数字万用表实验设计
单片机数字万用表设计
单片机数字万用表设计一、引言单片机数字万用表是一种多功能仪器,可以用于测量电压、电流、电阻等电气参数,广泛应用于电子工程、通信工程、无线电工程等领域。
本文旨在设计一款单片机数字万用表,结合单片机技术和模拟电路设计,实现功能齐全、精准度高、便携性强的数字万用表。
二、设计原理单片机数字万用表的核心部分是其测量模块,该模块能够接收被测电路的输入信号,并通过ADC(模数转换器)将模拟信号转换为数字信号,然后经过单片机处理和显示模块的处理,最终将结果显示在液晶显示屏上。
整个设计流程主要包括以下几个方面:1.信号输入:设计合适的信号输入接口,能够接收被测电路的电压、电流、电阻等信号,并将其传输给ADC。
2.模数转换:通过ADC将模拟电信号转换为数字信号,通常选择12位或16位的ADC,以保证高精度的测量结果。
3.单片机处理:单片机接收ADC传输的数字信号,并进行处理计算,以得出测量结果。
4.显示模块:将测量结果显示在LCD液晶显示屏上,包括数值显示、单位显示等。
5.供电模块:提供适当的电源供电,保证仪器的正常工作。
基于以上设计原理,我们可以开始具体的设计工作。
三、电路设计1.信号输入接口信号输入接口是单片机数字万用表的核心部分之一,它需要能够接收不同类型的信号,包括电压、电流、电阻等。
为了实现这一功能,我们需要设计相应的信号接收电路,可以通过选择不同的接收电阻和放大电路,使之能够适应不同的输入信号。
对于电压信号的输入,可以设计一个简单的分压电路,将被测电路的电压信号转换为适合ADC输入的电压范围。
同时,为了避免输入电阻对被测电路的影响,可以选择高输入阻抗的运放作为信号接收器。
对于电流信号的输入,可以设计一个电流-电压转换电路,将电流信号转换为相应的电压信号,再进行ADC采集。
对于电阻信号的输入,可以设计一个简单的电桥电路,测量电阻值并将其转换为电压信号,再通过ADC进行采集。
2.模数转换模数转换部分选择12位或16位的ADC芯片,可以根据精度需求做适当选择。
数字万用表实验报告
数字万用表实验报告引言在现代科技高速发展的时代,数字万用表成为一种必不可少的测量仪器。
它的广泛应用使得我们能够方便地测量电压、电流、电阻等各种电学参数。
本实验旨在通过多个实验项目的研究与探索,深入了解数字万用表的原理、使用方法以及相关应用领域。
实验一电压测量实验首先,将数字万用表设置为直流电压测量模式,并连接电源电压。
然后将测试笔分别连接至电源的两个极端,注意连接的极性。
在读数窗口中可以看到数字万用表显示的电压数值。
通过改变电源电压,我们可以观察到数字万用表的读数也相应变化。
实验二电流测量实验在进行电流测量实验前,我们需要将数字万用表设置为直流电流测量模式。
然后,将数字万用表串联在电路中,注意将测试笔依次与电源、电阻以及数字万用表相连。
在读取电流数值时,需注意电源电流大小不应超过数字万用表可测范围。
通过改变电阻值,我们可以观察到数字万用表的读数随之变化。
实验三电阻测量实验在进行电阻测量实验时,首先需要将数字万用表设置为电阻测量模式。
将测试笔分别接触待测电阻的两个极端,观察数字万用表读数窗口中的数值。
通过改变待测电阻的大小,我们可以看到数字万用表的读数也会相应变化。
实验四二极管正反向电压测量实验将数字万用表设置为二极管正反向电压测量模式,并连接待测二极管。
将测试笔分别与二极管的正、负极相连,观察数字万用表的读数窗口。
通过改变待测二极管的极性,我们可以观察到数字万用表读数的变化。
实验五电容测量实验在进行电容测量实验前,我们需要将数字万用表设置为电容测量模式。
首先将待测电容器两端与数字万用表的测试笔相连,然后观察并记录数字万用表的读数。
通过改变待测电容器的大小,我们可以观察到数字万用表的读数与电容器容量成正比关系。
结论通过上述实验,我们深入了解了数字万用表的原理、使用方法以及相关应用领域。
数字万用表作为一种重要的测量仪器,广泛应用于电子、通信、电力等领域。
通过对电压、电流、电阻、二极管正反向电压以及电容的测量实验,我们不仅了解了数字万用表的测量准确性和稳定性,还加深了对电路原理以及电子器件性质的理解。
数字万用表实验报告
数字万用表实验报告
数字万用表是一种用于测试电路中电流、电压、电阻和容量等物理量的仪器。
它可以同时测量多种电气参数,而且精度高、操作简单,因此在电子工程、机械制造、生产加工等领域得到了广泛应用。
为了更好地了解数字万用表的原理和特点,本文将进行数字万用表的实验测试,并撰写实验报告。
一、实验目的
了解数字万用表的电路原理、使用方法及注意事项,熟悉数字万用表的各个功能及操作。
二、实验仪器
数字万用表、直流电源、可变电阻、LED 灯、电池、跳线等。
三、实验步骤
1. 将数字万用表转换为电压、电流、电阻和容量测量模式,分别进行实验和测试。
2. 用跳线将电源、电阻、LED 灯等依次串连,分别用数字万用表测量其电流、电压和电阻值等。
3. 用数字万用表测试不同电池(如干电池、铅酸蓄电池等)的电压和容量。
四、实验结果
1. 数字万用表测试的 LED 灯电流约为 20mA 左右,电压为 2V 左右,电阻为 100 欧姆左右。
2. 数字万用表测试的电池电压值与理论值相适应,干电池电压为 1.5V 左右,铅酸蓄电池电压约为 12V 左右,容量也在标准范围内。
3. 测试不同范围的电阻时,数字万用表显示的电阻值与标准值相吻合。
五、实验心得
通过本次实验,我们深入了解了数字万用表的原理和功能,同时更好地掌握了其使用方法和注意事项,增强了对电路电气参数的理解和测量技能,为今后的实践工作提供了较为充分的基础。
总之,数字万用表是一种广泛应用的电子测试仪器,其精度和实用性极高,可以为我们的科研和生产活动提供有力的支持。
希望今后在科研和实验中,我们积极运用数字万用表,将其真正发挥出更大的潜力。
数字万用表设计实验
数字万用表设计实验By 金秀儒物理三班Pb05206218实验题目:数字万用表设计实验 学号:pb05206218姓名:金秀儒实验目的:1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用实验仪器:1. DM-Ⅰ数字万用表设计性实验仪2. 三位半或四位半数字万用表实验原理:数字万用表的基本组成图1 数字万用表的基本组成模数(A/D )转换与数字显示电路数字信号与模拟信号不同,其幅值(大小)是不连续的。
将被测量与最小量化单位比较,并把结果四舍五入取整后变为十进制起段显码显示出来。
一般N ≥1000即可满测量精度要求。
常见数字表头最大示数为1999,称为三位半(213)数字表。
数字测量仪表的核心是模/数(A/D )转换、译码显示电路。
A/D 转换一般又可分为量化、编码两个步骤。
本实验用实验仪,核心为一个三位半数字表头,由数字表专用A/D 转换译码驱动集成电路和外围元件、LED 数码管构成。
该表头有7个输入端,包括2个测量电压输入端(IN +、IN-)、2个基准电压输入端(V REF+、V REF -)和3个小数点驱动输入端。
数字显示屏(LED 或液晶)模数转换,译码驱动基准电压 小数点驱动(配合被测量与量程)过压过流保护过压过流保护分档电阻(量程转换)分压器(量程转换)分流器(量程转换)交流直流变换器 (放大、整流、滤波)直流 被测量 输 入交流V REF电流电压电阻 V IN直流电压测量电路在数字电压表头前加分压器,可扩展直流电压测量的量程。
如图:分压比为 2120rr r U U i += 扩展后的量程为 02210U r r r U i +=考虑到电压表的输入阻抗,设计实用分压电路如图:R 总=R1 +R2 +R3 +R4 +R5各档的分压比为:200mV:( R1 +R2 +R3 +R4 +R5)/ R 总=12 V:( R2 +R3 +R4 +R5)/ R 总=0.1 20V:( R3 +R4 +R5)/ R 总=0.01 200V:( R4 +R5)/ R 总=0.0012000V: R5/ R 总=0.0001出于耐压和安全考虑,最高电压限为 1000V 。
数字万用表设计试验实验报告
实验名称: 数字万用表设计性实验讲义 实验目的:掌握数字万用表的工作原理、组成和特性掌握数字万用表的校准方法和使用方法 掌握分压及分流电路的连接和计算了解整流滤波电路和过压过流保护电路的功用实验原理:1数字万用表的组成2设计组装多量程直流电压表采用串联电阻分压得原理,将最大电压为200mv 的表头量程扩大.其中20V 量程缩放比例为34512345100k0.0110M R R R R R R R R ++==++++这样,就扩大了量程.2设计组装多量程交流电压表因为是测量交流电压,所以在测量直流电压的基础之上加入AC-DC 整流滤波电路.测量的是交流电压的有效值. 其他测量电路与直流电压测量电路相同试验记录 实验一制作多量程直流数字电压表并作校准曲线 实验步骤1连接小数点与对应量程相连 2连接参考电压 3连接分压电路4调节电位器,输出150~200 mv 的电压(0.5mV 误差),使组装表与标准表对同一电压显示相同.校准曲线如下020406080100120140160180200-0.10-0.050.000.050.10标准表 读数与组装表读数的差 值 m V组装表读数 mV交流电直流电 图(8)AC-DC 变换器原理简图实验二制作多量程交流数字电压表并作校准曲线1采用多量程直流数字电压表,并且加入AC-DC 电路2调节电位器,输出0~2V 的电压(50mV 误差),使组装表与标准表对同一电压显示相同. 3校准测量,与记录及校准曲线的绘制校准曲线如下:接线总结1先接公共的部分,及表头,小数点部分,再接其他部分;2接地线时,最好用黑线,就不会出现实验时将地线与有电位的线接在一起. 3先用标准表测量引入电压,再进行试验,避免烧毁表头.朱业俊 学号 PB07013077-0.015-0.010-0.0050.0000.0050.0100.0150.0200.025标准表与组装表读数差值 V 标注表读数V。
数字万用表设计实验 (4)
数字万用表设计性实验[概述] 随着数字测量技术的日趋普及,指针式仪表已经逐渐被淘汰,我厂对“指针式改装电表实验”进行了改进,现采用了“数字万用表设计性实验”,使学生对数字电表的原理和使用方法有了深入的理解和应用,深得广大院校师生的好评。
一、实验目的1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用二、实验仪器1.DM-Ⅰ数字万用表设计性实验仪一台2.三位半或四位半数字万用表一台(另配)三、实验原理1.数字万用表的特性与指针式万用表相比较,数字万用表有如下优良特性:⑴高准确度和高分辨力三位半数字式电压表头的准确度为±0.5%,四位半的表头可达±0.03%,而指针式万用表中使用的磁电系表头的准确度通常仅为±2.5%。
分辨力即表头最低位上一个字所代表的被测量数值,它代表了仪表的灵敏度。
通常三位半数字万用表的分辨力可达到电压0.1mV、电流(指电流强度,下同)0.1μA、电阻0.1Ω,远高于一般的指针式万用表。
⑵电压表具有高的输入阻抗电压表的输入阻抗越高,对被测电路影响越小,测量准确性也越高。
三位半数字万用表电压挡的输入阻抗一般为10MΩ,四位半的则大于100MΩ。
而指针式万用表电压挡输入阻抗的典型值是20~100kΩ/V。
⑶测量速率快数字表的速率指每秒钟能完成测量并显示的次数,它主要取决于A/D转换的速率。
三位半和四位半数字万用表的测量速率通常为每秒2~4次,高的可达每秒几十次。
⑷自动判别极性指针式万用表通常采用单向偏转的表头,被测量极性反向时指针会反打,极易损坏。
而数字万用表能自动判别并显示被测量的极性,使用起来格外方便。
⑸全部测量实现数字式直读指针式万用表尽管刻画了多条刻度线,也不能对所有挡进行直接读数,需要使用者进行换算、小数点定位,易出差错。
特别是电阻挡的刻度,既反向读数(由大到小)又是非线性刻度,还要考虑挡的倍乘。
数字万用表实验报告
数字万用表实验报告
实验报告
实验名称:数字万用表实验
实验日期:XXX年XX月XX日
实验目的:通过使用数字万用表测量电路中电压、电流、电阻等参数,熟悉数字万用表的使用方法和测量技巧。
实验仪器:数字万用表、电源、电阻、电路板等。
实验原理:数字万用表是一种用来测量电路中电压、电流、电阻、频率等参数的仪器。
它通过将被测电路与电源和万用表相连,根据电路参数的不同选择适当的测量档位,并读取显示屏上的数值来进行测量。
实验步骤:
1. 将电路板与电源相连,确保电路正常工作。
2. 将数字万用表的电源引线与电路板的正负极相连。
3. 根据需要选择适当的测量档位,比如测量电压时选择直流电压档位、测量电流时选择直流电流档位。
4. 将数字万用表的测试引线分别与电路中需要测量的点相连,根据实验需要依次测量电压、电流和电阻。
5. 读取数字万用表显示屏上的数值,并记录下来。
6. 将测量完成的数据整理,进行必要的计算和分析。
实验结果:根据实验步骤进行测量,得到的数据为......
实验讨论:根据测量结果可以得出结论......
实验总结:本次实验通过使用数字万用表进行测量,掌握了数字万用表的使用方法和测量技巧。
实验结果表明......
注意事项:在进行测量时,需要注意选择适当的测量档位,避免对数字万用表造成损坏;同时,在进行测量时需保证电路稳定工作,避免测量误差的发生。
数字万用表设计
数字万用表设计实验报告实验名称:数字万用表设计 实验日期 ____________温度___________压力___________ 同组者 ___________一、实验预习部分(实验前完成,并检查,教师签名) 1,实验目的:1, 掌握数字万用表的工作原理、组成和特性。
2, 掌握数字万用表的校准和使用。
3, 掌握多量程数字万用表分压、分流电路计算和连接;学会设计制作、使用多量程数 字万用表。
2,实验原理:1、直流电压测量电路在数字电压表头前面加一级分压电路(分压器),可以扩展直流电压测量的量程。
数字万用表的直流电压档分压电路如图(2)所示,它能在不降低输入阻抗的情况下,达到准确的分压效果。
例如:其中200 V 档的为分压比为:001.010*********==+++++MKR R R R R R R其余各档的分压比分别为:图(2)实用分压器电路档位 200mV 2V 20V 200V 2000V 分压比 1 0.1 0.010.001 0.0001实际设计时是根据各档的分压比和总电阻来确定各分压电阻的,如先确定M R R R R R R 1054321=++++=总再计算200V 档的电阻:K R R R 10001.054==+总,依次可计算出3R 、2R 、1R 等各档的分压电阻值。
更换量程是需要调整小数点的显示,使用者可方便地读出测量结果。
2、直流电流的测量测量电流是根据欧姆定律,用合适的取样电阻把待测电流转换为相应的电压,再进行测量。
如图(3)图(3)电流测量原理实用数字万用表的直流电流档电路,如图(4)所示。
图(4)实用分流器电路图(4)中各档分流电阻是这样计算的,先计算最大电流档(2A )的分流电阻5R (数字电压表最大输入为200mV ))(1.022.0505Ω===A V I U R m ,再计算200mA 档的4R :)(9.01.02.02.05404Ω=-=-=R I U R m 依次可以计算出3R 、2R 和1R ,请同学们自己练习。
数字万用表的设计与制作
支架是固定液晶片和导电胶条的支撑,通过支架上面的5个爪与印制板固定,并由四角及中间的3个凸点定位。
安装步骤:
(1)将液晶片放入支架,支架爪向上,液晶片镜面向下。
(2)安放导电胶条 。
导电胶条的中间是导电体,安放时必须小心保护,用镊子轻轻夹持并准确放置。
(3)将液晶屏组件安装到PCB板上。
一、实验内容
学习模数转换器、液晶面板等部件的知识,掌握数字万用表电路的工作原理,掌握基本的焊接技术。通过数字万用表的安装与调试,了解数字万用表的特点,熟悉装配数字万用表的基本工艺过程,掌握基本的装配技艺,学习整机的装配工艺;培养动手能力及严谨的工作作风。
二、实验要求
1、了解数字万用表的基本功能;
(2)测试相关极性的物理量时,其极性显示与表笔是对应的。也就是说,当不显示极性时,红表笔触点为电位高端或电流流入端,极性显示“-”时,红表笔触点则为电位低端或电流流出端。
(3)电阻挡及二极管挡与指针表有别。指针表测量电阻时,红、黑表笔与测试源极性相反,即黑表笔为测试源正端,红表笔为负端。而数字表却与测试源极性一致,即红表笔为测试源正端,黑表笔为负端,这与电压、电流挡表示一致。这样不会混淆,较指针表优越。
4.总装
(1)安装转换开关/前盖。
(2)将弹簧/滚珠依次装入转换开关两侧的孔里。
(3)将转换开关用左手托起。
(4)右手拿前盖板对准孔位。
(5)将转换开关贴放到前盖相应位置。
(6)左手按住转换开关,双手翻转使面板向下,将装好的印制板组件对准前盖位置,装入机壳,注意对准螺孔和转换开关轴定位孔。
2、认识分立器件,能够识别与连接色环电阻、普通电容、电解电容、二极管、三极管、集成电路TC7106、液晶显示器件等元件的工作特性;
实验二十八数字万用表设计性实验
实验二十八 数字万用表设计性实验一、实验内容:1.制作量程200mA 的微安表(表头);2.设计制作多量程直流电压表;3.设计制作多量程直流电流表;二、实验仪器:三位半数字万用表三、实验原理1.数字万用表的组成 数字万用表的组成见图28.1。
图28.1 数字万用表的组成数字万用表其核心是一个三位半数字表头, 它由数字表专用A/D 转换译码驱动集成电路和外围元件、LED 数码管构成。
该表头有7个输入端, 包括2个测量电压输入端(IN+、IN-)、2个基准电压输入端(VREF+、VREF-)和3个小数点驱动输入端。
2.直流数字电压表头“三位半数字表头”电路单元的功能:将输入的两个模拟电压转换成数字, 并将两数字进行比较, 将交流直流变换器基准电压数字显示屏(LED 或液晶)小数点驱动分档电阻 分流器分压器过压过流保护过压过流保护模/数转换,译码驱动直流交流电阻电压电流被测量输入结果在显示屏上显示出来。
利用这个功能, 将其中的一个电压输入作为公认的基准, 另一个作为待测量电压, 这样就和所有量具或仪器的测量原理一样, 能够对电压进行测量了。
见图28.2。
图28.2 200mV(199.9mV)直流数字电压表头及校准电路3.多量程直流数字电压表在数字电压表头前面加一级分压电路(分压器), 可以扩展直流电压测量的量程。
如图28.3所示, U0为电压表头的量程(如200mV), r 为其内阻(如10M Ω), r1、r2为分压电阻, Ui0为扩展后的量程。
图28.3 分压电路原理 图28.4多量程分压器原理电路 多量程分压器原理电路见图28.4。
图28.5 实用分压器电路采用图28.4的分压电路虽然可以扩展电压表的量程, 但在小量程档明显降低了电压表的输入阻抗, 这在实际使用中是所不希望的。
所以, 实际数字万用表的直流电压档电路为图5所示, 它能在不降低数字电压表 0∼U 00∼U i0 r 1r 2 r IN+IN-动 片 2数字电压表R 1 R 2 R 3 R 4 R 5U i11990900IN-IN+标准表三位半数字表头IN+ IN- dp 1 dp 2 dp 3 V REF+ V REF-直流电压分压器9K1K 接动片1 直流电 压校准输入阻抗的情况下, 达到同样的分压效果。
电子电路设计报告--数字万用表电路设计与制作
电子电路设计报告课题项目:数字万用表电路设计与制作设计目的设计要求设计方案四、电路原理图—附录1五、元器件介绍六、测试报告一一附录2七、问题探讨八、心得与体会九、实物拍照一一附录3一、设计目的利用给定元器件设计一台数字式电压、电阻测量仪,通过原理设计和实物电路的制作掌握数字电路设计的基本方法及电路的焊接技术,同时复习、巩固以往的学习内容,达到灵活应用的目的。
设计完成后在实验室进行自行安装、调试,在该过程中培养从事设计工作的整体概念。
二、设计要求1、利用给定元器件设计一台数字式万用表能够实现不同档位的电阻和交、直流电压的测量2、完成电路原理图的设计及实际电路的焊接调试3、技术指标:量程范围直流电压档:200V、20V、2V交流电压档:200V、20V、2V电阻档:2M、200K、20K、2K显示令三位半数码管显示令过量程令正负值三、设计方案1、整体思路利用MC14433的数模转换功能实现对。
〜2V电压的测量,并通过译码器及数码管进行显示。
利用运算放大电路及分压电阻将不同档位的待测参数转换为基本0~2V之间的电压值,从而利用MC14433进行测量。
原理框图:DC2、电路分块分析1)输入缓冲:构成:由集成运放、电阻和二极管组成电压跟随器作用:输入电阻很大,输出电阻很小,隔绝内外电路局部图:利用MC14433将输入的模拟信号转换为电压值所对应的BCD码,再通过CD4511将BCD码转换为驱动数码管显示对应数字的电平,从而实现对基本电压值的测量。
通过MC1403基准电压芯片及电位器为MC14433提供2V基准电压,同时利用MC1413将MC14433输出的选通高电平转换为控制数码管显示的低电平。
2)电压分压器构成:特定阻值的电阻和跳线作用:利用电阻串联分压将处于不同档位的待测电压转换为0~2V内的基本电压,进而利用基本电压测量电路进行测量。
局部图:电压分压器3)4) AC/DC转换器构成:通过集成运放、电容、二极管和电阻等元器件组成隔直、整流和滤波电路作用原理:利用T1062运算放大器和二极管构成精密半波整流电路,将待测交流信号转换为直流信号,然后利用运算放大电路对整流后的电压值进行放大,使之与交流信号的有效值想对应,之后将转换过的信号输入基本测量电路进行测量。
数字万用电表的设计、制作与校准
姓名
实验班号
实验号
实验二十五数字万用电表的设计、制作与校准
实验目的:
实验原理及仪器介绍:
1、写出实验仪器名称、型号及规格:
2、数字万用电表设计实验仪的数字表头是由那几部分构成的?
3、数字表头有7个输入端,分别是什么?
4、如何扩展直流电压表的量程?
5、数字万用电表中,交流电压、电流测量电路是在直流电压、电流测量的基础上,在分压器或分流器之后加入了一个什么电路?
数据表格:
列出数据记录表格:
教师签字:Hale Waihona Puke 月日实验内容及步骤:
1、如何制作、校准200mV(199.9 mV)直流数字电压表?
2、如何将200mV(199.9 mV)直流数字电压表扩展成为多量程直流电压表?
3、3、如何用自制直流电压表测直流电压?
4、4、如何制作多量程数字直流电流表?
5、如何制作多量程数字交流电压表?
6、如何制作多量程数字交流电流表?
课程设计报告--数字万用表
课程设计报告--数字万用表-天津职业技术师范大学电子工程学院《电子技术》课程设计报告同组学生姓名(学号):曹烨玲(31) 梁艳花(32) 周芹(25)班级:应电0914任务分工:曹烨玲:方案选择与设计.电路焊接调试.方案讲解.答辩梁艳花:资料查找.电路原理分析.答辩.方案讲解.课程设计报告周芹:资料查找.电路原理分析.答辩.方案讲解.课程设计报告设计时间:2011年12月12 日——2011 年12月30日指导教师:李莉李照业第一周题目:数字万用表一、课程设计的目的1.设计由运算放大器组成的万用表2.组装焊接与仿真调试二、课程设计的要求1.直流电压表:满量程+6V2.直流电流表:满量程10mA3.交流电压表:满量程6V,50HZ—1KHZ 4.交流电流表:满量程10Ma5.欧姆表:满量程分别为:1K,10K;100K三、方案论证选择1.初步选用7107,但因设计过程繁琐,电路构造与原理的分析复杂,调试与仿真不便,量程范围及相关的电阻比例不好调电路采用的元器件较多,相比之下成本也高,所以,最终决定放弃这个方案。
2.选用运算放大器uA741与LM324,设计过程十分简单,电路构造模块清晰,原理简单明了,调试过程简单,仿真效果很好,电路采用的元器件较少,成本低,相关的量程要求容易实现,所以决定选用此方案。
四、基本原理1.元件列表:uA741 1个电阻:12kΩ 2个2、7kΩ 1个LM324 1个24kΩ 2个87Ω 1个1N4007 8个10kΩ 5个 100kΩ 2个1N4148 1个1N4728A 1个LM324集成运放电路图:2.原理分析:(1)理想集成运放的虚短与续断特点(2)在测量中,电压表或者电流表的接入应不影响被测电路的原工作状态,这就要求电压表应具有无穷大的输入电阻,电流表的内阻应为零。
但实际上,万用表表头的可动线圈总有一定的电阻,例如100μA的表头,其内阻约为1KΩ,用它进行测量时将影响到被测量,从而引起误差。
数字万用表的组装与调试实验报告doc
数字万用表的组装与调试实验报告篇一:万用表组装_设计性实验报告北京交通大学大学物理实验设计性实验实验题目学院班级学号姓名首次实验时间年月日指导教师签字目录一.实验任务 ................................................ ................................................... .. (4)1.分析研究万用表电路,设计并组装一个简单的万用表。
(4)二.实验要求 ................................................ ................................................... .. (4)1.分析常用万用表电路,说明各挡的功能和设计原理 ................................................4 2.设计组装并校验具有下列四挡功能的万用............ 4 3.给出将X100电阻挡改造为X10电阻挡的电路 ................................................ .. (4)三.实验主要器材 ................................................ ................................................... ........................... 4 四.实验方案 ................................................ ................................................... .. (5)1.测定给定的微安表头的量程I0和Rg。
.............................................. ....................... 5 2.按照如图所示电路进行分流,制作出1mA直流电流表。
实验十数字万用表设计
实验十数字万用表设计数字电表以它显示直观、准确度高、分辨率强、功能完善、性能稳定、体积小易于携带等特点在科学研究、工业现场和生产生活中得到了广泛应用。
数字电表工作原理简单,完全可以让同学们理解并利用这一工具来设计对电流、电压、电阻、压力、温度等物理量的测量,从而提高大家的动手能力和解决问题能力。
[实验目的]1、掌握万用表的使用方法。
2、了解数字电表原理。
3、掌握改装数字万用表的原理及其校准方法。
[实验仪器设备]改装表(数字万用表)、AD参考电压模块、变直流电压转换模块、标准万用表、九孔板等。
个日字型结构之间是不导通的。
田字型的结构中每个插孔都是相互连通的。
但两任何个田字型结构之间是不导通的。
一字型的结构中每个插孔都是相互连通的。
但两个一字型结构之间是不导通的。
我们可以用元器件,导线和连接器等连接成我们需要的电路。
[实验原理]一、数字电表常见的物理量都是幅值大小连续变化的所谓模拟量,指针式仪表可以直接对模拟电压和电流进行显示。
而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理。
数字信号与模拟信号不同,其幅值大小是不连续的,就是说数字信号的大小只能是某些分立的数值,所以需要进行量化处理。
若最小量化单位为∆,则数字信号的大小是∆的整数倍,该整数可以用二进制码表示。
设∆=0.1mV,我们把被测电压U与∆比较,看U 是∆的多少倍,并把结果四舍五入取为整数N (二进制)。
一般情况下,N≥1000即可满足测量精度要求(量化误差≤1/1000=0.1%)。
所以,最常见的数字表头的最大示数为1999,被称为三位半(3 1/2)数字表。
如:U是∆ (0.1mV)的1861倍,即N=1861,显示结果为186.1(mV)。
这样的数字表头,再加上电压极性判别显示电路和小数点选择位,就可以测量显示-199.9~199.9mV的电压,显示精度为0.1mV。
(工作原理见附录)二、改装数字万用表的设计常用万用表需要对直流电压、直流电流的测量等,图1为万用表测量基本原理图。
《数字万用表课程设计》课程报告
天津电子信息职业技术学院《数字万用表课程设计》课程报告:三位半数字万用表论文题目姓名:陈星宇(02)系别:网络技术系专业:物联网应用技术班级:物联S11-1页脚内容1指导教:王青师页脚内容2目录一.课程设计的目的 0二.设计题目和要求 0三.总体方案 (1)四.方案比较 (3)五.基本原理 (5)六.单元电路设计 (7)6.1 器件介绍 (7)6.2 AC/DC转换电路 (12)6.3 电压、电流信号衰减电路 (13)6.4 电阻测量电路 (14)T (15)6.5 电容测量 (16)七.组装、调试内容 (19)八.所用元器件 (20)九.设计心得和体会 (22)十、总电路图 (23)页脚内容3十一.实验测得波形图 (24)参考文献 (26)页脚内容4三位半数字万用表一.课程设计的目的课程设计的主要目的,是通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、完成的工作内容和具体的设计方法。
通过设计也有助于复习、巩固以往的学习模电、数电内容,达到灵活应用的目的。
在设计完成后,还要将设计的电路进行安装、调试以加强学生的动手能力。
在此过程中培养从事设计工作的整体观念。
课程设计应强调以能力培养为主,在独立完成设计任务同时注意多方面能力的培养与提高,主要包括以下方面:1、独立工作能力和创造力。
2、综合运用专业及基础知识,解决实际工程技术问题的能力。
3、查阅图书资料、产品手册和各种工具书的能力。
4、熟悉常用电子仪器操作使用和测试方法。
5、工程绘图能力。
6、写技术报告和编制技术资料的能力。
二.设计题目和要求题目:设计3 1/2数字万用表具体要求:页脚内容0(一)根据题目,利用所学知识,通过上网或到图书馆查阅资料,设计2-3个实现数字万用表的方案;只要求写出实现工作原理,画出电原理功能框图,描述其功能。
说明:采用原理、方案、方法不限,可以自行设计。
(二)其中对将要实验方案3 1/2位数字万用表方案,须采用中小规模集成电路、MC14433A/D转换器等电路进行设计,写出已确定方案详细工作原理,计算出参数。
数字万用表设计性实验
数字万用表设计性实验[实验目的]1、了解万用表的特性、组成和工作原则。
2、掌握分压、分流电路的计算和连接。
3、学会数字万用表的校准方法和使用方法。
4、了解整流滤波电路和过压过流保护电路的功用。
[实验仪器]1.WS-Ⅰ数字万用表设计性实验仪2.三位半或四位半数字万用表[实验原理]1.数字万用表的特性与指针式万用表相比较,数字万用表有如下优良特性:(1)高准确度和高分辨力(2)电压表具有高的输入阻抗(3)测量速率快(4)自动判别极性(5)全部测量实现数字直读(6)自动调零(7)抗过载能力强当然,数字万用表也有一些弱点,如:(1)测量时不象指针式仪表那样能清楚直观地观察到指针偏转的过程,在观察充放电等过程时不够方便。
(2)数字万用表的量程转换开关通常与电路板是一体的,触点容量小,耐压不很高,有的机械强度不够高,寿命不够长,导致用旧以后换档不可靠。
(3)一般万用表的V/Ω档公用一个表笔插孔,而A档单独用一个插孔。
使用时应注意根据被测量调换插孔,否则可能造成测量错误或仪表损坏。
2.数字万用表的基本组成数字万用表的基本组成见图1。
除了图1中的基本组成部分之外,数字万用表通常还有蜂鸣器电路、二极管检测电路、三极管h FE测量电路、低电压指示电路等(如DT830A型)。
本实验只研究数字万用表的基本组成部分。
3.模数(A/D)转换与数字显示电路常见的物理量都是幅值(大小)连续变化的所谓模拟量(模拟信号)。
指针式仪表可以直接对模拟电压、电流进行显示。
而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理(如存储、传输、打印、运算等)。
数字信号与模拟信号不同,其幅值(大小)是不连续的。
就是说数字信号的大小只能是某些分立的数值。
就象人站在楼梯上时,人站的高度只能是某些分立的数值一样。
这种情况被称为是“量化的”。
若最小量化单位(量化台阶)为∆,则数字信号的大小一定是∆的整数倍,该整数可以用二进制数码表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.12 设计数字万用表
【实验目的】
1.了解数字电表的基本原理、常用双积分模数转换芯片外围参数的选择原则及电表的校准原则;
2.了解数字万用表的特性、组成及工作原理;
3.掌握分压、分流电路的原理;
4.设计制作多量程直流电压表、电流表及电阻表;
5.了解交流电压、三极管和二极管相关参数的测量。
【设计要求及实验内容】
1.设计制作多量程直流数字电压表,并进行校准(自拟校准表格,量程为:200mv、2v);
2.设计制作多量程直流数字电流表,并进行校准(自拟校准表格,量程为:200mA、20mA);
3.设计制作多量程数字欧姆表,并进行校准(自拟校准表格,量程为:200Ω、2kΩ、20 k Ω);
4.设计制作多量程交流数字电压表,并进行校准(自拟校准表格,量程为:AC, 200mv、2v);
5.二极管正向压降的校准和测量;
6.三极管h FE参数的测量。
以上实验,在1至3中选择2~3个实验题目为必做内容,4至6为选做内容。
【主要实验器材】
1.DH6505数字电表原理及万用表设计实验仪;
2.四位半通用数字万用表;
3.标准电阻箱。
【实验原理、方法提示】
1. 数字电表原理
常见的物理量都是幅值大小连续变化的所谓模拟量,指针式仪表可以直接对模拟电压和电流进行显示。
而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理。
(1)双积分模数转换器(ICL7107)的基本工作原理
我们将完成从模拟电信号转换成数字信号的电路称为模数转换器(AD转换器)。
数字万用表常用的转换器为双积分AD转换器。
双积分模数转换电路的原理比较简单,当输入电压为Vx 时,在一定时间T1内对电量为零的电容器C 进行恒流(电流大小与待测电压Vx 成正比)充电,这样电容器两极之间的电量将随时间线性增加,当充电时间T1到后,电容器上积累的电量Q 与被测电压Vx 成正比(式
1);接着让电容器恒流放电(电流大小与参考电压Vref 成正比),这样电容器两极之间的电量将线性减小,直到T2时刻减小为零。
如果用计数器在T2开始时刻对时钟脉冲进行计数,结束时刻停止计数,就会得到计数值N2,则N2与Vx 成正比。
Qo=dt R Vx T *1
⎰=1T R Vx (1) Vo=-
C Qo =-1T RC Vx (2) Vo+C 1dt R Vref T *20
⎰=0 (3) 把(2)式代入(3)式,得: T2=Vref
T 1Vx (4) 从(4)式可以看出,由于T1和Vref 均为常数,所以T2与Vx 成正比。
若时钟最小脉冲单元为CP T ,则CP T N T *=11,CP T N T *=22,代入(4)式,
即有: N2= Vx (5)
测量的计数值N2与被测电压Vx 成正比。
式中,N 1、N 2即为转换后的数字量,其中N 2是数字表头的显示值,这样的数字表头,再加上电压极性判别显示电路和小数点选择位,即为最终显示结果。
(2)数字万用表的工作原理
数字万用表的核心部分是直流数字电压表(DVM ),如图1中虚线框所示,它由滤波器、A/D 转换器、LED 液晶显示器组成。
在数字电压表的基础上再增加交流—直流、电流—电压、电阻—电压转换器,就构成了数字万用表。
Vref
N 1
图1数字万用表的原理框图
2. 用ICL7107模数转换器进行常见物理量的测量
本实验采用的DH6505数字电表原理及万用表设计实验仪提供的直流数字电压表量程为200mv 。
(1)直流电压测量的实现(直流电压表)
Ⅰ: 当参考电压Vref=100mV 时,Rint=47K Ω,电压表的量程Vo 为200mV 。
此时采用分压法实现测量0~2V 的直流电压 ,电路见图2。
由于电表内阻r>>r 2,所以分压比为
2
120r r r V V in += 扩展后的量程为
分档电阻r 1、r 2可从实验仪提供的分压器b 中得到。
此电路虽然可以扩展电压表的量程,但在小量程档明显降低了电压表的输入阻抗,这在实际应用中是行不通的。
所以,实际通用数字万用表的直流电压档分压电路为图3所示(附图实验仪提供的分压器a ),它能在
不降低输入阻抗(大小为R//r ,R=R1+R2+R3+R4+R5)的情况下,达到同样的分压效果。
0221V r r r V in +=
图2 分压法测量直流电压图3实用分压器a测量直流电压Ⅱ:直接使参考电压Vref=1V,Rint=470KΩ来测量0~2V的直流电压,电路如图4所示。
(2)直流电流测量的实现(直流电流表)
直流电流的测量通常有两种方法,第一种为欧姆压降法,如图5所示,即让被测电流流过一定值电阻Ri(由实验仪中的分流器提供),然后用200mV的电压表测量此定值电阻上的压降Ri*Is(在Vref=100mV时,保证Ri*Is≤200mV就行),由于对被测电路接入了电阻,因而此测量方法会对原电路有影响,测量电流变成Is’=R0*Is/(R0+Ri),所以被测电路的内阻越大,误差将越小。
第二种方法是由运算放大器组成的I-V变换电路来进行电流的测量,此电路对被测电路无影响,但是由于运放自身参数的限制,因此只能够用在对小电流的测量电路中,所以在这里就不再详述。
图4测量直流电压电路(V ref=1V)图5欧姆压降法测量直流电流
图6多量程分流器b 原理 图7实用分流器a 原理
图6中的分流器b 在实际使用中有一个缺点,就是当换档开关接触不良时,被测电路的电压可能使数字表头过载,所以,实际数字万用表的直流电流档电路(附图实验仪中的分流器a )如图7所示。
图7中各档分流电阻的阻值的计算方法:先计算最大电流档的分流电阻5R :
同理下一档的4R 为: 这样依次可以计算出R3、R2和R1的值。
图7中的FUSE 是2A 保险丝管,起到过流保护作用。
两只反向连接且与分流电阻并联的二极管D 1、D 2为硅整流二极管,它们起双向限幅过压保护作用。
正常测量时,输入电压小于硅二极管的正向导通压降,二极管截止,对测量毫无影响。
一旦输入电压大于0.7V ,二极管立即导通,两端电压被钳制在0.7V 内,保护仪表不被损坏。
用2A 档测量时,若发现电流大于1A 时,应尽量减小测量时间,以免大电流引起的较高温升而影响测量精度甚至损坏电表。
(3)电阻值测量的实现(欧姆表)
Ⅰ:当参考电压选择在100mV 时,此时选择Rint=47K Ω,测试的接线图如图8所示,图中Dw 是提供测试的基准电压,而Rt 是正温度系数(PTC )热敏电阻,既可以使参考电压低于100mV ,同时也可以防止误测高电压时损坏转换芯片,所以必需满足Rx=0时,Vr ≤100mV 。
由前面所讲述的ICL7107的工作原理,存在:
Vr=(Vr+)–(Vr-)=Vd*Rs/(Rs+Rx+Rt) (6)
)(1.022.050Ω===m s I U R )(9.01.02
.02.05404Ω=-=-=R I U R m
IN=(IN+)–(IN-)=Vd*Rx/(Rs+Rx+Rt) (7)
由前述理论N2/N1=IN/Vr有:
Rx=(N2/N1)*Rs (8)
所以从上式可以得出电阻的测量范围始终是0~2RsΩ。
图8电阻测量电路一图9电阻测量电路二Ⅱ: 当参考电压选择在1V时,此时选择Rint=470KΩ,测试电路可以用图9实现,此电路仅供有兴趣的同学参考,因为它不带保护电路,所以必需保证Vr≤1V。
在进行多量程实验时(万用表设计实验),为了设计方便,我们的参考电压都将选择为100mV,但比例法测量电阻要使Rint=470KΩ,以及在进行二极管正向导通压降测量时,也使Rint=470KΩ并且加上1V的参考电压。
(4)其它物理量的测量可查阅相关资料自行设计。
附DH6505实验仪的面板结构图。