传热学知识点总结讲课教案

合集下载

传热学PPT学习课件学习教案

传热学PPT学习课件学习教案
第十五页,共67页。
有限空间自然对流
封闭(fēngbì)腔辐射换热
保温层散热
肋壁温度场分析 (fēnxī)
选择性涂层(tú cénɡ)
太阳能耐集热页,共67页。
4 传热(chuán rè)过程的分类
按温度与时间的依变关系,可分为(fēn wéi)稳态过程和非稳态过程两 大类。
b 夏天人在同样温度(如:25度)的空气和水中的感觉不一 样。为什么?
c 北方寒冷地区,建筑房屋都是双层玻璃,以利于保温。如何 解释其道理?越厚越好?
第8页/共66页
第九页,共67页。
(2) 工业技术领域(lǐnɡ yù)的 动力、化工、制冷、建筑、机械制造、新能源、微电子、核能 应用 、航空航天、微机电系统(MEMS)、新材料(cáiliào)、军事科 学与技术、生命科学与生物技术…
过程
第17页/共66页
第十八页,共67页。
1 导热(dǎorè)(热传导)(heat Conduction)
(1)导热的定义:指温度不同的物体各部分或温度不同的
两物体间直接接触时,依靠(yīkào)分子、原子及自
由电子等微观粒子热运动而进行的热量传递现象
(2)导(热教的材范P4畴)(fànchóu):可以在固体、液体、气体中
Fundamentals of Heat Transfer, by F. P. Incropera, D.P. DeWitt
各式传热学的习题集(图书馆和购书中心)
第1页/共66页
第二页,共67页。
课程的重要性
学时(xuéshí)及学分 总学时(xuéshí):64(其中4个实验学时(xuéshí)) 总 学分:4.0
dx
q Φ dt
A

《传热学基本知识》PPT课件

《传热学基本知识》PPT课件

3、传热的基本方式
导热 热对流 热辐射
4、稳定传热基本概念
稳定传热 传热中温度差保持一恒定值,即不随时间有所变化。
不稳定传热 传热中温度差随时间变化而变化。
本章无特别说明的传热现象都是指稳定传热。
§2-2 稳定导热
一、定义
温度不同的物体直接接触,温度较高的物体把热能传给 温度较低的物体,或在同一物体内部,热能从温度较高 的部分传给温度较低部分的传热现象。
Q-单位时间的对流换热量。 q -对流换热热流强度。 F -墙壁的换热面积。 tb -墙面的温度。
t1 -流体的温度。
-对流换热系数,
其大小反映了对流换热的强弱。
变换公式的形式,可得:
q tb t1 tb t1
1
R

R -对流换热热阻,与对流换热系数成反比。
§2-4 辐射换热
1 1 d
1

1
1
Rn R Rw R
n w
K -墙体的总传热系数。 R -墙体的总传热阻。
二、传热的增强与削弱
1、增强传热的基本途径 Q KFt
(1)提高传热系数 (2)增大传热面积 (3)增大传热温差
2、增强传热的方法
(1)改变流体的流动状况 (2)改变流体的物性 (3)改变换热表面情况
一、热辐射的本质和特点
1、定义 2、特点:
不依靠物质的直接接触而进行能量传递。 伴随能量形式两次转化:内能→电磁波能→内能。 只要T>OK,物体都会不断向周围发射热射线。
即使没有温差,也存在热辐射,只不过物体辐射和吸收的 能量相等,处于动态平衡。
二、辐射能的吸收、反射和透射
根据能量守恒定律,有:

《传热学讲稿》教案

《传热学讲稿》教案

《传热学讲稿》教案传热学讲稿教案一、教学目标:1.理解传热学的基本概念和原理。

2.掌握热传导、对流传热和辐射传热的基本概念和数学表达。

3.了解传热学在工程实践中的应用。

二、教学重点与难点:1.热传导基本概念和数学表达。

2.对流传热原理和计算方法。

3.辐射传热的基本原理和计算方法。

三、教学准备:1.教学资料:PPT、教学录像、实验仪器。

2.教学辅助工具:投影仪、计算器。

四、教学过程:步骤一:导入(10分钟)1.利用教学录像或实验仪器展示一个热传导实验,引起学生对传热学的兴趣。

2.提出问题:你们觉得热是如何传导的?步骤二:热传导(30分钟)1.讲解热传导的基本概念和数学表达,包括传热的方式、传热方程等。

2.展示实验:用铜棒传热实验,通过测量温度的变化来验证热传导的存在。

3.讲解热传导实例,并引导学生用传热方程来解决问题。

步骤三:对流传热(30分钟)1.讲解对流传热的原理和计算方法。

2.展示实验:用水箱传热实验,通过观察水的流动和温度变化来验证对流传热的存在。

3.讲解对流传热实例,并引导学生用对流传热公式来解决问题。

步骤四:辐射传热(30分钟)1.讲解辐射传热的基本原理和计算方法。

2.展示实验:用黑体辐射传热实验,通过测量黑体的辐射能量来验证辐射传热的存在。

3.讲解辐射传热实例,并引导学生用辐射传热公式来解决问题。

步骤五:应用实例(20分钟)1.引导学生思考传热学在工程实践中的应用。

2.展示传热学在建筑、冶金、能源等领域的应用实例。

3.让学生自主选择一个实例进行研究并进行报告。

步骤六:小结与拓展(10分钟)1.对传热学的重点内容进行小结,并解答学生提出的疑问。

2.引导学生拓展传热学的知识,查阅相关文献或进行更深入的研究。

五、教学评价:1.讲稿撰写评价:鼓励学生探索传热学的知识,理论与实践相结合。

2.学生报告评价:评估学生对传热学应用实例的研究和表达能力。

六、教学延伸:1.鼓励学生参与与传热学相关的科研课题或实验项目。

传热学教案

传热学教案

传热学教案学习目的及学时分配1、教学目的通过学习能熟练掌握传热过程的基本规律、实验测试技术及分析计算方法,从而达到认识、控制、优化传热过程的目的。

2、学时分配课内学时 58 学时,实验环节 6 学时第一章绪论本章要求:1掌握内容:①热量传递的三种基本方式的概念、特点及基本定律;②传热过程、传热系数及热阻的概念。

2了解内容:了解传热学的发展史、现状及发展动态。

§1 — 1 概述一、基本概念1 、传热学:传热学是研究热量传递规律的学科。

1)物体内只要存在温差,就有热量从物体的高温部分传向低温部分;2)物体之间存在温差时,热量就会自发的从高温物体传向低温物体。

由于自然界和生产技术中几乎均有温差存在,所以热量传递已成为自然界和生产技术中一种普遍现象。

2 、热量传递过程:根据物体温度与时间的关系,热量传递过程可分为两类:( 1 )稳态传热过程;( 2 )非稳态传热过程。

1)稳态传热过程(定常过程):凡是物体中各点温度不随时间而变的热传递过程均称稳态传热过程。

2)非稳态传热过程(非定常过程):凡是物体中各点温度随时间的变化而变化的热传递过程均称非稳态传热过程。

各种热力设备在持续不变的工况下运行时的热传递过程属稳态传热过程;而在启动、停机、工况改变时的传热过程则属非稳态传热过程。

二、讲授传热学的重要性及必要性1 、传热学是热工系列课程教学的主要内容之一,是热能动力专业必修的专业基础课。

是否能够熟练掌握课程的内容,直接影响到后续专业课的学习效果。

2 、传热学在生产技术领域中的应用十分广泛。

如:热能动力学、环境技术、材料学、微电子技术、航空航天技术存在着大量的传热学问题,而且起关键性作用。

随着大规模集成电路集成温度的不断提高,电子器件的冷却问题越显突出。

例如:20 世纪70 ~90 年代,集成电路芯片的功率从10w/c ㎡~100w/c ㎡,产生的热量增大,若热量不能及时的散发出去(冷却),会使芯片温度升高,而影响电子器件的寿命及工作可靠性。

传热学第十版教学设计

传热学第十版教学设计

传热学第十版教学设计一、课程简介本课程是传热学的基础课程,旨在帮助学生了解传热学的基本概念、理论和实践应用。

通过本课程的学习,学生将掌握传热学的基本知识和分析方法,能够解决传热学的基本问题。

二、教学目标1.了解传热学的基本概念、理论和实践应用。

2.掌握传热学的基本知识和分析方法。

3.能够解决传热学的基本问题。

三、教学内容1. 热传递基本概念•热传递的基本概念和特性。

•热传递的分类和区别。

•热传递的物理基础。

2. 热传递的传热模式•对流传热。

•导热。

•辐射传热。

3. 热传递的传热方程和传热系数•热传递的一般传热方程。

•对流传热的传热方程和传热系数。

•导热的传热方程和传热系数。

•辐射传热的传热方程和传热系数。

4. 热传递的计算方法和实例•基本计算方法和实例。

•热传递的实际问题解决方法。

四、教学策略1. 主动学习本课程采用主动学习的策略,通过学生自主探究、讨论和互动,助力学生深入理解课程内容。

2. 课堂教学本课程采用课堂教学的方式,通过教师讲授、案例演练、班级讨论等方式,营造积极的学习氛围,使学生主动参与。

3. 实践教学本课程采用实践教学的方法,通过仿真实验、课程项目等方式,让学生深入掌握热传递的基本原理和实际应用。

五、教学评估本课程将通过课堂测验、作业和考试等方式进行评估,以评估学生对课程内容的理解程度和学习成果。

同时,教师将定期与学生沟通,以了解学生的学习状况,提供必要的支持和帮助。

六、教学资源本课程所需的教学资源包括教材、课件、仿真实验软件等。

教师将在课程安排之前,提前准备相关教学资源,以保障教学效果。

七、教学安排本课程总共授课16次,每次课为1.5小时,具体教学安排如下:•第1-4周:第1-5章•第5-8周:第6-9章•第9-12周:第10-13章•第13-16周:第14-16章八、教学团队本课程教学团队由传热学专业教师担任,拥有多年的教学经验和丰富的实践经验。

团队成员将共同参与本课程的教学设计和教学的实施,以保障教学质量。

传热学第2章电子教案

传热学第2章电子教案

f
hU tmltf 0 hU t0ltf
肋片表面平均温度tm下的实际散热量 假定肋片表面全部处在t0时的理想散热量
其中肋片表面平均温度:
t m tf m 1 l0 ld 1 l x 0 l 0 c c m h l m h x d l m x 0 t m h l l
减小接触热阻的措施: 表面尽量平整 增加挤压压力
两表面一软一硬 涂导热姆
第七节 二维稳态导热
应用领域:房间墙角,地下埋管,矩形保温层,短肋片
二维稳态导热微分方程:
2t x2
2t y2
0
解析法
二维稳态导热问题的研究手段:
数值法
形状因子法
地源热泵地下埋管
矩形风管保温层
形状因子S的定义—— 将有关涉及物体几何形状和尺寸的因素归纳为一起, 使两个恒定温度边界之间的导热热流量具有一个统一的计算公式
1 1
ktf1 tf2
h1 h2
多层平壁的热流密度:
q
tf1 tf 2
1 n i
1
h1 i1 i h2
第二节 通过复合平壁的导热
应用领域:空心砖,空斗墙
请同学们动脑筋思考: 空斗墙和空心砖内均存在导热系数很小的 空气孔隙,因而保温性能一定会很好吗? 为什么?
一维简化的假设条件: 组成复合平壁的各种不同材料的导热系数相差不是很大
S t1t2
一维无限大平壁的形状因子: S
A
一维无限长圆筒壁的形状因子:S 2 l
ln d 2 d1
其他常见二维稳态导热情况的形状因子——查教材表2-3
几种导热过程的形状因子
第二章重点:
1.各种稳态导热问题的数学模型 和求解方法
2.临界热绝缘直径问题

传热学第一章PPT学习教案

传热学第一章PPT学习教案

1
tf1 t'f 2 1 1
h1
h1 h2
第41页/共42页
第38页/共42页
由: 导热热阻 对流热阻 辐射热阻
各种情况下热阻表达及其
推导过程
Φ t Rt
Φ A t
R A
Φ hAt
Rh
1 hA
Φ A(T 4w1 T 4w2)
Rr
1 A(T 2w1 T 2w2 )(Tw1
Tw2 )
第39页/共42页
串联热阻叠加原则
在一个串 联的热 量传递 过程中 ,如果 通过每 个环节 的热流 量都相 同,则 各串联 环节的 总热阻 等于各 串联环 节热阻 的和。
力强?
• 对流换热方式 >> 导热方式
第16页/共42页
流体微团如何实现宏观位移
• 机械设备形成的外 力场作用
温差造成流体密度差, 在重力场作用下所形成 的浮力作用
第17页/共42页
对流换热的两种形式
强迫对流(Forced Convection) 自然对流(Natural Convection)
传热学第一章
会计学
1
本章话 题?
传热学的重 要性
传热学与工程热 力学的联系和区 别
热量传递的基本 方式
如何分析传热 问题
第1页/共42页
首 先第一 话题
什么是传 热学呢?
研究热量传递的一 门学问
包含定性的机理分 析
也包含定量的工程 计算
第2页/共42页
传热学能 解决什么 问题呢?
理解并掌握增强或 减小传热的方法和 举措 计算特定场合热量 传递的大小
串联传热 ,稳态 ,没有 内热源
将复杂的传热过程分成若干部

传热学教案

传热学教案
《传热学》授课教案
课程编号:030203 课程类别:专业基础课 适用专业:建筑环境与设备工程 总学时:68 学时 授课学时:60 学时 课程名称:传热学 英文:Heat Transfer 先修课程: 高等数学、流体力学、热力学 实验学时:4 学时 上机学时: 4 学时
一、 课程的性质与任务
本课程是建筑环境与设备工程专业的一门专业基础课。 它应该使学生获得必 要的巩固的有关热能传递的基本理论知识、 相应的分析计算能力以及一定的实验 技能的训练。它不仅为学习专业知识提供扎实的理论基础,也为培养提高学生分 析和解决工程实际问题能力提供了重要环节。
本 章 重 点
(1) 热传导、热对流、热辐射三种热量传递基本方式的机理及特点; (2) 热流量、热流密度、导热系数、对流换热、表面传热系数、传热系数、 热阻等基本概念; (3) 灵活运用平壁的一维稳态导热公式、对流换热的牛顿冷却公式、通过平 壁的一维传热过程计算公式进行相关物理量的计算
课后作业: 11,12,13,14。 选作:5、7。
λ 1 1 t + bt 2 = − 0 ( tw1 − tw 2 ) 1 + b ( tw1 + tw 2 ) x δ 2 2
可见, 当平壁材料的导热系数随温度线性变化时, 平壁内的温度分布为二 次曲线。 试述对右图的三条温度分布曲线导热系数中的线性表达 式中系数 b 的正负号??
导温系数 a (thermal diffusivity,也称热扩散率): a =
λ 其大小反映物 ρc
体被瞬态加热或冷却时温度变化的快慢,或者是物体温度趋于均匀一致的能力。 3.3 圆柱和球坐标系下的导热微分方程式
第四节 导热过程的单值性条件 单值性条件: 为完整的描写某个具体的导热过程, 必须说明导热过程的具体特点, 即给出导热微分方程的单值性条件(或称定解条件) ,使导热微分 方程式具有唯一解。 单值性条件一般包括:几何条件、物理条件、时间条件、边界条件 几何条件:说明参与导热物体的几何形状及尺寸。几何条件决定温度场的空 间分布特点和分析时所采用的坐标系。 物理条件:说明导热物体的物理性质, 例如物体有无内热源以及内热源的分 布规律,给出热物性参数(l、r、c、a 等)的数值及其特点等。 时间条件:说明导热过程时间上的特点, 是稳态导热还是非稳态导热。对于 非稳态导热, 应该给出过程开始时物体内部的温度分布规律(称为初始条 件) : 边界条件: (1) 第一类边界条件 给出边界上的温度分布及其随时间的变化规律: (2) 第二类边界条件 给出边界上的热流密度分布及其随时间的变化规律: (3) 第三类边界条件 给出了与物体表面进行对流换热的流体的温度 tf 及表面传热系数 h 。 综上所述, 对一个具体导热过程完整的数学描述(即导热数学模型)应该包 括: (1)导热微分方程式; (2) 单值性条件。 建立合理的数学模型, 是求解导热问题的第一步, 也是最重要的一步。 对数 学模型进行求解, 就可以得到物体的温度场, 进而根据傅里叶定律就可以确定 相应的热流分布。 目前应用最广泛的求解导热问题的方法:(1)分析解法;(2)数值解法;(3)实 验方法。这也是求解所有传热学问题的三种基本方法。

《传热学》课教案

《传热学》课教案

《传热学》课教案本课程共27学时,讲课23学时,实验4学时。

属院级必修课。

每一节课都应做到承前启后。

(第一次课)一、主要内容第1章绪论1、引言2、热量传递的三种基本形式3、传热过程第2章导热理论和一维稳态导热1、立叶定律及导热系数二、讲课重点1、傅立叶定律2、导热系数三、讲课难点1、引言中的热量传递三种基本形式及传热量计算2、导热系数四、举例1、传热的增强和削弱技术举例为暖气供热,说明哪部分是需要增强的传热,哪部分是需要削弱传热,说明其增强和削弱传热的技术措施。

2、确定温度场和控制所需的温度举例为:研究热应力时需先确定温度场,以连铸机拉矫辊温度场的确定为例加以说明。

(第二次课)一、主要内容第2章导热理论和一维稳态导热1、导热方程及单值性条件2、单层平壁的稳态导热3、多层平壁的稳态导热二、讲课重点1、导热微分方程2、单值性条件:包括第三类边界条件(对流边界条件)、第一类边界条件(温度边界条件)和初始条件。

3、平壁导热的热阻表达式三、讲课难点1、导热微分方程的推导2、第三类边界条件中等式两端正负号一致问题四、举例1、书中例2-12、导热系数随温度变化时平壁内的温度分布3、解释温度曲线凸向的原因(第三次课)一、主要内容第2章导热理论和一维稳态导热1、无限长圆筒壁的稳态导热2、球壁的稳态导热3、通过等截面棒的稳态的导热4、各种肋片散热量的计算二、讲课重点1、无限长圆筒壁热阻的表达式2、球壁热阻的表达式3、等截面棒模型温度分布的分析及应用的场合三、讲课难点1、等截面棒温度场的推导及换热量的计算四、举例结合例题,讲述圆球法测定粒状材料的导热系数的实验,说明实验原理、方法、步骤及实验数据的处理方法。

(第四次课)一、主要内容第3章非稳态导热1、非稳态导热过程的特点2、无限大平板的加热和冷却二、讲课重点1、非稳态导热过程的特点2、无限大平板的加热或冷却问题数学模型的建立三、讲课难点1、无限大平板非稳态导热问题数学模型的求解,即分离变量法2、详细推导此数学模型的求解过程四、举例1、介绍本书中应用图表法求解无限大平板的加热或冷却问题,介绍图表法的求解思路,即:第1步:查取中心面或中心线的温度(分别对于板、圆柱体、球体来说明)第2步:查取任意点的温度第3步:查取热流量值第4步:计算Q 0第5步:计算Q 值(第五次课)一、主要内容第3章 非稳态导热1、半无限大物体非稳态导热的数学模型建立2、有限大物体温度场的求解思路(不讲具体计算方法)3、集总参数法二、讲课重点1、集总参数法的温度场及热流量计算2、集总参数法的解题思想3、集总参数法的应用条件及所适用的问题三、讲课难点1、集总参数法数学模型的求解2、详细推导此数学模型的求解过程四、举例1、结合书中的例题说明集总参数法在实际问题中的应用,首先说明热电偶的用途及特点,简单介绍热电偶的工作原理,结合其工作原理说明本例题所提到问题的实际存在性,然后说明本题的求解方法。

传热学学习课件教案

传热学学习课件教案

传热学学习课件教案一、教学内容本节课的教学内容选自人教版《小学科学》五年级下册第六单元第二章《传热学》。

本章主要让学生通过观察和实验,探究物体的传热现象,理解热传导、对流和辐射三种传热方式的原理。

二、教学目标1. 学生能够通过实验观察和数据分析,理解热传导、对流和辐射三种传热方式的原理。

2. 学生能够运用传热学的知识解释生活中的传热现象。

3. 培养学生的观察能力、实验能力和解决问题的能力。

三、教学难点与重点重点:热传导、对流和辐射三种传热方式的原理。

难点:如何引导学生运用传热学的知识解释生活中的传热现象。

四、教具与学具准备教具:多媒体课件、实验器材(包括热水瓶、热水、冷水瓶、温度计等)。

学具:实验记录表、笔记本。

五、教学过程1. 导入:通过一个生活中的实例——热水袋的使用,引起学生对传热学的兴趣。

2. 新课导入:介绍热传导、对流和辐射三种传热方式的定义和特点。

3. 实验探究:引导学生进行实验,观察和记录热水瓶和冷水瓶中的热水和冷水混合后的温度变化,从而理解热传导的原理。

4. 小组讨论:学生分小组讨论,探究对流和辐射的原理,教师进行指导。

5. 实例分析:让学生举例说明生活中的传热现象,并运用传热学的知识进行解释。

六、板书设计板书内容:传热学热传导:热量通过物体内部的传递对流:热量通过流体的传递辐射:热量通过电磁波的传递七、作业设计1. 观察家里做饭时的传热现象,运用传热学的知识进行解释。

答案:做饭时,锅里的热源通过热传导将热量传递给食物,食物吸收热量后温度升高。

2. 观察太阳辐射对环境的影响,运用传热学的知识进行解释。

答案:太阳辐射是地球上最主要的能量来源,它通过辐射方式将热量传递给地球,使地球表面的温度升高。

八、课后反思及拓展延伸本节课通过实例和实验,使学生掌握了传热学的知识,能够运用传热学的知识解释生活中的传热现象。

但在实验过程中,部分学生对实验操作不够熟悉,需要在课后加强实验操作的训练。

同时,可以拓展延伸传热学在其他领域的应用,如热能转换、制冷技术等。

传热学传热学教案

传热学传热学教案

第2章导热基本定律及稳态导热1 、重点内容:①傅立叶定律及其应用;②导热系数及其影响因素;③导热问题的数学模型。

2 、掌握内容:一维稳态导热问题的分析解法3 、了解内容:多维导热问题第一章介绍传热学中热量传递的三种基本方式:导热、对流、热辐射。

根据这三个基本方式,以后各章节深入讨论其热量传递的规律,理解研究其物理过程机理,从而达到以下工程应用上目的:基本概念、基本定律 : 傅立叶定律 , 牛顿冷却定律 , 斯忒藩—玻耳兹曼定律。

①能准确的计算研究传热问题中传递的热流量②能准确的预测研究系统中的温度分布导热是一种比较简单的热量传递方式 , 对传热学的深入学习必须从导热开始,着重讨论稳态导热。

首先,引出导热的基本定律,导热问题的数学模型,导热微分方程;其次,介绍工程中常见的三种典型(所有导热物体温度变化均满足)几何形状物体的热流量及物体内温度分布的计算方法。

最后,对多维导热及有内热源的导热进行讨论。

§2-1 导热基本定律一、温度场1 、概念温度场是指在各个时刻物体内各点温度分布的总称。

由傅立叶定律知:物体导热热流量与温度变化率有关,所以研究物体导热必涉及到物体的温度分布。

一般地,物体的温度分布是坐标和时间的函数。

即:()=,,,(2-1)t f x y zτ式中:x y z、、为空间笛卡儿坐标;τ为时间坐标。

2 、温度场分类1 )稳态温度场(定常温度场):是指在稳态条件下物体各点的温度分布不随时间的改变而变化的温度场称稳态温度场,其表达式:=,,(2-2)()t f x y z在特殊情况下,物体的温度仅在一个坐标方向上有变化,如图1.1所示的两个各自保持均匀温度的平行平面间的导热就是一个例子。

这种情况下的温度场称为一维稳态温度场。

2 )非稳态温度场(非定常温度场):是指在变动工作条件下,物体中各点的温度分布随时间而变化的温度场称非稳态温度场,其表达式为式(2-1)。

3 、等温面及等温线1 )等温面:对于三维温度场中同一瞬间同温度各点连成的面称为等温面。

传热学讲稿01

传热学讲稿01

2 对流(热对流)(Convection) 对流(热对流)
(1)定义:流体中(气体或液体) (1)定义:流体中(气体或液体)温度不同的各部分之 定义 间,由于发生相对的宏观运动而把热量由一处 传递到另一处的现象。 传递到另一处的现象。 (2) 对流换热: (2) 对流换热:当流体流过一个物体表面时的热量传递 过程,他与单纯的对流不同,具有如下特点: 过程,他与单纯的对流不同,具有如下特点: a b 导热与热对流同时存在的复杂热传递过程 必须有直接接触(流体与壁面)和宏观运动; 必须有直接接触(流体与壁面)和宏观运动;也 必须有温差 c 壁面处会形成速度梯度很大的边界层 (3)对流换热的分类 (3)对流换热的分类 无相变: 无相变:强迫对流和自然对流 有相变: 有相变:沸腾换热和凝结换热
= 0.242× 300− 300−100 = 4.84×102 W m2 0.1
t w1 − tw2
δ
tw1 − tw2
δ
q=λ
tw1 −tw2 −t
δ
讨论:由计算可见, 讨论:由计算可见, 由于铜与硅藻土砖导热系数的巨大差 别, 导致在相同的条件下通过铜板的导热量比通过硅藻土 砖的导热量大三个数量级。 因而, 铜是热的良导体, 砖的导热量大三个数量级 。 因而 , 铜是热的良导体 , 而 硅藻土砖则起到一定的隔热作用
2. 传热学与工程热力学的关系
(1) 热力学 ⇓ + 传热学 = 热科学(Thermal Science) ⇓
关心的是热量传 递的过程, 递的过程,即热 量传递的速率。 量传递的速率。
铁块, M1 300oC
系统从一个平衡态到 另一个平衡态的过程 中传递热量的多少。 中传递热量的多少。 热力学: tm
量为:

传热学各章教案汇总

传热学各章教案汇总

传热学各章教案汇总1.传热学导论教学目标:了解传热学的基本概念和基本原理,了解传热学的研究内容和应用领域。

学会运用传热学基本方法和工具进行传热问题的分析和计算。

教学重点:传热学的基本概念和基本原理教学难点:掌握传热学的应用方法和工具教学内容:1.传热学的基本概念传热学定义、分类、学科内容和研究方法等。

2.热传导热传导的基本概念、传热机制和传热模型。

热传导的数学模型和解析解。

常见热传导方程的推导和求解。

3.对流传热对流传热的基本概念、传热机制和传热模型。

自然对流和强迫对流传热的数学模型和解析解。

传热系数和综合对流传热系数。

4.辐射传热辐射传热的基本概念、传热机制和传热模型。

辐射传热方程和辐射传热的计算方法。

黑体辐射、灰体辐射和实际物体辐射传热。

教学方法:讲授、实例分析、计算实践、小组讨论评价方式:课堂测验、作业评价、小组讨论活动评价2.热传导教学目标:了解热传导的基本原理和数学模型。

学会运用热传导方程进行热传导问题的分析和计算。

教学重点:热传导的基本原理和数学模型教学难点:热传导方程的推导和求解教学内容:1.热传导基本原理热传导的宏观和微观机制。

热传导现象的描述和解释。

热传导的温度梯度和热流密度。

导热系数和热传导定律。

2.热传导方程热传导方程的数学模型和推导过程。

不同边界条件下的热传导问题。

常规和非常规热传导问题。

3.热传导的解析解常见热传导问题的解析解。

一维定态、一维非定态和二维定态热传导问题的解析解。

热传导问题的数值计算方法。

教学方法:讲授、实例分析、计算实践评价方式:课堂测验、作业评价、计算实践评价3.对流传热教学目标:了解对流传热的基本原理和数学模型。

学会运用对流传热方程进行对流问题的分析和计算。

教学重点:对流传热的基本原理和数学模型教学难点:对流传热方程的推导和求解教学内容:1.对流传热基本原理对流传热的机制和特点。

速度场和温度场的关系。

壁面对流传热和流体内部对流传热。

传热系数和对流换热定律。

传热学各章教案汇总

传热学各章教案汇总
4.作业与思考题:3-7,3-8,3-14,3-16。
第四节其它形状物体的瞬态导热
一、教学目标与要求
1.理解第三类边界条件下无限长圆柱、圆球中瞬态导热温度的影响因素,掌握诺模图温度线的基本特点和使用方法,掌握总加热量的查图计算方法。
2.使学生理解二维、三维瞬态导热时温度的基本特点,掌握温度的分解公式,掌握诺模图温度线的基本特点和使用方法。
3.掌握总加热量的基本计算方法。
二、教学内容、方法及手段、时间安排
1教学内容
第三类边界条件下无限长圆柱、圆球瞬态温度的影响因素,诺模图温度线的查取方法。二维、三维瞬态导热的基本特点,温度的分解公式,诺模图温度线的基本特点和使用方法,总加热量的基本计算方法(图算法)。
2方法手段
课堂以讲授为主,使用多媒体课件、辅以其他教学手段。
时间安排
教学内容
时间(min)
1
第五节通过接触面的导热
20
2
第六节二维稳态导热问题
70
三、教学小结
1.此节内容的重点:
形状因子的查图方法,二维导热的计算公式。
2.了解内容:
接触热阻形成原因,接触热阻的影响因素。
3.讲授时注意事项:
讲清肋片产生原因,说明各种条件下形状因子查取时的注意事项。
第三章非稳态热传导
传热科学的研究对象。传热科学在国民经济和本专业领域的广泛应用。
导热方式定义,影响因素,基本计算公式。对流及对流换热方式定义,影响因素,基本计算公式。辐射换热方式定义,影响因素,基本计算公式。传热方式定义,影响因素,基本计算公式。
2.方法手段
课堂以讲授为主,主要使用多媒体课件,辅以其他教学手段。
3.时间安排
第一节非稳态导热的基本概念

传热的课程设计

传热的课程设计

传热的课程设计一、教学目标本节课的教学目标是让学生掌握传热的基本概念、原理和计算方法,能够分析实际问题中的传热现象,并运用所学知识解决相关问题。

1.了解传热的定义、分类和基本原理。

2.掌握热量传递的三大方式:导热、对流和辐射。

3.学习传热方程及其求解方法。

4.能够运用传热原理分析实际问题,如热传导、对流换热和辐射换热等。

5.能够运用传热方程进行简单计算,求解热量传递问题。

情感态度价值观目标:1.培养学生的科学思维,提高对热量传递现象的认知水平。

2.激发学生对传热学的兴趣,培养其探究未知、解决实际问题的能力。

二、教学内容本节课的教学内容主要包括传热的基本概念、传热方式、传热方程及其应用。

1.传热的基本概念:热量、温度、热传递等。

2.传热方式:导热、对流和辐射。

3.传热方程:傅里叶定律、牛顿冷却定律、斯蒂芬-玻尔兹曼定律等。

4.传热方程的应用:热量传递问题的求解与分析。

三、教学方法本节课采用多种教学方法,以激发学生的学习兴趣和主动性。

1.讲授法:讲解传热的基本概念、原理和计算方法。

2.讨论法:引导学生分组讨论传热现象和问题,培养其分析问题和解决问题的能力。

3.案例分析法:分析实际问题中的传热现象,让学生学会运用所学知识解决实际问题。

4.实验法:安排实验环节,让学生亲身体验传热现象,提高其实践能力。

四、教学资源本节课的教学资源包括教材、参考书、多媒体资料和实验设备。

1.教材:选用权威、实用的教材,如《传热学》等。

2.参考书:提供相关领域的参考书籍,如《热力学》、《流体力学》等。

3.多媒体资料:制作课件、动画等多媒体资料,直观展示传热现象和原理。

4.实验设备:准备热传导实验仪、对流换热实验仪等,让学生亲身体验传热现象。

五、教学评估本节课的评估方式包括平时表现、作业和考试三个部分,以全面、客观地评价学生的学习成果。

1.平时表现:观察学生在课堂上的参与程度、提问回答等情况,了解其对传热学的基本概念和原理的掌握程度。

(完整版)传热学教案1

(完整版)传热学教案1

第1章绪论1.1 概述1.1.1、传热学研究内容传热学是研究热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。

热量传递过程的推动力:温差1)物体内只要存在温差,就有热量从物体的高温部分传向低温部分;2)物体之间存在温差时,热量就会自发的从高温物体传向低温物体。

1.1.2、传热学研究中的连续介质假设将假定所研究的物体中的温度、密度、速度、压力等物理参数都是空间的连续函数。

1.1.3、传热学与工程热力学的关系相同点:传热学以热力学第一定律和第二定律为基础。

不同点a)定义:工程热力学:热能的性质、热能与机械能及其他形式能量之间相互转换的规律。

传热学:热量传递过程的规律。

b) 状态工程热力学:研究平衡态;传热学:研究过程和非平衡态c)时间工程热力学:不考虑热量传递过程的时间。

传热学:时间是重要参数。

1.1.4、传热学的应用❖自然界与生产过程到处存在温差—传热很普遍❖传热学在日常生活、生产技术领域中的应用十分广泛。

热量传递中的三类问题❖强化传热❖削弱传热❖温度控制日常生活中的例子a 人体为恒温体。

若房间里气体的温度在夏天和冬天都保持22度,那么在冬天与夏天、人在房间里所穿的衣服能否一样?为什么?b 夏天人在同样温度(如:25度)的空气和水中的感觉不一样。

为什么?c 北方寒冷地区,建筑房屋都是双层玻璃,以利于保温。

如何解释其道理?越厚越好?d 冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么感到很暖和?并且经过拍打以后,为什么效果更加明显?e 为什么水壶的提把要包上橡胶?f 不同材质(塑料、金属)的汤匙放入热水中,哪个黄油融解更快?生产技术领域大量存在传热问题a 航空航天:卫星与空间站热控制;空间飞行器重返大气层冷却;超高音速飞行器冷却;b 微电子:电子芯片冷却c 生物医学:肿瘤高温热疗;生物芯片;组织与器官的冷冻保存d 军事:飞机、坦克;激光武器;弹药贮存e 制冷:跨临界二氧化碳汽车空调/热泵;高温水源热泵f 新能源:太阳能;燃料电池o很多行业中如何让热量有效地传递成为解决问题的关键o大规模集成电路芯片的散热问题o航天飞机的有效冷却和隔热o材料加工行业的散热问题传热学的研究方法➢实验测定➢理论分析➢数值模拟1.2热量传递的三种基本方式热能传递基本方式:导热(热传导)、对流、热辐射1.2.1 导热(热传导)1 概念定义:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称导热。

传热学知识点课件.doc

传热学知识点课件.doc

传热学知识点课件.doc一、引言同学们,今天咱们要一起来探索一个神奇又有趣的领域——传热学!你们有没有想过,冬天为啥我们在屋里会感觉暖和,而夏天在太阳下暴晒就会很热?还有,为啥妈妈做饭的时候,锅里的热会传到食物里?这些生活中的现象其实都和传热学有关。

就拿我前几天的一次经历来说吧。

那天我在家里煮鸡蛋,水在锅里咕嘟咕嘟地沸腾着,热气腾腾。

我就好奇地盯着那个锅,心想这热到底是咋从火传到水里,又传到鸡蛋里的呢?这就是传热学在我们日常生活中的一个小体现。

二、传热的基本方式传热主要有三种基本方式,分别是热传导、热对流和热辐射。

先来说说热传导。

热传导就像是一群排着队传递消息的小朋友,一个接一个,热量从高温的地方顺着物体向低温的地方传递。

比如说,咱们冬天握着一根铁棍,手会感觉很冷,这就是因为热量从咱们热乎乎的手通过铁棍传到了温度更低的空气中。

热对流呢,就好比是一群调皮的小精灵在跳舞。

当流体(比如空气、水)有了温度差,它们就会流动起来,带着热量一起动。

想象一下,夏天吹风扇,风带走了我们身上的热量,让我们感觉凉快,这就是热对流在起作用。

热辐射可就厉害了,它不需要任何介质,就像超人一样,能直接“飞”过去。

太阳的热量就是通过热辐射传到地球上来的。

哪怕在真空中,热辐射也能畅通无阻。

三、热传导的计算热传导的计算有个公式,就像一把神奇的钥匙,能帮我们解开很多传热的谜题。

咱们来看这个公式:$Q = kA\frac{dT}{dx}$。

这里的 Q 表示热流量,k 是导热系数,A 是传热面积,dT/dx 是温度梯度。

举个例子,假如有一块铁板,厚度是 5 厘米,一面的温度是 100 摄氏度,另一面是 50 摄氏度,铁板的导热系数是 50 W/(m·K),面积是1 平方米。

那通过这块铁板的热流量是多少呢?咱们把数字代入公式算算看,就能得出答案啦。

四、热对流的类型热对流也有两种类型,分别是自然对流和强制对流。

自然对流就像是个自由散漫的家伙,它是由于流体内部温度不均匀,导致密度不同,从而引起的流动。

《传热学基本知识》课件

《传热学基本知识》课件

工程热力学中的应用
说明传热学在工程设计和热力系统中的应 用。
生物医学中的应用
介绍传热学在生物医学领域中的应用,如 热疗和温度控制。
工业生产中的应用
讲解传热学在工业生产过程中的应用,如 冷却和加热。
环境保护中的应用
探讨传热学在环境保护方面的应用,如能 源利用和污染控制。
传热学的未来发展
1
传热学的新技术
传热学需要进一步深入 研究的问题
提出传热学需要进一步研究 的问题和方向。
2 对流传热的计算方法
介绍热传递计算方法的分类,包括解析 方法、实验方法和数值计算方法。
探讨对流传热的计算方法,如Nusselt数 和经验公式。
3 热传导的计算方法
4 辐射传热的计算方法
深入讲解热传导的计算方法,包括传热 率和温度分布的求解。
讲解辐射传热的计算方法和辐射换热系 数的确定。
传热学应用
传热学研究内容
介绍传热学的研究范围,包括热传导、对流传热和辐射传热等方面。
热传递过程基本方程
热传导方程
深入讲解热传导方程,探 讨传热过程中的热流率和 温度分布。
对流传热方程
介绍对流传热方程以及影 响对流传热的因素。
辐射传热方程
解析辐射传热方程,探讨 辐射传热的基本原理。
热传递计算方法
1 热传递计算方法的分类
《传热学基本知识》PPT 课件
本课件旨在介绍传热学的基本知识。涵盖传热学的概述、热传递过程方程、 热传递计算方法、传热学的应用和未来发展以及对应用的重要性和需要进一 步研究的问题。
传热学概述
传热学的定义
介绍传热学的定义以及其在工程和科学领域中的重要性。
传热学的基本概念
讲解传热学中的关键概念,例如热传导、对流传热和辐射传热。

传热学PPT学习教案

传热学PPT学习教案

d1 dA2 cos2 / r2
dQ1
I1
cos1 cos2
r2
dA1dA2
Ib
Eb
Q1 I1dA1
第6页/共60页
7
p dA2
r
2
n2
d
n1 1
dA1
dA1对dA2的角系数为: dA2 对dA1的角系数为:
故有: 这就是两 微元表 面间角 系数相 对性的 表达式 。
X d1,d 2
dQ1 Q1
2021/7/5
第20页/共60页
21
2 两个灰体表面间的辐射换热 当两个灰表面的有效辐射和角系数确 定之后 ,我们 就可以 计算它 们之间 的辐射 换热量 。
表面1投射到表面2上的辐射能流为: 表面2投射到表面1上的辐射能流为
两个表面之间交换的热流量为 :
2021/7/5
Q12 A1 J1 X 1,2
传热学
会计学
1
假设: (1)把参与 辐射换 热的有 关表面 视作一 个封闭 腔,表 面间的 开口设 想为具 有黑表 面的假 想面; (2)进行辐 射换热 的物体 表面之 间是不 参与辐 射的透 明介质 (如单 原子或 具有对 称分子 结构的 双原子 气体、 空气)或 真空; (3)参与辐 射换热 的物体 表面都 是漫射 (漫发 射、漫 反射)灰 体或黑 体表面 ; (4)每个表 面的温 度、辐 射特性 及投入 辐射分 布均匀 。
2,(1 A)
2, A
X1,2
A2 A1
X 2,1
2.5 1
X 2,(1 A) X 2, A
2.5 (0.15 0.10) 0.125
第14页/共60页
2
2.5m
A 1m 1 1m 1.5m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。

作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。

本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2.热量传递的三种基本方式(1).导热:依靠微观粒子的热运动而产生的热量传递。

传热学重点研究的是在宏观温差作用下所发生的热量传递。

傅立叶导热公式:(2).对流换热:当流体流过物体表面时所发生的热量传递过程。

牛顿冷却公式:(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。

由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。

黑体热辐射公式:实际物体热辐射:3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。

最简单的传热过程由三个环节串联组成。

4.传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式+ 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。

2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。

思考题:1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。

为什么?2.试分析室内暖气片的散热过程。

3.冬天住在新建的居民楼比住旧楼房感觉更冷。

试用传热学观点解释原因。

4.从教材表1-1给出的几种h数值,你可以得到什么结论?5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。

请问哪个容器的隔热性能更好,为什么?第二章导热基本定律及稳态导热§2-1 导热的基本概念和定律§2-2 导热微分方程§2-3 一维稳态导热§2-4伸展体的一维稳态导热要求:本章应着重掌握Fourier定律及其应用,影响导热系数的因素及导热问题的数学描写——导热微分方程及定解条件。

在此基础上,能对几种典型几何形状物体的一维稳态导热问题用分析方法确定物体内的温度分布和通过物体的导热量。

本章重点:1.基本概念温度场t=f(x,y,z,τ),稳态与非稳态,一维与二维导热系数λ2.导热基本定律:可以认为是由傅立叶导热公式引深而得到,并具有更广泛的适应性。

(1)可以应用于三维温度场中任何一个指定的方向(2)不要求物体的导热系数必须是常数(3)不要求沿x方向的导热量处处相等(4)不要求沿x方向的温度梯度处处相等(5)不要求是稳态导热3.导热微分方程式及定解条件1)导热微分方程式控制了物体内部的温度分布规律,故亦称为温度控制方程只适用于物体的内部,不适用于物体的表面或边界。

受到坐标系形式的限制。

其推导依据是能量守恒定律和傅立叶定律。

2)定解条件定解条件包括初始条件和边界条件。

第一类边界条件给定边界上的温度值第二类边界条件给定边界上的热流密度值第三类边界条件给定边界对流换热条件3)求解思路求解导热问题的思路主要遵循“物理问题数学描写求解方程温度分布热量计算”4.一维稳态导热问题的解析解1)如何判断问题是否一维2)两种求解方法对具体一维稳态无内热源常物性导热问题,一般有两种求解方法:一是直接对导热微分方程从数学上求解,二是利用fourier定律直接积分。

前者只能得出温度分布再应用fourier 定律获得热流量。

3)温度分布曲线的绘制对一维稳态无内热源导热问题,当沿热流方向有面积或导热系数的变化时,依此很容易判断温度分布。

本章难点:本章难点是对傅立叶导热定律的深入理解并结合能量守恒定律灵活应用,这是研究及解决所有热传导问题的基础。

思考题:1.如图所示为一维稳态导热的两层平壁内温度分布,导热系数λ均为常数。

试确定:(1)q1,q2及q3的相对大小;(2) λ1和λ2的相对大小。

2.一球形贮罐内有-196 的液氦,外直径为2m,外包保温层厚30cm,其λ= 0.6w/m.k。

环境温度高达40,罐外空气与保温层间的h=5w/m2.k试计算通过保温层的热损失并判断保温层外是否结霜。

3.试推导变截面伸展体的导热微分方程,并写出其边界条件。

假设伸展体内导热是一维的。

第三章非稳态导热§3-1非稳态导热的基本概念§3-1集总参数法§3-3非稳态导热过程的微分方程分析要求:通过本章的学习,读者应熟练掌握非稳态导热的基本特点,集总参数法的基本原理及其应用,一维非稳态导热问题的分析解及海斯勒图的使用方法。

读者应能分析简化实际物理问题并建立其数学描写,然后求解得出其瞬时温度分布并计算在一段时间间隔内物体所传递的导热量。

本章重点;一.非稳态导热过程1.实质:由于某种原因使物体内某点不断有净热量吸收或放出,形成了非稳态温度场。

2.一维非稳态导热的三种情形:见教材图3-3。

3.Bi,Fo数的物理意义二.集总参数法1.实质:是当导热体内部热阻忽略不计即Bi0时研究非稳态导热的一种方法。

判别依据:Bi<0.1M。

2.时间常数3.几点说明:导热体外的换热条件不局限于对流换热。

建立导热微分方程的根本依据是能量守恒定律;由Bi数的定义,若h或特征长度d未知时,事先无法知道Bi数的大小,此时先假设集总参数法条件成立,待求出h或d之后,进行校核。

三.一维非稳态导热分析解1.前提:一维、无内热源、常物性,Bi或有限大。

2.非稳态导热的正规状况阶段:当Fo>0.2以后,非稳态导热进入正规状况阶段。

此时从数学上表现为解的无穷级数只需取第一项,从物理上表现为初始条件影响消失,只剩下边界条件和几何因素的影响。

本章难点:1.对傅立叶数Fo和毕渥数Bi物理含义的理解。

2.集总参数法和一维非稳态导热问题分析解的定量计算。

思考题:1.两个侧面积和厚度都相同的大平板,也一样,但导温系数a不同。

如将它们置于同一炉膛中加热,哪一个先达到炉膛温度?2.两块厚度为30mm的无限大平板,初始温度20℃,分别用铜和钢制成,平板两侧表面温度突然上升到60℃,试计算使两板中心温度均上升到56℃时,两板所需时间比。

已知a铜=103,a钢=12.9(10-6m2/s)。

3.某同学拟用集总参数法求解一维长圆柱的非稳态导热问题,他算出了Fo和Bi数,结果发现Bi不满足集总参数法的条件,于是他改用Fo和Bi数查海斯勒图,你认为他的结果对吗,为什么?4.在教材图3-6中,当越小时,越小,此时其他参数不变时越小。

即表明越小,平板中心温度越接近流体温度。

这说明越小时物体被加热反而温升越快,与事实不符,请指出上述分析错误在什么地方。

5.用热电偶测量气罐中气体的温度,热电偶初始温度20℃,与气体表面h=10w/m2.k,热电偶近似为球形,直径0.2mm。

试计算插入10s后,热电偶的过余温度为初始过余温度的百分之几?要使温度计过余温度不大于初始过余温度的1%,至少需要多长时间?已知热电偶焊锡丝的=67w/m.k,ρ=7310kg/m3,c=228J/kg.k。

第五章对流换热§5-1 对流换热概说§5-2 对流换热的数学描写§5-3 对流换热边界层微分方程组§5-4 相似理论基础§5-5 管内受迫流动§5-6 横向外掠圆管的对流换热§5-7 自然对流换热及实验关联式要求;通过本章的学习,读者应从定性上熟练掌握对流换热的机理及其影响因素,边界层概念及其应用,以及在相似理论指导下的实验研究方法,进一步提出针对具体换热过程的强化传热措施。

本章主要从定量上计算无相变流体的对流换热,读者应能正确选择实验关联式计算几种典型的无相变换热(管槽内强制对流,外掠平板、单管及管束强制对流,大空间自然对流)的表面传热系数及换热量。

本章重点:一.对流换热及其影响因素对流换热是流体掠过与之有温差的壁面时发生的热量传递。

导热和对流同时起作用。

表面传热系数h是过程量。

研究对流换热的目的从定性上讲是揭示对流换热机理并针对具体问题提出强化换热措施,从定量上讲是能计算不同形式的对流换热问题的h及Q。

对流换热的影响因素总的来说包括流体的流动起因、流动状态、换热面几何因素、相变及流体热物性等。

亦说明h是一复杂的过程量,Newton冷却公式仅仅是其定义式。

二.牛顿冷却公式三.分析法求解对流换热问题的实质分析法求解对流换热问题的关键是获得正确的流体内温度分布,然后利用式5-3求出h,进而得到平均表面传热系数。

四.边界层概念及其应用速度和温度边界层的特点及二者的区别。

温度边界层内流体温度变化剧烈,是对流换热的主要热阻所在。

数量级对比是推导边界层微分方程组常用的方法。

基于:五.相似原理对流换热的主要研究方法是在相似理论指导下的实验方法。

学习相似理论,应充分理解并掌握三个要点:如何安排实验(应测的量);实验数据和整理方法;所得实验关联式推广应用的条件。

准则数一般表现为相同量纲物理量或物理量组合的比值,在具体问题中表示的并不是其比值的真正大小,而是该比值的变化趋势。

传热与流动中常见的准则数Re、Pr、Nu、Gr、Bi、Fo,其定义和物理意义是应该熟练掌握的。

六.无相变对流换热的定量计算注意:判断问题的性质选择正确的实验关联式三大特征量的选取:、、牛顿冷却公式对不同的换热,温差和换热面积有区别实际问题中常常需要使用迭代方法求解,计算结束时应校核前提条件是否满足。

(或则,需先假定流态,最后再校核)对流换热常常与辐射换热同时起作用,尤其在有气体参与的场合。

本章难点:对流换热机理和过程的理解相似原理和相似准则数意义的理解定量计算思考题;1.管内强制对流换热,为何采用短管或弯管可以强化流体换热?2.其它条件相同时,同一根管子横向冲刷与纵向冲刷比,哪个的h大,为什么?3.在地球表面某实验室内设计的自然对流换热实验,到太空中是否仍有效?为什么?4.由式中没有出现流速,h与流体速度场无关,这样说对吗?5.一般情况下粘度大的流体其Pr也大。

由可知,Pr越大,Nu也越大,从而h 也越大,即粘度大的流体其h也越高,这与经验结论相悖,为什么?6.设圆管内强制对流处于均匀壁温t w的条件,流动和换热达充分发展阶段。

流体进口t f`,质量流量为q m,定压比热容为c p,流体与壁面间表面传热系数为h。

试证明下列关系式成立:式中P为管横截面周长,t fx指流体在截面x处平均温度。

相关文档
最新文档