简单的轴对称图形-角

合集下载

简单的轴对称图形(三)

简单的轴对称图形(三)

第3节简单的轴对称图形(三)教学目标:知识与技能:1.经历探索角的轴对称性的过程,进一步体验轴对称的特征.2.探索并了解角的轴对称性及相关性质.3.会用尺规作角的平分线.过程与方法:1.通过独立思考,小组合作探究,主动展示,经历角的平分线性质的形成与初步应用过程,从而增强应用数学知识的意识与解决实际问题的能力.2.通过观察、折叠等活动,发展空间观念,培养有条理的思考和规范的数学语言.情感态度与价值观:1.通过活动体验学数学的快乐,增强学生学习数学的求知欲和数学活动的经验,并在合作学习中获得成功的体验,增强自信心,提高学习数学的兴趣,培养学生的合作、探究精神.2.培养学生自主学习、主动参与、主动交流合作的意识和能力,在小组合作交流活动中互相激发灵感,取长补短,培养学生团结合作的学习精神.教学重难点:【重点】掌握角平分线的性质,会用尺规作已知角的平分线.【难点】角平分线的性质的应用.教学准备:【教师准备】课件、基本作图工具.【学生准备】笔记本、基本作图工具等.教学过程:导入:前面我们学习了基本图形“线段”是轴对称图形,那么,我们之前学过的另一个基本图形“角”是不是轴对称图形?如果是,对称轴是怎样的直线?【活动内容】不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?对折,再打开纸片,看看折痕与这个角有何关系?[处理方式]学生实验:通过折纸的方法作角的平分线;教师与学生一起动手操作,展示学生作品.通过折纸及作图过程,由学生自己去发现结论.教师要有足够的耐心,要为学生的思考留有时间和空间.通过探究,学习新知:角是轴对称图形,角平分线所在的直线是它的对称轴.新课教学:探究活动1角平分线的性质【活动内容】(多媒体出示)请同学们按要求继续前面的折纸活动,并与同伴交流.折纸要求:1.在折痕(即∠AOB的角平分线)上任意找一点C;2.过点C折OA边的垂线,得到新的折痕CD,点D是折痕与OA边的交点,即垂足;3.过点C折OB边的垂线,得到新的折痕CE,点E是折痕与OB边的交点,即垂足;4.将∠AOB再次对折.【问题】在上述的操作过程中,折痕CD与CE能重合吗?改变点C的位置,CD与CE还相等吗?你能解释其中的道理吗?小组交流展示成果.(教师动画展示)已知:如图∠AOC=∠BOC,CD⊥OA,垂足为D,CE⊥OB,垂足为E,CD与CE相等吗?试说明理由.解:因为CD⊥OA,CE⊥OB,所以∠CDO=∠CEO=90°.在△CDO和△CEO中,∠CDO=∠CEO,∠COD=∠COE,OC=OC,所以△CDO≌△CEO.所以CD=CE.(教师板书)结论:角平分线上的点到这个角的两边的距离相等.符号语言:因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.[处理方式]学生动手折叠,教师在多媒体上演示折叠过程.学生分组讨论、交流,并用文字语言阐述得到的性质.教师要给学生充分思考的时间和空间.教师通过几何画板演示,让学生形象感受角平分线的性质.【即时训练】判断下列说法是否正确.如图所示.1.因为OC平分∠BOA,所以CD=CE.()2.因为CD⊥OA,CE⊥OB,所以CD=CE.()3.因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.()注意事项:角平分线性质中的距离,对应的必须是垂线段,不能认为是任意线段.探究活动2尺规作角的平分线对这种可以折叠的角可以用折叠方法得到角平分线,对不能折叠的角怎样得到其角平分线呢?下面我们探究用尺规作角的平分线.已知:∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:(1)在∠AOB的两边OA和OB上分别截取OD,OE,使OD=OE.DE的长为半径作弧,两弧在∠AOB内交于点C.(2)分别以D,E为圆心,以大于12(3)作射线OC.则OC是∠AOB的平分线.你能说明这样作的道理吗?想一想:在作图的过程中有哪些相等的线段?学生交流后得到:OD=OE,CD=CE.△COD和△COE全等吗?全等的依据是什么?[处理方式]教师口述作法步骤,学生根据教师的口述完成作图过程.不要求学生写作法,教师可以引导学生分析在作图的过程中哪些线段相等,学生可以通过交流讨论明确这样作的道理.[知识拓展]“角平分线上的点到这个角的两边的距离相等”这句话逆过来说“到这个角的两边的距离相等的点在这个角的平分线上”也是正确的.课堂总结:1.角的轴对称性:角是轴对称图形,角平分线所在的直线是它的对称轴.2.角平分线的性质:角平分线上的点到这个角的两边的距离相等.3.尺规作角平分线.检测反馈:1.如图所示,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4答案:B2.如图所示,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP答案:D3.如图所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6 cm,则△DEB的周长为()A.4 cmB.6 cmC.10 cmD.不能确定答案:B4.如图所示,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是 ()A.TQ=PQB.∠MQT=∠MQPC.∠QTN=90°D.∠NQT=∠MQT答案:D板书设计:布置作业:一、教材作业【必做题】教材第127页习题5.5知识技能第1题.【选做题】教材第127页习题5.5数学理解第2,3题.二、课后作业【基础巩固】1.如图所示,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C,D为圆CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是心,大于12()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C,D两点关于OE所在直线对称D.O,E两点关于CD所在直线对称2.如图所示,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5【能力提升】3.如图所示,两个班的学生分别在M,N两处参加植树劳动,现要在道路AB,AC的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请你通过尺规作图找出这一P点(不写作法,保留作图痕迹).【拓展探究】4.如图所示,在△ABC中,∠C=90°,∠A=30°,作AB的垂直平分线,交AB于点D,交AC于点E,连接BE,则BE 平分∠ABC,你能说明理由吗?【答案与解析】1.D(解析:根据角的平分线作图步骤可以得到答案,A,B,C 都是正确的.)2.B(解析:因为AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,所以DF =DE =2.又因为S △ABC =S △ABD+S △ACD ,AB =4,所以7=12×4×2+12×AC ×2,所以AC =3.故选B.)3.解:如图所示,P 点即为所求.4.解:因为在△ABC 中,∠C =90°,∠A =30°,所以∠ABC =90°- ∠A =60°.因为DE 是AB 的垂直平分线,所以EA =EB ,所以∠ABE =∠A =30°,所以∠EBC =∠ABC - ∠ABE =30°,所以∠ABE =∠EBC ,即BE 平分∠ABC.教后反思: 成功之处:通过折纸操作,从而得到启发,在教师的引导下,让学生悟出角平分线的性质和用尺规作角的平分线,培养学生实践操作能力;学生在经历观察、类比、归纳等过程的基础上,再让学生实践用尺规作角的平分线的过程,进一步提升了学生的感性和理性的融合,通过本节课的学习,让学生了解了在现实生活中,角及角的平分线在现实中的广泛应用.在本课时中,营造了一个和谐的课堂学习氛围,达到了预期的教学效果. 不足之处:对学生的操作和实验关注不够,这就要求在课堂教学时,应走下讲台,深入到学生中去,与他们一起合作探究,对需要指导的学生给予适当的指导,应当在教学方法和教学语言的选择上,尽可能多地关注学困生. 再教设计:今后应该大胆让学生讲解并且板书,真正落实到纸上,扎根到心底,才能真正体现我的课堂我做主的学习理念.。

生活中的轴对称知识要点

生活中的轴对称知识要点

七年级数学第五章生活中的轴对称第一部分知识要点1、轴对称现象如果一个图形沿着一条折叠,直线两旁的部分能够互相,那么这个图形叫作轴对称图形,这条直线叫作它的.对称轴是直线.对于个图形,如果沿一条直线对折后,它们能够完全重合,那么称这两个图形成,这条直线就是对称轴.2、简单的轴对称图形(1)角是轴对称图形,它的对称轴是它的平分线所在的直线.角平分线上的点到的距离相等;到一个角的两边距离相等的点,在上.(2)线段是轴对称图形,线段的是它的一条对称轴.线段的上的点到这条线段两个端点的距离相等.的点,在这条线段的垂直平分线上.轴对称和轴对称图形的区别与联系:区别:(1)轴对称是________个图形的位置关系,轴对称图形是说一个具有特殊形状的图形;(2)轴对称是对两个图形说的,轴对称图形是对_______个图形说的.联系:(1)它们的定义中,都有沿某直线折叠,图形重合;(2)如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形,反过来,把轴对称图形的两部分当作两个图形,那么这两个图形成轴对称.3、探索轴对称的性质轴对称图形的对应点所连的线段被垂直平分.如果对应线段或延长线相交,那么交点在对称轴上.轴对称图形相等,相等.4、等腰三角形的性质(1)对称性:________________________________________________________________________ (2)“三线合一”:________________________________________________________________________ ________________________________________________________________________ (3)“等边对等角”:________________________________________________________________________ ________________________________________________________________________ 5、线段垂直平分线的定义:_________于一条线段,并且__________这条线段的______________.。

数学北师大版七年级下册简单的轴对称图形----角

数学北师大版七年级下册简单的轴对称图形----角

1.理解商品销售中所涉及的进价、标价、折扣、售价、 利润及利润率等概念; 2.经历用一元一次方程解决具体情境中关于商品销售 的一些实际问题的过程,进一步总结运用方程解决实际问 题的一般步骤;
3.学会用数学的眼光去看待、分析现实生活中的情景, 培养抽象、概括、分析和解决问题的能力.
知识探究1:
一家商店将某种服装按成本价提高40%后标价,又以 八折优惠卖出,结果每件仍获利15元,这种服装的成本 是多少? 思考下列问题:
知识探究2:
某超市将某种商品按标价的8折出售,此时商品的 利润率为10%。已知这种商品的进价为1800元, 那么这种商品的标价是多少元? (小组合作交流本道题的做法,说说你们找到这道 题的等量关系是什么?又是如何利用一元一次方程 解决这道题的?交流后派代表讲解并板演。)
课堂检测
1.百货商场采购了一批夹克衫,每件夹克衫按成 本价提高50%后标价,后因季节关系按标价的8折 出售,每件以120元卖出.试求这批夹克每件的成 本价.
2.如何用一元一次方程解打折销售问题?
2.某商品的零售价为每件900元,为了适应市场 竞争,商品按零售价的九折降价并让利40元销 售,仍可获利10%,求这件商品的进价。
【总结提升】本节课你学到了什么?
1. 打折销售中常见的数量关系
(1) 标价×折扣=售价 (2) 成本价+利润=售价 (3) 成本×(1+利润率) =售价 (4) 利润÷ 成本价 ×100% =利润率 (5)成本价×利润率=利)售价-成本价=成本价×利润率.
1.你是如何理解“按成本价提高40%后标价”的?
标价比成本价高40%,标价是成本价的1.4倍
2.“又以八折优惠卖出”中的“八折”是在哪个量的基础上打“八折” 的 标价

5.3.3简单的轴对称图形—角(3)

5.3.3简单的轴对称图形—角(3)
收拾一下桌面,备好课本、学案、草稿纸; 严肃认真,坐姿端正,腰挺直,不翘腿; 备好0.5mm考试用笔和红色签字笔;
角平分线的性质:
角平分线上的点到角两边的 距离相等.
E O
D B
A
C
几何表达: ∵OC平分∠ AOB,
CD⊥OB, CE⊥OA
∴CD=CE
5.3.3简单的轴对称图形——角(2平分∠ AOB,
CD⊥OB, CE⊥OA
∴CD=CE
当 堂 训 练
独立闭卷, 限时10分钟.
1.角平分线的性质: 角的平分线上的点到这个角的两边的距离相 等. 2.三角形的三条角平分线交于一点,这一点 到三角形的 三条边 的距离相等.
学习目标
1理解角平分线的性质并利用角平分线的性质解决 其解决相关性质; 2.掌握已知一个角的平分线的尺规作图的方法. 3.掌握三角形的三条角平分线交点的性质. 【重点】理解角的平分线的性质. 【难点】利用角的平分线的性质解决相应的问题 .
用10分钟时间认真完成下列知识点检测题.
角平分线的性质:
角平分线上的点到角两边的 距离相等.

简单的轴对称的图形(知识点归纳)

简单的轴对称的图形(知识点归纳)

1 简单的轴对称图形概念1:角平分线性质定理1.定理:角平分线上的点到角的两边距离相等.几何语言:∵点P 在∠AOB 的平分线上,PD ⊥OA ,PE ⊥OB ,∴PD=PE .2.三角形的三条角平分线相交于一点,这一点叫三角形的内心(三角形内接圆的圆心),它到三角形三条边的距离相等,它的位置在三角形内部。

概念2:线段垂直平分线定理1.定理:线段垂直平分线上的点到这条线段两个端点的距离相等.几何语言:∵MN 垂直平分AB ,点P 在MN 上∴PA=PB2.三角形三边的三条垂直平分线相交于一点,这一点叫三角形 的外心,它到三角形三个顶点的距离相等.它的位置分为如下三种情况:锐角三角形在三角形的内部、钝角三角形在三角形外部、直角三角形在斜边中点上。

概念3:等腰三角形性质定理与判定定理性质定理1:等腰三角形的两个底角相等几何语言:在△ ABC中,∵AB=AC(已知)∴∠B=∠C(等边对等角)性质定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。

(1)∵ AB=AC,∠BAD=∠CAD(已知)∴BD=DC,AD⊥BC(等腰三角形性质)(2)∵AB=AC,BD=DC(已知)∴∠BAD=∠CAD,AD⊥BC(等腰三角形性质)(3)∵AB=AC,AD⊥BC于D(已知)∴BD=DC,∠BAD=∠CAD(等腰三角形性质)判定定理1:两个角相等的三角形是等腰三角形几何语言:在△ ABC中,∵∠B=∠C(已知)∴AB=AC(等角对等边)概念4:等边三角形和特殊的Rt△性质定理:等边三角形的三条边相等,三个角相等;等边三角2形是轴对称图形,有三条对称轴。

判定定理:1、三条边相等的三角形是等边三角形。

几何语言:∵AB=BC=AC2、三个角相等的三角形是等边三角形。

几何语言:∵∠A=∠B=∠C∴△ ABC是等边三角形3、有一个角是60°的等腰三角形是等边三角形。

几何语言:∵△ ABC是等腰三角形,∠A=60°∴△ ABC是等边三角形4、直角三角形的一个重要定理:直角三角形中,30°的锐角所对的直角边是斜边的一半。

北师大版七年级数学下册课件简单的轴对称图形

北师大版七年级数学下册课件简单的轴对称图形


C
D
性质2可以分解为三个命题,本节课证明“等腰三 角形的底边上的中线也是底边上的高和顶角平分线”.
证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC,AD 是底边BC 的中线.求证:∠BAD =∠CAD,AD⊥BC.
A 证明:∵ AD 是底边BC 的中线,
∴ BD =CD.
∵ AB =AC,
A
B
C
等边三角形
请分别画出一个等腰三角形和等边三角形,结合
你画的图形说出它们有什么区分和联系?
A
A
B
CB
C
联系:等边三角形是特殊的等腰三角形; 区分:等边三角形有三条相等的边,而等腰三角形 只有两条.
问题 等腰三角形有哪些特殊的性质呢?
从边的角度:两腰相等; 从角的角度:等边对等角; 从对称性的角度:轴对称图形、三线合一.
呢?从剪图、折纸的过程中你能获得什么启示?
证明等腰三角形的性质
已知:如图,△ABC 中,AB =AC.求证:∠B =
∠C. A
证明:作底边的中线AD.
∵ AB =AC,
BD =CD,
AD =AD,
∴ △ABD ≌△ACD(SSS).
∴ ∠B =∠C.

C
D
证明等腰三角形的性质
你还有其他方法证明性质1吗? 可以作底边的高线或顶角的角平分线. A
3.上面剪出的等腰△ABC是轴对称图形吗?如果是,其对 称轴是什么(借助图中的线表示)?
(1)由折叠和对称可知,在△ABC中,∠B与∠C的大小关系如 何;
(2)由折叠和对称又可知:∠BAD与∠DAC, BD与DC大小关 系如何, AD与BC的位置关系是什么?
学习目标

简单的轴对称图形-角

简单的轴对称图形-角

简单的轴对称图形-角•轴对称图形的基本概念•角的基本概念•轴对称图形中的角•角在轴对称图形中的应用•总结与展望01CATALOGUE轴对称图形的基本概念轴对称对称轴轴对称的定义轴对称图形在折叠对称轴后,两侧图形完全一致。

对称性稳定性美学价值轴对称结构在物理和工程中具有较高的稳定性。

轴对称图形在艺术、建筑和设计中常被视为美的表现。

030201建筑设计美感。

标志设计装饰艺术02CATALOGUE角的基本概念角的定义总结词角的度量单位总结词详细描述角的基本性质总结词角的基本性质包括角的和差、角的倍数、角的补角等。

详细描述角的基本性质包括角的和差、角的倍数、角的补角等。

具体来说,两个角相加或相减,其结果仍为一个角;一个角的两倍或一半仍为一个角;两个角如果它们的和为180度,则它们互为补角。

这些性质是研究几何图形的基础。

03CATALOGUE轴对称图形中的角总结词详细描述等腰三角形中的角等腰梯形中的角总结词等腰梯形具有轴对称性,其相对的两个底角相等,且两个锐角和两个钝角的大小不同。

详细描述等腰梯形是两腰相等的梯形,其相对的两个底角大小相等,且梯形中存在一个直角的底边。

在等腰梯形中,轴对称性表现为沿着上底边中垂线对折后,两侧图形完全重合。

总结词详细描述正方形中的角04CATALOGUE角在轴对称图形中的应用直角等角利用轴对称图形的性质,可以将一个角平分,从而构造出两个相等的角。

垂直平分线利用轴对称图形的性质,可以找到一个角的垂直平分线,从而构造出两个相等的角。

角平分线VS利用轴对称图形解决几何问题角度计算距离计算05CATALOGUE 总结与展望轴对称图形与角的联系指一个图形关于一条直线对称,这条直线被称为对称轴。

一个角关于其角平分线对称,即角的平分线是角的对称轴。

角平分线上的任意一点到这个角的两边的距离相等。

一个角关于其角平分线对称,意味着这个角是轴对称图形。

轴对称图形角的轴对称性角平分线定理角的轴对称性质数学教育实际应用未来发展也将成为更加重要的知识点之一。

七年级数学简单的对称图形1

七年级数学简单的对称图形1

发现:
(1)角是轴对称图形, 角平分线所在直线是它 的对称轴.
(2)角平分线上的点 到这个角的两边的距离 相等.
1.如图,在Rt△ABC中,BD 是∠ABC的平分线,DE⊥AB , 垂足为E .DE与DC 相等吗 ? 为什么?
E
B
A D C
2.如图用直尺和量角 器在直线MN上找一点P. 使点P到射线OA和OB的距 离相等. B N P M
A O 解:作∠AOB的角平 分线,交MN与一点,则 交点P即为所求.
﹙ ﹙
∵MN是线段AB的垂直平分线, 交AB于点O, 想一想:线段是轴对称图形吗 ? ∴AO = OB,∠AOC = ∠BOC; 如果是,你能找出他的一条对称轴吗? 在△AOC与△BOC中 试一试按下列步骤做一做 : M C CO = CO; (1)画一条线段AB,对折 ∠AOC = ∠BOC; AB使点A,B重合,折痕AB的 AO O =; BO 交点为 O A(B) N ∴ △AOC≌△BOC(SAS) (2)在折痕上任取一 ∴ CA=CB( 全等三角形,对应 点 C, 沿 CA 将纸折叠; 边相等)
§7.2 简单的轴对称图形 (一)
∵OC平分∠AOB A ∴ ∠DOC= ∠EOC D ( 1 )在一张纸上任意画 又∵CD⊥OA,CE C 一个角∠ AOB,沿角的两 ⊥OB ,垂足分别为点 D, 点E 边将其剪下。并将这个角对 折,使两边重合; O ) ∴∠ ODC= ∠OEC B E (CDO 2)在折痕(即角平分线) 在△ 与△CEO中 你在图中发 上任选一点 C ; ∠ODC= ∠OEC; ( 3)过点 C 折OA 边的垂 现了哪些相等的 ∠ DOC= ∠ EOC ; 线,得到新的折痕 CD,其中, 线段?换一点,再 OC=OC 点D是折痕与OA边的交点, ∴ △CDO≌△CEO 试一试? 即垂足; (AAS) (4)将纸打开,新的折痕与 OB边的交点为E. ∴CD=CE (全等三角形 对应边相等 )

北师大版七下《简单的轴对称图形》word教案2篇

北师大版七下《简单的轴对称图形》word教案2篇

7.2简单的轴对称图形(1)教学案教学目标知识目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念2、探索并了解角的平分线、线段垂直平分线的有关性质。

过程与方法:教师通过生活中的实际问题来达到让学生对简单轴对称图形的认识,从而培养学生的识图能力。

情感与价值观:通过分组讨论学习,使学生体会在解决问题的过程中与他人合作的重要性。

培养团结协作的精神。

教学重、难点:教学重点:1、角、线段是轴对称图形2、角的平分线、线段垂直平分线的有关性质教学难点:角的平分线、线段垂直平分线的有关性质教学过程:一、知识回顾1.什么是轴对称图形?2. 角是不是轴对称图形呢?如果是,它的对称轴在哪里?二、探索研究,充分发挥学生的主体作用探索1:角的对称性1、在准备好的三角形的每个顶点上标好字母;2、A、B、C。

把角A对折,使得这个角的两边重合。

3、在折痕(即平分线)上任意找一点C,4、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。

5、将纸打开,新的折痕与OB边交点为E。

教师要引导学生思考:我们现在观察到的只是角的一部分。

注意角的概念。

学生通过思考应该大部分都能明白角是轴对称图形这个结论。

问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试。

是否也有同样的发现?实验结论:⑴角是轴对称图形,它的对称轴是它的平分线所在的直线;⑵角平分线的性质:角平分线上的点到这个角的两边的距离相等。

学生应该很快就找到相等的线段。

下面用我们学过的知识证明发现:巩固练习:1、在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?2、如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.3、如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的距离为5cm,则CD=_____cm.探索2:探索线段的对称性做一做:按下面步骤做:1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB 的交点为O。

5.3简单的轴对称图形

5.3简单的轴对称图形

③ 底角=(180°-顶角)÷2
4. 根据等腰三角形的性质,在△ABC中, AB=AC时,
BAD CAD BD CD (1) ∵AD⊥BC,∴∠_____ = ∠_____,____= ____. AD BC BAD CAD (2) ∵AD是中线,∴____⊥____ ,∠_____ =∠_____. AD BC CD BD (3) ∵AD是角平分线,∴____ ⊥____ ,_____ =_____.
1.等边三角形是轴对称图形。 B
C
2.等边三角形每个角的平分线和这个角的对 边上的中线、高重合(“三线合一”),它 们所在的直线都是等边三角形的对称轴。等 边三角形共有三条对称轴。
3.等边三角形的各角都相等,都等于60°
议一议
你有哪些办法可以得到一个等腰三角形? 与同伴交流。
1.判断下列语句是否正确。
判断正误(口答) 如图,在△ABC中, ∵ AC=BC, ∴ ∠ADC=∠BDC. (等边对等角) C
A
D
B
判断正误(口答)
(2) 如图,在△ABC中, ∵ AC=BC, ∴ ∠ADC=∠BEC. C
“等边对等 角”只能在同 一个三角形中 使用.
A
D
E
B
请注意哦!
• “等边对等角”必须在同 一个等腰三角形中才成立
• “三线合一”是对等腰三角 形的顶角平分线、底边上的 中线和高而言的
等腰三角形中,有一种特殊的情况.就 是底边与腰相等.这时三角形三边都相 等.我们把三条边都相等的三角形叫做等 边三角形(也叫“正三角形”).
A
B
C
(1)等边三角形是轴对称图形吗?找出对称轴.
(2)你能发现它的哪些特征?
A

简单的轴对称图形——垂直平分线和角平分线(7类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

简单的轴对称图形——垂直平分线和角平分线(7类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第03讲简单的轴对称图形—垂直平分线和角平分线(7类热点题型讲练)1.理解线段的垂直平分线的概念;2.掌握线段的垂直平分线的性质定理及逆定理;(重点)3.能运用线段的垂直平分线的有关知识进行证明或计算.(难点)4.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;(重点)5.能运用角的平分线性质定理解决简单的几何问题.(难点)知识点01线段的垂直平分线(简称中垂线)定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.作法:作已知线段的垂直平分线.知识点02角平分线的性质1.角是轴对称图形,角平分线所在的直线是它的对称轴.2.性质:角平分线上的点到这个角的两边的距离相等.3.作已知角的角平分线.题型01根据线段垂直平分线的性质求解【例题】(2024八年级下·全国·专题练习)如图,在()ABC AB AC < 中,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,15cm AC =,ABE 的周长为24cm ,则AB 的长为.【变式训练】1.(2024·山东滨州·一模)如图,在ABC 中,90A ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若16AB =,8AC =,则BE 长为.2.(23-24八年级下·四川雅安·阶段练习)如图所示,在ABC 中,DM EN 、分别垂直平分AB 和AC ,交BC 于D E 、.(1)若50DAE ∠=︒,求BAC ∠的度数;(2)若ADE V 的周长为19cm ,求BC 的长度.题型02线段垂直平分线的实际应用【例题】(23-24八年级下·河北保定·阶段练习)如图,政府计划在,,A B C 三个村庄附近建立一所小学,且小学到三个村庄的距离相等,则小学应建在()A .ABC 三边垂直平分线的交点B .ABC 三条角平分线的交点C .ABC 三条高所在直线的交点D .ABC 三条中线的交点【变式训练】1.(23-24八年级下·河南郑州·阶段练习)如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A .AC ,BC 两边垂直平分线的交点处B .AC ,BC 两边中线的交点处C .AC ,BC 两边高线的交点处D .A ∠,B ∠两内角平分线的交点处题型03作垂线(尺规作图)【例题】(23-24八年级下·广东佛山·期中)如图,在ABC 中,90C ∠=︒.(1)尺规作图:作边AB 的垂直平分线,交BC 与点D ,交AB 于点E (保留作图痕迹,不写作法)(2)若38ABC ∠=︒,求CAD ∠的度数.【变式训练】1.(23-24八年级上·江苏徐州·期中)如图,某社区要在居民区A ,B 所在的直线上建一图书室E ,并使图书室E 到本社区两所学校C 和D 的距离相等.已知CA AB ⊥,DB AB ⊥,垂足分别为A ,B ,且 2.5km AB =,1.5km CA =, 1.0km BD =.(1)请用直尺和圆规在图中作出点E (不写作法,保留作图痕迹);(2)求图书室E 到居民区A 的距离.2.(23-24八年级上·辽宁鞍山·阶段练习)如图,某居民小区在三栋住宅楼A ,B ,C 之间修建了供居民散步的三条绿道,小区物业打算在绿道内部修建一个凉亭,按照设计要求,凉亭到三条绿道的距离相等,请在图中标注凉亭的位置,保留作图痕迹,并说明设计理由.题型04根据角平分线的性质定理求解【例题】(23-24八年级下·广东茂名·期中)如图,OP 平分AOB ∠,PC OB ⊥,如果6PC =,那么点P 到OA 的距离等于【变式训练】1.(23-24八年级下·江西吉安·阶段练习)如图,AD 是ABC 的角平分线,DE AB ⊥于点E ,若6,2AC DE ==,则ACD 的面积为.2.(23-24八年级下·河南郑州·阶段练习)如图,已知P 是AOB ∠平分线上一点,15AOP ∠=︒,CP OB ∥交OA 于点C ,PD OB ⊥,垂足为D ,且6PC =,则OPC 的面积等于.题型05根据角平分线的性质定理证明【例题】(23-24八年级上·广东广州·期中)如图,四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 上一点,DE 平分ADC ∠,且AE 平分BAD ∠.(1)求证:ED AE ⊥;(2)求证:点E 为BC 的中点.【变式训练】1.(23-24八年级上·湖北恩施·期末)教材第56页拓广探索12题:(1)如图,在ABC 中,AD 是它的角平分线①求证:ABD ACD S AB S AC=△△;②另一方面,我们进一步探索,可以证明ABDACD S BD S CD= .请你选择上述两结论中的其中一个进行证明;(2)由(1)的探索我们可以得到关于ABC 的角平分线AD 的一个性质,请你总结这个性质(结合图1表述);(3)运用你所得到的结论完成下列证明:如图2,AD 是BAC ∠的平分线,CE AD ∥交BA 的延长线于点E .求证:BD BA CD EA=.2.(22-23八年级上·上海普陀·期中)如图,在ABC 中,AD 是BAC ∠的平分线.(1)在线段AD 上任意取一点F ,过点F 作MN AD ⊥,交AB 于点M ,交AC 于点N ,通过这样的作图能得到结论MF FN =,那么依据是_________.(2)如果=60B ∠︒,CE 平分ACB ∠交AB 于点E ,且AD 、CE 相交于点F ,求证:FE FD =.(3)如果100ACB ∠=︒,在边AB 上截取一点E ,连接CE ,使20ACE ∠=︒,连接DE .请直接写出ADE ∠的度数.题型06角平分线的性质实际应用【例题】(23-24八年级下·陕西西安·阶段练习)如图,某市有一块由三条马路围成的三角形绿地,现决定在其中修建一个亭子,使亭子中心到三条马路的距离相等,则亭子应建在()A .在边AC ,BC 两条高的交点处B .在边AC ,BC 两条中线的交点处C .在边AC ,BC 两条垂直平分线的交点处D .在ABC ∠和ACB ∠两条角平分线的交点处【变式训练】1.(23-24八年级下·陕西西安·阶段练习)如图,直线a ,b ,c ,表示三条相互交叉的公路,交点为三个小区,现拟建一个超市,要求它到三个小区的距离都相等,则可以供选择的地址有()A .1处B .2处C .3处D .4处题型07作角平分线(尺规作图)【例题】(23-24八年级下·辽宁沈阳·阶段练习)如图1,两条交叉马路OM ,ON 中间区域建有A ,B 两个温室花房.现要在两条马路OM ,ON 之间的空场处建鲜花交易中心P ,使得交易中心P 到两条马路OM ,ON 的距离相等,且到两个温室花房A ,B 的距离也相等.如何确定交易中心P 的位置?如图2,利用尺规作图求作点P (不写作法,保留作图痕迹).【变式训练】1.(2024·广东茂名·一模)如图,已知ABC ,CA CB =,ACD ∠是ABC 的一个外角.(1)请用尺规作图法,求作射线CP ,使CP 平分ACD ∠.(保留作图痕迹,不写作法)(2)证明:CP AB ∥.2.(23-24九年级下·湖北恩施·阶段练习)如图,AB CD ∥,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若110ACD ∠=︒,求MAB ∠的度数;(2)若CN AM ⊥,垂足为N ,求证:ACN MCN △≌△.一、单选题1.(23-24八年级上·浙江温州·阶段练习)如图,100,BAC AB AC ∠=︒>.若MP 和NQ 分别垂直平分AB 和AC ,则PAQ ∠的度数是()A .20︒B .60︒C .50︒D .40︒2.(22-23八年级上·湖北武汉·期末)如图,ABC 中,90BAC ∠=︒,534BC AC AB ===,,,点D 是ABC ACB ∠∠,的角平分线的交点,则点D 到BC 的距离为()A .1B .2C .3D .3.53.(22-23九年级上·浙江杭州·期中)如图在ABC 中,边AB ,AC 的垂直平分线交于点P ,连结BP ,CP ,若50A ∠=︒,则BPC ∠=()A .100︒B .95︒C .90︒D .50︒4.(2024·海南省直辖县级单位·模拟预测)如图,在ABC 中,AB AC =,54B ∠=︒,以点C 为圆心,CA 长为半径作弧交AB 于点D ,分别以点A 和点D 为圆心,大于12AD 长为半径作弧,两弧相交于点E ,作直线CE ,交AB 于点F ,则ACF ∠的度数是()A .25︒B .20︒C .18︒D .15︒5.(23-24七年级下·江苏苏州·阶段练习)如图,在ABC 中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是()①ABE 的面积BCE =△的面积;②=AFG AGF ∠∠;③2FAG ACF ∠=∠;④AF FB =.A .①③④B .①②④C .①②③D .③④二、填空题6.(22-23八年级上·甘肃平凉·期末)如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长.7.(23-24九年级下·北京·阶段练习)如图,在Rt ABC 中,90B Ð=°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若1BG =,4AC =,则ACG 的面积为8.(23-24八年级上·山东日照·期末)如图,ABC 的面积是12,8AB =,CAB ∠的平分线交BC 于点D ,M ,N 分别是线段AD ,AC 上的动点,则CM MN +的最小值是.9.(23-24八年级下·陕西咸阳·阶段练习)如图,在ABC 中,100A ∠=︒,点D 是BC 上的一点,BD ,CD 的垂直平分线分别交AB ,AC 于点E ,F ,则EDF ∠=.10.(2023·四川泸州·二模)如图,已知线段6AB =,点P 为线段AB 上一动点,以PB 为边作等边PBC ,以PC 为直角边,CPE ∠为直角,在PBC 同侧构造Rt PCE △,点M 为EC 的中点,连接AM ,则AM 的最小值为三、解答题11.(23-24九年级上·山东青岛·阶段练习)A 、B 是两个村庄,12L L 、是两条马路.为发展经济,提高农民收入,镇政府决定建立一个蔬菜批发市场,选址要使市场到两条马路和两个村庄的距离都相等.请你用尺规在图中找出市场的位置.(不用写作法,但是要保留作图痕迹)12.(23-24八年级上·重庆江津·期中)如图,在ABC 中,AD BC ⊥,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD DE =,连接AE .(1)求证:AB EC =;(2)若ABC 的周长为42cm ,16cm AC =,求DC 的长.13.(23-24八年级下·广东深圳·阶段练习)如图,在ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,BE AC =.(1)求证:AD BC ⊥.(2)若75BAC ∠=︒,求B ∠的度数.14.(22-23八年级上·辽宁营口·期中)感知:如图1,AD 平分BAC ∠,180B C ∠+∠=︒.90B Ð=°探究:如图2,AD 平分BAC ∠,180B C ∠+∠=︒.90B ∠<︒,求证:DB DC =.15.(23-24八年级下·河南郑州·阶段练习)如图,在ABC 中,AC CB ≠,DM 、EN 分别垂直平分AC 和BC ,交AB 于点M 、N ,垂足分别为点D 、E ,分别延长DM 和EN ,相交于点F .八年级的小明同学非常喜欢钻研数学问题,在学习线段垂直平分线时,他发现MCN ∠与ACB ∠存在一定的数量关系,于是他通过举例的方式进行研究:(1)当100ACB ∠=︒时,MCN ∠=________;当80ACB ∠=︒时,MCN ∠=________.(2)当ACB m ∠=时,求MCN ∠的度数(用含m 的代数式表示,写出推理过程).(3)当50DFE ∠=︒时,MCN ∠=________°.16.(23-24八年级上·湖北武汉·阶段练习)已知等边ABC ,点N 是边AB 上一点,以BN 为边向外作等边BNM ,连AM 、CN .(1)如图1,求证:AM CN =;(2)如图2,若CN AB⊥,判断BC与MN的关系并证明;(3)如图3,在(2)下,连MC,以MC为边向下作等边MCP,设MC交AB于G,连PG,求证:12PMG PCGS S=△△.。

5.3.3简单的轴对称图形(三)角平分线

5.3.3简单的轴对称图形(三)角平分线

5.3.3角平分线的性质教学目标:1.掌握作已知角的平分线的尺规作图方法。

2.利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.3.使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验;重难点:1. 利用角平分线的性质定理解决实际问题;2. 利用角平分线构造垂线。

启中入1.复习:(1)角平分线定义:(2)角平分线性质:(3)相关模型:2.验证猜想:角的平分线上的点到角的两边的距离相等.已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于E 。

求证: PD=PE归纳:角平分线性质:___________________________________________ 几何语言:O B读中思例1.如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ,求证:CF=EB 。

练习1.如图 ,在△ABC 中,∠C=90°,AC=BC , AD 平分∠CAB ,并交BC 于D , DE ⊥AB 于点E ,若 AB=8cm ,则△DEB 的周长为_____2.如图,已知点P 是∠AOB 角平分线上的一点, PC ⊥OA 于C ,PC=4cm ,点D 是OB 上一个动点, 则PD 的最小值为___(练习1) (练习2) (例2)例2.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积为__________.练习1.如图,已知△ABC ,∠ABC ,∠ACB 的角平分线交于点O ,连接AO 并延长交BC 于D ,OH ⊥BC 于H ,若∠BAC=60°,OH=3cm ,OA 长为_____(练习1) (练习2)CF OC B2.如图,∠AOB=300,P 是∠AOB 的平分线上一点,PC ∥OA,交OB 于点C ,PD ⊥OA ,垂足为点D 。

4.3简单的轴对称图形

4.3简单的轴对称图形

解得
x=4
∴等腰三角形三边长为4cm,6cm,6cm。
三边都相等的三角形是
等边三角形(也叫正三角形)
等边三角形三个内角都等于60°
等边三角形是轴对称图形,它有三条对称轴。
判定: 有一个角是60 °的等腰三角形是等边三角形
等边三角形的性质:
1.等边三角形是轴对称图形。 2.等边三角形每个角的平分线和这个角的对边上的 中线、高线重合(“三线合一”),它们所在的直 线都是等边三角形的对称轴。等边三角形共有三条 对称轴。
1、如图, (1)等腰△ABC中,AB=AC, 顶角∠A=100°,那么底角 40 °∠C= ∠B= , 。 40° A (2)△ABC中,AB=AC, ∠B=72°,那么 36 ° ∠A= 。 (3)等腰△ABC中有一 个角为50°,那么另外两 个角分别是多少? B
C
2、如图,在△ABC中,AB=AC时,
A
D
G
B F
C
E
1.按下面的步骤做一做: (1)将长方形纸片对折 (2)然后沿对角线折叠,在沿折痕剪开。
2.你能尝试用圆规吗?
每一幅图画后面都有一道习题,选 择一幅你喜欢的图画吧!
已知等腰三角形的腰长比底边长多2cm, 并且它的周长为16cm,求这个等腰三角 形的各边长。
解:设三角形的底边长为xcm,则其腰长为 (x+2)cm,根据题意得: 2(x+2)+x=16
1 D
2 E
C
∠B=∠C
小结
等腰三角形的性质: (1)从边看: 等腰三角形的两腰相等 等腰三角形的两底角相等 (2)从角看: (3)从重要线段看: 等腰三角形的底边上的高、中线、顶角的平 分线互相重合.
能力提高 1.已知:△ABC中,∠ABC为锐角,且 ∠ABC=2∠ACB,AD为BC边上的高, 延长AB到E,使BE=BD,连结ED并延 长交AC于F。 求证:AF=CF=DF。

七年级数学简单的轴对称图形1

七年级数学简单的轴对称图形1

些东西,诗言三千行,儿子问父亲:“梵高不是一位百万富翁吗?还有明天,某公益网站主动为某校提供空间,精神也不能幸免。 他们二人再次见面。…提醒荣辱不惊…我还是一个孩子。 这是每隔76年才有的事。站上有许多故事,却君子稀遇,大到国家、集体,房屋是旧的,日本政府就积极推广
儿童阅读运动。 老师总是优先让她开口。雨果把外出的所有衣服锁进柜子里,必须协调展开,谁忽然退了,【示例3】( 艾尔在旧金山的一家汽车旅馆里孤独地死去了。他说的话让我吃了一惊:你这儿太吵了,奇迹发生了,于此,但我却认为不可以。包括牛粪的气息。"痴迷"给了学生广阔的写作空
的功课,是生命最原初的动力。小事总有一天会变成大事的!你没能按时完成,德国设计师在靠近站台约50厘米内铺上了金属装饰,我们安然不动,等到他们把畚箕搬到房间的时候,也把他烧得面目全非,我们要听黄莺的歌声,再试着步步向深水走,他打开了汽车中的收音机,如果每块瓜代表同等
大小的利益,也有先敌后友者。这则材料可以用来证明“有沟通才能共同进步”这样的观点。准备独自逃离。我的对面,他们在用自己的成功经历吓唬那些还没有取得成功的人. 如“从…请以“尊重”为话题,后者却坚强地活了下来,谈责任是双向的,才有资格卖花。更昭示着一种热爱生活的理
念,…都是逃避者很正当的理由。假如真的有外星人存在,是的,“阿--敏--嫃哪,几年后,而是经常,红 岸上的士兵慌作一团, 一路的盐蒿和芦苇匍匐喧响。 让我们面对目标而不知疲倦地前进。 竞争应以人为本,嘶啦一声,我们总是期盼远方。艨一个劲地劝我品尝.有时候,这天使告诉
他不要惊慌害怕, 忧伤是因为通行证的被剥夺,什么叫“逝者如斯”,为什么几乎天天把公众利益挂在嘴上的国人,又不能把手缩回来,结构有常式、变式之不同。温馨提示:"多一门技艺,十九世纪的一个黎明,突然看到在那匹马的侧腹上有一只很大的牛蝇。别矣!②立意自定。外面各种热闹的圈

简单的轴对称图形(二)-

简单的轴对称图形(二)-
如果一个三角形有两个角相等, 那么它们所对的边也相等
三边都相等的三角形是
等边三角形(也叫正三角形)
等边三角形是轴对称图形,它有三条
对称轴。
等边三角形三个内角都等于60°
1、如图, (1)等腰△ABC中,AB=AC,
顶角∠A=100°,那么底角
∠B= 40°, ∠C= 40°。 A (2)△ABC中,AB=AC,
等腰三角形“三线合一” 等腰三角形的两个底角相等。 2、如果一个三角形有两个角相等, 那么它们所对的边也相等。
某开发区新建了两片住宅区:A区、B区 (如图).现在要从煤气主管道的一个地方建 立一个接口,同时向这两个小区供气.请问,这个 接口应建在哪,才能使得所用管道最短?
B 小区
A小区Βιβλιοθήκη 煤气主管)道)
;led防爆灯的量 防爆手电筒的量 / led防爆灯的量 防爆手电筒的量 ;
把人带回来?不是说好让他们住市区里吗?你把我の话当耳边风啊?”余岚得知妹子带回来の人其中又有两位洋人,不禁大为怒火,隔着电筒语气重了些.余薇听了很生气,“他们想看雪梅,市里哪有雪梅看?你告诉我地址我马上带他们过去.”余岚被噎得一时说不出话来.余薇见她无话可 说,更加得理不饶人:“你不就是怕他们乱搞吗?这怪谁?一个巴掌拍不响,她们不愿意谁能强迫得了?我那些同学在学校大把女孩追,不是她们送上门谁稀罕一身泥腥味の村姑?”说罢,她气呼呼地挂了电筒,走出客栈大堂,顿感寒意袭人.难得元旦有三天假期,为了在家里多呆两天她还特 意多请了两天假,结果一回来就被姐姐骂个狗血淋头,真是扫兴.自从回国之后,她发现和姐姐越来越难以沟通.一个人在乡下呆久了,考虑问题の方式也会变得守旧不懂变通.所以她经常劝姐姐陪姐夫多出来走动走动,偏偏两口子对乡村生活恋恋不舍,真是难以理解.不过话说回来,不仅是姐 姐两口子喜欢农村生

简单的轴对称图形角平分线的性质课件

简单的轴对称图形角平分线的性质课件
三角形都全等。
矩形的两条对角线将矩形划分为 两个等面积的三角形,即矩形被 对角线划分为两个面积相等的三
角形。
实例三:椭圆焦点与短轴的关系
椭圆的两个焦点到椭圆上任意一点的 距离之和等于椭圆的长轴长,即椭圆 上任意一点到两个焦点的距离之和等 于椭圆的长轴长。
椭圆的焦距等于长轴长减去短轴长, 即椭圆的两个焦点之间的距离等于椭 圆的长轴长减去短轴长。
椭圆的短轴长度等于椭圆上任意一点 到焦点的距离之差的绝对值,即椭圆 上任意一点到两个焦点的距离之差的 绝对值等于椭圆的短轴长。
05
CATALOGUE
习题与思考
习题一:证明角平分线的性质
总结词
证明角平分线性质
详细描述
通过轴对称图形,利用等腰三角形性质,证明角平分线性质,即角平分线将相对边分成两段相等的线 段。
习题二
总结词
应用角平分线性质解决问题
详细描述
通过具体问题,如三角形中的角平分 线、平行四边形中的角平分线等,运 用角平分线性质进行解答。
思考题:探究其他轴对称图形角平分线的性质
总结词
探究其他轴对称图形角平分线的性质
详细描述
通过探究不同轴对称图形(如矩形、菱形等)的角平分线性质,发现其共性与特性,并 尝试证明。
性质3:角平分线与对称轴的夹角为直角
总结词
角平分线与对称轴之间的夹角为直角。
详细描述
在轴对称图形中,角平分线与对称轴之间的夹角始终为直角。这个性质可以通过几何证明来验证。这个性质在解 决几何问题时非常有用,因为它可以帮助我们确定角平分线的位置和方向。
04
CATALOGUE
实例分析
实例一:等腰三角形的角平分线
THANKS
感谢观看
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档