八年级周周清数学测试卷

合集下载

八年级上册数学周清试卷

八年级上册数学周清试卷

一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -2B. -1.5C. 0D. 12. 如果a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 > b - 2C. a + 2 > b + 2D. a - 2 < b - 23. 已知一次函数y = kx + b的图象经过点(1,3),则下列说法正确的是()A. k > 0,b > 0B. k < 0,b < 0C. k > 0,b < 0D. k < 0,b > 04. 在等腰三角形ABC中,AB = AC,且∠BAC = 60°,那么∠ABC的度数是()A. 30°B. 45°C. 60°D. 90°5. 一个长方形的长是8cm,宽是5cm,它的周长是()A. 18cmB. 26cmC. 30cmD. 40cm二、填空题(每题5分,共25分)6. 若|a| = 5,则a的值为______。

7. 若∠A = 45°,∠B = 90°,则∠C = ______。

8. 一个圆的半径为r,则它的周长为______。

9. 已知一次函数y = 2x - 3,当x = 2时,y的值为______。

10. 在直角三角形中,若直角边分别为3cm和4cm,则斜边的长度为______。

三、解答题(每题10分,共30分)11. (10分)已知a、b是方程x^2 - 4x + 3 = 0的两个实数根,求a + b的值。

12. (10分)已知一次函数y = kx + b的图象经过点(2,-1)和(-2,5),求该一次函数的解析式。

13. (10分)在△ABC中,AB = AC,∠BAC = 80°,求∠ABC的度数。

四、应用题(15分)14. (15分)某商店销售一种商品,已知每件商品的进价为80元,售价为100元。

初二数学周周清试卷

初二数学周周清试卷

初二数学周周清试卷命题人:宿丑云 班级 姓名 成绩 .一、填空:(每空2分)1、若函数22+-=m x y 是正比例函数,则m 的值是 .2、将直线y=2x 的图象向下平移3个单位长度,得到直线____________.3、一次函数32--=x y ,它的图象与x 轴的交点是 ,通过 象限。

4、已知一次函数y=kx+5的图象通过点(-1,2),则k= .5、直线y=2x+1与y=-3x+1的交点坐标是 ,请再写出一个通过那个交点的直线的的函数解析式 .6、直线l 与y 轴交于点(0,-3),且与直线85+-=x y 平行,则直线l 的解析式 为____________.7、一次函数42+-=x y 的图象与坐标轴所围成的三角形面积是 .8、分别用x 和y 表示等腰三角形的顶角和底角的度数, y 与x 之间的函数解析式为______.由上表得与之间的关系式是 .二、选择题(每题3分)1、下列函数 (1)π2=C r (2)12-=x y (3)xy 1= (4)x y 3-= (5)12+=x y 中,是一次函数的有( ) A.4个 B.3个 C.2个 D.1个2、函数12-+=x x y 中自变量x 的取值范畴是 ( ) A .2-≥x B.1≠x C.2->x 且1≠x D.2-≥x 且1≠x3、直线x y 2=,12-=x y ,13+=x y 共同具有的特点是 ( )A.通过原点B.与y 轴交于负半轴C.y 随x 增大而增大D.y 随x 增大而减小 4、下列给出的四个点中,不在直线y =2x -3上的是 ( )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5)5、 直线a x y +-=2通过),3(1y 和),2(2y -,则1y 与2y 的大小关系是 ( )A. 21y y >B. 21y y <C.21y y =D.无法确定6、若23y x b =+-是正比例函数,则b 的值是 ( )A.0B.23C.23-D.32- 7、关于1y =2x -1, 2y =4x -2,下列说法正确的是( )A 、两直线交于y 轴于同一点;B 、两直线与x 轴交于不同两点;C 、方程2x -1 =0与4x -2=0的解相同;D 、当x=1时,1y =2y =1.8、一辆汽车从江油以40千米/时的速度驶往成都,已知江油与成都相距约160千米,则汽车距成都的距离S(千米)与其行驶的时刻t (小时)之间的函数关系是 ( )A.)0(40160≥+=t t SB.)4(40160≤-=t t SC.)40(40160<<-=t t SD.)40(40160≤≤-=t t S9、一支蜡烛长20厘米, 点燃后每小时燃烧5厘米, 燃烧时剩下的高度h (厘米)与燃烧时刻t (时)的函数关系的图象是 ( )A B C D10、如右上图中的图象(折线ABCDE )描述了一汽车在某一直线上的行驶过程中,汽车离动身地的距离s (千米)和行驶时刻t (小时)之间的函数关系,依照图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为380千米/时;④汽车自动身后3小时至4.5小时之间行驶的速度在逐步减少.其中正确的说法共有 ( )A 、1个B 、2个C 、3个D 、4个三、解答题1、(本小题8分) 已知y 是x 的一次函数, 且当1=x 时,y=-1;当x=2时,y=1.(1) 求y 与x 之间的函数关系式.(4分)(2) 求当1-=x 时y 的值.(2分)(3)若点)7,(-a 在那个函数图象上,求a .(2分)2、(本小题8分) 已知函数3)12(-++=m x m y(1)若函数的图象是通过原点的直线, 求m 的值.(2分)(2)若那个函数是一次函数,且y 随着x 的增大而减小, 求m 的取值范畴.(3分)(3)若那个函数是一次函数,且图象不通过第四象限, 求m 的取值范畴.(3分)3、(本小题6分) 在同一直角坐标系中,(1)作出函数21+-=x y 和222+=x y 的图象.(4分)(2)指出当x 在什么范畴时,21y y 。

2024八年级数学上册第十二章整式的乘除周周清检测内容:12

2024八年级数学上册第十二章整式的乘除周周清检测内容:12

检测内容:12.3-12.5得分________ 卷后分________ 评价________一、选择题(每小题4分,共32分)1.(广元中考)下列运算中正确的是( D )A .(a 2)3=a 5B .(2x +1)(2x -1)=2x 2-1C .a 8÷a 2=a 4D .(a -3)2=a 2-6a +92.(百色中考)因式分解x -4x 3的最终结果是( C )A .x (1-2x )2B .x (2x -1)(2x +1)C .x (1-2x )(2x +1)D .x (1-4x 2)3.(河南期中)计算(2a 3b 2)2÷ab 2的结果为( D )A .2a 2B .2a 5b 2C .4a 4b 2D .4a 5b 24.(河南期中)已知x 2-8x +a 可以写成一个因式的平方,则a 可为( C )A .4B .8C .16D .-165.若(3x 2y -2xy 2)÷M =xy ,则代数式M 为( B )A .3x +2yB .3x -2yC .6xyD .x -y6.(邓州市期中)多项式①4x 2-x ;②(x -1)2-4(x -1);③1-x 2;④-4x 2-1+4x ,分解因式后,结果中含有相同因式的是( D )A .①和②B .③和④C .①和④D .②和③7.(邓州市期中)用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4.若用a ,b 分别表示长方形的长和宽(a >b ),则下列关系中不正确的是( D )A.a +b =12B .a -b =2C .ab =35D .a 2+b 2=848.对于随意整数n ,多项式(4n +5)2-9都能( C )A .被6整除B .被7整除C .被8整除D .被6或8整除二、填空题(每小题4分,共24分)9.计算:(9x -4y )(9x +4y )=__81x 2-16y 2__;(-2x +12 y )2=__4x 2-2xy +14y 2__. 10.4xy ·(__3xy 2-5x 2y +2xy __)=12x 2y 3-20x 3y 2+8x 2y 2.11.(汝阳县期末)已知|m-n|=1,m+n=5,则m2-n2=__±5__.12.若a+b=-1,则3a2+6ab+3b2-5的值为__-2__.13.分解因式:(1)(遂宁中考)3a2-3b2=__3(a+b)(a-b)__;(2)(本溪中考)2a2-8ab+8b2=__2(a-2b)2__.14.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形.若拼成的长方形一边长为m,则这个长方形的周长为__(8m+12)__.三、解答题(共44分)15.(6分)计算:(1)(-4a2b3c)3÷(-2a3b2c)2;解:原式=-64a6b9c3÷4a6b4c2=-16b5c(2)[(2xy-3)(2xy+3)+(xy+3)2]÷xy.解:原式=(4x2y2-9+x2y2+6xy+9)÷xy=5xy+616.(6分)化简:(1)(x+2)(x-2)-(x-2)2;解:原式=x2-4-(x2-4x+4)=4x-8(2)(2a-1)2(1+2a)2(4a2+1)2.解:原式=(4a2-1)2(4a2+1)2=256a8-32a4+117.(12分)把下列多项式分解因式:(1)x2(y-4)-(y-4);解:原式=(y-4)(x+1)(x-1)(2)-4m3+16m2-16m;解:原式=-4m(m-2)2(3)x4-81y4;解:原式=(x2+9y2)(x+3y)(x-3y)(4)(a2+4b2)2-16a2b2.解:原式=(a+2b)2(a-2b)218.(8分) (上蔡县期中)(1)已知a2+b2=17,ab=4,求a+b的值;(2)已知a-b=5,(a+b)2=49,求a2+b2的值.解:(1)∵a2+b2=17,ab=4,∴(a+b)2=a2+b2+2ab=17+2×4=25.∴a+b=±25=±5(2)∵a-b=5,∴(a-b)2=a2+b2-2ab=25①.又∵(a+b)2=a2+b2+2ab=49②,由①②得a2+b2=3719.(12分)问题:已知多项式x4+mx3+nx-16含有因式(x-1)和(x-2),求m,n的值.解:设x4+mx3+nx-16=A(x-1)(x-2)(其中A为整式),∴取x=1,得1+m+n-16=0,①取x=2,得16+8m+2n-16=0,②由①②解得m=-5,n=20.依据以上阅读材料解决下列问题:(1)若多项式3x3+ax2-2含有因式(x-1),求实数a的值;(2)若多项式2x2+mxy+ny2-4x+2y含有因式(x+y-2),求实数m,n的值;(3)假如一个多项式与某非负数的差含有某个一次因式,则称这个非负数是这个多项式除以该一次因式的余数.恳求出多项式x2 020+2x1 010+3除以一次因式(x+1)的余数.解:(1)设3x3+ax2-2=M(x-1)(其中M为整式),∴取x=1,得3+a-2=0,解得a =-1(2)设2x2+mxy+ny2-4x+2y=N(x+y-2)(其中N为整式),∴取x=0,y=2,得4n+4=0①,取x=1,y=1,得2+m+n-4+2=0②,由①②得m=1,n=-1(3)设这个非负数为a,另一因式为Q,∴可得到关系式为x2 020+2x1 010+3-a=Q(x+1).取x=-1,得1+2+3-a=0,解得a=6.故x2 020+2x1 010+3除以一次因式(x+1)的余数为6。

人教版八年级数学下册周周清1(16.1-16.3)(原卷板答案版)

人教版八年级数学下册周周清1(16.1-16.3)(原卷板答案版)

检测内容:16.1-16.3得分________ 卷后分________ 评价________一、选择题(每小题3分,共24分)1.在下列各式中,不是二次根式的有( )①-10;②10a(a≥0);③mn(m,n同号且n≠0);④x2+1;⑤38.A.3个B.2个C.1个D.0个2.(叶县期末)若式子xx-2有意义,则实数x的取值范围是( ) A.x≥0且x≠2 B.x≥0C.x≠0 D.x>23.(开封期末)下列二次根式中,最简二次根式是( )A.12B. 5C.8D.124.(2019·重庆)估计5+2×10的值应在( )A.5和6之间B.6和7之间C.7和8之间D.8和9之间5.(南阳唐河县期中)下列运算中正确的是( )A.8-2= 6 B.23+33=6 3C.6÷2= 3 D.(2+1)(2-1)=36.如果最简二次根式3a-8与17-2a可以合并,那么使4a-2x有意义的x取值范围是( )A.x≤10 B.x≥10C.x<10 D.x>107.已知m=1+3,n=1-3,则代数式m2+n2-4mn的值为( )A.16 B.±4 C.4 D.58.甲、乙两人计算a+1-2a+a2的值,当a=5的时候得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是( )A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题(每小题3分,共21分)9.已知|a-2|+b-3=0,则a b=( ).10.计算:2-8=( ).11.在实数范围内分解因式:x3-5x=( ).12.对于任意不相等的两个数a,b,定义一种运算“※”如下:a※b=a+ba-b.如3※2=3+23-2=5,那么12※4=( ).13.(洛宁县期中)化简37-2的结果是( ). 14.(南阳唐河县期中)计算:32-18-2(5-3)0+(2-1)2+412=( ). 15.(2019·益阳)观察下列等式:①3-22=(2-1)2,②5-26=(3-2)2,③7-212=(4-3)2,…请你根据以上规律,写出第6个等式( ).三、解答题(共55分)16.(8分)(南阳淅川县期中)计算: (1)(-2)2+105-13×6;(2)(5+1)(5-1)+2-22. 17.(8分)(南阳淅川县期中)先化简,再求值:(1-1a -1)÷a 2-4a +4a 2-a,其中a =2+ 2.18.(8分)阅读下面的解题过程,判断是否正确?若不正确,请写出正确的解答. 已知m 为实数,化简:--m 3-m-1m.19.(8分)已知:x =5,y =5-2.求:(1)代数式x -y 的值;(2)代数式x 2-3xy +y 2的值.20.(11分)已知三角形的两边长分别为3和5,第三边长为c,化简:c2-4c+4-14c2-4c+16.21.(12分)阅读下列简化过程:12+1=2-1(2+1)(2-1)=2-1(2)2-1=2-113+2=3-2(3+2)(3-2)=3- 214-3=4-3(4+3)(4-3)=4- 3…从中找出化简的方法规律,然后解答下列问题.(1)计算:12+1+13+2+14+3+…+12 020+ 2 019;(2)设a=13-2,b=12-3,c=15-2,比较a,b,c的大小关系.。

2024八年级数学上册第一章勾股定理周周清检测内容1

2024八年级数学上册第一章勾股定理周周清检测内容1

检测内容:1.1-1.3得分________卷后分________评价________一、选择题(每小题5分,共30分)1.(开封期末)下列各组数据是三角形的三边长,能构成直角三角形的是( D )A.2,3,4 B.4,5,6C.32,42,52D.6,8,102.如图,在Rt△ABC中,∠ACB=90°.若AB=15 cm,则正方形ADEC和正方形BCFG 的面积和为( C )A.150 cm2B.200 cm2C.225 cm2D.无法计算第2题图第4题图第5题图3.始终角三角形的周长为24,斜边长与始终角边长之比为5∶4,则这个直角三角形的面积是( B )A.20 B.24 C.28 D.304.如图,在某次海上编队演习中,两艘航母护卫舰从同一港口O同时动身,一号舰沿南偏西30°方向以12海里/小时的速度航行,二号舰以16海里/小时的速度航行,离开港口1.5小时后它们分别到达相距30海里的A,B两点,则二号舰航行的方向是( C )A.南偏东30°B.北偏东30°C.南偏东60°D.南偏西60°5.如图,一个工人拿了一个2.5 m长的梯子,底端A放在距离墙根C点0.7 m处,另一头B点靠墙.假如梯子的顶部下滑0.4 m,则梯子的底部向外滑了( D ) A.0.4 m B.0.6 m C.0.7 m D.0.8 m6.(辉县市期末)如图①是我国古代闻名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( D )图①图②A.72 B.52 C.80 D.76二、填空题(每小题5分,共25分)7.如图,起重机吊运物体,∠ABC =90°.若BC =12 m ,AC =13 m ,则AB =__5__m. 8.已知一组勾股数中有一个数是2mn (m ,n 都是正整数,且m >n ≥2),尝试写出其他两个数(均用含m ,n 的代数式表示,只要写出一组):__m 2-n 2,m 2+n 2(答案不唯一)__.9.小东拿着一根长竹竿进一个宽为4 m 的长方形城门,他先横着拿进不去,又竖起来拿,结果竿比城门高0.5 m ,当他把竿斜着时,两端刚好顶着城门的对角,则竿长__16.25__m.10.如图,在△ABC 中,AB =AC =5,BC =6.M 为BC 的中点,过点M 作MN ⊥AC 于点N ,则MN =__125__.11.如图,长方体的底面边长分别为2 cm 和4 cm ,高为5 cm.若一只蚂蚁从P 点起先经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为__13__cm.三、解答题(共45分)12.(10分)如图,在△ABC 中,CD ⊥AB 于点D ,AC =4,BC =3,DB =95. (1)求CD ,AD 的长;(2)试推断△ABC 的形态,并说明理由.解:(1)因为CD ⊥AB ,所以CD 2+DB 2=BC 2,即CD 2+(95 )2=32,所以CD =125.因为AD 2+CD 2=AC 2,即AD 2+(125 )2=42,所以AD =165 (2)因为AB =AD +DB =165 +95=5,所以AB 2=AC 2+BC 2,所以△ABC 为直角三角形13.(10分)如图,在△ABC 中,AB =AC, BC =20 cm ,D 是腰AB 上一点,且CD =16 cm ,BD =12 cm.求:(1)∠BDC 的度数;(2)△ABC 的周长.解:(1)因为BD 2+CD 2=122+162=202=BC 2,所以∠BDC =90°(2)设AD =x cm ,则AB =AC =(x +12) cm.因为∠BDC =90°,所以∠ADC =90°,所以AD 2+CD 2=AC 2,即x 2+162=(x +12)2,解得x =143 ,∴AB =AC =1623cm ,所以△ABC 的周长为1623 +1623 +20=5313(cm) 14.(12分)强大的台风使得山坡上的一棵树甲从A 点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C 处,已知AB =4 m ,BC =13 m ,两棵树的水平距离为12 m ,求这棵树原来的高度.解:过点C 作CD ⊥AB 的延长线于点D ,则CD =12 m .由勾股定理得BD 2+CD 2=BC 2,即BD 2+122=132,所以BD =5,所以AD =AB +BD =4+5=9 m.在Rt △ACD 中,AC 2=CD 2+AD 2=122+92,所以AC =15,所以AC +AB =15+4=19(m),所以这棵树原来的高度是19 m15.(13分)台风是一种自然灾难,它以台风中心为圆心在四周上百千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为AC =300 km ,BC =400 km ,AB =500 km ,以台风中心为圆心四周250 km 以内为受影响区域.(1)求∠ACB 的度数;(2)海港C 受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E 处时,海港C 刚好受到影响,当台风运动到点F 时,海港C 刚好不受影响,即CE =CF =250 km ,则台风影响该海港持续的时间有多长?解:(1)因为AC 2+BC 2=3002+4002=5002=AB 2,所以△ABC 是直角三角形,∠ACB =90° (2)海港C 受台风影响,理由:过点C 作CD ⊥AB 于点D .因为S △ABC =12 AC ×BC =12CD ×AB .所以CD =240(km)<250 km ,所以海港C 受台风影响(3)在Rt △CDE 中,由勾股定理得ED 2+CD 2=CE 2,即ED 2+2402=2502,所以ED =70,所以EF =140 km ,则140÷20=7(小时).答:台风影响该海港持续的时间有7小时。

八年级数学周清试卷

八年级数学周清试卷

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. 0D. -52. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列函数中,图象是一条直线的是()A. y = x^2B. y = 2x + 3C. y = √xD. y = x^34. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,那么AB的长度是()A. 5cmB. 6cmC. 7cmD. 8cm5. 下列关于圆的命题中,正确的是()A. 所有半径相等的圆都是同心圆B. 所有直径相等的圆都是同心圆C. 所有圆心在一条直线上的圆都是同心圆D. 所有圆周长相等的圆都是同心圆6. 如果一个正方形的对角线长度为6cm,那么这个正方形的边长是()A. 3cmB. 4cmC. 5cmD. 6cm7. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 下列各数中,是负数的是()A. -√9B. -√4C. -√16D. -√259. 如果x^2 = 25,那么x的值是()A. 5B. -5C. 5 或 -5D. 无法确定10. 下列关于二次函数的图象的说法中,正确的是()A. 二次函数的图象一定是抛物线B. 二次函数的图象开口方向一定向上C. 二次函数的图象开口方向一定向下D. 二次函数的图象一定经过原点二、填空题(每题5分,共25分)11. 有理数a的相反数是______。

12. 在直角三角形中,如果一个角的正弦值是0.5,那么这个角的度数是______。

13. 如果一个圆的半径是r,那么这个圆的周长是______。

八年级上册数学周周清试卷带答案

八年级上册数学周周清试卷带答案

一、单选题(共32分)1.下列各等式中成立的有()个.①()a b a bc c---=--;①a b a bc c---=;①a b a bc c-++=-;①a b a bc c-+-=-.A.1B.2C.3D.42.分式434y xa+,2411xx--,22x xy yx y-++,2222a abab b+-中,最简分式有()A.1个B.2个C.3个D.4个3.下列图形,是中心对称图形的是()A.B.C.D.4.如图,Rt ABC△中,∠B=90°,12AB=,5BC=,射线AP AB⊥于点A,点E,D分别在线段AB和射线AP上运动,并始终保持DE AC=.要使DAE和ABC全等,则AD的长为()A.5B.12C.5或12D.5或13第4题第7题第13题第14题5.在实数5-,π2,4,227,3.14159,38,0.232332332……(每相邻两个2之间依次多一个3)中,无理数有()A.4个B.3个C.2个D.1个6.设2221M a a=++,2327N a a=-+,其中a为实数,则M与N的大小关系是()A.M N≥B.M N>C.N M≥D.N M>7.如图,已知BAC DAC∠=∠,则下列条件中不一定能使ABC ADC∆∆≌的是()A.B D∠=∠B.ACB ACD∠=∠C.BC DC=D.AB AD=8.下列说法,错误的是().A.0.698精确到0.01的近似值是0.7B.近似数1.205是精确到千分位C.2与2--互为相反数D.3与5-是同类项.9.估算12÷2的运算结果应在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间10.若111x y z-=,则z等于()A.x y-B.-y xxyC.xyx y-D.xyy x11.下面等式:3242122⨯=①,43271-=②,()222x y x y-=-③,()3412m m=④,()()22222x y x y x y-+=-⑤,1823÷=⑥,其中正确的个数是()A.1B.2C.3D.412.化简28xy y⋅=()A.4y x B.16y x C.4x y D.16x y13.如图,在ABC中,90A∠=︒,25AB BC==,,BD是ABC∠的平分线,设ABD△和BDC的面积分别是1S,2S,则12:S S的值为()A.5:2B.2:5C.1:2D.1:514.如图,ABC中,3AC=,4BC=,5AB=,BD平分ABC∠,如果M、N分别为BD、BC上的动点,那么CM MN+的最小值是()A.2.4B.3C.4D.4.815.如图,在ABC中,120BAC∠=︒,点D是BC上一点,BD的垂直平分线交AB于点E,将ACD沿AD 折叠,点C 恰好与点E 重合,则B ∠等于( ) A .19°B .20°C .24°D .25°第15题 第16题 第18题16.如图,AP 是ABC ∆的角平分线,PM ,PN 分别是APB △,APC ∆的高,则下列结论错误的是( )A .AM AN =B .AB PC AC BP ⋅=⋅ C .1()2ABCS AB AC MP =+⋅ D .ABPACPAB S AC S⋅=⋅二、填空题(共12分)17.已知324122a b c a b c +++=+-+-,则a b c ++的值是_____________.18.如图,在Rt ABC △中,90ACB ∠=︒,BD 平分ABC ∠,E 是AB 上一点,且AE AD =,连接DE ,过E 作EF BD ⊥,垂足为F ,延长EF 交BC 于点G .现给出以下结论:①EF FG =;①CD DE =;①BEG BDC ∠=∠;①45DEF ∠=︒.其中正确的是______.(写出所有正确结论的序号)19.将1、2、3、4……按如图方式排列.若规定(x ,y )表示第x 排从左向右第y 个数,则:①(6,6)表示的数是______;①若2021在(x ,y ),则(2x ﹣y )3的值为_______.三、解答题(共0分) 20(12分).计算(1) ()113482112-+--+-; (2)312227-+;(2) ()()()23331222++--; (4)()24251228-⨯+---+⨯21.(8分)计算下列各题,(1)已知21b +的平方根为3±,321a b +-的算术平方根为4,求6a b +的立方根; (2)已知5a =,24b =,求2a b +.22.(6分)化简求值:221241442x x x x x x x -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭,然后从55x -<<选一个合适的整数作为x 的值代入求值23.(8分)如图,点C 、F 在BE 上,BF CE =,AC DF ∥,A D ∠=∠,判断线段AB ,DE 的数量关系和位置关系,并说明理由.24.(10分)为落实“数字中国”的建设工作,市政府计划对全市中小学多媒体教室进行安装改造,现安排两个安装公司共同完成.已知甲公司安装工效是乙公司安装工效的1.5倍,乙公司安装36间教室比甲公司安装同样数量的教室多用3天. (1)求甲、乙两个公司每天各安装多少间教室?(2)已知甲公司安装费每天800元,乙公司安装费每天400元,现需安装教室120间,若想尽快完成安装工作且安装总费用不超过15000元,则最多安排甲公司工作多少天?25.(12分)已知:60AOB ∠=︒,小新在学习了角平分钱的知识后,做了一个夹角为120°(即120DPE ∠=︒)的角尺来作AOB ∠的角平分线.(1)如图1,他先在边OA 和OB 上分别取OD OE =,再移动角尺使PD PE =,然后他就说射线OP 是AOB ∠的角平分线.试根据小新的做法证明射线OP 是AOB ∠的角平分线;(2)如图2,将角尺绕点P 旋转了一定的角度后,OD OE ≠,但仍然出现了PD PE =,此时OP 是AOB ∠的角平分线吗?如果是,请说明理由.(3)如图3,在(2)的基础上,若角尺旋转后恰好使得DP OB ∥,请判断线段OD 与OE 的数量关系,并说明理由.1.A 2.C 3.B . 4.C 5.B 6.D 7.C 8.A 9.B 10.D 11.B 12.A 13.B 14.A【详解】过点C 作CE AB ⊥于E ,交BD 于点M ,过点M 作MN BC ⊥于点N , ①BD 平分ABC ∠, ①ME MN =,①CM MN CM ME CE +=+=,①Rt ABC △中,90ACB ∠=,3AC =,4BC =,5AB =,CE AB ⊥, ①1122ABC S AB CE AC BC =⋅=⋅△, ①534CE =⨯,① 2.4CE =,即CM MN +的最小值是2.4 15.B 16.D 17.9解:①3a b c +++=①114210a b c -+--+--=,①2221)2)1)0++=,10=20=10=,1=2=1,①1a =,5b =,3c =, ①1539a b c ++=++=, 18.①①① 【详解】①BD 平分ABC ∠, ①12∠=∠, ①EF BD ⊥,①349090EFD DFG ∠=∠=︒∠=∠=︒,, 又①BF BF =, ①BEF BEG ≅, ①EF FG =,故①正确; 过D 作DM ①AB , ①90ACB ∠=︒, ①DC BC ⊥, 又①BD 平分ABC ∠, ①DC DM =,在Rt EMD △中:ED>MD , ①CD DE ≠,故①说法错误; ①BEF BEG ≅, ①56∠=∠,在四边形CDFG 中87180C DFG ∠+∠+∠+∠=︒,90C DFG ∠=∠=︒,①78180∠+∠=︒, ①76180∠+∠=︒, ①68∠=∠, ①38∠=∠,即BEG BDC ∠=∠,故①正确;设12x ∠=∠=,则902A x ∠=︒-, ①AE AD =,①45AED ADE x ∠=∠=︒+,在BED 中,145AED EDB x EDB x ∠=∠+∠=+∠=+︒, ①45EDB ∠=︒, ①90EFD ∠=︒,①45DEF ∠=︒,故①正确. 故答案为:①①①. 19.31 125【详解】解:观察式子可得,第1排的个数为2111⨯-=,前1排的总数为211=,第2排的个数为2213⨯-=,前2排的总数为242=,从右到左依次增大排列, 第3排的个数为2315⨯-=,前3排的总数为293=,从左到右依次增大排列, 第4排的个数为2417⨯-=,前4排的总数为2164=,从右到左依次增大排列, ……第n 排的个数为(21)n -个,前n 排的总数为2n 个,奇数排是从左到右依次增大排列,偶数排是从右到左依次增大排列,(6,6)表示第6排从左向右第6个数前5排的总数为25,第6排的个数为11个,为偶数排,从右向左依次增大, 第6排中,从左向右第6个数,也就是从右向左第6个数, 所以(6,6)表示的数为25631+=;因为24419362021=<,24520252021=> 所以2021是在第45排,即45x = 第45排,为奇数排,从左向右依次增大, 因为2021193685-=,所以85y =将45x =,85y =代入3(2)x y -得33(90852)5(2)1x y =-=- 20.(1)1 (2)53 (3)1243- (4)4 21.(1)3 (2)3或1 22.2144x x -+,当取1x =时,原式的值为1.23.解:AB DE =,AB DE ∥, 理由:BF CE =,BF CF CE CF ∴+=+, BC EF ∴=, AC DF ∥,ACB DFE ∴∠=∠,在ABC 和DEC 中,A D ACB DFE BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS ABC DEF ∴≌,AB DE ∴=,B E ∠=∠,AB DE ∴∥.24.(1)设乙公司每天安装x 间教室,则甲公司每天安装1.5x 间教室, 根据题意得,363631.5x x-=, 解得,4x =,经检验,4x =是所列方程的解, 则1.5 1.546x =⨯=,答:甲公司每天安装6间教室,乙公司每天安装4间教室;(2)设安排甲公司工作y 天,则乙公司工作12064y-天, 根据题意得:1206800400150004yy -+⨯≤, 解这个不等式,得:15y ≤, 答:最多安排甲公司工作15天. 25.(1)解:证明:如图1中, 在OPD ∆和OPE ∆中, OD OE PD PE OP OP =⎧⎪=⎨⎪=⎩, ()OPD OPE SSS ∴∆≅∆,POD POE ∴∠=∠.(2)解:结论正确.理由:如图2中,过点P 作PH OA ⊥于H ,PK OB ⊥于K .90PHO PKB ∠=∠=︒,60AOB ∠=︒, 120HPK ∴∠=︒,120DPE HPK ∠=∠=︒,DPH EPK ∴∠=∠,在OPH ∆和OPK ∆中, 90PHO PKB DPH EPKPD PE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()DPH EPK AAS ∴∆≅∆,PH PK ∴=,则OP 是AOB ∠的角平分线; (3)解:结论:2OE OD =.理由:如图3中,在OB 上取一点T ,使得OT OD =,连接PT .OP 平分AOB ∠,POD POT ∴∠=∠,在POD ∆和POT ∆中, OD OT POD POT OP OP =⎧⎪∠=∠⎨⎪=⎩, ()POD POT SAS ∴∆≅∆,ODP OTP ∴∠=∠, PD OB ∥,180PDO AOB ∴∠+∠=︒,180DPE PEO ∠+∠=︒,60AOB ∠=︒,120DPE ∠=︒,120ODP ∴∠=︒,60PEO ∠=︒,120OTP ODP ∴∠=∠=︒,60PTE ∴∠=︒, 60TPE PET ∴∠=∠=︒, TP TE ∴=,PTE TOP TPO ∠=∠+∠,30POT ∠=︒,30TOP TPO ∴∠=∠=︒,OT TP ∴=,OT TE ∴=,2OE OD ∴=.。

八年级数学第1周周清测试题(解析卷)

八年级数学第1周周清测试题(解析卷)

八年级数学周周清测试题参考答案与试题解析一.选择题(共10小题)1.下列从左边到右边的变形,是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.2+1=o+1)C.(x+2)(x﹣2)=x2﹣4D.x2﹣4=(x+2)(x﹣2)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,据此逐项判断即可.【解答】解:4a2﹣4a+1=4a(a﹣1)+1中等号右边不是积的形式,则A不符合题意;x2+1=x(x+1)中1不是整式,则B不符合题意;(x+2)(x﹣2)=x2﹣4是乘法运算,则C不符合题意;x2﹣4=(x+2)(x﹣2)符合因式分解的定义,则D符合题意;故选:D.2.多项式2x2﹣13x+b中,有一个因式为(x﹣5),则b的值为()A.﹣15B.﹣3C.15D.3【分析】设另一个因式为(2x+m),根据因式分解的意义计算(x﹣5)(2x+m)后即可求得答案.【解答】解:设另一个因式为(2x+m),则(x﹣5)(2x+m)=2x2﹣13x+b,整理得:2x2+(m﹣10)x﹣5m=2x2﹣13x+b,则m﹣10=﹣13,b=﹣5m,那么m=﹣3,b=15,故选:C.3.分解因式:x2﹣x=()A.x(x﹣1)B.(x+1)(x﹣1)C.2x D.x(x+1)【分析】用提公因式法分解因式即可.【解答】解:x2﹣x=x(x﹣1).故选:A.4.把多项式﹣7ab﹣14abx+49aby分解因式,提公因式﹣7ab后,另一个因式是()A.1+2x﹣7y B.1﹣2x﹣7y C.﹣1+2x+2y D.﹣1﹣2x+7y【分析】﹣7ab﹣14abx+49aby的公因式为﹣7ab,提取公因式后化简即可.【解答】解:﹣7ab﹣14abx+49aby=﹣7ab(1+2x﹣7y).故选:A.5.下列多项式中不能用公式法分解因式的是()A.2++14B.2ab+a2+b2C.﹣a2+25D.﹣4﹣b2【分析】根据完全平方公式和平方差公式逐项进行分析判断即可.【解答】解:A.2++14=(+12)2,能用完全平方公式进行因式分解,不符合题意;B.2ab+a2+b2=(a+b)2,能用完全平方公式进行因式分解,不符合题意;C.﹣a2+25=(5+a)(5﹣a),能用平方差公式进行因式分解,不符合题意;D.﹣4﹣b2=﹣(4+b2),不能用公式法分解,符合题意;故选:D.6.已知9x2+mxy+16y2能运用完全平方公式因式分解,则m的值为()A.12B.±12C.24D.±24【分析】这里首末两项是3x和4y个数的平方,那么中间一项为加上或减去3x和4y乘积的2倍,进而得出答案.【解答】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2+mxy+16y2中,m=±24.故选:D.7.小明做了如下四个因式分解题,你认为小明做得对但不完整的一题是()A.x2y﹣xy2=xy(x﹣y)B.m2﹣2mn+n2=(m﹣n)2C.a3﹣a=a(a2﹣1)D.﹣x2+y2=(y+x)(y﹣x)【分析】原式各项分解得到结果,即可做出判断.【解答】解:A、x2y﹣xy2=xy(x﹣y),正确;B、m2﹣2mn+n2=(m﹣n)2,正确;C、a3﹣a=a(a2﹣1)=a(a+1)(a﹣1),错误;D、﹣x2+y2=(y+x)(y﹣x),正确,故选:C.8.若k为任意整数,则(2k+3)2﹣(2k﹣2)2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除【分析】利用平方差公式分解因式后可得结论.【解答】解:(2k+3)2﹣(2k﹣2)2=[(2k+3)+(2k﹣2)][(2k+3)﹣(2k﹣2)]=(2k+3+2k﹣2)(2k+3﹣2k+2)=5(4k+1),∴(2k+3)2﹣(2k﹣2)2的值总能被5整除.故选:C.9.若a+b=3,a﹣b=7,则a2﹣b2的值为()A.﹣21B.21C.﹣10D.10【分析】利用平方差公式分解因式,进而将已知代入求出即可.【解答】解:∵a+b=3,a﹣b=7,∴a2﹣b2=(a+b)(a﹣b)=3×7=21.故选:B.10.已知m+n=8,则2+22+(1﹣m)(1﹣n)的值为()A.32B.25C.10D.64【分析】对所求的式子进行变形处理,得到含(m+n)的式子,再代入m+n=8即可.【解答】解:∵2+22+(1﹣m)(1﹣n)=2+22+1﹣(m+n)+mn,=2+2+2B2+1﹣(m+n)=(rp22+1﹣(m+n)∵m+n=8,所以原式=32+1﹣8=25.故选:B.二.填空题(共4小题)11.将多项式6a2b﹣3ab2+12a2b2分解因式时,应提取的公因式是3ab.【分析】公因式的确定,一看系数:若各项系数都是整数,应提取各项系数的最大公因数;二看字母:公因式的字母是各项相同的字母;三看字母的指数:各相同字母的指数取指数最低的.【解答】解:对多项式6a2b﹣3ab2+12a2b2分解因式时,应提取的公因式是3ab,故答案为:3ab.12.根据如图所示的拼图过程,写出一个多项式的因式分解:x2+2x+4x+8=(x+4)(x+2).【分析】利用两种方法表示出这个图形的面积,列出等式即可.【解答】解:四张长方形或正方形纸片拼成一个大长方形,面积可以表示为:x2+2x+4x+8=x2+6x+8=(x+4)(x+2).故答案为:x2+2x+4x+8=(x+4)(x+2).13.分解因式:ab2﹣a2=a(b2﹣a).【分析】先找出多项式的公因式是a,再分解因式即可.【解答】解:ab2﹣a2=a(b2﹣a).故答案为:a(b2﹣a).14.分解因式:29a2−43a+2=29(a﹣3)2.【分析】先提取公因式29,再对余下的多项式利用完全平方公式继续分解.【解答】解:29a2−43a+2=29(a2﹣6a+9)=29(a﹣3)2.故答案为:29(a﹣3)2.三.解答题15.把下面各式因式分解:(1)6ax﹣12ay+18az;(2)﹣15m3n2+20m2n﹣5mn;(3)3a(x﹣y)﹣3b(x﹣y);【解答】解:(1)6ax﹣12ay+18az=6a(x﹣2y+3z);(2)﹣15m3n2+20m2n﹣5mn=﹣5mn(3m2n﹣4m+1);(3)3a(x﹣y)﹣3b(x﹣y)=3(x﹣y)(a﹣b);16.把下面各式因式分解:(1)9x2﹣16.(3)x2(m﹣2)+y2(2﹣m).(3)x2(x﹣2)﹣16(x﹣2);【解答】解:(1)9x2﹣16=(3x+4)(3x﹣4).(2)x2(m﹣2)+y2(2﹣m)=(m﹣2)(x2﹣y2)=(m﹣2)(x+y)(x﹣y).(3)x2(x﹣2)﹣16(x﹣2)=(x﹣2)(x2﹣16)=(x﹣2)(x﹣4)(x+4);17.把下面各式因式分解:(1)3a2﹣6ab+3b2;(2)(m﹣n)2﹣6(n﹣m)+9.(3)9(2x﹣1)2﹣6(2x﹣1)+1.【解答】解:(1)3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2;(2)(m﹣n)2﹣6(n﹣m)+9=(m﹣n)2+6(m﹣n)+9=[(m﹣n)+3]2=(m﹣n+3)2.(3)9(2x﹣1)2﹣6(2x﹣1)+1=[3(2x﹣1)﹣1]2=(6x﹣4)2=4(3x﹣2)2.18.利用因式分解的方法简算(1)2022﹣542+256×352(2)89×18−25×0.125(3)1022+102×196+982【解答】解:(1)2022﹣542+256×352=(202+54)(202﹣54)+256×352=256×148+256×352=256×(148+352)=256×500=128000;(2)89×18−25×0.125=89×18−25×18=(89−25)×18=64×18=8;(3)1022+102×196+982=1022+2×102×98+982=(102+98)2=2002=40000.19.先分解因式,然后计算;(1)已知x﹣y=1,求12x2﹣xy+12y2;(2)﹣9x2+12xy﹣4y2,其中x=43,y=−12;(3)(r2)2−(K2)2,其中a=−18,b=2.【解答】解:(1)∵x﹣y=1,∴12x2﹣xy+12y2=12(x﹣y)2=12×12=12;(2)∵x=43,y=−12,∴﹣9x2+12xy﹣4y2=﹣(9x2﹣12xy+4y2)=﹣(3x﹣2y)2=﹣[3×43−2×(−12)]2=﹣25;(3)∵a=−18,b=2,∴(r2)2−(K2)2,=(r2+K2)(r2K2)=ab=−18×2=−14.。

八年级数学周周清测试卷(6.1-6.4)

八年级数学周周清测试卷(6.1-6.4)

八年级数学周周清测试卷(6.1-6.4)一.选择题(25分,每小题5分)1.下列变量之间的关系:(1)多边形的对角线条数与边数;(2)三角形面积与它的底边长;(3)x-y=3中的x与y;(4)中的y与x;(5)圆面积与圆的半径。

其中成函数关系的有().A.2个 B.3个 C.4个 D.5个2.下列函数中,是一次函数但不是正比例函数的是().A. B. C. D.3.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是().A.B.C.D.4.下列一次函数中,的值随着值的增大而减小的有()A. B. C.D.5.在一次函数的图象上的点是()A.(2,3) B.(2,1) C.(0,3)D.(3,0)二.填空题(36分,每空2分)6. 分别指出下列关系式中的变量与常量:圆的面积公式(S是面积,R是半径)中常量是变量是正多边形的内角公式(是正多边形的一个内角的度数,n为正多边形的边数)中常量是变量是.7.正比例函数的图象位于象限,y随着x的增大而 .8.一次函数的图象不经过象限,y随着x的增大而 .9.直线与直线不平行.(在横线上填上一个合适的解析式即可)10. 假设甲、乙两人在一次赛跑中,路程S与时间t的关系如图,那么可知道:(1)这是一次米赛跑;(2)甲、乙两人中先到达终点是 .11. 若函数是正比例函数,则= .12. 一次函数y=kx+b的图象如图所示,看图填空:(1)当x=0时,y=____________,当x=____________时,y=0;(2)k=__________,b=____________;(3)当x=5时,y=__________,当y=30时,x=___________.三.解答题(39分,16题12分,其余每小题9分)13.当x=5时,求下列各函数解析式的值:(1);(2);(3)y= ;(4).14.已知:求:(1)求当x取1,-1时的值;(2)求当时x的值.15.填写下表,并观察下列两个代数式的值的变化情况:n 1 2 3 4 5 6 7 85n+6 11 162126 313641 46随着n的值逐渐变大,代数式5n+6的值如何变化?16.某学生的家离学校2km,他以km/min的速度骑车到学校,写出他与学校的距离s(km)和骑车的时间t(min)的函数关系式为,s是t的函数.1.若一次函数y=-x+b的图象经过点(0,-3),求b的值.2.若函数y=-2mx-(m2-9)的图象经过原点,求m的值.。

八年级数学实验班周周清试题

八年级数学实验班周周清试题

八年级数学周周清(满分60分)班级姓名分数一.选择题(每题4分,共12分)1·、四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC. 其中一定能判定这个四边形是平行四边形的条件有()A.1组 B.2组 C.3组 D.4组2、如图1,在平行四边形ABCD 中,AB=3,AD=4,∠ABC=60°,过BC 的中点E 作EF ⊥AB ,垂足为点F,与DC 的延长线相交于点H ,则△DEF 的面积是() A.B.C.D.43、如图2,平行四边形ABCD 的对角线AC 、BD 相交于点O ,BD=12cm ,AC=6cm ,点E 在线段BO 上从点B 以1cm/s 的速度运动,点F 在线段OD 上从点O 以2cm/s 的速度运动.若点E 、F 同时运动,设运动时间为t 秒,当t 为何值时,四边形AECF 是平行四边形.(图1) (图2) (图3)A.2sB.4sC.6sD.12s二.填空题(每题4分,共12分)4、如图3,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,FBC=30度,CE=3cm,CF=5cm,则平行四边形ABCD 的周长为 。

5、如右图已知平行四边形ABCD 的周长为36cm ,过D 作AB ,BC 边上的高DE 、DF ,且cm,,则平行四边形ABCD 的面积是.6、□ABCD 中,AB =2,BC =3,∠B ,∠C 的平分线交AD 于E 、F ,则EF =. 三.解答题(共36分)7、(10分)如图,已知四边形ABCD 中,点E ,F ,G ,H 分别是AB 、CD 、ACBD 的中点,并且点E 、F 、G 、H 有在同一条直线上.求证:EF 和GH 互相平 分。

8、(13分)如图,已知在平行四边形ABCD 中,E 、F 是对角线BD 上的两点,BE=DF ,点G 、H 分别在BA 和DC 的延长线上,且AG=CH ,连接GE 、EH 、HF 、FG .ABCDF E图4GF EDCBA(1)求证:四边形GEHF 是平行四边形;(2)若点G 、H 分别在线段BA 和DC 上,其余条件不变,则(1)中的结论是否成立?9、(13分)已知,如图△ABC 是等边三角形,过AC 边上的点D 作DG ∥BC ,交AB 于点G ,在GD 的延长线上取点E ,使DE =DC ,连接AE 、BD 。

周周清测试题八年级数学

周周清测试题八年级数学

第1页,共4页第2页,共4页学校: 班级: 姓名: 考号:密封线八年级数学周周清测试题一、选择题:(每题3分,共18分)1、下列图形不是轴对称图形的是( )A 、平行四边形B 、矩形C 、菱形D 、等腰梯形2、若O 是四边形ABCD 对角线的交点且OA=OB=OC=OD ,则四边形ABCD 一定是( )A 、平行四边形B 、矩形C 、正方形D 、菱形 3、如图,ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A 、3 cmB 、6 cmC 、9 cmD 、12 cm4、已知菱形的两条对角线长分别是4和8,则此菱形的面积是( ) A 、32 B 、64 C 、16 D 、245、顺次连接任意四边中点所得的中点四边形是( ) A 、菱形 B 、正方形 C 、矩形 D 、平行四边形6、下列命题中正确的是( ) A 、对角线互相平分的四边形是菱形 B 、对角线互相平分且相等的四边形是菱形 C 、对角线互相垂直的四边形是菱形 D 、对角线互相垂直平分的四边形是菱形。

二、填空题:(每小题3分,共18分)7、已知O 是ABCD 的对角线的交点,AC=38cm ,BD= 24cm ,AD=14 cm ,那么△OBC 的周长等于 cm8、若正方形的面积为2cm 2,则正方形对角线长为 cm 。

9、如图,在ABCD 中,DB =DC ,∠C =700,AE ⊥BD 于E ,则∠DAE = 度 10、如图,BD 是ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需要增加的一个条件是:11、若菱形的周长为16 cm ,一个内角为60°,则菱形的面积为______cm 2。

12、如图在ABCD 中,已知对角线AC 和BD 相交于点O ,△AB O 的周长为15,AB =6,那么对角线AC +BD =第3页,共4页 第4页,共4页密封线三、解答题:(共24分)13、如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG.观察猜想BE 与DG 之间的大小关系,并证明你的结论。

初二周周清数学试卷答案

初二周周清数学试卷答案

一、选择题(每题3分,共30分)1. 若a,b是实数,且a + b = 0,则a与b互为()A. 相等B. 相邻C. 倒数D. 相反数答案:D解析:根据实数的性质,若a + b = 0,则a与b互为相反数。

2. 下列方程中,解为正数的是()A. x + 1 = 0B. x - 1 = 0C. x^2 - 1 = 0D. x^2 + 1 = 0答案:C解析:解方程x^2 - 1 = 0,得到x = ±1,其中正数解为1。

3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等腰三角形B. 等边三角形C. 矩形D. 圆答案:D解析:矩形和圆既是轴对称图形又是中心对称图形。

4. 若a,b,c成等差数列,则()A. a + b + c = 0B. a^2 + b^2 + c^2 = 3abcC. a^2 + b^2 + c^2 = 2ab + 2bc + 2acD. a^2 + b^2 + c^2 = (a + b + c)^2答案:C解析:由等差数列的性质可知,a + b + c = 3a,代入C选项得到a^2 + b^2 + c^2 = 2ab + 2bc + 2ac。

5. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. -1D. 0或1答案:D解析:0的平方等于0,1的平方等于1,-1的平方等于1,因此这个数是0或1。

二、填空题(每题5分,共20分)6. 若x^2 - 4x + 3 = 0,则x的值为______。

答案:x = 1或x = 3解析:将方程因式分解得到(x - 1)(x - 3) = 0,解得x = 1或x = 3。

7. 若a,b,c成等比数列,则b^2 =______。

答案:b^2 = ac解析:由等比数列的性质可知,b^2 = ac。

8. 若a,b,c成等差数列,则a^2 + b^2 + c^2 =______。

答案:a^2 + b^2 + c^2 = (a + b + c)^2解析:由等差数列的性质可知,a^2 + b^2 + c^2 = (a + b + c)^2。

周周清八下数学电子版统编版期末测试

周周清八下数学电子版统编版期末测试

周周清八下数学电子版统编版期末测试试卷分第1卷和第II卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项.1、答卷前,考生务必用0、5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2、第1卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3、第1I卷必须用0、5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上,如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4、填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤参考公式.如果事件A,B互斥,那么P(A+B)=P(A)+P(B)、第1卷(共50分)一、选择题.本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求1、若集合M=(r|VE4),N=(x |3x1),则MON =()A.[r|02)B.(x2)C.[r|3 16)D.(x116)2、若i(1-=)=1,则.+3=()A.-2B.-1C.1D.23、在AABC中,点D在边AB上,BD =2DA、记CA=m,CD=n、则CB=()、A.3m-2nB.-2m +3nC.3m + 2nD.2m +3n4、南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库,已知该水库水位为海拔A.148、5 m时,相应水面的面积为B.140、0km2;水位为海拔C.157、5 m时,相应水面的面积为D.180、0km2、将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m上升到157.5m时,增加的水量约为(V7=2、65)()A.1、0 x 100 m3B.1、2 x 100 m3C.1、4 x 109 m3D.1、6 x 109 m35,从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.1/6B.1/3C.1/2D.2/36、记函数f(z)= sin(wr+)+b(w 0)的最小正周期为T、若〈Tx,且y=f(z)的图像关于点(、2)中心对称,则f()=A.1B.3/2C.2/5D.3二、选择题.本题共4小题,每小题5分,共20分,每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分7、已知正方体ABCD-asic,Di,则()A.直线bcg与DA1所成的角为90°B.直线BC;与CA1所成的角为90°C.直线BC]与平面BB,DiD所成的角为45D.直线BC]与平面ABCD所成的角为45°8、已知函数f(r)=r3-r+1,则()A.f(r)有两个极值点B.f(r)有三个零点C.点(0,1)是曲线y=f(x)的对称中心D.直线y=2r是曲线y=f(z)的切线9、已知0为坐标原点,点A(1,1)在抛物线C:r=2py(p0)上,过点B(0,-1)的直线交C于P,Q两点,则()A.C的准线为y=-1B.直线AB与C相切C.OPI-JOQ |OAD.BPI-|BQI |BA210、已知函数f(z)及其导函数J"(z)的定义域均为R,记g(z)= f'(r)、若f(;-2r),9(2+r)均为偶函数,则()A.f(0)=09B.g(-1)=g(2)C.f(-1)= f(4)D.g(-1)= g(2)三、填空题.本题共4小题,每小题5分,共20分11、(1-)(z+ y)*的展开式中ry的系数为()(用数字作答)、12、写出与圆r2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程13、已知椭圆C+=1(ab0),C的上顶点为A、两个焦点为Fi,Fz,离心率为过F.且垂直于AF2的直线与C交于D,E两点,DE=6,则AADE 的周长是四、解答题.本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤14、(10分)记S,为数列(an的前n项和,已知a1=1,)是公差为.的等差数列(1)求(an)的通项公式;15、(12分)已知函数(r)=e'-ar 和g(r)= ax-jnr有相同的最小值(1)求a;(2)证明:存在直线y=6,其与两条曲线y=f(r)和y= g(r)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列16、(12 分)cos A记AABC的内角A、B、C的对边分别为a、b、c,已知1+ sin A(1)若C=,求B;(2)求的最小值。

八年级数学周周清测试题

八年级数学周周清测试题

八年级数学周周清测试题姓名 : 班级: 考号: 考试时间:60分钟 一,选择题(每小题5分,共25分)1.要使分式3x -2有意义,则x 的取值应满足( ) A .x >2 B .x <2 C .x ≠-2 D .x ≠22.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为( )A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-73. 根据分式的基本性质,分式-a a -b可变形为( ) A.a -a -b B.a a +b C .-a a -b D .-a a +b4. 如果分式xy x +y中的x 、y 都扩大为原来的2倍,那么所得分式的值( ) A 扩大为原来的2倍 B .缩小为原来的12C .不变D .不确定 5. 化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( ) A.1a B .a C.a +1a -1 D.a -1a +1二,填空题(每小题5分,共25分)6.化简1x +3+6x 2-9的结果是________. 7.若||p +3=(-2017)0,则p =________.8.已知方程4mx +33+2x=3的解为x =1,那么m =________. 9.若31-x 与4x互为相反数,则x 的值是________. 10,某市为处理污水,需要铺设一条长为5000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m ,结果提前16天完成任务.设原计划每天铺设管道x m ,则可得方程________________.三、解答题(共50分)11.(12分)计算下列各题:(1)3a -3b 15ab ·10ab 2a 2-b 2; (2)(2a -1b 2)2·(-a 2b 3)·(3ab -2)3.12.(14分)解方程:(1)2-x x -3+13-x =1; (2)1+3x x -2=6x -2;13. (10分)先化简,再求值:⎝ ⎛⎭⎪⎫2x +1-2x -3x 2-1÷1x +1,其中x =-3;14.(14分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路________米; (2)求原计划每小时抢修道路多少米.参考答案与解析1. D 2.B 3.C 4.A 5.A6.1x -3 7.-4或-2 8,3 9,.4 10,5000x -5000x +20=16 11,解:(1)原式=3(a -b )15ab ·10ab 2(a +b )(a -b )=2b a +b. (2)原式=4a -2b 4·(-a 2b 3)·27a 3b -6=-108a -2+2+3b 4+3-6=-108a 3b .12,解:(1)方程两边同乘最简公分母(x -3),得2-x -1=x -3,解得x =2. 检验:当x =2时,x -3≠0,∴x =2是原分式方程的解.(2)方程两边同乘最简公分母(x -2),得(x -2)+3x =6,解得x =2.检验:当x =2时,x -2=0,∴x =2不是原分式方程的解,∴原分式方程无解.13,解:原式=2(x -1)-(2x -3)(x +1)(x -1)·(x +1)=1x -1.当x =-3时,原式=-14. 14,解:(1)1200(2)设原计划每小时抢修道路x 米.根据题意得1200x +3600-1200(1+50%)x=10. 解得x =280.经检验,x =280是原分式方程的解,且符合实际意义.答:原计划每小时抢修道路280米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级周周清数学测试卷(第七周)
一、选择题(每小题5分,共40分) 1.下列说法正确的是( )
A.形状相同的两个三角形全等
B.面积相等的两个三角形全等
C.完全重合的两个三角形全等
D.所有的等边三角形全等
2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( )
A B C D
3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,下列不正确的等式是( )
A .AB=AC
B .∠BAE=∠CAD C. BE=D
C D. AD=DE 4.如图,已知点P 到AE ,A
D ,BC 的距离相等,则下列说法:①点P 在∠BAC 的平分线上;②点P 在∠CB
E 的平分线上;③点P 在∠BCD 的平分线上;④点P 是∠BAC ,∠CBE ,∠BCD 的平分线的交点,其中正
确的是( ).A .①②③④ B .①②③ C .④ D ②③
第4题图
5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的
是( )A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ) A.线段CD 的中点 B.OA 与OB 的中垂线的交点C.OA 与CD 的中垂线的交点 D.CD 与∠AOB 的平分线的交点
第6题图 第7题图
7. 在△
和△FED 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条件( )
A.AB =ED
B.AB =FD
C.AC =FD
D.∠A =∠F
8.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( )
A.①②③
B.②③④
C.①③⑤
D.①③④
第2题图
第3题图
第5题图
第8题图
D A C
B O
D
C B A 学校: 班级: 姓名: 学号: //////////////////////////////////////////////////////// ……………………………………装……………………………………订…………………………线……………………………………
二、填空题(每题5分,共30分)
1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带________去配,这样做的数学依据是是 . 2.如图2,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =
__________.
第2题图 第3题图
3.如图3所示,AD =CB ,若利用“边边边”来判定△ABC ≌△CDA ,则需添加一个直接条件是__________;若利用“边角边”来判定△ABC ≌△CDA ,则需添加一个直接条件是__________.
4.在△ABC 中,如果∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点D 到AB •的距离是________. 5. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .
6.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 . 三、解答题(共30分)
1.(10分)如图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. 解: ∵AD 平分∠BAC
∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中
⎪⎪⎩
⎪⎪⎨⎧
∴△ABD ≌△ACD ( )
2.(10分)如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4
求证: ∠5=∠6.
3.(10分)已知:BE ⊥CD ,BE =DE ,BC =DA ,
求证:① △BEC ≌△DEA ;②DF ⊥BC .
图1
第5题图
第6题图
D
C
B
A
C
A。

相关文档
最新文档