张宇2017命题人八套卷-数学三试卷

合集下载

2017高考数学全国卷三

2017高考数学全国卷三

高考数学试卷一、单选题1.“1<x <2”是“x <2”成立的 A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.设集合{}{}234345M N ==,,,,,, 那么M N ⋃=( ) A.{} 2345,,, B.{}234,, C.{}345,, D.{}34,3.命题:00x ∃≤,20010x x -->的否定是( ) A .0x ∀>,210x x --≤ B .00x ∃>,20010x x --> C .00x ∃≤,20010x x --≤D .0x ∀≤,210x x --≤ 4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2a cos A ,则cos A =( )A .13B .24C .33D .63 5.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.tan3π=( ) A .33 B .32 C .1D .37.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .568.下列函数中,既是偶函数又在区间(0),-∞上单调递增的是( ) A .2(1)f x x = B .()21f x x =+ C .()2f x x = D .()2x f x -= 9.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( ) A.∅ B.{}3,1,0,4-- C.{}2,3 D.{}0,2,3 10.中国共产党第二十次全国代表大会于2022年10月16日在北京开幕.党的二十大报告鼓舞人心,内涵丰富.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .91011.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .10012.已知函数()11f x x x=-,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭B .12 ,1⎛⎫ ⎪⎝⎭C .(1,2)D .(2,3) 二、填空题13.某校高一、高二、高三年级的学生人数之比为4:4:3,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生数为15,则抽取的样本容量为_______.14.甲袋中装有3个白球和5个黑球,乙袋中装有4个白球和6个黑球,现从甲袋中随机取出一个球放入乙袋中,充分混合后,再从乙袋中随机取出一个球放回甲袋中,则甲袋中白球没有减少的概率为____15.定义在(1,1)-上的函数()f x 满足()()()1f x g x g x =--+,对任意的1212,(1,1),x x x x ∈-≠,恒有()()()12120f x f x x x -->⎡⎤⎣⎦,则关于x 的不等式(21)()2f x f x ++>的解集为三、解答题 16.已知函数()()21log 01+=>-ax f x a x 是奇函数 (1)求a 的值与函数()f x 的定义域;(2)若()232log g x x =-对于任意[]1,4x ∈都有()()22log >⋅g x g x k x ,求k 的取值范围.17.已知函数2()2sin cos 23sin 3(0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值18.已知α、β是方程24420x mx m -++=的两个实根,设()22f m a β=+ (1)求函数()f m 的解析式;(2)当m 为何值时,()f m 取得最小值?19.已知函数1 ()2 f x xx=+-.(1)用定义证明函数()f x在(0,1]上是减函数,在[1,)+∞上是增函数;(2)当函数()lgy f x k=-有两个大于0的零点时,求实数k的取值范围;。

2017考研数学三真题及答案解析

2017考研数学三真题及答案解析

ln 2
ln 2
2

5
19.(本题满分 10 分)

a0
1, a1
0, an1
n
1
1
(na
n
a n 1 )(n
1, 2,3 ),

S(x)
为幂级数
n0
an xn
的和函数
(1)证明 an xn 的收敛半径不小于1. n0
(2)证明 (1 x)S(x) xS(x) 0(x (1,1)) ,并求出和函数的表达式.
0
2
10.差分方程 yt1 2 yt 2t 的通解为

【详解】齐次差分方程 yt1 2 yt 0 的通解为 y C 2x ;

yt 1
2 yt
2t
的特解为
yt
at 2t
,代入方程,得 a
1 2

所以差分方程
yt 1
2 yt
2t
的通解为
y
C 2t
1 t2t. 2
11.设生产某产品的平均成本 C(Q) 1 eQ ,其中产量为 Q ,则边际成本为
8.设
X1, X 2,, X n(n
2)
为来自正态总体 N (,1) 的简单随机样本,若
X
1 n
n i 1
Xi
,则下列结论中不
正确的是( )
n
(A) ( X i )2 服从 2 分布 i 1
(B) 2 X n X1 2 服从 2 分布
n
(C) ( X i X )2 服从 2 分布 i 1
时, g(x) g(0) 0 ,进一步得到当 x (0,1) 时, f (x) 0 ,也就是 f (x) 在 (0,1) 上单调减少.

2017年考研数学三真题和解析

2017年考研数学三真题和解析

2017年考研数学三真题一、选择题 1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】0001112lim ()lim lim 2x x x xf x ax ax a +++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A )2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32zy x y xy y xy y x∂=---=--∂,232z x x xy y ∂=--∂,2222222,2,32z z z zy x x x y x y y x∂∂∂∂=-=-==-∂∂∂∂∂∂ 解方程组22320320z y xy y x z x x xy y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <- 【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )4. 若级数211sin ln(1)n k nn ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( ) (A )1 (B )2 (C )1- (D )2-【详解】iv n →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )TE αα-不可逆 (B )TE αα+不可逆 (C )2TE αα+不可逆 (D )2TE αα-不可逆【详解】矩阵Tαα的特征值为1和1n -个0,从而,,2,2T T T TE E E E αααααααα-+-+的特征值分别为0,1,1,1;2,1,1,,1;1,1,1,,1-;3,1,1,,1.显然只有T E αα-存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于 1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于 2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ). 7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容 (C ),AB C 相互独立 (D ),AB C 互不相容 【详解】(())()()()()()()()()()P A B C P AC AB P AC P BC P ABC P A P C P B P C P ABC =+=+-=+-()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-显然,AB 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ). 8.设12,,,(2)n X X X n ≥为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i X μ=-∑服从2χ分布 (B )()212n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-=且相互独立,所以21()ni i X μ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B ):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.3(sin x dx ππ-=⎰ .解:由对称性知33(sin22x dx ππππ-==⎰⎰.10.差分方程122tt t y y +-=的通解为 .【详解】齐次差分方程120t t y y +-=的通解为2xy C =; 设122t t t y y +-=的特解为2tt y at =,代入方程,得12a =; 所以差分方程122t t t y y +-=的通解为12 2.2tt y C t =+11.设生产某产品的平均成本()1QC Q e -=+,其中产量为Q ,则边际成本为 .【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e-=+,则总成本为()()QC Q QC Q Q Qe-==+,从而边际成本为()1(1).Q C Q Q e -'=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)yydf x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)yf x y xye =.13.设矩阵101112011A ⎛⎫⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题15.(本题满分10分)求极限0lim t x dt +→【详解】令x t u -=,则,t x u dt du =-=-,t x u dt du -=⎰⎰02limlim limlim 3t x u u x x x x dt e du du ++++--→→→→====计算积分3242(1)Dy dxdy x y ++⎰⎰,其中D是第一象限中以曲线y =与x 轴为边界的无界区域. 【详解】33242242002424200220(1)(1)1(1)4(1)1111411282Dy y dxdy dx dy x y x y x y dx x y dx x x π+∞+∞+∞=++++++=++⎛⎛⎫=-=- ⎪ ++⎝⎭⎝⎭⎰⎰⎰⎰⎰17.(本题满分10分) 求21limln 1nn k kk nn →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰18.(本题满分10分) 已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.【详解】设11(),(0,1)ln(1)f x x x x=-∈+,则22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++-'=-+=++++ 令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ''=+-+-=2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x 在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<.设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+,()S x 为幂级数0n n n a x ∞=∑的和函数(1)证明nn n a x∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++ 也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n n n n a a n a a n +--=-=-+1112110112101(1)(1)!n n n n n n n n n n n a a a aa a a a a a a a a a a a n ++--------=⨯⨯⨯=-----+也就得到111(1),1,2,(1)!n n n a a n n ++-=-=+111121121()()()(1)!nk n n n n n k a a a a a a a a k +++-==-+-++-+=-∑ lim1!n n n n ρ=≤++≤=,所以收敛半径1R ≥ (2)所以对于幂级数nn n a x∞=∑, 由和函数的性质,可得11()n nn S x na x∞-='=∑,所以11111101111111(1)()(1)(1)((1))()n n nn n n n n n nnn n n n nn n n nn n n n n n n n x S x x na xna xna x n a x na x a n a na x a x a xx a x xS x ∞∞∞--===∞∞+==∞+=∞∞∞+-==='-=-=-=+-=++-====∑∑∑∑∑∑∑∑∑也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x -=-,由于0(0)1S a ==,得1C =所以()1xe S x x-=-.设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他. (1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他 23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-=,利用12,,,n Z Z Z 估计参数σ.(1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz ze dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量1ni i Z σ===.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >=时似然函数为221121()(,)ni i nnz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=。

2017考研数学三真题及答案解析

2017考研数学三真题及答案解析

(B) 2
(C) 1
(D) 2
【详解】iv
n
时 sin
1 n
k
ln(1
1) n
1 n
k
1 n
1 2
1 n
2
o
1 n2
(1
k)
1 n
k 2
1 n2
o
1 n2
显然当且仅当 (1 k) 0 ,也就是 k 1 时,级数的一般项是关于 1 的二阶无穷小,级数收敛,从而选择 n
(C).
AC
B2
,发现只有在点 (1,1)
处满足
y
AC B2 3 0 ,且 A C 2 0 ,所以 (1,1) 为函数的极大值点,所以应该选(D)
3.设函数 f (x) 是可导函数,且满足 f (x) f (x) 0 ,则
(A) f (1) f (1) (B) f (1) f (1) (C) f (1) f (1) (D) f (1) f (1)
2017 年考研数学三真题及解析
一、选择题 1—8 小题.每小题 4 分,共 32 分.
1.若函数
f
(x)
1
cos ax
x , x 0 在 x 0 处连续,则
b,
x0
(A) ab 1 (B) ab 1 (C) ab 0 (D) ab 2
2
2
1
【详解】 lim
f (x)
1 cos lim
(D) (1,1)
【详解】 z y(3 x y) xy 3y 2xy y2 , z 3x x2 2xy ,
x
y
2z x2
2 y,
2z y 2
2x, 2 z 2 z 3 2x xy yx

2017年考研数学三真题与解析

2017年考研数学三真题与解析

1 2017年考研数学三真题一、选择题1—8小题.每小题4分,共32分.1.若函数1cos ,0(),0xx f x ax b x ì->ï=íï£î在0x =处连续,则(A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】00011cos 12lim ()lim lim 2x x x x x f x ax ax a+++®®®-===,0lim ()(0)x f x b f -®==,要使函数在0x =处连续,必须满足1122b ab a =Þ=.所以应该选(A )2.二元函数(3)z xy x y =--的极值点是()(A )(0,0)(B )03(,)(C )30(,)(D )11(,)【详解】2(3)32z y x y xy y xy y x ¶=---=--¶,232z x x xy y¶=--¶,2222222,2,32z z z z y x xxyx yy x¶¶¶¶=-=-==-¶¶¶¶¶¶解方程组22320320z y xy y xz x x xy y¶ì=--=ï¶ïí¶ï=--=¶ïî,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x ¢>,则(A )(1)(1)f f >-(B )11()()f f <-(C )11()()f f >-(D )11()()f f <-【详解】设2()(())g x f x =,则()2()()0g x f x f x ¢¢=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-Þ>-,所以应该选(C )4.若级数211sin ln(1)n k nn ¥=éù--êúëûå收敛,则k =()(A )1(B )2(C )1-(D )2-【详解】iv n ®¥时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n æöæöæöæö--=---+=++ç÷ç÷ç÷ç÷ç÷èøèøèøèø显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设a 为n 单位列向量,E 为n 阶单位矩阵,则阶单位矩阵,则(A )T E aa -不可逆不可逆 (B )TE aa +不可逆不可逆(C )2TE aa +不可逆不可逆 (D )2TE aa -不可逆不可逆【详解】矩阵Taa 的特征值为1和1n -个0,从而,,2,2T T T TE E E E aa aa aa aa -+-+的特征值分别为0,1,1,1 ;2,1,1,,1 ;1,1,1,1,1,1,,,1- ;3,1,1,,1 .显然只有TE aa -存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A æöç÷=ç÷ç÷èø,210020001B æöç÷=ç÷ç÷èø,100020002C æöç÷=ç÷ç÷èø,则,则 (A ),A C 相似,,B C 相似相似 (B ),A C 相似,,B C 不相似不相似 (C ),A C 不相似,,B C 相似相似 (D ),A C 不相似,,B C不相似不相似【详解】矩阵,A B 的特征值都是1232,1l l l ===.是否可对解化,只需要关心2l =的情况.的情况.对于矩阵A ,0002001001E A æöç÷-=-ç÷ç÷èø,秩等于1 ,也就是矩阵A 属于特征值2l =存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -æöç÷-=ç÷ç÷èø,秩等于2 ,也就是矩阵A 属于特征值2l =只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B 与C 相互独立的充分必要条件是(条件是( )(A ),A B 相互独立相互独立 (B ),A B 互不相容互不相容 (C ),AB C 相互独立相互独立 (D ),AB C 互不相容互不相容 【详解】【详解】(())()()()()()()()()()P A B C P AC AB P AC P BC P ABC P A P C P B P C P ABC =+=+-=+-()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-显然,A B 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ). 8.设12,,,(2)n X X X n ³ 为来自正态总体(,1)N m 的简单随机样本,若11n i i X X n ==å,则下列结论中不正确的是(正确的是( )(A )21()ni i X m =-å服从2c 分布分布 (B )()212nX X -服从2c 分布分布 (C )21()ni i X X =-å服从2c 分布分布(D )2()n X m -服从2c 分布分布 解:(1)显然22()~(0,1(0,1))()~(1(1),),1,2,iiX N X i n m m c -Þ-= 且相互独立,所以21()nii X m =-å服从2()n c 分布,也就是(A )结论是正确的;)结论是正确的;(2)222221(1)()(1)~(1)ni i n S X X n S n c s=--=-=-å,所以(C )结论也是正确的;)结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N n X N n X nm m m c Þ-Þ-,所以(D )结论也是正确的;)结论也是正确的;(4)对于选项(B ):221111()~(0,2)~(0,1)()~(1)22n n n X X X X N N X X c --ÞÞ-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)把答案填在题中横线上) 9.322(sin )x x dx ppp -+-=ò.解:由对称性知332222(sin )22xx dxx dx ppppp p -+-=-=òò. 10.差分方程122tt t y y +-=的通解为的通解为 . 【详解】齐次差分方程120t t y y +-=的通解为2xy C =;设122t t tyy +-=的特解为2tty at =,代入方程,得12a =;所以差分方程122tt t y y +-=的通解为12 2.2t t y C t =+11.设生产某产品的平均成本()1QC Q e-=+,其中产量为Q ,则边际成本为,则边际成本为 . 【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e-=+,则总成本为()()QC Q QC Q Q Qe-==+,从而边际成本为,从而边际成本为()1(1).QC Q Q e -¢=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y y df x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()yyydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xye C =+,由(0,0)0f =,得0C =,所以(,)yf x y xye =.13.设矩阵101112011A æöç÷=ç÷ç÷èø,123,,a a a 为线性无关的三维列向量,则向量组123,,A A A a a a 的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A æöæöæöç÷ç÷ç÷=®®ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø,知矩阵A 的秩为2,由于123,,a a a 为线性无关,所以向量组123,,A A A a a a 的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-´+´+´=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题三、解答题15.(本题满分10分)分)求极限03lim xtx x te dtx+®-ò【详解】令x t u -=,则,t x u dt du =-=-,xxtx ux te dtuedu --=òò3332limlim lim lim 332xxxtxuuxx x x x x te dt eue du ue du xexxxx ++++---®®®®-====òòò计算积分3242(1)Dydxdy xy ++òò,其中D 是第一象限中以曲线y x =与x 轴为边界的无界区域.轴为边界的无界区域.【详解】【详解】33242242002424200220(1)(1)1(1)4(1)11121411282xDxyydxdy dx dy x y x y d x y dx x y dx x x p +¥+¥+¥=++++++=++æöæö=-=-ç÷ç÷ç÷++èøèøòòòòòòò 17.(本题满分10分)分)求21lim ln 1nn k k k n n ®¥=æö+ç÷èøå 【详解】由定积分的定义【详解】由定积分的定义 120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx ®¥®¥==æöæö+=+=+ç÷ç÷èøèø=+=ååòò18.(本题满分10分)分) 已知方程11ln(1)k x x -=+在区间(0,1)内有实根,确定常数k 的取值范围.的取值范围.【详解】设11(),(0,1)ln(1)f x x x x =-Î+,则,则22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++-¢=-+=++++ 令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ¢¢=+-+-= 2(ln(1))()0,(0,1)1x x g x x x+-¢¢=<Î+,所以()g x ¢在(0,1)上单调减少,上单调减少,由于(0)0g ¢=,所以当(0,1)x Î时,()0)0g x g ¢¢<=,也就是()g x ()g x ¢在(0,1)上单调减少,当(0,1)x Î时,()(0)0g x g <=,进一步得到当(0,1)x Î时,()0f x ¢<,也就是()f x 在(0,1)上单调减少.上单调减少.0011ln(1)1lim()lim lim ln(1)ln(1)2x x xx x f x x x x x +++®®®æö-+=-==ç÷++èø,1(1)1ln 2f =-,也就是得到111ln 22k -<<.设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+ ,()S x 为幂级数nnn a x ¥=å的和函数的和函数(1)证明nn n a x ¥=å的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x ¢--=Î-,并求出和函数的表达式.,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+Þ+=++也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n nn n aa n a a n +--=-=-+1112110112101(1)(1)!n n n n n n n n n n n a a a a a a a a a a a a a a a a n ++--------=´´´=-----+ 也就得到111(1),1,2,(1)!nn n aa n n ++-=-=+111121121()()()(1)!nk n n nnn k aaa aa aa ak +++-==-+-++-+=-å111lim lim lim 12!3!!nnnn n n n a e n r ®¥®¥®¥=£+++£= ,所以收敛半径1R ³(2)所以对于幂级数nnn a x ¥=å, 由和函数的性质,可得11()n n n S x na x¥-=¢=å,所以,所以111111011111110(1)()(1)(1)((1))()n n nn n nn n n n n n nn n nn n n nn nn nnn n n x S x x na xna xna xn a x na x a n a na xa x a xx a x xS x ¥¥¥--===¥¥+====¥+=¥¥¥+-===¢-=-=-=+-=++-====ååååååååå也就是有(1)()()0((1,1))x S x xS x x ¢--=Î-.解微分方程(1)()()0x S x xS x ¢--=,得()1xCeS x x-=-,由于0(0)1S a ==,得1C = 所以()1xeS x x-=-.设三阶矩阵()123,,A a a a =有三个不同的特征值,且3122.a a a =+(1)证明:()2r A =;(2)若123,b a a a =+,求方程组Ax b =的通解.的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ³.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ³,又因为31220a a a -+=,也就是123,,a a a 线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220a a a -+=,所以基础解系为121x æöç÷=ç÷ç÷-èø;又由123,b a a a =+,得非齐次方程组Ax b =的特解可取为111æöç÷ç÷ç÷èø;方程组Ax b =的通解为112111x k æöæöç÷ç÷=+ç÷ç÷ç÷ç÷-èøèø,其中k 为任意常数.为任意常数.21.(本题满分11分)分) 设二次型222123123121323(,,)2282f x x x x x a x x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y l l +,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141Aa -æöç÷=-ç÷-èø因为二次型的标准形为221122y y l l +.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A l l l l l l l ---=+=+--- 令0E A l -=得矩阵的特征值为1233,6,0l l l =-==.通过分别解方程组()0i E A x l -=得矩阵的属于特征值13l =-的特征向量111131x æöç÷=-ç÷ç÷èø,属于特征值特征值26l =的特征向量211021x -æöç÷=ç÷èø,30l =的特征向量311261x æöç÷=÷çèø, 所以()12311132612,,036111326Q x x x æö-ç÷ç÷ç÷==-ç÷ç÷ç÷ç÷èø为所求正交矩阵.为所求正交矩阵. 22.(本题满分11分)分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<ì=íî其他.(1)求概率P Y EY £(); (2)求Z X Y =+的概率密度.的概率密度.【详解】(1)1202()2.3Y EY yf y dy y dy+¥-¥===òò所以{}230242.39P Y EYP Y ydy ìü£=£==íýîþò(2)Z X Y =+的分布函数为的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z YY F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =£=+£=+£=++£===£+=£-=£+£-=+-故Z X Y =+的概率密度为的概率密度为[]1()()()(2)2,012,230,ZZf z F z f z f z z z z z ¢==+-££ìï=-£<íïî其他23.(本题满分11分)分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量m 是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N m s 该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n m =-= ,利用12,,,n Z Z Z 估计参数s . (1)求i Z 的概率密度;的概率密度;(2)利用一阶矩求s 的矩估计量;的矩估计量; (3)求参数s 最大似然估计量.最大似然估计量. 【详解】(1)先求i Z 的分布函数为的分布函数为{}{}()i Z i i X z F z P Z z P X z P m m ss ì-ü=£=-£=£íýîþ当0z <时,显然()0Z F z =;当0z ³时,{}{}()21i Z i i X z z F z P Z z P X z P m m s s sì-üæö=£=-£=£=F -íýç÷èøîþ; 所以i Z 的概率密度为2222,0()()20,0z Z Z e z f z F z z s ps-ì³ï¢==íï<î.(2)数学期望22222()22z iEZ z f z dzze dzss psp-+¥+¥===òò, 令11ni i EZ Z Z n ===å,解得s 的矩估计量12222ni i Z Z np ps ===å.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >= 时 似然函数为2211212()(,)(2)n ii nnz i n i L f z ess s ps =-=å==Õ,取对数得:2211ln ()ln 2ln(2)ln 22ni i n L n n z s p s s ==---å令231ln ()10ni i d L n z d s s s s ==-+=å,得参数s 最大似然估计量为211ni i z n s ==å.。

2017年考研数学三真题与解析

2017年考研数学三真题与解析

2017年考研数学三真题一、选择题 1—8小题.每小题4分,共32分.1.若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则 (A )12ab =(B )12ab =-(C )0ab =(D )2ab =【详解】0001112lim ()lim lim 2x x x xf x ax ax a+++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A ) 2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32z y x y xy y xy y x ∂=---=--∂,232zx x xy y∂=--∂, 2222222,2,32z z z z y x x x y x y y x∂∂∂∂=-=-==-∂∂∂∂∂∂ 解方程组22320320z y xy y x z x x xy y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B -=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D )3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <-【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )4. 若级数211sin ln(1)n k n n ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( ) (A )1 (B )2 (C )1- (D )2-【详解】iv n →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n的二阶无穷小,级数收敛,从而选择(C ).5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )TE αα-不可逆 (B )TE αα+不可逆 (C )2TE αα+不可逆 (D )2TE αα-不可逆【详解】矩阵Tαα的特征值为1和1n -个0,从而,,2,2T T T T E E E E αααααααα-+-+的特征值分别为0,1,1,1 ;2,1,1,,1 ;1,1,1,,1- ;3,1,1,,1 .显然只有TE αα-存在零特征值,所以不可逆,应该选(A ).6.已知矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100020002C ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似 (C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C 不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况.对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪ ⎪⎝⎭,秩等于 1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C .对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪ ⎪⎝⎭,秩等于 2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容 (C ),AB C 相互独立 (D ),AB C 互不相容 【详解】(())()()()()()()()()()P A B C P AC AB P AC P BC P ABC P A P C P B P C P ABC =+=+-=+-()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-显然,A B 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ).8.设12,,,(2)n X X X n ≥ 为来自正态总体(,1)N μ的简单随机样本,若11ni i X X n ==∑,则下列结论中不正确的是( )(A )21()ni i X μ=-∑服从2χ分布 (B )()212n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,i i X N X i n μμχ-⇒-= 且相互独立,所以21()nii Xμ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)nii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,))~(0,1)()~(1)X N X N n X nμμμχ⇒-⇒-,所以(D )结论也是正确的;(4)对于选项(B ):22111()~(0,2)~(0,1)()~(1)2n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) 9.3(sin x dx ππ-=⎰ .解:由对称性知33(sin22x dx ππππ-==⎰⎰.10.差分方程122tt t y y +-=的通解为 . 【详解】齐次差分方程120t t y y +-=的通解为2xy C =; 设122t t t y y +-=的特解为2tt y at =,代入方程,得12a =; 所以差分方程122tt t y y +-=的通解为12 2.2tt y C t =+11.设生产某产品的平均成本()1Q C Q e -=+,其中产量为Q ,则边际成本为 .【详解】答案为1(1)Q Q e -+-.平均成本()1Q C Q e -=+,则总成本为()()Q C Q QC Q Q Qe -==+,从而边际成本为()1(1).Q C Q Q e -'=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y y df x y ye dx x y e dy =++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()y y y df x y ye dx x y e dy d xye =++=,所以(,)y f x y xye C =+,由(0,0)0f =,得0C =,所以(,)y f x y xye =.13.设矩阵101112011A ⎛⎫⎪= ⎪ ⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 .【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b ==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b ==29292EX a b =++=,229()2DX EX E X =-=.三、解答题15.(本题满分10分)求极限0lim t x dt +→【详解】令x t u -=,则,t x u dt du =-=-,t x u dt du -=⎰⎰00002limlim limlim 33xt x u u x x x x x dt e du du ++++---→→→→====计算积分3242(1)Dy dxdy x y ++⎰⎰,其中D是第一象限中以曲线y =x 轴为边界的无界区域. 【详解】33242242002424200220(1)(1)1(1)4(1)1111411282Dy y dxdy dx dy x y x y d x y dx x y dx x x π+∞+∞+∞=++++++=++⎛⎛⎫=-=- ⎪ ++⎝⎭⎝⎭⎰⎰⎰⎰⎰17.(本题满分10分) 求21limln 1nn k k k n n →∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx n n n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰18.(本题满分10分) 已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.【详解】设11(),(0,1)ln(1)f x x x x=-∈+,则22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++-'=-+=++++ 令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln 21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ''=+-+-=2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x 在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<.设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+ ,()S x 为幂级数0n n n a x ∞=∑的和函数 (1)证明nn n a x∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++ 也就得到11(1)()()n n n n n a a a a +-+-=--,也就得到111,1,2,1n n n n a a n a a n +--=-=-+1112110112101(1)(1)!nn n n n n n n n n n a a a a a a a a a a a a a a a a n ++--------=⨯⨯⨯=-----+ 也就得到111(1),1,2,(1)!n n n a a n n ++-=-=+111121121()()()(1)!nk n n n n n k a a a a a a a a k +++-==-+-++-+=-∑1n n n ρ=≤≤=,所以收敛半径1R ≥ (2)所以对于幂级数nn n a x∞=∑, 由和函数的性质,可得11()n nn S x na x∞-='=∑,所以11111101111111(1)()(1)(1)((1))()n n nn n n n n n nnn n n n nn n n nn n n n n n n n x S x x na xna xna x n a x na x a n a na x a x a xx a x xS x ∞∞∞--===∞∞+==∞+=∞∞∞+-==='-=-=-=+-=++-====∑∑∑∑∑∑∑∑∑也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x -=-,由于0(0)1S a ==,得1C =所以()1xe S x x-=-.设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+ (1)证明:()2r A =;(2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分)设二次型222123123121323(,,)2282f x x x x x ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122y y λλ+,求a 的值及一个正交矩阵Q . 【详解】二次型矩阵21411141A a -⎛⎫⎪=- ⎪ ⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a = 114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0i E A x λ-=得矩阵的属于特征值13λ=-的特征向量1111ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量2101ξ-⎛⎫⎪=⎪⎪⎭,30λ=的特征向量3121ξ⎛⎫⎪=⎪⎪⎭, 所以()123,,0Q ξξξ⎛ == ⎝为所求正交矩阵. 22.(本题满分11分)设随机变量,X Y 相互独立,且X 的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他. (1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他 23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,n X X X 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)i i Z X i n μ=-= ,利用12,,,n Z Z Z 估计参数σ. (1)求i Z 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求i Z 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0Z F z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬ ⎪⎝⎭⎩⎭; 所以i Z的概率密度为222,0()()0,0z Z Z z f z F z z σ-⎧≥'==<⎩.(2)数学期望2220()z i EZ z f z dz ze dz σ-+∞+∞===⎰⎰令11n i i EZ Z Z n ===∑,解得σ的矩估计量1ni i Z σ===.(3)设12,,,n Z Z Z 的观测值为12,,,n z z z .当0,1,2,i z i n >= 时似然函数为21121()(,)ni i n nz i i L f z σσσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22nii n L n n zσπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为σ=。

【精品】2017年河南省八市中评高考数学三模试卷(理科)

【精品】2017年河南省八市中评高考数学三模试卷(理科)
2017 年河南省八市中评高考数学三模试卷(理科)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个 选项中,有且只有一项符合题目要求 . 1.( 5 分)若复数 ( a∈ R,i 是虚数单位) 是纯虚数, 则实数 a 的值为( ) A.﹣ 2 B.﹣ 6 C.4 D.6 2.(5 分)设 [ x] 表示不大于 x(x∈R)的最大整数,集合 A={ x|[ x] =1} , B={ 1, 2} ,则 A∪ B=( ) A.{ 1} B.{ 1, 2} C. [ 1,2) D. [ 1,2] 3.( 5 分)某学生一个学期的数学测试成绩一共记录了 6 个数据: x1=52,x2=70, x3=68,x4=55,x5=85,x6=90,执行如图所示的程序框图, 那么输出的 S 是( )
由于函数
的图象为单位圆的上半圆,
可得切线的斜率为﹣ ,
即有切线的方程为 y﹣n=﹣ (x﹣m), 代入 m2+n2=1,可得 mx+ny=1, 代入( 2,1),可得 2m+n=1, 解得 m= ,n=﹣ ,(舍去)或 m=0,n=1,
即为切线的斜率为﹣ =0.
故选: A. 【点评】 本题考查切线的斜率的求法, 注意运用圆的切线的性质, 以及两直线垂 直的条件和直线方程的运用,属于中档题.
使 P 与圆周上某点 P'重合,每次折叠都会留下折痕,设折痕与 EP的' 交点为 M.
( 1)求 M 的轨迹 C 的方程;
( 2)直线 l:y=kx+m 与 C 的两个不同交点为 A,B,且 l 与以 EP为直径的圆相切,

,求△ ABO 的面积的取值范围.
第 4 页(共 26 页)
21.( 12 分)已知 f (x)=

高昆轮《张宇考研数学命题人终极预测8套卷》精讲精解

高昆轮《张宇考研数学命题人终极预测8套卷》精讲精解

A A E; A E
B A E; A E
1
C A E; A E

D A E; A E
T
设A, B是n阶可逆矩阵, 满足AB A B, 则下列关系中不正确的是
A A B
A B
B AB
A 21 +a 2 3 B 21 +3 2 2a3 C a1 + 2 2 3 D 31 2a 2 3
1 有唯一解 设A是3阶矩阵, A 1, a11 1, aij Aij , Aij 是A中元素aij的代数余子式, 则非齐次线性方程组Ax 0 0 0 A1, 0,
五、特征值与特征向量(特征值与特征向量的定义;相似对角化;实对称)
设A是3阶不可逆矩阵, , 是线性无关的3维列向量, 满足 A , A , 则A =
0 设A是3阶矩阵, Ax 0有通解k11 k2 2 , A3 =3 , 则存在可逆矩阵P, 使得P 1 AP 0 A1 , 2 , 1 3 B 2 , 3 , 1 C 1 2 , 2 , 23 D 1 2 , 2 3 , 3
C 12 r 16
D r 16
设A是3阶方阵,有3个特征值0,1,1,且不能对角化,则r E A r A
4 0 4 A B 1 4 0 , 则r 2 E A 0 1 3
三、向量组(相关;表出;秩)
A, B都是2 4的矩阵, 其中 Ax 0有基础解系1 1,1, 2,1 , 2 0, 3,1, 0
T T T T

(完整版)2017全国3卷数学

(完整版)2017全国3卷数学

2017年普通高等学校招生全国统一考试(3卷)数学一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A ⋂B 中元素的个数为( ). A .3 B .2 C .1 D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=( ).A .12B .22C .2D .2 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ).A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大学*科网致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 ( ).A. -80B. -40C. 40D. 805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y += 有公共焦点,则C 的方程为( ) A. 221810x y -= B. 22145x y -= C. 22154x y -= D. 22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是( ). A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( ).A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ).A. πB. 3π4C. π2D. π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ).A. -24B. -3C. 3D. 810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切, 则C 的离心率为( ).D.1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =( ). A.12- B.13 C.12D.1 12. 在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值 为( ).A.3C.D.2二、填空题:本题共4小题,每小题5分,共20分。

2017张宇最后一套卷(数学二-解析)

2017张宇最后一套卷(数学二-解析)
(0,0)
故 dz ( x, y ) (0,0)
z z dx x (0,0) y
dy 2dx 3dy
(0,0)
x 1 ex , 当x 0 e (13) f ( x ) x 当x 0. 0
分析 未知函数含于积分之中的方程称积分方程。现在此积分的限为变量,求此方程的
(3) (D) 【分析】由曲率公式, y '
1 1 , y '' 2 , x x y '' (1 y ' )
2 32
k

x , x 0. (1 x 2 ) 3 2
dk 1 2x 2 . dx (1 x 2 ) 3 2
1
内部资料

严禁翻印
仅供模考
不作押题
dk dk dk 1 1 1 1 0 ,得 x 0 ;当 x 0 ,x . 当0 x 时, 时, dx dx dx 2 2 2 2 1 2
F ' x ( x, y ) F ' y ( x, y ) y ' ( x ) 0 ,对其两边求 x 的导数,有 F '' xx ( x, y ) F '' xy ( x, y ) y ' F '' yx ( x, y ) y ' F '' yy ( x, y ) y '2 F ' y ( x, y ) y '' 0
令 x 0, 得
f ' x =f ( x ) e x f '(0) f ( x )ae x
所以 f '( x ) 存在.解此一阶微分方程,得

数3--17真题答案

数3--17真题答案

2017年考研数学(三)试卷答案速查一、选择题(1)A (2)D (3)C (4)C (5)A (6)B (7)C (8)B 二、填空题(9)3π2(10)122t t C t −+⋅ (11)1(1)e QQ −+−(12)e yxy (13)2 (14)92三、解答题 (15)23. (16(17)14. (18)11(1,)ln 22k ∈−. (19)略.(20)(Ⅰ)略.(Ⅱ)112111k ⎛⎫⎛⎫⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭x (k 为任意常数).(21)2=a .(Ⅱ)0⎛ = ⎝Q . (22)(Ⅰ)49. (Ⅱ),01,()2,23,0,.Z z z f z z z <<⎧⎪=−<⎨⎪⎩其他(23)(Ⅰ)2212,0,()0,;其他z Z z f z σ−⎧>=⎩;(Ⅱ)ˆ2σ=;(Ⅲ)ˆσ=2017年全国硕士研究生入学统一考试数学(三)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)【答案】(A ).【详解】因为()f x 在0x =连续,所以0lim ()lim ()(0)x x f x f x f +−→→==; 由20001112lim()lim lim ,2x x x f x ax ax a +++→→→−===0lim ()(0)x f x f b −→==; 得12b a =,即12ab =.故选(A ).(2)【答案】(D ).【详解】由(32)0,(32)0zy x y xz x x y y∂⎧=−−=⎪∂⎪⎨∂⎪=−−=∂⎪⎩得驻点(0,0),(0,3),(3,0),(1,1);又222222,2,322z z zy x x y x y x y∂∂∂=−=−=−−∂∂∂∂; 利用极值的充分条件:当(,)(0,0)x y =时,290AC B −=−<,(0,0)不是极值点;(,)(0,3)x y =时,290AC B −=−<,(0,3)不是极值点; (,)(3,0)x y =时,290AC B −=−<,(3,0)不是极值点;(,)(1,1)x y =时,230AC B −=>,(1,1)是极值点;故选(D ).(3)【答案】(C ).【详解】由()()0f x f x '>,可判断2()f x 的单调性. 由于2(())2()()0f x f x f x ''=>,于是2()f x 在所考虑的区间上单调增加,因此,22(1)(1)f f >−,即(1)(1)f f >−,故选(C ).(4)【答案】(C ).【详解】因为331()111sin (())3!n o n n n =−+,221()111ln(1)(())2n o n n n−=++,所以332211111111sin ln(1)()()()62k o k o n n n n n n n n −−=−+−−++2211(1)()2k k o n n n=+−+,因为11n n∞=∑发散,211n n ∞=∑收敛,所以当10k +=,即1k =−时, 2111sin ln(1)()k O n n n −−=.故选(C ).(5)【答案】(A ).【详解】由条件知T1=αα,T αα为n 阶方阵,且T ()=αααα,T ()1r =αα,所以矩阵T αα的特征值为1和0(1n −重). 则矩阵T−E αα特征值分别为10λ=,21n λλ===,所以T −E αα不可逆. 故选(A ).(6)【答案】(B ).【详解】A ,B 是上三角矩阵,C 是对角阵,特征值都是1,2,2.对于A 的二重特征值122,(2)312n r λλ==−−=−=A E (等于重数),故A 可相似对角化,相似于C .对于B 的二重特征值122,(2)321n r λλ==−−=−=B E (小于重数),于是B 不可相似对角化,B 不相似于C .故选(B ).(7)【答案】(C ).【详解】由独立性可知[()]()()P A B C P A B P C =;[()][()()]P A B C P AC BC =()()()P AC P BC P ACBC =+−()()()()(),P A P C P B P C P ABC =+−而()()[()()()]()P A B P C P A P B P AB P C =+−()()()()()()P A P C P B P C P AB P C =+−,从而有()()()P ABC P AB P C =. 故选(C ).(8)【答案】(B ). 【详解】(A )选项(0,1)i X N μ−,所以221()()ni i X n μχ=−−∑;(B )选项(0,2)n iX X N −,所以22()(1)2n i X X χ−,从而22()n i X X −不服从2χ分布; (C )选项22221(1)()(1)1ni i n S X X n χ=−−=−∑;(D )选项1(0,)X N n μ−,所以222()(1)X n X μχ⎛⎫⎪−=.故选(B ).二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)【答案】3π2.【详解】原式ππ3πsin d x x x −−=+⎰⎰π23110.22x −=+=⋅ππ=⋅π⎰(10)【答案】122t t C t −+⋅.【详解】易知对应的齐次方程的通解为2t C y C =,设非齐次方程的特解为*2t t y At =⋅,代入原方程解得12A =,所以通解为 *1()(2)2t t t C y y y t C t −=+=+⋅.(11)【答案】1(1)eQQ −+−.【详解】成本函数()()(1e )QC Q Q C Q Q −=⋅=+,所以d ()[(1e )]1(1)e d Q Q C Q Q Q Q−−'=+=+−. (12)【答案】e yxy .【详解】由题设可得(,)e ,(,)(1)e yyx y f x y y f x y x y ''==+.而(,)e d e ()yyf x y y x xyg y ==+⎰,d[e ()]d ()(,)(1)e d d yy x xy g y g y f x y x y y y+'==++;所以,d (),(),(,)e d y g y C g y C f x y xy C y===+,再由(0,0)0f =得(,)e y f x y xy =.(13)【答案】2.【详解】因为123,,ααα线性无关,则123(,,)ααα为可逆矩阵.于是123123(,,)[(,,)]()r r r ==A A A A A αααααα.对A 进行初等行变换,101011,000⎛⎫⎪→ ⎪ ⎪⎝⎭A得()2r =A ,所以123,,A A A ααα的秩为2.(14)【答案】92.【详解】根据分布律的性质及期望的定义,可得11,21(2)130,2a b a b ⎧++=⎪⎪⎨⎪−⋅+⋅+⋅=⎪⎩解得 1,41;4a b ⎧=⎪⎪⎨⎪=⎪⎩ 所以22222211199(2)13,24422EX DX EX E X =⋅−+⋅+⋅==−=.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分)【解】对于分子,被积函数含有x ,首先利用换元法分离x ,e d e (d )e e d t x u x u xx t ux t tu u u u −−−=−−=⎰⎰⎰.所以原式03100022e d e 2lim e limlim 332x u x xx x x u u x xx +++−−→→→=⋅==⎰. (16)(本题满分10分)【详解】如右图所示,其积分区域为图中阴影部分;所以原式3242d d (1)xy x y x y +∞=++⎰324220001111d (414121y xy y x x y x x =+∞+∞==−=−++++⎰⎰012(2(arctan )4282x x +∞=−−=(17)(本题满分10分) 【解】由定积分定义得,21lim ln 1nn k k k nn →∞=⎛⎫+ ⎪⎝⎭∑1011lim ln(1)ln(1)d n n k k k x x x n n n →∞==+=+∑⎰ 2211120001111ln(1)d ln(1)d 2221x x x x x x x−+=+=+−+⎰⎰10111ln 21d 221x x x ⎛⎫=−−+ ⎪+⎝⎭⎰11200111ln 2(1)ln (1)242x x =−−−+ 1111ln 2ln 2.2424=+−=(18)(本题满分10分) 【解】构造函数11(),(0,1)ln(1)f x x x x=−∈+,则011lim (),(1)12ln 2x f x f +→==−; 22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++−'=−=++++; 设22()(1)ln (1)g x x x x =++−,则有2()ln (1)2ln(1)2g x x x x '=+++−,2ln(1)22[ln(1)]()20111x x x g x x x x++−''=+−=<+++,结合(0)(0)0g g '==,可以判断()0f x '<,()f x 单调减少,其值域为11(1,)ln 22−; 所以11(1,)ln 22k ∈−.(19)(本题满分10分)【证】(Ⅰ)由已知条件得11)1(−++=+n n n a na a n ,即1111n n n n a a a a n +−−=−−+. 因此112111011210()n n n n n n n n n n a a a a a a a a a a a a a a a a +−+−−−−−−−=⋅⋅⋅⋅−−−−110(1)1()(1)(1)!(1)!n n a a n n +−=−=−++,其中01a =,10a =. 从而1111111(1)(1)(1)(1)!(1)!!n n n n n n a a a n n n +++−=−+=−+−+++11112111(1)(1)(1)(1)(1)!!2!!k n n n k a n n n k +++=−==−+−+++=+∑.因为1121e !n n k a k ++=<∑,所以收敛半径1lim 1n n n a R a →∞+==,故收敛半径不小于1. (Ⅱ)因为0()nn n S x a x∞==∑,则111()(1)n n n n n n S x na xn a x ∞∞−+=='==+∑∑,1110(1)()(1)(1)nn n n n n x S x n a x n a x ∞∞+++=='−=+−+∑∑.由于11(1)n n n n a na a +−+=+,因此111111(1)()(1)()nnn n n n n n n x S x a na x a x n a x xS x ∞∞∞+−+==='−=++−+=∑∑∑;即得到可分离变量的微分方程(1)()()x S x xS x '−=,解得e ()1xC S x x −=−.再结合初始条件0(0)1S a ==,得1C =−,所以e ()(11).1xS x x x−=−<<−(20)(本题满分11分)【解】(Ⅰ)由于3122=+ααα知123,,ααα线性相关,得0=A ,于是0是A 的特征值.设A 的特征值为1230,,λλλ=,由于它们两两不等,所以23,λλ都不为0,并且A 相似于230000000λλ⎛⎫⎪⎪ ⎪⎝⎭.于是12000()00 2.00r r λλ⎛⎫⎪== ⎪ ⎪⎝⎭A(Ⅱ)由3122=+ααα,得1232++=ααα0,即T(1,2,1)−=A 0,则T(1,2,1)−是齐次方程=Ax 0的一个特解.因为()2r =A ,所以=Ax 0的基础解系只包含一个解向量,于是T(1,2,1)−构成=Ax 0的基础解系.T 123(1,1,1)=++=A αααβ,因此T(1,1,1)是非齐次方程=Ax β的一个特解.于是=Ax β的通解为:T T (1,1,1)(1,2,1),C C +−取任意常数.(21)(本题满分11分)【解】f 的二次型矩阵为21411141a −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭A ,相似于矩阵12000.000λλ⎛⎫⎪=⎪ ⎪⎝⎭B 故0==A B .求出63a =−A ,得 2.a =得214111.412−⎛⎫⎪=− ⎪ ⎪−⎝⎭AA 的特征多项式为214606111111412412λλλλλλλλ−−−−−=−+−=−+−−−−−E A 600112412λλλ−=−+−−+2(6)(3)(6)(3)λλλλλλ=−+=−+; 求得A 的特征值为1236,3,0.λλλ==−=当16λ=时,(6)−=A E x 0的一个非零解T(1,0,1)−,单位化得T1=ξ; 当23λ=−时,(3)+=A E x 0的一个非零解T(1,1,1)−,单位化得T 2=ξ; 当30λ=时,(0)−=A E x 0的一个非零解T(1,2,1),单位化得T 3.=ξ令正交矩阵123(,,)0⎛== ⎝Q ξξξ,则123(,,)f x x x 在正交变换=x Qy下化为221263.y y −(22)(本题满分11分) 【解】(Ⅰ)由122d 3EY y y y =⋅=⎰,得 {}23242d .39P Y EY P Y y y ⎧⎫===⎨⎬⎩⎭⎰ (Ⅱ) {}{}()F z P Z z P X Y z ==+{}{}0,2,P X X Y z P X X Y z ==++=+ {}{}{}{}022P X P Y z P X P Y z ==+=− {}{}112,22P Y z P Y z =+− 当0z <时,()0F z =;当01z <<时,201()2d 022z z F z y y =+=⎰;当11z <时,11()(10)22F z =+=; 当23z <时,220111(2)()2d 2222z z F z y y −−=+=+⎰;当3z 时,() 1.F z =即 ,01,()2,23,0,Z z z f z z z <<⎧⎪=−<⎨⎪⎩其他.(23)(本题满分11分) 【解】(Ⅰ)由题设知,21(,)X N μσ,则1(0,1)X N μσ−,{}{}111()Z F z P Z z P X z μ==−;当0z 时,1()0,Z F z = 当0z >时, {}{}111()Z F z P X z P z X z μμ=−=−−11121,X z z z P μσσσσ−−⎧⎫⎛⎫==Φ−⎨⎬ ⎪⎝⎭⎩⎭ 综上所述:2212,0,()0,0.z Z z f z z σ−⎧>=⎩(Ⅱ)由(Ⅰ)知,221210()()d d z ZE Z zf z z z σ−+∞+∞−∞==⎰⎰222220ed ,2z z σσσ−+∞⎛⎫== ⎪⎝⎭故σ的矩估计量为ˆ2σ=11.ni i Z X n μ==−∑(Ⅲ)似然函数221221π()()()e ,0,1,2,,,20,i ni i n nn Z i i i z L f z z i n σσσ=−−−=⎧⎪⎪==>=⎨⎪⎪⎩∑∏其他.取对数得 221π1ln ()ln ln ,222nii n L n zσσσ==−−−∑等式两边对σ求导,得231d ln ()1d n i i Ln z σσσσ==−+∑,令d ln ()0d Lσσ=,得σ=故σ的最大似然估计量为ˆσ=。

2017张宇最后一套卷(数学三)

2017张宇最后一套卷(数学三)

S2 S1 1 3 S3
4
1
内部资料
(A) 1 , 3 (4)设 f ( x )

严禁翻印
仅供模考
不作押题
(B) 1 , 3
(C) 5 , 6
(D) 1 , 9 )

x
n 0

n
,则在 x 1 时, F ( x )

xf ( x) 的麦克劳林级数为( 1 x
(A)
nxn
有解时,求解 X. (21) (本题满分 11 分) 设 , 均为 3 维单位列向量,且 , 正交, A ,
T T
证明: (I) A =0 ; (II) , 均是 A 的特征向量; (III)A 可以相似对角化,并求 . (22) (本题满分 11 分) 某商品一周的需求量 X 是随机变量,已知其概率密度为 f ( x ) xe ( x 0) ,假设各周 的需求量相互独立,以 uk 表示 k 周的总需求量. (I)求 u2 和 u3 的概率密度 f k ( x )(k 2,3) ; (II)求接连三周中最大需求量的概率密度 f 3 ( x ) . (23) (本题满分 11 分) 设随机变量 X 1 与 X 2 相互独立, X i 服从参数为 i, p (0<p<1)的二项分布,i=1,2, 令随机变量 Y1 差达到最小.
4
内部资料
(20) (本题满分 11 分)
严禁翻印
仅供模考
不作押题
1 1 2 1 4 0 (I) 1 = 1 , 2 = 1 , 3 = 0 ,1 1 , 2 0 , 3 2 1 0 1 a b c

2017考研数学三真题及答案

2017考研数学三真题及答案

2017考研数学三真题及答案、选择题1 —8小题.每小题4分,共32分.1 cos . x 01 .若函数f(x) ax ,x 0在x 0处连续,则b, x 0…11 . 一 . 一(A) ab — (B) ab — (Q ab 0 (D) ab 22 2_ 11 cos 、x ox 1【详斛】lim f (x) lim ------- lim — — , lim f (x) b f(0),要使函数在x 0 x 0 ax x 0 ax 2a x 0八……r 11 〜,…,x 0处连续,必须满足——b ab -.所以应该选(A2a 222z z2x, 3 2x x y y xz 2 八 一 3y 2xy y 0 x2解方程组 x ,得四个驻点.对每个驻点验证AC B 2,发现只有在z 2一 3x x 2xy 0 y应该选(D(A) f (1) f( 1) (B) f (1) f( 1)(C) f (1) |f( 1) (D) |f(1)| |f( 1)-11 一,一.22f(x)f (x) 0,也就是f(x)是单调增加函数.也3.设函数f(x)是可导函数,且满足f(x)f (x) 0,则【详解】设g(x) (f (x))2,则g (x)、.一 一2就得到f(1) f ( 1) f(1) |f( 1),所以应该选(C)2.二元函数z xy(3 x y)的极值点是((A) (0,0)(B) (0,3)(C) (3,0)(D) (1,1)【详解】—y(3 x y) xy x2 Z c 23y 2xy y ,——3x x y2z 2y, 2 点(1,1)处满足ACB 22 0,所以(1,1)为函数的极大值点,所以4.右级数sin - kln(1 —)收敛,则k n 2 n n26 .已知矩阵A 0情况.7 .设A,B, C 是三个随机事件,且 A,C 相互独立,B,C 相互独立,则AUB 与C 相互独 立的充分必要条件是【详解】(A)iv n(B) 2 (C)(D) 21sin 一 nk ln(1 1~2n(11 k)-n 显然当且仅当 (1 k) 0, 也就是k 1时,级数的一般项是关于 1 ,,人一—的二阶无穷小,n收敛,从而选择(C).5.设为n 单位列向量, E 为n 阶单位矩阵,则(A) ET 不可逆(B) E T 不可逆(C) E 2 T 不可逆(D) ET 不可逆【详解】矩阵T 的特征值为1和n 1个0,从而ET,ET,E 2 T ,E的特征值分别为 0,1,1,L 1; 2,1,1,L ,1 ;1,1,1L ,1 ; 3,1,1,L ,1 .显然只有E T 存在零特征值,所以不可逆, 应该选(A).(A) A,C 相似,B,C 相似(B) A,C 相似,B,C 不相似 (C) A,C 不相似,B,C 相似(D) A,C 不相似,B,C 不相似【详解】矩阵 A, B 的特征值都是22,31 .是否可对解化,只需要关心对于矢I 阵A, 2E A 0,也就是矩阵A 属于特征值2存在两个线性无关的特征向量, 也就是可以对角化,也就是A~C.,也就是矩阵A 属于特征值2只有个线性无关的特征向量, 也就是不可以对角化,当然B,C 不相似故选择(B).(A) A, B 相互独立 (B) A,B 互不相容(C) AB,C 相互独立(D) AB,C 互不相容【详解】P((AUB)C) P(AC AB) P(AC) P(BC) P(ABC) P(A)P(C) P(B)P(C) P(ABC)P(AUB)P(C) (P(A) P(B) P(AB))P(C) P(A)P(C) P(B)P(C) P(AB)P(C)是正确的;【详解】齐次差分方程 y t 1 2 y t 0的通解为y C2x ;显然,AU B 与C 相互独立的充分必要条件是P(ABC) P(AB)P(C),所以选择(C ).8.设X I ,X 2,L ,X n (n 2)为来自正态总体N( ,1)的简单随机样本,卜列结论中不正确的是n(A) (X ii 1 )2服从2分布(B)2 X n X 1 2服从2分布n(X ii 1(3)n(C) (X ii 1显然(X iX)2服从 2分布)~N(0,1) (X i)2服从2(n)分布,也就是(A)(X i X)2 (n i 11)S 27(D)n(X 22)~结论是正确的;2)2服从1,2,L 2(n 1),所以(C),n(X ) ~ N(0,1) n(X )2 ~2分布n 且相互独立,所以结论也是正确的;2 ,(1),所以(D)结论也(4)对于选项(B): (X nX I )~ N(0,2)X n -X 1 ~ N(0,1)所以(B)结论是错误的,应该选择(B) 二、填空题(本题共 6小题,每小题4分, 满分24分.把答案填在题中横线上)9. (sin 3x2 2x )dx 解:由对称性知(sin 3x 2x 2)dx 10.差分方程y t 12 y t 2t 的通解为t _ t1 设y t 1 2y t 2的特解为y at2 ,代入方程,得a —;2t+ 1 +所以差分万程y t i 2y t 2t的通解为y C2t5 t2.Q11 .设生广某广品的平均成本 C(Q) 1 e ,其中产量为Q,则边际成本为.【详解】答案为1 (1 Q)e Q.平均成本C(Q) 1 e Q ,则总成本为C(Q) QC(Q) Q Qe Q,从而边际成本为C (Q) 1 (1 Q)e Q .df(x,y) ye y dx x(1 y)e y dy ,f(0,0) 0,则 f(x,y)f(0,0) 0,得 C 0,所以 f(x, y) xye y.114.设随机变量 X 的概率分布为 PX 2- , P X 1 a,PX 3 b,若 2 EX 0 ,则 DX .…1 1^ , , _ __ ____ _1【详解】显然由概率分布的性质,知 a b - 121 …1 1EX 2 — 1 a 3 b a 3b 1 0,解得 a — ,b 一2 4412.设函数 f (x, y)具有一阶连续的偏导数,且已知【详解】df (x, y)ye y dx x(1 y)e y dy d(xye y ),所以 f (x, y) xye y C ,由1 0 113.设矩阵A1 12 01 1的秩为.【详解】对矩阵进行初等变1, 2, 3为线性无关的三维列向量, 则向量组A 1, A 2, A 31 0 11 0 1 A 1 1 20 1 1 0 1 10 1 11 0 10 11,知矩阵A 的 0 0 0秩为2,由于1, 2, 3为线性无关,所以向量组A 1,A 2, A 3的秩为 2.求极限lim x 0 ° x te t dt【详解】令 ,dt du,、.ue x u duli m x 0 x te t dt 16.(本题满分 计算积分 (1x 3limx 0,ue u dux 3 li mx 0ue u dux 3limx 0、,xe x2时3 2 10分)3y~24T2x y)•dxdy,其中D 是第一象限中以曲线 yJx 与x 轴为边界的无界区域. 【详解】 3y D (1 x 2 y亍dxdyxdx 03ydy (1 x 2 y 4)2V17.(本题满分 10分)求limn kn'n 1 n 1k n由定积分的定义 li m n Fn k 1 n 18.(本题满分10分) 1 已知方程一1— ln(1 x) 1 一 k 在区间 x 【详解】设f (x)1 ln(1 x) f(x) (1 x) ln 2(1 x)人 2令 g(x) (1 x)ln (1 x)li m n(0,1)1 一,x xdx24、xd(1 x y )(1)21 2x 2dxn k 1 n1 01n(1 x)dxln(1x)dx内有实根,确定常数 k 的取值范围. (0,1),则(1 x)ln 2(1 x) x 2x 2(1 x)ln 2(1 x) g(0) 0,g(1) 2ln 22g (x) ln2(1 x) 2ln(1 x) 2x, g (0) 0g (x) 2(1n(1 x) x) 0,x (0,1),所以g(x)在(0,1)上单调减少,1 x由于g (0) 0 ,所以当x (0,1)时,g(x) g0) 0, 也就是g(x) g (x)在(0,1)上单调减少,当x (0,1)时,g(x) g(0) 0,进一步得到当(0,1)时,f(x)0,也就是f (x) 在(0,1)上单调减少.1 lim f (x) lim 一x 0 - x 0 ln(1x)x ln(1 x) limx 0xln(1 x),也就是得到1 1-1k-ln219.(本题满分10分)设a0 1,a1 0,a n 1 (na n a n 1)(n 1,2,3L ),,S(x)为哥级数a n x n的和函数(1)证明a n x n的收敛半径不小于1 .n 0(2)证明(1 x)S(x) xS( x) 0(x (1,1)),并求出和函数的表达式.(1)由条件a n1 ,21 n1(n a na n 1) (n 1)a n 1 na n a n 1也就得到(n 1)(a n 1 a n ) (a n a n 1),也就得到a n 1 a n也就得到a n a n 1 (a n 1limvn 'a n 1 a n a n 1 a n a n a n 1a1 a0 a n a n 1 a n 1 a n 21 a na n )(a na na n a n 1a2 a1a1 a0——,n 1,2,Ln 11K11)!,n 1,2,La n 1) L (a2 a1) a1 1)k工k!lim n1 1n■ 2! 3!1n!lim Ven 1,所以收敛半径(2)所以对于哥级数a n x nn 0 由和函数的性质,可得S (x) na n x n 1,所以(1 x)S (x) (1 x) na n x n 1na n x n 1na n x nn 1n 1n 1n n(n 1)a n 1xna n xn 0n 1a 1((n 1)a n 1 na n )x nn 1nn 1na n 〔xa n xx a 「xxS(x)n 1n 0n 0也就是有(1 x}S(x) xS(x) 0(x ( 1,1)).Ce x解微分万程(1 x)S(x) xS(x) 0,得S(x)由于S(0)% 1,得1 xxe 所以S(x) ——. 1 x20 .(本题满分11分)设三阶矩阵A 1, 2, 3有三个不同的特征值,且(1)证明:r(A) 2;⑵若 12, 3,求方程组Ax 的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以 A 是非零矩阵,也就是 假若r(A) 1时,则r 0是矩阵的二重特征值,与条件不符合,所以有 r(A)3 12 2 0,也就是1, 2, 3线性相关,r(A) 3,也就只有r(A) 2(2)因为r(A) 2 ,所以 Ax 0的基础解系中只有一个线性无关的解向量. 331220,所以基础解系为x 2 ;11又由 12, 3,得非齐次方程组 Ax 的特解可取为 11113122.r(A) 1 . 2,又因为21 .(本题满分11分)222设一次型 f(X i ,X 2,X 3) 2x i X 2 ax 3 2x 1X 2 8x 1X 3 2x 2X 3在正交变换 x Qy 下的标22 -傕形为112 y 2 ,求a 的值及一个正交矩阵Q .21 4 【详解】二次型矩阵A 11 1 41 a1y 22y2.也就说明矩阵A 有零特征值,所以 A 0,故a 2.1 41 1 (3)(6)12令 E A0得矩阵的特征值为13, 2 6, 3 0.,, 3通过分别解方程组(i E A )x 0得矩阵的属于特征值〔方程组Ax 的通解为x k 2 1 ,其中k 为任意常数.因为二次型的标准形为 3的特征向量1属于特征值特征值26的特征向量30的特征向量31 .6 21所以Q 1, 2, 31 20 121 -6 276为所求正交矩阵.22.(本题满分11分)设随机变量X,Y 相互独立,且X 的概率分布为P X 0〜、,… 1 、,P{ X 2} - , Y 的概率密度为 f(y)2y,0 y 1 0,其他(1)求概率P(Y EY);(2)求Z X Y的概率密度.「,、, J 2 . 2 【详解】(1)EYyf Y(y)dy 02ydy -.3(2) Z X Y 的分布函数为F Z (z)PZz P X Y z PXYz,X0PXYz,X2P X0,Y zP X 2,Y z 21 , 、 1 —P{Y z} -P Y z 22 2 1-F Y (Z ) F Y (Z 2) 2故Z X Y 的概率密度为1f Z (z) F Z (Z ) - f(z) f(z 2)2z, 0 z 1 z 2,2 z 30,其他用该天平对一物体的质量做了 n 次测量,该物体的质量2.是已知的,设n 次测量结果 X 1,X 2,L , X n 相互独立且均服从正态分布 N(,).该工程师(1)求Zi 的概率密度; (2)利用一阶矩求的矩估计量;(3)求参数 最大似然估计量. 【详解】(1)先求Z i 的分布函数为当z 0时,显然F Z (z) 0 ;当 z 0时,F Z (z) P Z i z P X iF z (z) P Z i z P X iX i所以Z i 的概率密度为f z (z) F z (z)所以P YEY P Y -3 2032 ydy23.(本题满分11分)某工程师为了解一台天平的精度,记录的是n 次测量的绝对误差乙X i ,(i 1,2,L ,n),利用 乙,Z 2,L ,Z n 估计参数X i zz z P ———-2 -z2(2)数学期望EZ i zf (z)dz _2_ ze 2^dz ,i 0 0 ..2 21 n.修......... ..令EZ Z - Z i,解得的矩估计量n i 129 2 29(3)设乙,Z2,L ,Z n的观测值为Z I,Z2,L ,Z n .当Z i 0,i 1,2,L n 时似然函数为L()2nf(Z i,) n e(.2 )1n z2 升i j取对数得: lnL() n In2 nln(2 ) nln2 2Z i i 1令dlnL(d Z20 ,得参数最大似然估计量为:2. n i 1n。

2017年考研(数学三)真题试卷(题后含答案及解析)

2017年考研(数学三)真题试卷(题后含答案及解析)

2017年考研(数学三)真题试卷(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.若函数f(x)=在x=0处连续,则( )A.ab=1/2B.ab=-C.ab=0D.ab=2正确答案:A解析:=1/2a,∵f(x)在x=0处连续,1/2a=bab=1/2,选A.2.二元函数z=xy(3-x-y)的极值点是( )A.(0,0)B.(0,3)C.(3,0)D.(1,1)正确答案:D解析:=-1,从而AC-B2>0,从而(1,1)为极值点.3.设函数f(x)可导,且f(x)f’(x)>0,则( )A.f(1)>f(-1)B.f(1)<f(-1)C.|f(1)|>f(-1)|D.|f(1)|<|f(-1)|正确答案:C解析:举特例,设f(x)=ex,可排除BD;设f(x)=-ex,可排除A,故选C.4.若函数收敛,则k=( )A.1B.2C.-1D.-2正确答案:C解析:因为原级数收敛,所以1+k=0k=-1.选C.5.设α为n维单位向量,E为n阶单位矩阵,则( )A.E-ααT不可逆B.E+ααT不可逆C.E+2ααT不可逆D.E-2ααT不可逆正确答案:A解析:选项A,由(E-ααT)α=α-α=0得(E-ααT)x=0有非零解,故|E-ααT|=0.即E-ααT不可逆,选项B,由r(ααT)=1得ααT的特征值为n-1个0,1故E-ααT的特征值为n-1个1,2,故可逆.6.已知矩阵A=,则( )A.A与C相似,B与C相似B.A与C相似,B与C不相似C.A与C不相似,B与C相似D.A与C不相似,B与C不相似正确答案:B解析:由(λE-A)=0可知A的特征值为2,2,1因为2E-A=得r(2E-A)=1,∴A可相似对角化。

且A~由|λE-B|=0可知B特征值为2,2,1因为2E-B=得r(2E-B)=2,∴B不可能相似对角化,显然C可相似对角化,∴A~C,且B不相似于C.7.设A,B,C为三个随机事件,且A与C相互独立,B与C相互独立,则A∪B与C相互独立的充分必要条件是( )A.A与B相互独立B.A与B互不相容C.AB与C相互独立D.AB与C互不相容正确答案:C解析:由题设知,P(AC)=P(A)P(C),P(BC)=P(B)P(C),由A∪B与C相互独立知,P(A∪B)C=P(A∪B)P(C)=P(AC)+P(BC)-P(ABC)而P[(A∪B)∩C]=P(AC∪BC)=P(AC)+P(BC)-P(ABC)P(ABC)=P(AB)P(C),即AB与C相互独立.8.设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记Xi,则下列结论不正确的是( )A.(X1-μ)2服从χ2分布B.2(Xn-x1)2服从χ2分布C.)2服从χ2分布D.n(-μ)2服从χ2分布正确答案:B二、填空题9.∫-ππ(sin3x+)dx=_______.正确答案:π3/2解析:∫-ππ(sin3x+)dx=2∫0π(2∫0π/2πcost.πcostdt=2π2∫0π/2πcos2tdt=2π22.=π3/2.10.差分方程yt+1-2yt=2t通解为yt=_______.正确答案:φt=C.2t+t.2t解析:由yt+1-2y1=2tλ=2,∴=C2t设y1*=C1t21,则y1+1*=C1(t+1)2i+1=2tt2i(C∈R).11.设生产某产品的平均成本(Q)=1+e-Q,其中产量为Q,则边际成本为_______.正确答案:1+(1-Q)e-Q解析:C=Q=Q(1+e-Q)C’(Q)=1+e-Q-Qe-Q=1+(1-Q)e-Q.12.设函数f(x,y)具有一阶连续偏导数,且(x,y)=yeydx+x(1+y)eydy,f(0,0)=0,则f(x,y)=_______.正确答案:xyey解析:f’k=yey,f’y=x(1+y)ey,f(x,y)=∫yeydx=xyey+c(y),故f’y=xey+xyey+c’(y)=xey+xyey,故c’(y)=0,由f(0,0)=0,即f(x,y)=xyey.13.设矩阵A=,α1、α2、α3为线性无关的三维向量组,则向量组Aα1、Aα2、Aα3的秩为_______.正确答案:2解析:由a1,a2,a3,线性无关,可知矩阵a1,a2,a3,可逆,故r(Aa1,Aa2,Aa3)=r(A(a1,a2,a3))=r(A)再由r(A)=2得r(Aa1,Aa2,Aa3)=2.14.设随机变量X的概率分布为P{X=-2}=1/2,P={X=1}=a,P{X=3}=b,若EX=0,则DX=_______.正确答案:9/2解析:由归一性得+a+b=1,再由EX=0得-1+a+3b=0故a=b=1/4,故EX2=(-2)2×=9/2,DX=EX2-(EX)2=9/2.三、解答题解答应写出文字说明、证明过程或演算步骤。

2017年数学三真题答案解析

2017年数学三真题答案解析

所以Z的概率密度为
O<z <L
几(z)�r-- 2, 2<z<3,
(23)解
0'
其他.
CI) Z1 的分布函数为
厂王) -], F(z)�P{Z,,s;;z}�P{IX,-pl,s;;z}�
z�o.
o,
z < 0,
所以Z1 的概率密度为 f(z)�{f•';';,'
z歹o,
z<O.
=厂叮 z 厂 C II) EZ1
已AB与C相互独立,故应选C. (8) B
解 因为X, �NCµ ,1),
所以X,
— µ
�N(O,l),
�ex, 则
—µ尸~贮(n), 故A正确;
,-1
一` (n — 1)S 2
�(X,
,-1
因为 z =
�X气n — 1)'
C,
1
故C正确;
因为
X
�N(
µ
,—1 ), n
X—µ
所以
�N(O,l),
1

(z)dz =
ze 三 dz
芦a o
z a.
v冗
z z a
=

�1 n
EZ1, 令Z=亡让,得
6
的矩估计最为aA

dx
。 =
1 +=
1
4J (1+x2

1 1+2x 2)dx
。) 勹1 (arctanx
/

0

过 了arctan,/2x
+=
(17)解
2 —迈 = 16 兀
n (--;;) --;; 杻心: -杻心: n k

2017年考研数学真题(数三)试题+解析

2017年考研数学真题(数三)试题+解析

4!+%,"4!-"
$ &4!+"%4!,""4!+,"’4!-"
$ 4!+"4!,"%4!,"4!-""4!+,"4!-"
+ , , U- VW#/ 4&!+ %,"-’$ 4!+ % ,"4!-"&XYZ[\]>
4!+"4!-"%4!,"4!-""4!+,-"
$ 4!+"4!,"%4!,"4!-""4!+,"4!-"
!"#$!"#$%&’()*+,-./*0.1
,!231"#!%41#541&6#7’!6!8951:;<=>2?@#AB,>2?
CD1E<FG#HIJ2?K<LMNOP1QRSTUV!$ !!!
!#")*""!#"$$%#%&(#)*槡### ""#+# $",-.#/
!!!"
&’#
# #"
!+"&’
###!!"’#!"!"’0’
//#!!"/(/#!"!"/#01!&"’
!’"6"3.6
! 0
$
! 0
")0!% %1!!!%"#

2017数学三

2017数学三

2017数学三试卷拿到手的时候离打铃还有十分钟好像,大概浏览了一下试卷。

一看就知道高数压轴题和概率论题难。

一看差分方程,好好复习的都知道平时张宇的模拟卷做了N遍。

除了级数和概率论,没有特别难的题。

填空题第一题一眼扫出答案,奇函数对称区间等于0,第二个用定积分几何意义做,是半圆的面积。

差分方程张宇的八套卷四套卷做了多少题。

然而我还是忘记乘以常数C后面题不记得了,但是都不是难题。

想要告诫大家的是,希望大家提前复习数学,做数一数二数三所有的真题卷,不要只做数三,请大家真题认认真真按照套卷按照分类按照你的盲点弱点刷三遍。

大题第一题,是具体化的含参数变限积分求导。

平时大家都做的是抽象函数,现在成了具体的函数我也一下懵逼了。

但是仔细想想换个元就行了。

大题后面记不得具体题号了。

但是,无界区域求二重积分,往年真题有过。

其次,二重积分的难点在于,要么被积函数复杂,要么积分区域复杂,要么积分时需要分别考虑极坐标和直角坐标,要么积分难。

你复习的时候把往年真题做个几遍,应该可以拿下。

这题积分函数复杂,要有整体思想,还有对于arctanx的那个积分函数熟不熟,是不是好好背过公式。

这里我要告诫大家的是,不要试图考前突击公式,我复习的时候一直分不清arctanx和arcsinx的那两个形式,唯有反复记忆,基本每几天背一次,考前多看看多想办法区分,考试的时候才不会慌了神。

级数题我的确是不会,但是第二问求S(X)是微分方程,不会做天理难容啊!最基础的微分方程,做做也是有分的啊。

线代,化简费功夫的…差点崩…线代请加强计算和细心程度还有一题抽象数列求方程的解,考前这个我一直不太拿手,这个题型李永乐的模拟卷有出现过,正好我买的一本辅导资料里也有,狂刷了好几题搞透了方法。

概率论第一题基础题,真题里做了很多遍的全集分解思想和用定义求概率密度。

概率最后一题,那帮五六十的老头请接受我的大白眼,亏我那么认真复习概率…反正我没做出来。

另外,有考生也许想问是看张宇还是看汤家凤,你现在好好复习可以两个都看,张宇让你爱上数学,汤家凤让你体验啥叫计算巅峰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t
酬勤考资工作室独家提供 一手验证必加Q Q :2335778333 【酬勤考资官方Q Q 群:216963517】
官网地址:w w w .c h o u q i n k a o z i .n e t。

相关文档
最新文档