结构力学静定结构习题课

合集下载

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第3章 静定梁与静定刚架【圣才出品】

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第3章 静定梁与静定刚架【圣才出品】

第3章 静定梁与静定刚架
3.1 复习笔记【知识框架】
【重点难点归纳】
一、单跨静定梁 ★★★★
1.内力
表3-1-1 内力的基本概念
图3-1-1
图3-1-22.内力与外力间的微分关系及积分关系(1)由平衡条件导出的微分关系式
计算简图如图3-1-3所示,微分关系式为
(Ⅰ)
d d d d d d s
s N
F q x
x M F
x F p x
x ⎧=⎪⎪⎪=
⎨⎪⎪=-⎪⎩-()()
图3-1-3
(2)荷载与内力之间的积分关系
如图3-1-4
所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-2。

图3-1-4
表3-1-2 内力的积分公式及几何意义
3.叠加法作弯矩图
表3-1-3 常用叠加法及其作图步骤
图3-1-5
图3-1-6
二、多跨静定梁 ★★★★
多跨静定梁是由构造单元(如简支梁、悬臂梁)多次搭接而成的几何不变体系,其计算简图见图3-1-7,几何构造、计算原则、传力关系见表3-1-4。

结构力学 第三章 静定结构的内力计算(典型例题练习题).

结构力学 第三章 静定结构的内力计算(典型例题练习题).

[例题3-2-1]作简支梁的剪力图与弯矩图。

解:求支座反力荷载叠加法平衡方程[例题3-2-2]作外伸梁的剪力图与弯矩图。

解:求支座反力荷载叠加法平衡方程[例题3-2-3]作外伸梁的剪力图与弯矩图。

解:求支座反力荷载叠加法平衡方程[例题3-3-1]作多跨静定梁的内力图。

解:求支座反力荷载叠加法[例题3-3-2]作三跨静定梁的内力图。

解:求支座反力[例题3-3-3] 作多跨静定梁的内力图。

解:求支座反力[例题3-4-1] 作静定刚架的内力图解:求支座反力[例题3-4-2]作静定刚架的内力图解:求支座反力[例题3-4-3]作静定刚架的内力图解:求支座反力[例题3-4-4]作静定刚架的内力图解:求支座反力[例题3-4-5]作三铰刚架的内力图解:求支座反力[例题3-4-6]作三铰刚架的内力图解:求支座反力??[例题3-4-7]作静定刚架的内力图解:求支座反力[例题3-4-8]作静定刚架的图解:[例题3-4-9]作静定刚架的图解:[例题3-4-10]作静定刚架的图解:[例题3-4-11]作静定刚架的图解:[例题3-4-12]作静定刚架的图解:[例题3-4-13]作静定刚架的图解:[例题3-4-14]作静定刚架的图解:求支座反力?[例题3-4-15]作静定刚架的图解:[例题3-5-1]???求支座反力当时?????? ? ?????[例3-5-2]??? 试求对称三铰拱在竖向均布荷载作用下的合理轴线。

解:相应简支梁的弯矩方程为水平推力合理轴线方程为合理轴线为一抛物线。

[例3-6-1]用结点法求桁架各杆的内力。

解:求支座反力解题路径:以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-2]用结点法求桁架各杆的内力。

解:求支座反力平衡方程荷载叠加法解题路径:以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象以结点为对象[例3-6-3]用结点法求桁架各杆的内力。

解:利用对称性,求支座反力解题路径:以结点为对象?以结点为对象以结点为对象以结点为对象例3-6-4]指出桁架的零杆。

(完整版)结构力学_习题集(含答案)

(完整版)结构力学_习题集(含答案)

《结构力学》课程习题集一、单项选择题1. 弯矩图必定发生突变的截面是()。

A. 有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。

2. 图示梁中 C 截面的弯矩是()。

12kN . m 4kN 3kN / mC4m 4m 2mA.12kN.m( 下拉 );B.3kN.m( 上拉 );C.8kN.m( 下拉 );D.11kN.m( 下拉 )。

3. 静定结构有变温时,()。

A. 无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。

4. 图示桁架 a 杆的内力是()。

A.2P ;B. -2P;; D. - 3P。

P P Pda3 d5. 图示桁架,各杆EA 为常数,除支座链杆外,零杆数为()。

A. 四根;B. 二根;C.一根;D. 零根。

P PaP Pl = 6a6. 图示梁 A 点的竖向位移为(向下为正)()。

A. Pl 3 /( 24 EI ) ;B. Pl 3 /(16 EI ) ;C. 5Pl3/( 96EI );D. 5Pl3/(48 EI )。

P2 EI EIl/ 2 A l/ 27. 静定结构的内力计算与()。

A.EI 没关;B.EI 相对值相关;C.EI 绝对值相关;D.E 没关, I 相关。

8. 图示桁架,零杆的数量为:()。

A.5 ;;; D.20 。

9. 图示结构的零杆数量为()。

A.5 ;B.6 ;; D.8 。

10. 图示两结构及其受力状态,它们的内力切合()。

A. 弯矩同样,剪力不一样;B.弯矩同样,轴力不一样;C.弯矩不一样,剪力同样;D.弯矩不一样,轴力不一样。

P P P P2P 2PEI EI EI EIh 2EI EIl ll l11. 刚结点在结构发生变形时的主要特点是()。

A. 各杆能够绕结点结心自由转动;B.不变形;C.各杆之间的夹角可随意改变;D.各杆之间的夹角保持不变。

结构力学-习题集(含答案)

结构力学-习题集(含答案)

《结构力教》课程习题集之阳早格格创做一、单选题1. 直矩图肯定爆收突变的截里是(D).A.有集结力效率的截里;B.剪力为整的截里;C.荷载为整的截里;D.有集结力奇效率的截里.2. 图示梁中C截里的直矩是(D).A.12kN.m(下推);B.3kN.m(上推);C.8kN.m(下推);D.11kN.m(下推).3. 静定结构有变温时,(C).A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力.4. 图示桁架a杆的内力是(D).A.2P;B.-2P;C.3P;D.-3P.5. 图示桁架,各杆EA 为常数,除收座链杆中,整杆数为( A ).A.四根;B.二根;C.一根;D.整根.6. 图示梁A 面的横背位移为(背下为正)( C ).A.)24/(3EI Pl ;B.)16/(3EI Pl ;C.)96/(53EI Pl ;D.)48/(53EI Pl .7. 静定结构的内力估计与( A ).无关;相对付值有关;千万于值有关;无关,I 有关.8. 图示桁架,整杆的数目为:(C ).;;;.9. 图示结构的整杆数目为(C ).;;;.10. 图示二结构及其受力状态,它们的内力切合(B ).A.直矩相共,剪力分歧;B.直矩相共,轴力分歧;C.直矩分歧,剪力相共;D.直矩分歧,轴力分歧.11. 刚刚结面正在结构爆收变形时的主要特性是(D ).A.各杆不妨绕结面结心自由转化;B.稳定形;C.各杆之间的夹角可任性改变;D.各杆之间的夹角脆持稳定.12. 若荷载效率正在静定多跨梁的基础部分上,附属部分上无荷载效率,则(B).A.基础部分战附属部分均有内力;B.基础部分有内力,附属部分不内力;C.基础部分无内力,附属部分有内力;D.不通过估计,无法推断.13. 图示桁架C 杆的内力是(A).A.P;B.-P/2;C.P/2;.14. 用单位荷载法供二截里的相对付转角时,所设单位荷载应是(D).A.一对付大小相等目标好异的集结荷载;B.集结荷载;C.直矩;D.一对付大小相等目标好异的力奇.15. 用图乘法供位移的需要条件之一是:(B).A.单位荷载下的直矩图为背去线;B.结构可分为等截里直杆段;C.所有杆件EI为常数且相共;D.结构必须是静定的.16. 普遍正在画制效率线时,所施加的荷载是一个(B).A.集结力奇;B.指背稳定的单位移动集结力;C.单位力奇;D.集结力.17. 下图中各图乘截止精确的是(D).A. B. C. D.S=y0 S=1y1+2y2 S=y0 S=y018. 图示伸臂梁,B收座左侧截里'B的剪力效率线精确的是(A).A. B.C. D.19. 利用机动法做静定梁效率线的本理是(A).A.真功本理;B.叠加本理;C.仄稳条件;D.变形条件.20. 图示伸臂梁的效率线为哪个量值的效率线(C).A.QA F左;B.QA F;C.QA F右;D.RA F.21. 图示结构,超静定次数为( B ).A.9;B.12;C.15;D.20.22. 力法圆程中的系数δki表示的是基础结构由(B).A.X i爆收的沿X k目标的位移;B.X i=1爆收的沿X k目标的位移;C.X i=1爆收的沿X i目标的位移;D.X k=1爆收的沿X i目标的位移.23. 对付称结构正在对付称荷载效率下,其(A).A.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移对付称;B.直矩图战轴力图对付称,剪力图对付称;变形与位移阻挡付称;C.直矩图战轴力图对付称,剪力图对付称,变形与位移对付称;D.直矩图战轴力图对付称,剪力图阻挡付称,变形与位移阻挡付称.24. 力法的基础已知力是通过变形协做条件决定的,而位移法基础已知量是通过( A )条件决定的.A.仄稳;B.物理;C.图乘法;D.变形协做.25. 图示结构,超静定次数为(A).A.4;B.5;C.6;D.7.26. 图示结构的超静定次数为( C ).A.3;B.4;C.5;D.6.27. 挨启对接三个刚刚片的复铰,相称于去掉( C )个拘束?A.2;B.3;C.4;D.5.28. 图示结构C截里不为整的是( D ).A.横背位移;B.直矩;C.轴力;D.转角.29. 力法的基础已知量是( A ).A.多余已知力;B.收座反力;C.独力的结面线位移;D.角位移.30. 对付于下图所示结构,下列叙述精确的是( D ).A.A面线位移为整;B.AB杆无直矩;C. AB杆无剪力;D. AB杆无轴力.31. 位移法典范圆程中主系数一定( B ).A.等于整;B.大于整;C.小于整;D.大于等于整.32. 正在位移法中,将铰接端的角位移,滑动收撑端的线位移动做基础已知量( B ).A.千万于不可;B.不妨,但是不必;C.一定条件下不妨;D.必须.33. 估计刚刚架时,位移法的基础结构是( C ).A.单跨静定梁的集中体;B.静定刚刚架;C.单跨超静定梁的集中体;D.超静定铰结体.34. 正在位移法基础圆程中,k ij代表( A ).⊿j=1时,由于⊿j=1正在附加拘束i处爆收的拘束力;⊿i=1时,由于⊿i=1正在附加拘束j处爆收的拘束力;C.⊿j=1时,正在附加拘束j处爆收的拘束力;D.⊿i=1时,正在附加拘束i处爆收的拘束力.35. 位移法的基础已知量是( C ).A.收座反力;B.杆端直矩;C.独力的结面位移;D.多余已知力.二、推断题36. 有多余拘束的体系一定是几许稳定体系.(X)37. 形成二元体的链杆不妨是复链杆.(√)38. 每一个无铰启关框皆有3个多余拘束.(√)39. 如果体系的估计自由度等于其本量自由度,那么该体系不多余拘束.(√)40. 若体系的估计自由度小于大概等于整,则该体系一定是几许稳定体系.(X)41. 对付于静定结构,改变资料的本量大概者改变横截里的形状战尺寸,不会改变其内力分散,也不会改变其变形战位移.(X)42. 下图所示二相共的对付称刚刚架,启受的荷载分歧,但是二者的收座反力是相共的.(X)43. 温度改变,收座移动战制制缺面等果素正在静定结构中均引起内力.(X)44. 图示结构火仄杆件的轴力战直矩均为0.(X)45. 正在荷载效率下,刚刚架战梁的位移主假如由于各杆的蜿蜒变形引起.(√)46. 用机动法做得下图(a)所示结构Q左效率线如图(b)所示.b(X)47. 效率线的正背号仅表示本量的内力(大概反力)与假设的目标是可普遍.(√)48. 静定结构指定量值的效率线经常由直线段组成的合线,合面位于铰结面战欲供截里处.(√)49. 荷载的临界位子必定有一集结力效率正在效率线顶面,若有一集结力效率正在效率线顶面也必为一荷载的临界位子.(X)50. 一组集结移动荷载效率下,简收梁的千万于最大直矩不可能出当前跨中截里.(X)51. 力法的基础体系是不唯一的,且不妨是可变体系.(X)52. n次超静定结构,任性去掉n个多余拘束均可动做力法基础结构.(X)53. 图(a)对付称结构可简化为图(b)去估计.(X)54. 下图所示结构的超静定次数是n=8.(X)55. 超静定结构正在荷载效率下的内力估计与各杆刚刚度相对付值有关.(√)56. 超静定结构正在收座移动、温度变更效率下会爆收内力.(√)57. 超静定结构中的杆端力矩只与决于杆端位移.(X)58. 位移法的基础结构有多种采用.(X)59. 位移法是估计超静定结构的基础要领,不克不迭供解静定结构.(X)60. 位移法圆程的物理意思是结面位移的变形协做圆程.(X)三、估计题161. 供下图所示刚刚架的直矩图.62. 用结面法大概截里法供图示桁架各杆的轴力.63. 请用叠加法做下图所示静定梁的M 图.64. 做图示三铰刚刚架的直矩图.65. 做图示刚刚架的直矩图.四、估计题266. 用机动法做下图中E M 、L QB F 、R QB F 的效率线.67. 做图示结构F M 、QF F 的效率线.68. 用机动法做图示结构效率线L Q B F F M ,.69. 用机动法做图示结构R Q B C F M ,的效率线.70. 做图示结构QB F 、E M 、QE F 的效率线.五、估计题371. 用力法做下图所示刚刚架的直矩图.72. 用力法供做下图所示刚刚架的M 图.73. 利用力法估计图示结构,做直矩图.74. 用力法供做下图所示结构的M 图,EI=常数.75. 用力法估计下图所示刚刚架,做M 图.六、几许构制分解 76.77.78.79.80.81.82.83.84.85.七、估计题4(略)……问案一、单选题1. D2. D3. C4. D5. A6. C7. A8. C9. C10. B11. D12. B14. D15. B16. B17. D18. A19. A20. C21. B22. B23. A24. A25. A26. C27. C28. D29. A30. D31. B32. B34. A35. C二、推断题36. Х37.√38.√39.√40. Х41. Х42. Х43. Х44. Х45.Ö46. Х47.√48.√49. Х50. Х51. Х53. Х54. Х55.√56.√57. Х58. Х59. Х60. Х三、估计题161. 解:与完齐为钻研对付象,由0A M =∑,得2220yB xB aF aF qa +-= (1)(2分)与BC 部分为钻研对付象,由0C M =∑,得yB xB aF aF =,即yB xB F F =(2)(2分)由(1)、(2)联坐解得23xB yB F F qa ==(2分) 由0x F =∑有 20xA xB F qa F +-= 解得 43xA F qa =-(1分)由0y F =∑有 0yA yB F F += 解得 23yA yB F F qa =-=-(1分) 则2224222333D yB xB M aF aF qa qa qa =-=-=()(2分)直矩图(3分)62. 解:(1)推断整杆(12根).(4分)(2)节面法举止内力估计,截止如图.每个内力3分(3×3=9分)63. 解:(7分)(6分)64. 解:由0B M=∑,626P RA F F =⨯,即2P RA F F =(↓)(2分) 由0y F =∑,2P RB RA F F F ==(↑)(1分)与BE 部分为断绝体0E M =∑,66yB RBF F =即2P yB F F =(←)(2分) 由0x F =∑得2PyA F F =(←)(1分)故63DE DA yA PM M F F ===(内侧受推)(2分) 63CB CE yB P M M F F ===(中侧受推)(2分)(3分)65. 解:(1)供收座反力.对付完齐,由0x F =∑,xA F qa =(←)(2分)0A M =∑,22308RC F a qa qa ⨯--=,178RC F qa =(↑)(2分)(2)供杆端直矩.0AB DC M M ==(2分)2BA BC xA M M F a qa ==⨯=(内侧受推)(2分)2248CB CD a a qa M M q ==⨯⨯=(中侧受推)(2分) (3分)四、估计题266. 解:(1)C M 的效率线(4分)(2)L QB F 的效率线(4分)(2)R QB F 的效率线(4分)67. 解:(1)F M 的效率线(6分)(2)QF F 的效率线(6分)68. 解:F M 效率线(6分)L Q B F 效率线(6分)69. 解:Q Bc F M ,效率线(6分) R Q B c F M ,效率线(6分)70. 解:(1)QB F 的效率线.(4分)E M 的效率线.(4分)QE F 的效率线.(4分)五、估计题371. 解:(1)本结构为一次超静定结构,与基础体系如图(a )所示.(2分)(2)典型圆程11110P X δ+∆=(2分)(3)画制P M 、1M 分别如图(b )、(c )所示.(3分)(a ) (b )(c ) (d )(4)用图乘法供系数战自由项.333111433l l l EI EI δ=+=(2分)232112217()22336P l Pl Pl Pl l Pl EI EI-⨯∆=++⨯=-(2分) (5)解圆程得1178P X =(1分) (6)利用11P M M X M =+画制直矩图如图(d )所示.(2分)72. 解:1)采用基础体系(2分)那是一次超静定刚刚架,可去掉B 端火仄拘束,得到如下图所示的基础体系.2)列力法圆程(2分)3)画制基础体系的Mp 图战单位直矩图,估计系数、自由项(6分,Mp 图战单位直矩图各2分,系数每个1分,截止过失得一半分)解圆程得: 1128ql X =(1分) 做M 图:11PX MM M =+(3分) 73. 解:(2分) (3分)(1分)(2*4=8分)74. 解:与基础体系如图(2分)列力法基础圆程:11110p X δ+∆=(2分)1M 图(1.5分) p M 图(1.5分)3113l EI δ= (2分) 418p ql EI ∆=-(2分)代进力法圆程得 138ql X =(1分) M 图(2分)75. 解:(1)采用基础体系如图(a )所示(2分)(a )(2)列力法圆程.11112210P X X δδ++∆=(1分)21122220P X X δδ++∆=(1分) (3)分别做P M 、1M 战2M 图(1*3=3分) (4)供系数战自由项.2241111315()32428Pqa a qa a a a qa EI EI ∆=-⋅⋅⋅+⋅⋅=-⋅(1分) 422111()224P qa qa a a EI EI ∆=-⋅⋅⋅=-(1分)3111124()233a a a a a a a EI EIδ=⋅⋅⋅+⋅⋅=(1分) 322112()233a a a a EI EI δ=⋅⋅⋅=(分)3122111()22a a a a EI EI δδ==⋅⋅⋅=(分)将上述数据代进基础圆程得137X qa =,2328X qa =(1分)(5)利用叠加法做直矩图如图.(2分)六、几许构制分解76. 图中,刚刚片AB、BE、DC由不共线的三个铰B、D、E对接,组成一个大刚刚片,再战天基前提用不相接也不齐仄止的三链杆贯串,组成不多余拘束的几许稳定体系(5分).77. 如图所示的三个刚刚片通过不正在共背去线上的A、B、C三个铰二二贯串形成无多余拘束的夸大刚刚片,正在此前提上依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)组成无多余拘束的几许稳定体系.(5分)78. 如图所示的三个刚刚片通过共背去线上的A、B、C三个铰二二贯串形成了瞬变体系.(5分)79. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)80. 如图依次裁撤二元体(1,2)、(3,4)、剩下刚刚片Ⅰ战天里刚刚片Ⅱ通过一铰战不过该铰的链杆组成了几许稳定体系,故本量系是无多余拘束的几许稳定体系.(5分)81. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)82. 如图刚刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰二二贯串组成了无多余拘束的几许稳定体系.(5分)83. 如图以铰接三角形ABC为基础刚刚片,并依次减少二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)产死夸大刚刚片,其战天里刚刚片通过铰A战节面B 处链杆组成了几许稳定体系,11杆为多余拘束,故本量系为含有1个多余拘束的几许稳定体系.(5分)84. 如图依次裁撤二元体(1,2)、(3,4)、(5,6),刚刚片Ⅱ战天里刚刚片Ⅰ通过相接于共一面的三根链杆组成了瞬变体系.(5分)85. 如图依次裁撤二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)、(11,12)后只剩下天里刚刚片,故本量系是无多余拘束的几许稳定体系.(5分)七、估计题4(略)……。

03静定梁--习题

03静定梁--习题
结构力学电子教程
3 静定梁
3 静定梁(3 课时)
本章提要 3.l 静定单跨梁的计算 3.2 叠加法绘制直杆弯矩图 3.3 简支斜梁的计算 3.4 静定多跨梁约束力计算与几何组成 3.5 静定多跨梁内力图的绘制 本章小结 思考题 习题
结构力学电子教程
3 静定梁
本章小结
基本内容是静定单跨梁和多跨梁的支座反力、 基本内容是静定单跨梁和多跨梁的支座反力、内力的计算 及内力图的绘制。学习时应强调多做练习,提高熟练程度。 及内力图的绘制。学习时应强调多做练习,提高熟练程度。 要点如下: 要点如下: (1)计算步骤:支座反力、内力、内力图。 )计算步骤:支座反力、内力、内力图。 对静定多跨梁,要注意其几何组成特点, 对静定多跨梁,要注意其几何组成特点,求支座反力的次 序应与组成次序相反。 序应与组成次序相反。 (2)截面内力有弯矩、剪力、轴力;应注意其定义及正负 )截面内力有弯矩、剪力、轴力; 号规定。 号规定。 (3)计算截面内力的基本方法是截面法。在此基础上,也 )计算截面内力的基本方法是截面法。在此基础上, 应能熟练地列出截面法算式,直接计算截面内力。 应能熟练地列出截面法算式,直接计算截面内力。 (4)绘制弯矩图的基本方法是分段叠加法。 )绘制弯矩图的基本方法是分段叠加法。 (5)内力图的纵坐标垂直于杆轴线。弯矩图画在杆件受拉 )内力图的纵坐标垂直于杆轴线。 纤维一侧,不注正负号;剪力图和轴力图注明正负号。 纤维一侧,不注正负号;剪力图和轴力图注明正负号。
= 38kN ⋅ m
MA
A C D
4kN
3kN/m
B
【解】
2m
YA = 10kN
10
2m
2m
6 Q (kN) 38 18 6 M (kN·m)

《结构力学习题集》2-静定结构内力

《结构力学习题集》2-静定结构内力

第二章 静定结构内力计算一、是非题1、 静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。

2、静定结构受外界因素影响均产生内力,内力大小与杆件截面尺寸无关。

3、静定结构的几何特征是几何不变且无多余约束。

4、图示结构||M C =0。

aa5、图示结构支座A 转动ϕ角,M AB = 0, R C = 0。

BCaaAϕ2a26、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。

7、图示静定结构,在竖向荷载作用下, AB 是基本部分,BC 是附属部分。

ABC8、图示结构B 支座反力等于P /2()↑。

9、图示结构中,当改变B 点链杆的方向(不通过A 铰)时,对该梁的影响是轴力有变化。

AB10、在相同跨度及竖向荷载下,拱脚等高的三铰拱,水平推力随矢高减小而减小。

11、图示桁架有9根零杆。

12、图示桁架有:N 1=N 2=N 3= 0。

aaaa13、图示桁架DE 杆的内力为零。

a a14、图示对称桁架在对称荷载作用下,其零杆共有三根。

15、图示桁架共有三根零杆。

16、图示结构的零杆有7根。

17、图示结构中,CD 杆的内力 N 1=-P 。

a 418、图示桁架中,杆1的轴力为0。

4a19、图示为一杆段的M 、Q 图,若Q 图是正确的,则M 图一定是错误的。

图M Q 图二、选择题1、对图示的AB 段,采用叠加法作弯矩图是:A. 可以;B. 在一定条件下可以;C. 不可以;D. 在一定条件下不可以。

2、图示两结构及其受载状态,它们的内力符合:A. 弯矩相同,剪力不同;B. 弯矩相同,轴力不同;C. 弯矩不同,剪力相同;D. 弯矩不同,轴力不同。

PPP2 l ll l3、图示结构M K(设下面受拉为正)为:A. qa22;B. -qa2;C. 3qa22;D. 2qa2。

2a4、图示结构M DC(设下侧受拉为正)为:A. -Pa;B.Pa;C. -Pa;D. Pa。

a a5、在径向均布荷载作用下,三铰拱的合理轴线为:A.圆弧线;B.抛物线;C.悬链线;D.正弦曲线。

李廉锟《结构力学》(上册)配套题库【课后习题】(静定梁与静定刚架)【圣才出品】

李廉锟《结构力学》(上册)配套题库【课后习题】(静定梁与静定刚架)【圣才出品】

第3章静定梁与静定刚架复习思考题1.用叠加法作弯矩图时,为什么是竖标的叠加,而不是图形的拼合?答:因为有时叠加弯矩图时的基线与杆轴不重合,如果用图形拼合,不能完全保证叠加后弯矩值是实际同一点的两个弯矩相加后的值。

2.为什么直杆上任一区段的弯矩图都可以用简支梁叠加法来作?其步骤如何?答:(1)因为根据内力分析可以求出直杆任一区段两端的内力,所以直杆任一区段两端均可以看成两端有外力(集中力或集中力偶)的简支梁。

(2)设有直杆任一区段简支梁AB,具体步骤如下①分解作用区段AB上的荷载;②分别作出分解荷载下的弯矩图;③求解出区段AB两端的弯矩M A和M B;④将两端弯矩M A和M B绘出并连以直线(虚线);⑤以步骤④中的虚线为基线叠加各个分解荷载下的弯矩图(竖标叠加),得最终弯矩图。

3.试判断图3-1所示刚架中截面A、B、C的弯矩受拉边和剪力、轴力的正负号。

图3-1答:轴力以受压为负,受拉为正;剪力以使截面顺时针旋转为正。

(1)截面A:左边受拉,剪力为负,轴力为负;(2)截面B:右边受拉,剪力为正,轴力为正;(3)截面C:左边受拉,剪力为正,轴力为正。

4.怎样根据静定结构的几何构造情况(与地基按两刚片、三刚片规则组成,或具有基本部分与附属部分等)来确定计算反力的顺序和方法?答:(1)与地基按两刚片,例如简支梁,支座反力只有三个,对某一端点取矩直接解除约束反力。

(2)与地基按三刚片规则组成,例如三铰刚架,支座反力有四个,考虑结构整体的三个平衡方程外,还需再取刚架的左半部(或右半部,一般取外荷载较少部分)为隔离体建立一个平衡方程方可求出全部反力。

(3)具有基本部分与附属部分时,按先附属后基本的计算顺序,求解支座反力。

5.当不求或少求反力而迅速作出弯矩图时,有哪些规律可以利用?答:当不求或少求反力而迅速作出弯矩图时,如下规律可以利用(1)结构上若有悬臂部分及简支梁部分(含两端铰接直杆承受横向荷载)弯矩图可先行绘制出;(2)直杆的无荷区段弯矩图为直线和铰处弯矩为零;(3)刚结点的力矩平衡条件;(4)外力与杆轴重合时不产生弯矩;(5)外力与杆轴平行及外力偶产生的弯矩为常数;(6)对称性的合理利用;(7)区段叠加法作弯矩图。

结构力学 静定梁与静定刚架习题

结构力学 静定梁与静定刚架习题

M BC 2kNm
3、取AB为研究对象
MBA
或 取B节点为研究对象
2 kNm 2 kNm MBA
MBA=0
-4 kN
练习题
2
M
2
B
A 2m 1m
D
2m L P L L L L L
P
练习题
L
P L
P
L
P L
练习题
C
1kN/m
VC A VA 4m D
3、取AD为研究对象 B 4m
4m
VA
MDA VDA
3 kNm
3、取BCD为研究对象
2 kN
B
A 2m
C
D
1m
1m
MBC
1m
MBC= -1 kNm,上侧 1
MBA
1、取整体为研究对象
VC=4 kN
HA=2 kN 2、取AB为研究对象 MBA= - 2 kNm ,右侧受拉
B
2 A
C
D
练习题 2kN/m
C
8kN
20kNm 2m
3、BC为悬臂部分 MBC= 4 kNm,左侧
20 kN/m
4m
VB
MCB
MCD=90
MCF=135
VF
3.基本部分的计算,为悬臂杆。
VB=135
ME=135×3=405 kNm,左侧受拉
4. 作出弯矩图。
90 90
405
135
45
[习题3] 作弯矩图,剪力图,轴力图。
1.取整体为研究对象, ∑MA=0 ,VC×94×5-2×5×2.5=0 , 解得VC= 5 kN , ∑Y=0,VA=5 kN ∑X=0,HA=8 kN 8 kN 4 kN 2 kN/m HA VA VC

结构力学4静定结构的位移计算习题解答

结构力学4静定结构的位移计算习题解答

第4章 静定结构的位移计算习题解答习题 是非判定题(1) 变形体虚功原理仅适用于弹性体系,不适用于非弹性体系。

( ) (2) 虚功原理中的力状态和位移状态都是虚设的。

( )(3) 功的互等定理仅适用于线弹性体系,不适用于非线弹性体系。

( ) (4) 反力互等定理仅适用于超静定结构,不适用于静定结构。

( ) (5) 关于静定结构,有变形就必然有内力。

( ) (6) 关于静定结构,有位移就必然有变形。

( )(7) 习题(7)图所示体系中各杆EA 相同,那么两图中C 点的水平位移相等。

( ) (8) M P 图,M 图如习题(8)图所示,EI =常数。

以下图乘结果是正确的:4)832(12ll ql EI ⨯⨯⨯ ( )(9) M P 图、M 图如习题(9)图所示,以下图乘结果是正确的:033202201111)(1y A EI y A y A EI ++ ( )(10) 习题(10)图所示结构的两个平稳状态中,有一个为温度转变,现在功的互等定理不成立。

( )(a)(b)习题 (7)图图(b)M图(a)M P 81qM 图(b)P M 图(a)习题 (8)图 习题 (9)图(a)P习题 (10)图【解】(1)错误。

变形体虚功原理适用于弹性和非弹性的所有体系。

(2)错误。

只有一个状态是虚设的。

(3)正确。

(4)错误。

反力互等定理适用于线弹性的静定和超静定结构。

(5)错误。

譬如静定结构在温度转变作用下,有变形但没有内力。

(6)错误。

譬如静定结构在支座移动作用下,有位移但没有变形。

(7)正确。

由桁架的位移计算公式可知。

(8)错误。

由于取0y 的M 图为折线图,应分段图乘。

(9)正确。

(10)正确。

习题 填空题(1) 习题(1)图所示刚架,由于支座B 下沉∆所引发D 点的水平位移∆D H =______。

(2) 虚功原理有两种不同的应用形式,即_______原理和_______原理。

其中,用于求位移的是_______原理。

(完整版)西北工业大学航空学院结构力学课后题答案第三章静定结构的内力与变形

(完整版)西北工业大学航空学院结构力学课后题答案第三章静定结构的内力与变形

第三章 静定结构的内力与变形3-1 判断如图所各桁架的零力杆并计算各杆内力。

1P(a) (a)解:(1)0272210=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。

(2)零力杆:杆2-3,杆2-4,杆4-5,杆5-6。

对于结点1:N 1-2PN 1-33001P N =⨯-2121 P N 221=-0233121=+⨯--N N P N 331-=-对于结点3:N 3-43N 3-1P N N 31343-==--对于结点4:N 4-64N 4-3P N N 33464-==--对于结点2:N 2-52N 2-1PN N 21252==--对于结点5:N 5-75N 5-2P N N 22575==--(b)(b)解:(1)082313=⨯-+=f故该桁架为无多余约束的几何不变结构。

(2)零力杆:杆1-2,杆2-3,杆2-4,杆5-4,杆6-4,杆6-7,杆6-8,杆1-5。

对于结点5:P5N 5-8P N -=-85对于结点8:N 7-88N 5-8Fθ05528785=+⨯--N N P N 55287=-对于结点7:N 7-47N 7-8P N 55247=-对于结点4:N 3-44N 7-4P N N 5524743==--对于结点3:N 1-33N 3-4P N N 5524331==--2(c)(c)解:(1)026228=⨯-⨯+=f故该桁架为无多余约束的几何不变结构。

(2)零力杆:杆1-2,杆2-3,杆2-4,杆4-3,杆4-6。

对于结点1:N 1-61N 1-3Pθ05561=+⨯-P N P N 561-=-05526131=⨯+--N N P N 231=-对于结点3:3N 3-1N 3-5P N N 21353==--(e)(d)解:(1)02112316=⨯-⨯+=f故该结构为无多余约束的几何不变结构。

(2)零力杆:杆4-5,杆5-6,杆4-6,杆7-6,杆2-3,杆2-8,杆2-9,杆1-2,杆9-11,杆8-9,杆9-11.对于结点4:4N 4-7N 3-4450PP N 2243=- P N 2274=-对于结点7:7N 4-7N 3-7N 8-7P N N 22227374=⨯-=-- P N -=-73P N 2278=-对于结点3:3N 3-4N 3-7N 8-7022734332=⨯+=---N N N P N 2283=-对于结点8:022228982=⨯⎪⎭⎫ ⎝⎛+=--N P N运用截面法:N 1-2N 9-10N 9-11PP23456789由对9点的力矩平衡:0222221=⨯⨯-⨯+⨯-P a P a a N 021=-N对于结点9:9N 2-9N 9-11N 9-10N 9-88911910922---=⨯+N N N P N 22109-=-8N 3-8(e)(e)解:(1)024125=⨯-++=f故该结构为无多余约束的几何不变结构。

结构力学_习题集(含答案)

结构力学_习题集(含答案)

《结构力学》课程习题集一、单选题1.弯矩图肯定发生突变的截面是()。

A.有集中力作用的截面;B.剪力为零的截面;C.荷载为零的截面;D.有集中力偶作用的截面。

2.图示梁中C截面的弯矩是()。

4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。

3.静定结构有变温时,()。

A.无变形,无位移,无内力;B.有变形,有位移,有内力;C.有变形,有位移,无内力;D.无变形,有位移,无内力。

4.图示桁架a杆的内力是()。

A.2P;B.-2P;C.3P;D.-3P。

5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为()。

A.四根;B.二根;C.一根;D.零根。

l= a66.图示梁A点的竖向位移为(向下为正)()。

A.)24/(3EIPl; B.)16/(3EIPl; C.)96/(53EIPl; D.)48/(53EIPl。

PEI EI A l/l/2227. 静定结构的内力计算与( )。

A.EI 无关;B.EI 相对值有关;C.EI 绝对值有关;D.E 无关,I 有关。

8. 图示桁架,零杆的数目为:( )。

A.5;B.10;C.15;D.20。

9. 图示结构的零杆数目为( )。

A.5;B.6;C.7;D.8。

10. 图示两结构及其受力状态,它们的内力符合( )。

A.弯矩相同,剪力不同;B.弯矩相同,轴力不同;C.弯矩不同,剪力相同;D.弯矩不同,轴力不同。

PP2EI EI EIEI 2EI EIllhl l11. 刚结点在结构发生变形时的主要特征是( )。

A.各杆可以绕结点结心自由转动;B.不变形;C.各杆之间的夹角可任意改变;D.各杆之间的夹角保持不变。

12. 若荷载作用在静定多跨梁的基本部分上,附属部分上无荷载作用,则( )。

A.基本部分和附属部分均有内力;B.基本部分有内力,附属部分没有内力;C.基本部分无内力,附属部分有内力;D.不经过计算,无法判断。

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构的受力分析)【圣才出品】

龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构的受力分析)【圣才出品】

第3章静定结构的受力分析3.1 复习笔记本章详细论述了各类静定结构的受力分析过程与步骤,包括静定平面桁架、静定多跨梁、静定平面刚架、组合结构和三铰拱,介绍了隔离体的最佳截取方法,以及静定结构内力计算的虚位移法。

重视静定结构的基本功训练,有助于培养驾驭基本原理解决复杂问题的能力,为超静定结构的分析与求解打下坚实基础。

一、静定平面桁架桁架由杆件铰接而成,其杆件只承受轴力,杆件截面上应力分布均匀,主要承受轴向拉力和压力,因而能够充分发挥材料的作用,经常使用于大跨度结构中。

1.桁架的类别与组成规律(见表3-1-1)表3-1-1 桁架的类别与组成规律2.桁架杆件内力的求解方法(见表3-1-2)表3-1-2 桁架杆件内力的求解方法二、梁的内力计算的回顾1.截面内力分量符号规定如图3-1-1(图中所示方向为正方向)所示:(1)轴力以拉力为正;(2)剪力以绕微段隔离体顺时针转向为正;(3)在水平杆件中,当弯矩使杆件下部受拉(上部受压)时,弯矩为正。

图3-1-12.截面法(见表3-1-3)表3-1-3 截面法3.荷载与内力之间的微分关系(1)在连续分布的直杆段内,取微段dx为隔离体,如图3-1-2所示。

图3-1-2(2)由平衡条件导出微分关系为(Ⅰ)4.荷载与内力之间的增量关系(1)在集中荷载处,取微段为隔离体,如图3-1-3所示。

图3-1-3(2)由平衡条件导得增量关系为5.荷载与内力之间的积分关系如图3-1-4所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-4。

图3-1-4表3-1-4 内力的积分公式及几何意义6.分段叠加法作弯矩图(1)分段叠加法步骤①求支反力:根据整体受力平衡求出支座反力;②选取控制截面:集中力作用点、集中力偶作用点的左右两侧、分布荷载的起点和终点都应作为控制截面;③求弯矩值:通过隔离体平衡方程求出控制截面的弯矩值;④分段画弯矩图:控制截面间无荷载作用时,用直线连接即可;控制截面间有分布荷载作用时,在直线连接图上还需叠加这一段分布荷载按简支梁计算的弯矩图。

结构力学(2.1.2)--静定结构内力分析习题及参考答案

结构力学(2.1.2)--静定结构内力分析习题及参考答案
2
Fp
Fp
4×d
(d)
3-7 试求图示抛物线( y 4 fx(l x) / l 2 ) 三铰拱距左支座 5m 的截面内力。
4m 4m 3d
4m
5 kNF P 1
d
10 kN 1 F3(Pf×)d F2P
2
NN N
习题 3-6 图
2
d
N
15 kN
1
d2/02kN/md d/2
40 kN·m
y
A
B 20 kN
8×1 m
习题 3-5 图
杆件的内力。
80 kN
1 N
2 N
4m 2m
4m
2m
(a)
2m 2m 2×d
20 kN
3.6 试 用 较 简单的 方法求 图示桁 架指定
4
3
1
N 2
NN
Fp
Fp
Fp Fp 8×d
Fp
Fp N
Fp N
(b)
3×2 m d
60 kN
1
N
2
N
4×2 m (c)
Fp 1
2m
6m
6m
2m
(b)
习题 3-16 图
l
3m
4m 4m
3-17 试作图示组合结构的弯矩图和轴力图。
20 kN/m
B
C
A 4m 4m 4m 4m
(a)
习题 3-17 图
20 kNA 20 kN/m
BCD源自4m4m4m(b)
3-1 略
参考答案
3-2 (a) FNAB 25kN (b) FNAB 2.5FP
A
3m
(a) C

结构力学(静定结构内力)练习题

结构力学(静定结构内力)练习题

二、静定结构的内力1、静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。

( )2、静定结构受外界因素影响均产生内力。

大小与杆件截面尺寸无关。

( )3、静定结构的几何特征是:A. 无多余的约束;B.几何不变体系;C. 运动自由度等于零;D.几何不变且无多余约束。

( )4、静定结构在支座移动时,会产生:A. 内力;B. 应力;C. 刚体位移;D. 变形。

( )5、叠加原理用于求解静定结构时,需要满足的条件是:A. 位移微小且材料是线弹性的;B.位移是微小的;C. 应变是微小的;D.材料是理想弹性的。

( )6、在相同的荷载和跨度下,静定多跨梁的弯距比一串简支梁的弯距要大。

( )7、荷载作用在静定多跨梁的附属部分时,基本部分一般内力不为零。

()8、图示为一杆段的M、Q图,若Q图是正确的,则M图一定是错误的。

( )M图Q图9、图示结构的支座反力是正确的。

( )10、当三铰拱的轴线为合理拱轴时,则顶铰位置可随意在拱轴上移动而不影响拱的内力。

( )11、简支支承的三角形静定桁架,靠近支座处的弦杆的内力最小。

( )12、图示桁架有9根零杆。

( )13、图示对称桁架中杆1至8的轴力等于零。

( )14、图示桁架中,上弦杆的轴力为N = - P 。

( )15、图示结构中,支座反力为已知值,则由结点D 的平衡条件即可求得。

( )N CD ABCDE16、图示梁中,BC 段的剪力Q 等于 ,DE 段的弯矩等于 。

17、在图示刚架中, = M DA , 使 侧受拉。

a18、图示桁架中,当仅增大桁架高度,其它条件均不变时,对杆1和杆2的内力影响是:A .N 1,均减小;B .N 2N 1,均不变;N 2C .N 1减小,不变; D.N 2N 1增大,不变。

( )N 219、图示结构中,杆AB 上C 截面的弯距绝对值为A .Pl /2;B .Pl /3;C .Pl /4;D .Pl /5。

( )D/2/2/2l20、作图示结构M 图。

西北工业大学结构力学课后题答案第三章__静定结构的内力与变形

西北工业大学结构力学课后题答案第三章__静定结构的内力与变形

Q
对于结点 2:
2
N2-4
N 2 −4 = Q
F4
N 2-4
4
对于结点 4:
N 1-4
2
杆件 内力
2
N 1− 4 = − N 2 − 4 = − Q
1-2 0 1-4
N1−4 = − 2Q
2-3 0 2-4 3-4 0
− 2Q
Q
3-2 平面桁架的形状、尺寸和受载情况如图所示,求桁架中 3 个指定元件的内力。
N 1− 2 = 0
N 9-10
N 9-8
9
对于结点 9:
N 9-11
N 9 −10 + 2
杆件 内力 杆件 内力 杆件 内力 7-8 1-2 0 3-8
2
× N 9 −11 = N 9 −8
2-3 0 4-5 0
N 9 −10 = − 2
2-8 0
2
P
3-4 3-7
2-9
2
5-6
2
P
−P
6-7 0
2P
− 5P
P
2P
1 a
2
3
4
5
10 a
9
8
7
6
P
11 a a a a
(e) (d)解: ( 1) f = 16 + 3 × 2 − 11 × 2 = 0 故该结构为无多余约束的几何不变结构。 ( 2)零力杆:杆 4-5,杆 5-6,杆 4-6,杆 7-6,杆 2-3,杆 2-8,杆 2-9,杆 1-2,杆 9-11, 杆 8-9,杆 9-11.
拉力图:
8P/√3
+ +
-
P/3
17P/3
+

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

第2章 静定结构受力分析 结构力学

第2章   静定结构受力分析  结构力学

2-1 桁架受力分析
例题2-4 试求图2-7(a)所示桁架各杆件的轴力。 解:应用上述有关零杆的判断结论,依此类推(图2-7(c) 、(d)、(e)、(f))得到图2-7(f)所示体系。取C结 点为隔离体,很容易求出CB杆和CA杆的轴力
2-1 桁架受力分析
2-1-3 截面法
所谓截面法,就是截取桁架的一部分为隔离体,求解杆件
2-2 静定梁受力分析
(3)绘制内力图 在结构力学中,通常先求出指定截面
取D点为隔离体,如图2-10(c)所示。求1杆轴力
2-1 桁架受力分析
2)用Ⅱ-Ⅱ截面从第三节间将桁架截开,取左边部分隔离 体如图 2-10 ( d )所示。注意,结点 E 同样为“ K ”结点, 即FN3=-FN4,二者对F点的力矩等值反向。求2杆轴力
求5杆轴力 求3杆和4杆轴力
考虑 得
2-1 桁架受力分析
2-1 桁架受力分析
解法二 (1)求支座反力,同解法一。
(2)截取各结点做为隔离体,求解杆件内力。
结点A:隔离体如图2-3(j)所示,求AF杆的竖向分力.
2-1 桁架受力分析
然后,由比例关系求其水平分力和合力
求AC杆的轴力
结点C:隔离体如图2-3(k)所示,求CD杆和FC杆的轴力
2-1 桁架受力分析
2-1-5 各类平面梁式桁架的比较
通过对桁架的内力分析可知,弦杆的外形对桁架的内力分
布影响很大。下面就常用的四种梁式桁架(平行弦桁架、
三角形桁架、抛物线形桁架、折线形桁架)的内力分布情 况加以说明。
FP/2
FP
FP
FP
FP
FP
FP/2
(a)简支梁 -4.0 -2.5 -3.0 -4.5 d 3.54 -2.5 2.12 -1.5 0.71 -1.0 2.5 4.0 (b)平行弦桁架

结构力学2-静定结构内力分析知识重点及习题解析

结构力学2-静定结构内力分析知识重点及习题解析
(1)为求解静定结构位移作准备。求解静定结构位移时,首先要求出外荷载和单 位荷载作用下的内力,然后用虚功原理(单位荷载法)进行求解。
(2)为求解超静定结构作准备。无论是位移法还是力法都要用到力的平衡条件。 (3)为求解移动荷载乃至动力荷载作用下结构的内力与位移作准备。例如影响线 和结构动力分析。 根据结构的形式及受力特点,静定结构内力分析可以分为: (1)梁与刚架的内力分析。梁与刚架由受弯杆件组成,杆件内力一般包含轴力、 剪力和弯矩,内力分析的结果是画出各杆的 N 图、Q 图及 M 图。通常做法是“逐杆绘制, 分段叠加”,并要求能做到快速准确地画出内力图。 (2)桁架结构的内力分析。桁架由只受轴力的杆件组成,因此内力分析的结果是 给出各杆件轴力。基本分析方法是结点法、截面法以及二者的联合应用。根据特殊结点 准确而快速地判断零杆,并要善于识别结点单杆和截面单杆。 (3)三铰拱的内力分析。拱是在竖向荷载作用下具有水平支座反力的结构,主要 受压,一般同时具有轴力、剪力和弯矩。对于三铰平拱可以由相应的简支梁进行快速分 析,且弯矩为 M=M0-FHy。 (4)组合结构的内力分析。组合结构由链杆和梁式杆件组成,链杆部分只受轴力, 而梁式杆除受轴力外,还受弯矩和剪力作用。因此求解的首要问题是识别链杆和梁式杆, 正确选取隔离体进行分析,为简化分析,一般尽最避免截断梁式杆。 虽然静定结构的结构形式干在万别,但其内力分析万变不离其宗,基本过程是“选 隔离体→列平衡方程→解方程求未知力”,熟练应用这一基本过程是解决复杂问题关键。 因此过程的关键一步在于选隔离体,也就是“如何拆”原结构的问题,这是问题的切入点。 值得注意的是拆原结构要以相应的内力或支座反力代替,因此要充分掌握上述各类结构
《结构力学》 静定结构内力分析知识重点及习题解析
一、知识重点 在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定,这样的结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档