x g x f a x a x a x ''lim lim lim ===-+→→→.例1 (2012年湖南卷理22)已知函数()x e x f ax-=,其中0≠a .(1)若对一切R x ∈,()1≥x f 恒成立,求实数a 的取值范围.解:()1≥x f 等价于1+≥x e ax.当1-≤x 或0=x 时,不等式1+≥x e ax对一切R a ∈恒成立;当1->x 且0≠x 时,不等式1+≥x e ax等价于()1ln +≥x ax ,也即等价于:当01<<-x 时,()x x a 1ln +≤;当0>x 时,()x x a 1ln +≥.所以①一方面,()1111lim 1ln lim 00≤?=+=+≤--→→a x x x a x x ;()1111lim 1ln lim 00≥?=+=+≥++→→a x xx a x x .故1=a .②另一方面,当1=a 时,令()1--=x e x g x,则()1'-=xe x g ,当0>x g ,所以()()()00min ==≥g x g x g ,即不等式1≥-x e x恒成立.综上:实数a 的取值范围为1=a .例2 (2012年天津卷理20)已知函数()()a x x x f +-=ln 的最小值为0,其中0>a .(1)求a 的值.(2)若对任意的),0[+∞∈x ,有()2kx x f ≤恒成立,求实数k 的最小值.解:易得1=a ,过程略去;()2kx x f ≤即为()21ln kx x x ≤+-.当0=x 时,即00=,不等式对一切R k ∈恒成立;只需考略0>x 的情形,原不等式即等价于()21ln xx x k +-≥对一切0>x 恒成立.所以,①一方面,()()21121lim 2111lim 1ln lim 2002=+=+-=+-≥+++→→→x x x x x x k x x x ;②另一方面,当21=k 时,令()()1ln 212++-=x x x x g ,则()=++-=111'x x x g ()()00012=≥?≥+g x g x x ,所以()2211ln x x x ≤+-对一切0≥x 成立.显然当21≥k 时,不等式()22211ln kx x x x ≤≤+-对一切0≥x 恒成立.综上:实数k 的最小值为21=k .例3 (2012年大纲全国卷理20)设函数()[]π,0,cos ∈+=x x ax x f .(1)讨论()x f 的单调性.(2)设()x x f sin 1+≤,求实数a 的取值范围.解:(1)略去;()x x f sin 1+≤即为x x ax cos sin 1-+≤.当0=x 时,即00=,不等式对一切R a ∈恒成立;只需考略0>x 的情形,原不等式即等价于xxx a cos sin 1-+≤对一切π≤<="" p="">①一方面,()11sin cos lim cos sin 1lim 00≤?=-=-+≤++→→a x x xxx a x x ;πππ22cos sin 1lim ≤?=-+≤-→a x x x a x .故π2≤a .②另一方面,当π2=a 时,()[]ππ,0,cos 2∈+=x x x x f当20π≤≤x 时,由x y sin =上的点与原点连线斜率大小关系易得π2sin ≥x x ,即x x π2sin ≥,所以()1sin cos 2+≤+=x x x x f π;当ππ≤≤x 2时,220ππ≤-≤x ,则()x x x x x x f sin 112sin 221cos 2+≤≤??? ?--??? ??-+≤+=ππππ.所以当π≤≤x 0时,有 ()1sin cos 2+≤+=x x x x f π成立.显然当π2≤a 时,()≤+≤+=x x x ax x f cos 2cos π1sin +x 对于π≤≤x 0恒成立.综上:实数a 的取值范围为π2≤a .例4 (2011年新课标全国卷理21)设函数()xbx x a x f ++=1ln ,曲线()x f y =在点()()11f ,处的切线方程为032=-+y x .(1)求b a ,的值.(2)如果当0>x 且1≠x 时,有()x kx x x f +->1ln ,求实数k 的取值范围.解:(1)易得1,1==b a ,过程略去;()x k x x x f +->1ln 等价于1ln 212--<="">x k .①一方面,1112lim 11ln 2lim 11ln 21lim 20020≤?=??? ??+-=?????? ?--=??? ??--≤+++→→→k x x x x x x x x k x x x ;0022ln 2lim 11ln 21lim 121≤?=??+-=??? ??--≤→→k x x x x x k x x .故0≤k .②另一方面,当0=k 时,令()---=--=x x x x x x x x x g ln 2111ln 21222,考虑 ()x xx x h ln 212--=,则()()01211222'>-=-+=x x x x x h ,所以()x h 在0>x 且1≠x 上单调递增,于是,当10<<="">2>-=x h x xx g ;当1>x 时,()()01=>h x h ,()()012>-=x h x x x g ;所以不等式1ln 2102--<=x xx k 对于0>x 且1≠x 成立.显然,当0≤k 时,不等式1ln 2102--<≤x xx k 对于0>x 且1≠x 恒成立.综上:实数k 的取值范围为0≤k .例5 (2010年新课标全国卷理21)设函数()21ax x e x f x---=.(1)若0=a ,求()x f 的单调区间.(2)若当0≥x 时,()0≥x f ,求实数a 的取值范围.解:(1)略去;()0≥x f 即为x e ax x--≤12.当0=x 时,即00=,不等式对一切R a ∈恒成立;只需考略0>x的情形,原不等式即等价于21x x e a x --≤对一切0>x 恒成立.所以,①一方面,21212lim 21lim 1lim 0020≤?==-=--≤+++→→→a e x e x x e a x x x x x x ;②另一方面,当21=a 时,令()2211x x e x g x---=,则()x e x g x --=1',()()()()()000001''''=≥?=≥?≥-=g x g g x g e x g x ,所以x e x x--≤1212对于0≥x 成立.显然,当21≤a 时,不等式2121x x e a x --≤≤对一切0>x 恒成立.综上:实数a 的取值范围为21≤a .例6 (2010年全国卷Ⅱ理22)设函数()xe xf --=1.(1)证明:当1->x 时,()1+≥x x x f .(2)设当0≥x 时,有()1+≤ax xx f ,求a 的取值范围.解:(1)略去;分析两边函数正负情况易得0≥a .当0=x 时,即00=,不等式对一切R a ∈恒成立;只需考略0>x 的情形,原不等式即等价于()xx e x e x a ----+≤11对一切0>x 恒成立.所以,①一方面,()21212lim 11lim 11lim 000≤?=-=+--=--+≤---→---→--→+++a xe e e xe e e e x e x a x x x x x xx x x x x .②另一方面,当21=a 时,不等式整理为()0122≥++-=xe e x x g x x ,由于 ()()()()()()000002,2122'''''=≥?=≥?>=+-=g x g g x g xe x g e xe x g xx x ,所以,()xx ex e x ----+≤1121对于0>x 成立.显然,当21≤a 时,不等式()x x e x e x a ----+≤≤1121对一切0>x 恒成立.综上;实数a 的取值范围为210≤≤a .注:师生均反映该压轴题的标准答案完全是云里雾里,思路不好找,并且感觉拼凑痕迹明显,属于知道答案而写的答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数结合洛必达法则巧解高考压轴题法则1 若函数f(x) 和g(x)满足下列条件:(1) lim f xx a0及 l im g x 0 ;x a⑵在点 a 的去 心邻域内,f(x) 与g(x) 可导且g'(x) K ;(3) f x liml ,那么x ag xf x f xlim -=lim l 。
x ag xx ag xf x f x lim =lim l 。
x ag x x a g x利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 1.将上面公式中的X — a , x —x 换成 X — +x, X — -X, x a , x a 洛必达法则也成立。
2. 洛必达法则可处理°,—, 0, 1 ,,Q °,型。
3. 在着手求极限以前,首先要检查是否满足 0 , — , 0 , 1 , ° , 0° , 型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时 称洛必达法则不适用,应从另外途径求极限。
4.若条件符合,洛必达法则可连续多次使 用,直到求出极限为止。
f(x) 和g(x)在,A 与 A,上可导,且g'(x)工0 ;⑶limx l ,那么xgxf x f xlim =lim l 。
x g x x g x法则3若函数f(x)和g(x)满足下列条件:(1)lim f x及 lim g x(2)在点x ax aa 的去心邻域内,f(x) 与g(x)可导且g'(x) K ;f (3) limxl ,那么x ag x0 及[im g x 0 ; (2) Af 0,和g(x)满足下列条件:⑴lim f xx法则2若函数f(x)二.高考题处理1.(2010年全国新课标理)设函数f(x) e x 1 x ax 2。
( 1)若a 0,求f(x)的单调区间;(2)若当x 0时f(x) 0,求a 的取值范围 0,对任意实数a,均在f(x) 0 ;当x 0时,f(x) 0等价于2 . ( 2011年全国新课标理)已知函数,曲线y f(x)在点(1,f (1))处的切线方程为 x 2y3 0。
(I)求a 、b 的值;(U )如果当x 0,且x 1时,f (x)—-,求k 的 x 1 x 取值范围。
(0,1)时,hh x 在0,1上为减函数,在1,上为增函数;故h x >h 1 =0h x 在0, 上为增函数Q h 1 =0 当x (0,1)时,h x 0,当x (1,+ )时,h x 0 当 x (0,1)时,g x 0,当 x (1, + )时,g x 0g x 在0,1上为减函数,在1,上为增函数解:(II )当 x 0时,f(x)xe x 12xxx 1e2(x>0),xx x则 g (x)xe2e 3x 2,令x2e x0,则 h x1, h x XgX 0,0,上为增函数,h x 0 ;知h x 在0, 上为增函数, g x 0, g(x)在 0,上为增函数。
由洛必达法则知,limx 0x e x 1 2xlx^exxlim e 3,故a —综上,知a 的取值范围为解:(II ) 由题设可得,当x0,x 1时,k<空邛1恒成立。
1 令 g (x)=2xln x1 x 21(x0,x1),则 g x2 x x 2 1 ln x x 2 11 x2 2x 2ln x 1x 2 1 ln x x 2 1 ( x0,x1 )2xln x易知h x 2ln x1 —在 0,x上为增函数, 0 ;故当时,h xk 0,即k 的取值范围为(-,0]3.已知函数f(x)=x — (1+a)lnx 在x=1时,存在极值。
(1)求实数a 的值;(2)若x>1,mlnx>f (x)-1成立,求正实数m 的取值范围x-14.已知函数f(x)= e x ,曲线y=f(x)在点(x °,y °)处的切线为y=g(x).(1)证明:对于 x R , f(x) g(x);⑵ 当x 0时,f(x) 1 +总,恒成立,求实数a 的取值范围。
1 xxx 2洛必达法则知小x l n x 切 (2)切?^ ‘ c 1 ln x *1 2呵卞1解:mln xx In x 1x In x 1 m(x 1)ln x(x 1)ln x(x 1)ln x (x 1)ln x1ln xx 1 =g(X)g(x) (l nx )-1+( x-1)1,则 g(x)1 1 x lnx2 (x 1)2x(l nx)2 (x 1)2 x(x 1)(l nx)22 2h(x)= x(ln x) (x 1) h (x)(ln x)22l nx 2x 2,令 r(x) h (x ),贝U r (x)2ln x _2_2x,令 xM (x )= M (x)=:r(x),2-2x<0,则,r(x)为减,且r(1)=0,则h (x )为减,且x不 存 在 , 对 g(x) 在 x=1 处g(x)<g(1),而 g(1)g(x)limx 1 x 1 In x(x 1)l nxlimx 1lim ln xx 1xln xlim 11 1,则 m 》1/2.x ln x 1 1 ln 12 21 1/x xh(1)=0,则g(x)为减,这样, 用 罗 比 达 法 则解:分离变量: a e (1 x) (1 x)=h(x),去导数,h (x )=—:1(x>0),分x x子 r(x)= e x (x 2 x 1) 1 ,(x [0,),扩展定义域],求导r (x) e x (x 2 3x ) 0,可知,r(x)为定义域内增函数,而 r (x ) r(0)=0.所以h (x)》0.为增函数。
则a h(0)----不存在,罗比达法则可得为1练习1. 2006年全国2理x >0都有f(x) sax 成立,求实数a 的取值范围.设函数f(x)= (x + 1)ln(x + 1),若对所有的2. 2006全国1理1 x已知函数f Xe ax . (I)设a 0,讨论yf x 的单调性; 1 x(n)若对任意 x 0,1恒有f x 1,求a 的取值范围.3. 2007全国1理4. 设函数 f(x) e x e x . (I)证明:f (x)的导数 f (x) > 2 ;(n)若对所有 x > 0都有f (x) > ax ,求a 的取值范围.5. 2008全国2理设函数f(x)sinx. (I)求f(x)的单调区间;2 cosx(n)如果对任何 x > 0 ,都有f (x) < ax ,求a 的取值范围.2k n 3,2k n “( k Z )是减函数332xcosx 2sin x sin xcosx x 则 g '(x)-------------- xvcosx? -------------------解:(I) f (x)(2 cos x)cos x sin x( sinx)(2 cosx)22cos x 1 (2 cosx)2当 2k n 2 nx2k n 2n (k Z ) 时,cosx 3 3当 2k n 2 n x 2k n4 n(k Z ) 时,cosx 331—,即 f (x);2 1,即 f (x) 0.2因此f (x)在每一个区间2k n25,2k n3(k Z )是增函数,f (x)在每一个区间解:(I)略 (n)应用洛必达法则和导数 若x 0 ,则a R ; f(x)sin x 2 cosxax若x 0,贝U —sin x — ax等价于a2 cosxsin xx(2 cosx) ,即 g(x)sin x x(2 cosx)记h(x) 2xcosx 2sin x sin xcosx x ,h'(x) 2cosx 2xsinx 2cosx cos2x 12xs in x cos2x 1 2si n x 2xsinx 2sinx(sinx x)而lim g(x) lim - sin x cosxlim 1x 0 x 0x(2 cosx) x 02+cos x xsinx 3另一方面,当x [, )时,sin x 1g(x)1 1 11-,因此a1x(2 cosx) x 3 36. 2008辽宁理In x 设函数f (x) In x ln( x 1).1 x⑴求f (x)的单调区间和极值;⑵是否存在实数a,使得关于x的不等式f (x)…a的解集为(0, ) ?若存在,求a的取值范围试说明理由.7. 2010新课标理设函数f(x)=e x 1 x ax2. (I)若a 0,求f (x)的单调区间(n)若当x》O寸f (x)求a的取值范围.8 .2010新课标文已知函数f(x) x(e x 1) ax2.解:(I)略(n)应用洛必达法则和导数当x 0 时,f (x) 0,即x(e x 1) ax2.①当x 0时,a R ;②当x 0时,x(e x 1) ax2等价于e x 1;若不存在(I)若f (x)在x 1时有极值,求函数f (x)的解析式; (n)当x 0时, f (x) 0,求a的取值范围ax,也即a227x记 g(x) ex1 , x (0,),则 g'(x)记 h(x) (x 1)e x xx (0,),则 h'(x) xe 0,因此 h(x) (x1)e x 1 在(0,)上单调递增,且 h(x) h(0) 所以 g '(x)x0,从而g(x) —在(0,x)上单调递增•由洛必达法则有 x e limg(x) lim - x 0 x 0 x xelim 1,即当x x 0 10 时,g(x)所以g(x) 1,即有a 1 •综上所述,当a 1, x 0 时,f(x)0成立.9. 2010全国大纲理 设函数f (x) 1 e (I)证明:当x 1时, (n)设当x 0时, f(x) f (x)-xx ax 1求a 的取值范围•解:(I)略 (n)应用洛必达法则和导数 由题设x 0 ,此时f (X )0.①当 a 0时,若x ax0, f (x) ②当 a 0时,当x 0时,f(x),即 1 ax 1 — 不成立; ax1x ;—;1ax 0,则a0,则1 xax 1 等价于,即x ax 1 xxexxe xx 记 g(x) xe -e x1 xe * x ,则 g '(x)2x 2 x xe x e 2e 1 (xe x x)2xe / x(xex 2 X\ e ).记 h(x) e x x 2 2 e x ,则 h'(x) e x 2x e x , h''(x) X " xe+e0.因此,h'(x) e x 2x e x 在(0,)上单调递增,且h'(0)0,所以 h'(x)即 h(x)在(0,)上单调递增,且h(0)0,所以h(x) 0.由洛必达法则有10. 2011新课标理已知函数f(x)色巫 b,曲线y f (x)在点(1,f(1))处的切线方程为x 2y 3 0. x 1 x(i)求a 、b 的值;(n)如果当x 0,且x 1时,f(x) 也仝k ,求k 的取值范围.x 1 x解:应用洛必达法则和导数「x sinx记 f (X)3 ,则f '(x)xi 己 g(x) 3sinx xcosx 2x ,贝U g'(x) 2cosx xsinx 2.因为 g''(x) xcosx sinx cosx(x tanx),g'''(x) xsinx 0,所以 g ''(x)在(0,—)上单调递减,且 g ''(x)0 ,2所以g '(x)在(0,—)上单调递减,且 g '(x)且g(x) 0,故f'(x) 哼 0,因此f(x)x s 3inx在(0,—)上单调递减因此xeg'(x)二 x 2h(x)(xe x)0,所以g(x)在(0,)上单调递增当x(o’?时,原不等式等价于x sinx 3xx叫 g (x )x xxe e lim x ——x 0xe xx xexxex xexxe1-,即当x 20时,g(x)-,即有g(x)-,所以a 2 2-.综上所述,a 的取值范围是(2押题若不等式sinx3ax 对于x (0,3)恒成立,求a 的取值范围.3sin x xcosx 2x4x0 •因此g(x)在(0,—)上单调递减,x x 2229由洛必达法则有通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足: ① 可以分离变量;② 用导数可以确定分离变量后一端新函数的单调性; ②现“”型式子.第三部分:新课标高考命题趋势及方法1.高考命题趋势近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作 为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。