电磁场课后答案3
《电磁场与电磁波》(第四版)课后习题解答(全)
第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波课后习题答案第3章(杨儒贵编着)
第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。
解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。
同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。
所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。
3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。
证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。
那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。
电磁场与电磁波 课后答案(冯恩信 著)
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
3工程电磁场 课后答案(王泽忠 全玉生 卢斌先 著) 清华大学出版社
工程电磁场答案第1章梯度:x y z u u u gradu e e e u x y z∂∂∂=++=∇∂∂∂; 散度:y x z A A A divA A x y z∂∂∂=++=∇⋅∂∂∂ ; 旋度:xy zxy ze e e rotA A x y z A A A ∂∂∂==∂∂∂ ∇⨯ 1-1(1)解:,T xy = ∴等温线方程为T x ,y c ==解得cy x=为双曲线族 (2)解:21T 2x y=+ , ∴等温线方程为221T c x y ==+,解得221x y c +=为半径的圆族 1-2(1)解:1u ax by cz=++ ,∴等值面方程为1u c ax by cz==++,解得, 110ax by cz c ++-=所以它为平行平面族(2)解:u z =-,∴等值面方程为u z c ==,解得()222x y z c +=-,顶点在(的圆锥面族)0,0,c (3)解: ()222ln u x y z=++,∴等值面方程为,()222ln u x y z =++c =解得222cx y z e ++=, 所以它为球心在原点的球面族1-3解:由题意可得,,x y z 2A x A y A z ===,又x y zdx dy dz A A A ==,即2dx dy dzx y z ==, ,2dx dy dx dzx y x z∴==, 212,y c x z c x ==, 过()1.0,2.0,3.0M 122,3c c ∴==,即22,3y x z x ==(联立)1-4解:由题意可知22,,x y z 2A y x A x y A y z ===,,x y zdx dy dz A A A ==即222dx dy dz y x x y y z ==,,dx dy dx dzy x x z∴==, 可得2212,x y c z c -==x (联立) 1-5 解:|621M ux z x ∂=+=∂2, 0|2M uz y ∂=-=-∂6,|222M uz y x z ∂=-+=∂4,余弦cos αβγ===,所以方向导数为0|1264M u l ∂=-=∂ 1-6 解:000|5,|4,|M M M u u uy z x z x y x y z∂∂∂=+==+==+=∂∂∂3, 过点(), 1.0,2.0,3.0余弦cos α==,cos β==cos γ==543+=1-7 解:0|22,24,2M u u u y x z x y z∂∂∂==-===-=-∂∂∂2), 设点到点的方向余弦为()2.0, 1.0.1.0-(3.0,1.0. 1.0-1cos 3α==,22cos ,cos 33βγ==-, 所以方向导数为()12222333⎛⎫⨯-++-⨯-= ⎪⎝⎭103, 由题意可知。
电磁场与电磁波课后习题及答案三章习题解答
三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a ar r r a r a ππ--=++⎰ 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D ee 题3.1 图题3. 3图()a故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
电磁学答案第3章
电磁学答案第3章第三章 静电场的电介质3.2.1 偶极矩为p →=q l →的电偶极子,处于场强为E 的外电场中,p →与E →的夹角为θ。
(1) 若是均匀的,θ为什么值时,电偶极子达到平衡?(2)如果E 是不均匀的,电偶极子能否达到平衡? 解: (1)偶极子受的力:F + =F _=qE因而F →+=-F →_∴偶极子受合力为零。
偶极子受的力矩T =p ⨯E即 T=qEsin θ当 T=0时,偶极子达到平衡,∴ pEsin θ=0p →≠0 E →≠0 ∴θ=0 , πθ=0这种平衡是稳定平衡。
θ=π是不稳定平衡。
(2) 当E →不是均匀电场时,偶极子除受力矩外还将受一个 力(作用在两个点电荷的电场力的合力)。
所以不能达到平衡。
3.2.2 两电偶极子1p→和2p →在同一直线上,所以它们之间距r比它们自己的线度大的很多。
证明:它们的相互作用力的大小为F=402123rp p πε,力的方向是:1p→与2p→同方向时互相吸引,反方向时互相排斥。
证: 已知当r >>l 时,偶极子在其延长线上一点的场强:E →=302rpπε→当 1p →与2p →同方向时,如图2p →所受的力的大小:+→F =E →q=r lr q p ∧+3201)2(2πε-→F = -E→q=r lr q p ∧--3201)2(2πε∴F→= +→F +-→F =r l r l r q p ∧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+323201)2(1)2(12πε =r l r l l r q p ∧⎥⎦⎤⎢⎣⎡---⋅3222322201)2()2(2262πε略去 422l 及 832l 等高级小量。
F→=-r r qlp ∧402146πε= -r r pp ∧402123πε当 1p →与2p →反方向时(如图),同理: F→= r l r l r q p ∧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+323201)2(1)2(12πε =012πεq p ⨯r lr l l r ∧-+32223222)4()2(23略去高级小量得:F→=r rP P ∧402123πε3.2.3 一电偶极子处在外电场中,其电偶极矩为 ,其所在处的电场强度为 。
电磁场课后答案3.
c) S W/m2
3.2 无源空间 H = zyˆ 0 + yzˆ 0 , D 随时间变化吗?
答:
∇
×
H
=
J
+
∂D ∂t
=
0,Q
J
=
0,∴
∂D ∂t
=
0
,所以
D
随时间不变化。
3.3 假定(E1,B1,H1,和D1)、(E2,B2B ,H2和D2)分别为源(J1、ρv1)、(J2、ρv2)激发的满
= 102 4π
x0 sin103 t − y 0 cos103 t
案 3.8 在一半径为 a 的无限长圆柱体中有一交变磁通通过,其变化规律为ψ = ψ 0 sin ωt ,试求 答 圆柱体内外任意点的电场强度。
后 答:由法拉第电磁感应定律:
课 ∫ ∫ E ⋅ dl = ∂ B ⋅ dS ,在半径为 r 处满足: 2πrE = S ∂ψ ' ,其中ψ ' 表示被积分环路包围
cos mπx cos nπy
a
b
com S(t) =
E(t) × H(t)
=
yˆ 0 E ym sin
mπx cos nπy cosωt × zˆ0
a
b
− ωμ0
mπE ym a
cos mπx cos nπy sin ωt
a
b
aw. =
xˆ0
−
mπE
2 ym
4aωμ0
sin
2mπx a
cos 2
nπy b
sin
2ωt
.khd <
大学电磁场课后答案
(
)
2-9 已知在半径为 a 的球体区域内外,电场强度矢量表达式为 ⎧ Ar r2 (1 − 2 )e r r < a ⎪ ⎪ 3ε a E =⎨ 2 Ba ⎪ r>a e 2 r ⎪ ⎩ε 0r
其中 A, B 均为常数。求此区域的电荷分布。 答案
ρ = A(1 −
5r 2 ), r < a , 3a 2
但可把半径为a的小圆柱面内看作同时具有体密度分别为的两种电荷分布这样在半径为b的整个圆柱体内具有体密度的均匀电荷分布而在半径为a的整个圆柱体内则具有体密度的均匀电荷分布如例36图b所示
习题二 2-3 已知真空中静电场的电位 ϕ ( x) = 解:
U x V,求电场强度的分布及电荷体密度 ρ 。 ε0 d ∂ϕ 2x U E = −∇ϕ = − e x = −( + )e x V/m ∂x ε0 d ∂E 2 ρ = ∇ ⋅ D = −ε 0 ∇ ⋅ E = −ε 0 x = −ε 0 ( ) = −2 C/m2 ε0 ∂x + x2
∫
∫
得到
(b 2 + ab − 2a 2 ) a(b − a) 6a 故两导体球壳间的电位分布为 b b σ a2 ρ a3 σ a 2 (b − r ) ρ 0 b 2 − r 2 a 3 (b − r ) ϕ (r ) = E (r ) d r = [ 2 + 0 (r − 2 )] d r = + − ] [ r r ε r 3ε 0 ε 0br br 3ε 0 2 r 0 说明 此题的要点在于导体的表面上有未知的感应电荷分布,用高斯定律求电场时,必须注意考虑 感应电荷产生的电场。 −
ρl =
∂E (a) 1 ln(b a) − 1 =− 2 =0 ∂a a ln 2 (b a)
大学电磁场课后答案第三章
ε1 ε 2 − ) σ1 σ 2 ε1 ε 2 ≠ σ1 σ 2
因此,分界面上存在自由电荷的条件是
3-8
在导体中有恒定电流而其周围媒质的电导率为零时,试证明导体表面电通量密度的法 向分量 Dn = σ , 但矢量关系 D = e n σ 不成 立( 式中 e n 是导体表面向 外的法 线单位矢 量)。
W = ∑ σϕi ∫
i =1 n
n
Si
n ∂ϕ ∂ϕ − dS dS = ∑ σϕi ∫ S i ∂n ∂n ' i =1 n n Jn ' dS = ∑ ϕi J ' dS ϕi I i = ∑ ∫ Si n ∂n i =1 i =1
= ∑ σϕi ∫
i =1
Si
故命题得证。 3-10 有一非均匀导电媒质板,厚度为 d ,其两侧面为良导体电极,下板表面与坐标 z = 0 重 ρ − ρ R2 1 合, 介质的电阻率为 ρ R = = ρ R1 + R1 z, 介电常数为 ε 0 , 而其中有 J = e z J 0 的 γ d 均匀电流。试求:1) 介质中的自由电荷密度。2) 两极板间的电位差。3) 面积为 A 的 一块介质板中的功率损耗。
u v
R铁=
单位长度的水柱电阻为
ρ铁 S铁
=
8.7 × 10 −8 π (0.025 2 − 0.02 2 ) ρ水 S水
R水=
=
0.01 π 0.02 2
当水管中的电流为 20A 时,水柱和铁管中的电流之比为
I水 I铁
又根据题意
=
R铁 R水
=1.5 × 10 −5
(1)
I 水+I 铁=20 A
所以将(1)、(2)联立求解,可得管壁和水中的电流强度
电磁场与电磁兼容习题答案与详解_第3章
电磁场与电磁兼容习题答案与详解第三章3.2 已知自由空间传播的均匀平面电磁波,电场强度为: 22042041010πππj z j zj e e +----+=y x a a E )/(m V试求:①该电磁波向何方向传播;②该电磁波的频率f ;③该电磁波的极化方式;④该电磁波的磁场强度H ;⑤与该波传播方向垂直的单位面积流过的的平均功率。
解: ①z k a a=即是+z 方向②π20=k rad/m m k 1.02==∴πλ 9103v ⨯==∴λf Hz③zj y x e a j a E π2044)1010(---+=()z 20t cos 10E 4x πϖ-=- ⎪⎭⎫⎝⎛+-=-2z 20t cos 10E 4y ππϖ1E E 2y 2x =+∴ ()z 20-t tg E E xyπϖ-=由上可知,该波为左旋圆极化波。
④zj x y z j y x z z e a j a e a j a a E a H ππππη2052040)(1210)(120101-----=+⨯=⨯= A/m ⑤[]ππ1210)()(121010Re 21Re 21954---*=⎥⎦⎤⎢⎣⎡+⨯+⨯=⨯=z x y y x a a j a a j a H E S 平均 W/m23.5 已知真空中传播的平面电磁波的电场强度为: )]23(30.05-t 10)cos[635(),(7z y x t +-⨯+=ππy x a a r E V/m 试求:①电场强度的振幅、波矢量及波长;②磁场强度矢量),(t r H ;③平均坡印亭矢量平均S 。
解:①m v E m /10315=+=m rad a a a k z y x /)233(05.0 +-=πππ2.043905.0=++=km k102==πλ ②)233(41z y x k a a a k k a +-== ⋅+⨯+-=⨯=)3(5)233(4801),(1),(0y x z y x k a a a a a t r E a t H πηγ [])233(05.0106cos 7z y x t +--⨯ππ =[])233(05.0106cos )323(4817z y x t a a a z y x +--⨯++-πππ③m V e a a E z y x j y x /)3(5)233(05.0+--+=π m A e a a a H z y x j z y x /)323(481)233(05.0+--++-=ππ[]ππηπ48524010021/)233(485Re 21202*===+-=⨯=E m W a a a H E S z y x 平均3.6 在1=r μ,4=r ε,0=σ的媒质中有一均匀平面波,其电场强度为: )3sin(),z (0πω+-=kz t t E E 。
电磁场与电磁波第三版-郭辉萍-第三章习题答案
电磁场与电磁波第三版-郭辉萍-第三章习题答案第一题问题一个磁感应强度为B的均匀磁场,在其中有一个长为l、电阻为R的长直导线。
导线与磁感应强度方向成夹角θ。
若导线被引出的两个端头A、B相距d,则导线两个端头的电势差是多大?解答根据电磁感应定律,导线两个端头的电势差可以通过导线所受的磁场力与电阻的乘积来计算。
设电流的方向与磁场方向成夹角α,则磁场力的大小为F = BIL sinα,其中I为电流的大小。
电流可以通过欧姆定律来计算,即I = U / R,其中U为电阻两端的电势差。
将电流的表达式代入磁场力的表达式中,得到F = B(U / R)l sinα。
根据电势差的定义,有U = Fd = B(U / R)l sinα * d. 移项整理得到U(1 - Bld sinα / R) = 0,解得U = 0 或者 1 - Bld sinα / R = 0。
如果U = 0,则代表导线两个端头的电势差为0,即没有电势差。
这种情况下,导线两个端头之间的电势相等。
如果1 - Bld sinα / R = 0,则导线两个端头的电势差为U = Bld sinα / R。
综上所述,导线两个端头的电势差为U = Bld sinα / R。
第二题问题一个半径为R的导线圈,通过其中的电流为I,产生的磁感应强度为B。
若导线圈的匝数为N,导线圈中心处的磁感应强度是多少?解答根据长直导线的磁场公式,通过导线圈中心点的磁感应强度的大小可以通过长直导线的磁场公式来计算。
长直导线的磁场公式为B = μ0I / (2πd),其中B为磁感应强度,μ0为真空中的磁导率,I为电流的大小,d为测量点到导线的距离。
对于导线圈来说,可以将导线分成无数个长直导线,然后将它们对应的磁场强度相加。
考虑到导线圈的几何形状,可以得到导线圈中心处的磁感应强度的大小为Bm = N * B,其中Bm为导线圈中心处的磁感应强度,N为导线圈的匝数,B为单根导线产生的磁感应强度。
电磁场与电磁波第三版答案第三章
《电磁场与电磁波》——习题详解第三章 恒定电流的电场和磁场3-1 一个半径为 a 的球内均匀分布着总量为 q 的电荷,若其以角速度 ω 绕一直径匀 速旋转,求球内的电流密度. 解:传导电流:导体中的自由电子或半导体中的自由电荷在电场作用下作定向 运动所形成的电流. 运流电流: 带电粒子在真空或气体中运动时形成的电流. 本题求的是运流电流. 选 取 球 坐 标系 . 设 转 轴和 直 角 坐 标系 的 z 轴 重 合 , 球 内 某 一点 的 坐标为 ( r , θ , φ ),则电流密度为v v J =ρv =q v 3qω r sin θ v eφ ω r sin θ eφ = 2 4π a 3 4π a 3注意到球面坐标的有向面积元为v v v v d S = er r 2 sin θ d θ d φ + eθ r sin θ d r d φ + eφ r d r d θ可以得到总电流为I=∫∫Sv v J dS =∫ ∫0πJr d r d θ =0aqω 2π2π总电流也可以通过电流强度的定义计算. 因为球体转动一周的时间为 T = 所以ω,I=3-2球形电容器内,外极板的半径分别为 a , b ,其间媒质的电导率为 σ ,当外加 电压为 U 0 时,计算功率损耗并求电阻. 解:设内,外极板之间的总电流为 I .由对称性,可以得到极板间的电流密q qω = T 2π度为v J= v E=I24π r I v e 2 r 4πσ rv er ,U0 = E d r =a∫bI 1 1 4πσ a b 25习题三从而I=v 4πσU 0 σU 0 v ,J = er 1 1 1 1 2 r a b a b2单位体积内功率损耗为 U0 J 1 1 p= =σ r 2 σ a b 2总功率损耗为P=∫b ap 4π r d r =24πσ U 02 1 1 a b2∫d r 4πσ U 02 = 2 1 1 a r a bb由P =U 02 ,得 R R= 1 1 1 4πσ a b 3-3土壤的电导率为 σ . 略去地面的影 一个半径为 a 的导体球作为电极深埋地下, 响,求电极的接地电阻. 解: 当不考虑地面影响时, 这个问题就相当于计算位于无限大均匀导电媒质中的导体球的恒定电流问题.设导体球的电流为 I ,则任意点的电流密度为v J=I 4π rI2v v er , E =I 4πσ rI2v er导体球面的电位为(选取无穷远处为电位零点)U =接地电阻为∫∞a4πσ r2dr =4πσ aR=3-4U 1 = I 4πσ a在无界非均匀导电媒质(电导率和介电常数均是坐标的函数)中,若恒定电流存 在,证明媒质中的自由电荷密度为 ρ = E (ε 证明:由方程 J = 0 得vε σ ) . σv26《电磁场与电磁波》——习题详解v v v v J = (σ E ) = E σ + σ E = 0即E = 故有vσ v Eσρ = D = (ε E ) = E ε + ε Ev ε σ v v = E ε ε E = E ε σ σ σ vvvv3-5如图 3-1,平板电容器间由两种媒质完全填充,厚度分别为 d1 和 d 2 ,介电常数 分别为 ε 1 和 ε 2 ,电导率分别为 σ 1 和 σ 2 ,当外加电压 U 0 时,求分界面上的自 由电荷面密度. 解:设电容器极板之间的电流密度为 J ,则J = σ 1 E1 = σ 2 E2E1 =于是Jσ1, E2 =Jσ2U0d1 d2ε1,σ1 ε2,σ2U0 =即Jd1σ1+Jd 2σ2图 3-1J=U0σ1 σ 2分界面上的自由面电荷密度为d1+d2ρ S = D2 n D1n = ε 2 E2 ε 1 E1 = ε ε U0 = 2 1 σ σ d1 d 2 1 2 +3-6 ε2σ2ε1 J σ1 σ1 σ 2内,外导体半径分别为 a , c 的同轴线,其间填充两种漏电媒质,电导率分别27习题三为 σ 1 ( a < r < b )和 σ 2 ( b < r < c ),求单位长度的漏电电阻. 解:设每单位长度从内导体向外导体的电流为 I ,则电流密度为v J=各区域的电场为I2π rv erv E1 = v E2 =内,外导体间的电压为I2πσ 1rv er ( a < r < b ) v er ( b < r < c )I2πσ 2 rU0 =∫c av v E dr =∫I dr + 2πσ 1 r ab∫ 2πσ r = 2πσb 2cI drIln1b I c + ln a 2πσ 2 b因而,单位长度的漏电电阻为R=3-71 1 U b c = ln + ln I 2πσ 1 a 2πσ 2 b一个半径为 10cm 的半球形接地电极,电极平面与地面重合,如图 3-2,若土 壤的电导率为 0.01S/m,求当电极通过的电流为 100A 时,土壤损耗的功率. 解:半球形接地器的电导为G = 2πσ a接地电阻为I σ a图 3-21 1 R= = G 2πσ a土壤损耗的功率为100 2 = ≈ 1.59 ×106 W P=I R= 2πσ a 2π × 0.01× 0.12I23-8一个正 n 边形(边长为 a )线圈中通过的电流为 I ,试证此线圈中心的磁感应强 度为B= 0 nI π tan 2π a n解:先计算有限长度的直导线在线圈中心产生的磁场.使用公式B=0 I (sin α1 sin α 2 ) 4π r28《电磁场与电磁波》——习题详解并注意到α1 = α 2 =2π π = 2n n设正多边形的外接圆半径是 a .由于r π = cos a n所以,中心点的磁感应强度为B=3-9 0 nI π tan 2π a n求载流为 I ,半径为 a 的圆形导线中心的磁感应强度. 解:电流元 I d l 在中心处产生的磁场为vv v v 0 I d l × er dB = 4π r2各电流元在中心处产生的磁场在同一方向,并注意 的磁场为 3-100 I2a∫rdl2=2π ,所以,圆心处 a.一个载流 I1 的长直导线和一个载流 I 2 的圆环(半径为 a )在同一平面内,圆心 与导线的距离是 d .证明两电流之间的相互作用力为 0 I1 I 2 1 d a d22BdF解:选取图 3-3 所示的坐标.直线电流产生的 I1 磁感应强度为I2 d图 3-3v I v 0 I1 v B1 = 0 1 eφ = eφ 2π r 2π (d + a cos θ )v v v F = I 2 d l 2 × B1θ a∫由对称性可以知道,圆电流环受到的总作用力仅仅有水平分量, d l2 × eφ 的 水平分量为 a cos θ d θ ,再考虑到圆环上,下对称,得vvF=使用公式 0 I1 I 2 2π∫π20 0 I1 I 2 a cos θ dθ = π d + a cos θ∫π0d 1 d θ d + a cos θ 29习题三∫π0dθ = d + a cos θπd a22最后得出二回路之间的作用力为 0 I1 I 2 力). 3-11 d 1 (负号表示吸引 2 2 d a 内,外半径分别为 a , b 的无限长空心圆柱中均匀分布着轴向电流 I ,求柱 内,外的磁感应强度. 解:法一:取积分回路为半径为 r ,圆心在轴上的圆,由安培定律 r≤a 时∫lv v v v H dl = 0 H = 0 B = 0a<r≤b 时 v v H dl =∫lI π (r 2 a 2 ) π (b a 2 )2(r 2 a 2 ) I H 2π r = 2 b a2 H = (r 2 a 2 ) I 2π r (b 2 a 2 )v v (r 2 a 2 ) I 0 v er B = 0 H = 2π r (b 2 a 2 )r >b时∫lv v H dl = I v H= I v er2π r v v I v B = 0 H = 0 er 2π r法二:使用圆柱坐标系.电流密度沿轴线方向为30《电磁场与电磁波》——习题详解 r<a 0, I J = , a<r <b 2 2 π (b a ) 0, b<r 由电流的对称性,可以知道磁场只有圆周分量.用安培定律计算不同区域的磁 场.当 r < a 时,磁场为零.当 a < r < b 时,选取安培回路为半径等于 r 且与导电 圆柱的轴线同心的圆.该回路包围的电流为I ′ = Jπ (r 2 a 2 ) =由 B dl = 2π rB =I (r 2 a 2 ) b2 a2∫vv 0 I ′ ,得 0 I (r 2 a 2 ) B= 2π r (b 2 a 2 )当 r > b 时,回路内包围的总电流为 I ,于是 B = 3-120 I . 2π r两个半径都为 a 的圆柱体,轴间距为 d , d < 2a (如图 3-4).除两柱重叠部 分 ( R 区域) 外,柱间有大小相等,方向相反的电流,密度为 J ,求 R 区域 的B.v解:在重叠区域分别加上量值相等(密度为 J ),方向相反的电流分布,可以 将原问题电流分布化为一个圆柱体内均匀分布正向电流,另一个圆柱体内均匀分布 反向电流.由其产生的磁场可以通过叠加原理计算. 由沿正方向的电流(左边圆柱)在重叠y区域产生的磁感应强度为 B1 :∫B1 d l = 2π r1 B1 = 0π r12 JJ r1r2JB1 = 0 r1 J2o1 vdo2x其方向为左边圆周方向 eφ 1 .图 3-4由沿负方向的电流(右边圆柱)在重叠区域产生的磁感应强度为 B2 :B2 = 0 r2 J231习题三其方向为右边圆柱的圆周方向 eφ 2 . 注意:vv v v v v v eφ1 = ez × eρ1 , eφ 2 = ez × eρ 2 v v v Jv v v B = B1 + B2 = 0 ez × (r1eρ 1 r2 eρ 2 ) 2 Jv J v v = 0 ez × (d ex ) = 0 d e y 2 2 v v v v v 3-13 证明矢位 A1 = ex cos y + e y sin x 和 A2 = e y (sin x + x sin y ) 给出相同的磁场 v B ,并证明它们得自相同的电流分布.它们是否均满足矢量泊松方程?为什么? 证明:与给定矢位相应的磁场为v v ex ey v v B1 = × A1 = x y cos y sin x v ex v v B2 = × A2 = x 0v ez v = ez (cos x + sin y ) z 0 v ez v = ez (cos x + sin y ) z 0v ey y sin x + x sin y所以,两者的磁场相同.与其相应的电流分布为v v 1 1 v v J1 = × B1 = (ex cos y + e y sin x)00v 1 v v J2 = (ex cos y + e y sin x)0可以验证,矢位 A1 满足矢量泊松方程,即vv v v v v 2 A1 = 2 (e x cos y + e y sin x) = (e x cos y + e y sin x) = 0 J 1但是,矢位 A2 不满足矢量泊松方程,即v32《电磁场与电磁波》——习题详解v v v v 2 A2 = 2 [e y (sin x + x sin y )] = e y (sin x + x sin y ) ≠ 0 J 2这是由于 A2 的散度不为零.当矢位不满足库仑规范时,矢位与电流的关系为vv v v v × × A2 = 2 A2 + ( A2 ) = 0 J 2可以验证,对于矢位 A2 ,上式成立,即vv v v 2 A2 + ( A2 ) = e y (sin x + x sin y ) + ( x cos y )v v v = e y (sin x + x sin y ) + ex cos y e y x sin y v v = e y sin x + ex cos y v = 0 J 23-14 半径为 a 的长圆柱面上有密度为 J S 的面电流, 电流方向分别为沿圆周方向和 沿轴线方向,分别求两种情况下柱内,外的 B . 解:(1)当面电流沿圆周方向时,由问题的对称性可以知道,磁感应强度仅仅 是半径 r 的函数,而且只有轴向方向的分量,即vvv v B = ez Bz (r )由于电流仅仅分布在圆柱面上,所以,在柱内或柱外, × B = 0 .将 B = ez Bz (r ) 代入 × B = 0 ,得vvvvv v B × B = eφ z = 0 r即磁场是与 r 无关的常量.在离柱面无穷远处的观察 点,由于电流可以看成是一系列流向相反而强度相同的电流 元之和,所以磁场为零.由于 B 与 r 无关,所以在柱外的任 一点处,磁场恒为零 . 为了计算柱内的磁场, 选取安培回路为图 3-5 所示的矩 形回路vh图 3-533习题三∫lv v B d l = hB = h 0 J S因而柱内任一点处, B = e z 0 J S (2) 当面电流沿轴线方向时,由对称性可知,空间的磁场仅仅有圆周分量,且 只是半径的函数.在柱内,选取安培回路为圆心在轴线并且位于圆周方向的圆.可 以得出,柱内任一点的磁场为零.在柱外,选取圆形回路, B d l =lvv∫vv 0 I ,与该回路交链的电流为 2π aJ S , B d l = 2π rB ,所以l∫vvv v a B = eφ 0 J S r 3-15 一对无限长平行导线,相距 2a ,线上载有大小相等,方向相反的电流 I (如 v v 图 3-6),求磁矢位 A ,并求 B .解:将两根导线产生的磁矢位看作是单个导线产生的磁矢位的叠加,对单个 导线,先计算有限长度产生的磁矢位.设导线长度为 l ,导线 1 的磁矢位为(场点选 在 xoy 平面)A1 =0 I 4π∫ I l / 2 + [(l / 2) 2 + r12 ]l / 2 dz = 0 ln 2 2 12 2π r1 l / 2 (r + z ) 1l/2当 l → ∞ 时,有y A1 =0 I l ln r1 2π-ar2 I图 3-6r1 a I x同理,导线 2 产生的磁矢位为A2 = 由两个导线产生的磁矢位为0 I l ln r2 2πv v l v I l A = ez ( A1 + A2 ) = ez 0 ln ln r 2π 1 r2 v 0 I r2 v 0 I ( x + a) 2 + y 2 = ez ln = ez ln 2π r1 4π ( x a) 2 + y 2相应的磁场为34《电磁场与电磁波》——习题详解v v A v A v B = × A = ex z e y z y x v I = ex 0 2π y y ( x + a) 2 + y 2 ( x a) 2 + y 2 x+a xa v I ey 0 2 2 2 2 2π ( x + a) + y ( x a) + y v v v v v v 3-16 由无限长载流直导线的 B 求矢位 A (用 B d S = A d l , 并且 r = r0 处为∫S∫C磁矢位的参考零点),并验证 × A = B . 解:设导线和 z 轴重合.由于电流只有 z 分量,磁矢位也只有 z 分量.用安培 环路定律,可以得到直导线的磁场为vvv I v B = 0 eφ 2π r 选取矩形回路 C ,如图 3-7 所求.在此回路上,注意到磁矢位的参考点.磁矢位的线积分为∫ ∫SCv v A d l = Az hv v BdS =∫∫0 I Ih r d r d z = 0 ln r0 2π r 2πIBh r0 r图 3-7由此得到I r Az (r ) = 0 ln r0 2π可以验证rv v I v A v B = × A = z eφ = 0 eφ 2π r r3-17 证明 xoy 平面上半径为 a , 圆心在原点的圆电流环(电流为 I )在 z 轴上的磁标 位为 m = 1 2 2 1 2 2 (a + z ) 证明:法一:由毕奥萨伐尔定律可求得,z 轴上某一点的磁感应强度为:Iz35习题三v B=Ia 22( a + z )2 2 3/ 2v ezv v B H = =Ia 2 v e 2 2 3/ 2 z 2(a + z )由 H = m = (v m v m v m v e + e + e ) x x y y z z可得 m Ia 2 = z 2( a 2 + z 2 ) 3 / 2 m = ∫ Ia 2 Iz dz = +C 2 2 3/ 2 2 2( a + z ) 2(a + z 2 )1 / 2当 z → ∞ 时, m = 0 ,求得C=所以I 2 z ) ( a + z 2 )1 / 22 m = (1 I 2法二:整个圆形回路在轴线上产生的磁场,由于对称,仅仅有轴向分量.使用 叠加原理,可以计算出轴线上任一点的磁场强度为Ia 2 H= 2( a 2 + z 2 ) 3 2由磁标位与磁场强度的关系式 H = m ,可以得到m =3-18∫∞zHdz =∫∞z Ia 2 I z d z = 1 2 2 12 2 2 32 2 (a + z ) 2(a + z )一个长为 L ,半径为 a 的圆柱状磁介质沿轴向方向均匀磁化(磁化强度为M 0 ),求它的磁矩.若 L = 10cm , a = 2cm , M 0 = 2 A / m ,求出磁矩的值. 解:均匀磁化介质内的磁化电流为零.在圆柱体的顶面与底面,有v v v Jms = M × n = 036《电磁场与电磁波》——习题详解在侧面v v v v v v J m s = M × n = M 0 ez × er = M 0 eφ侧面的总电流为I = JmsL = M 0L磁矩为m = IS = Iπ a 2 = M 0 Lπ a 2代入相关数值后得m = M 0 Lπ a 2 = 2 × 0.1× π × 0.02 2 = 2.512 × 10 4 A m 23-19 球心在原点,半径为 a 的磁化介质球中, M = M 0 磁化电流的体密度和面密度. 解:磁化电流的体密度为vz2 v ez ( M 0 为常数) ,求 a2v v Jm = × M = 0在球面上v v v z2 v v v J m s = M × n = M 0 ez × er = M 0 2 sin θ eφ a注意,在球面上v v z = a cos θ , J m s = M 0 cos 2 θ sin θ eφ3-20 证明磁介质内部的磁化电流是传导电流的( r 1 )倍. 证明:由于 J = × H , J m = × Mvvvv因而 3-21v v v v v v v B = H = 0 ( H + M ) , M = 1 H = ( r 1) H 0 v v J m = ( r 1) J已知内,外半径分别为 a , b 的无限长铁质圆柱壳(磁导率为 )沿轴向有恒 定的传导电流 I ,求磁感应强度和磁化电流.37习题三解: 考虑到问题的对称性, 用安培环路定律可以得出各个区域的磁感应强度. 当 r < a 时, B = 0vv I (r 2 a 2 ) v 当 a < r < b 时, B = eφ 2π r (b 2 a 2 )当 r > b 时, B = 当 a < r < b 时,v0 I v eφ 2π rv v I (r 2 a 2 ) v 1 v M = ( r 1) H = ( r 1) B = ( r 1) eφ 2π r (b 2 a 2 ) v v v 1 (rM ρ ) v ( r 1) I J m = × M = ez = ez r r π (b 2 a 2 )当 r > b 时, J m = 0 在 r = a 处,磁化强度 M = 0 ,所以vvv v v v v J m s = M × n = M × (er ) = 0在 r = b 处,磁化强度 M =v Jms3-22( r 1) I v eφ ,所以 2π b v v v v ( 1) I v = M × n = M × er = r ez 2π b v设 x < 0 的半空间充满磁导率为 的均匀磁介质, x > 0 的空间为真空,线电流 I 沿 z 轴方向,如图 3-8,求磁感应强度和磁场强度. 解:由恒定磁场的边界条件,可以判断出,在磁介质和真空中,磁感应强度相 同,而磁场强度不同.由问题的对称性,选取以 z 轴为轴线,半径为 r 的圆环为安 培回路,有∫注意到lv v H d l = π rH 1 + π rH 2 = Iy0H1 =1B1, H2 =2B2, B1 = B2 = BIx图 3-838《电磁场与电磁波》——习题详解1 = 0 , 2 = 因而得B= 0 I π ( 0 + )r其方向沿圆周方向. 3-23 已知在半径为 a 的无限长圆柱导体内有恒定电流 I 沿轴向方向.设导体的磁 导率为 1 ,其外充满磁导率为 2 的均匀磁介质,求导体内,外的磁场强度, 磁感应强度,磁化电流分布. 解:考虑到问题的对称性,在导体内,外分别选取与导体圆柱同轴的圆环作 为安培回路,并注意电流在导体内是均匀分布的.可以求出磁场强度如下:Ir v eφ 2π a 2 v I v r > a 时, H = eφ 2π r磁感应强度如下:v r ≤ a 时, H =v Ir v r ≤ a 时, B = 1 2 eφ 2π a v 2 I v r > a 时, B = eφ 2π r为了计算磁化电流,要求出磁化强度:v v v v Ir I v , J m = × M = e z 1 1 r ≤ a 时, M = eφ 1 1 2 2π a 2 0 0 π av v v v I r > a 时, M = eφ 2 1 , Jm = × M = 0 0 2π r在 r = a 的界面上计算面电流时,可以理解为在两个磁介质之间有一个很薄的 真空层.这样,其磁化面电流就是两个磁介质的磁化面电流之和,即v v v v v J m s = M 1 × n1 + M 2 × n2这里的 n1 , n2 分别是从磁介质到真空的单位法向.如果取从介质 1 到介质 2 的单位法向是 n ,则有vvvv v v v v J m s = M1 × n M 2 × n39习题三代入界面两侧的磁化强度,并注意到 n = er ,得vvv I v v 2 I J m s = e z 1 1 2π a + ez 1 2π a 0 0 I v = ez 2 1 0 0 2π a3-24 试证长直导线和其共面的正三角形之间的互感为M=0 a (a + b) ln1 + b a π 3 其中 a 是三角形的高,b 是三角形平行于长直导线的边至直导线的距离(且该 边距离直导线最近). 证明:取如图 3-9 所示的坐标.直线电流 I 产生的磁场为B=0 I 2π x由图 3-9 知道,三角形三个顶点的坐标分别为 A(b, a3 ) , B (b, a3) ,C (a + b,0) ,直线 AC 的方程为 z=互感磁通为z A I1 b B图 3-91 (a + b x) 3C b+axΨ = BdS = 2∫∫a +b b0 I 1 (a + b x) d x 2π x 3=0 I a (a + b) ln1 + b a π 3 0 a (a + b) ln1 + b a π 3 直线与矩形回路的互感为M=3-25无限长的直导线附近有一矩形回路(二者不共面,如图 3-10),试证它们之间 的互感为40《电磁场与电磁波》——习题详解M =0 a R ln 2 2 12 2π [2b( R c ) + b 2 + R 2 ]1 2b a R R1图 3-10IIc证明:直线电流 I 产生的磁场为 B =0 I ,作积分,得出磁通量 2π rΨ = BdS =注意:∫∫R1 R 0 Ia Ia R d r = 0 ln 1 R 2π r 2π1 2 1 2 1 2R1 = [c + (b + R c ) ] = [2b( R c ) + b + R ]2 2 2 2 2 2 2 2将其代入,即可得到互感. 3-26 外导体的内半径为 b , 通过的电流为 I . 空气绝缘的同轴线, 内导体半径为 a , 设外导体壳的厚度很薄,因而其储存的能量可以忽略不计.计算同轴线单位 长度的储能,并由此求单位长度的自感. 解:设内导体的电流均匀分布,用安培环路定律可求出磁场.r < a 时, H =Ir 2π a 2 I a < r < b 时, H = 2π rWm =单位长度的磁场能量为∫a01 H 2 2π r d r + 2 0∫b a1 H 2 2π r d r 2 0=0 I 2 0 I 2 b ln + 16π 4π aL=故得单位长度的自感为0 0 b + ln 8π 2π a41习题三其中第一项是内导体的内自感. 3-27 一个长直导线和一个圆环(半径为 a )在同一平面,圆心与导线的距离是 d , 证明它们之间互感为M = 0 (d d 2 a 2 )证明:设直导线位于 z 轴上,由其产生的磁场I r d θB=0 I 0 I = 2π x 2π (d + r cos θ ) 0 I其中各量的含义如图 3-11 所示,磁通量为图 3-11Φ = BdS =∫∫∫0 2π 0a2π 02π (d + r cos θ )2πr dθ d r上式先对 θ 积分,并用公式∫得dθ = d + a cos θd 2 a2Φ = 0 I所以互感为 3-28∫ardr d r2 20= 0 I (d d 2 a 2 )M = 0 (d d 2 a 2 )如图 3-12 所示的长密绕螺线管(单位长度 n 匝),通过的电流为 I ,铁心的磁 导率为 ,面积为 S ,求作用在它上面的力. 解:在忽略边缘影响时,密绕螺线管内部的磁场是一个均匀磁场,其值为H = NI , 管外磁场为零. 设螺线管的长度为 L , 铁心位于螺线管内的部分长度为 x , 总的磁场能量为Wm =1 1 Sx( NI ) 2 + 0 S ( L x)( NI ) 2 2 2Wm xL● ● ● ● ● ● ●用电流不变情形下的虚位移公式,得到铁心受力 x0SF==I1 ( 0 ) SN 2 I 2 2× × × × × × × 图 3-12力的方向沿 x 增加的方向.42。
电磁场与电磁波(第三版)课后答案第3章
第三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a arr r a r a ππ--=++⎰ 221201)0.293()aqa q q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为32234344r r ar Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
电磁场与电磁波(第四版)课后答案_第三章习题
习题三答案及解析
B选项
$( - frac{1}{2} + frac{3}{2}i)( frac{1}{2} + frac{3}{2}i)$ 可以
化简为 $-i$。
C选项
$( - frac{1}{2} - frac{3}{2}i)( frac{1}{2} + frac{3}{2}i)$ 可以
化简为 $-i$。
D选项
$frac{-2i}{-2i + 1}$ 可以 化简为 $-i$。
习题三答案及解析
答案
A. $-frac{1}{4}$
习题三答案及解析
B. $-i$
1
C. $-i$
2
D. $-i$
3
习题三答案及解析
01
解析
02
此题考查复数的乘法运算,根据复数乘法的定义和性质,可以得出答案。
03
A选项:$( - frac{1}{2} + frac{3}{2}i)( - frac{1}{2} - frac{3}{2}i)$ 可以化简为 $-frac{1}{4}$。
• 下一章将介绍电磁场与电磁波的基本原理和概念,包括电场、 磁场、电磁感应等。同时,还将介绍电磁波的传播方式和在不 同介质中的传播特性,以及电磁波的应用和影响。
THANKS
感谢观看
D选项
$100e^{- frac{pi i}{2}}$ 可以化简 为 $100(cosfrac{3pi}{2} + isinfrac{3pi}{2})$,与题目中的形 式一致。
习题二答案及解析
答案
A. $-frac{1}{2}$
习题二答案及解析
B. $-i$ C. $-i$ D. $-i$
电磁场与电磁波第三版 郭辉萍 第三章习题答案
第三章 习题答案3.1设一点电荷与无限大接地导体平面的距离为d ,如图3.1所示。
求: q(1)空间的电位分布和电场强度; (2)导体平面上感应电荷密度; (3)点电荷所受的力。
q解:(1)(,,)1r x y z d =−u r2(,,)r x y z d =+u r1211(4qr r φπε=−04q πε=E φ=−∇u u r 3333330212121[()()(]4a a a x y z q x x y y z d z d r r r r r r πε+−=−−+−+−uu r uur ur u(2)在导体平面上有z=0 则 12==r r 3222202()E a z qdx y d πε=−++u u rur u032222.2()z a E s qd x y d ρεπ==−++uu r u u r(3)由库仑定律得22200()4(2)16q q q d d πεπε−==−u u r uu r ur z z u F a a或22320,0,002[()]4(2)16z x y z dq d q q d dπεπε=====−=−u u r uu r urvzu F E a a 3.6两无限大接地平行板电极,距离为,电位分别为0和U ,板间充满电荷密度为d 00xdρ的电荷,如题3.6图所示。
求极板间的电位分布和极板上的电荷密度。
解: 板间电位满足泊松方程 200ρφε∇=x−d由于平行电容器y 与z 方向都为无穷大,故待求函数仅为x 的函数泊松方程可以写为:2020x d dx dρφε=−边界条件为0U φφ(0)=0,(d)= 对方程进行两次积分得301206ρφε=−++x C x C d代入边界条件得 002100,6U dC d ρε==+C 所以板间电位分布为:300000()66x U d x d d ρρφεε=−++2000()2600E a x x U d d d ρρφεε=−∇=−−u u r uu r2000()2600D E a x x U d d d ρερε==−−u u r u u r uu rx =0的极板上的电荷密度000060x a Ds x U dd ερρ==⋅=−−uu r u u rx =d 的极板上的电荷密度00()30x a Dsd x dU ddερρ==−⋅=−uu r u u r3.9一个沿+y 方向无限长的导体槽,其底面保持电位为,其余两面的电位为零,如图3.9所示。
电磁场与电磁波第三版课后答案 谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场叶齐政第三章答案
荷 q' (平面上方 h 处, q' q )对它的作用力
q2
fe
4 0 (2h)2
令 f e 与重力 mg 大小相等,有
q2
mg
4 0 (2h)2
即������ = 4ℎ√������������0������������
3.12
解:设q1受电场力为������1, ������1是q2和分界面上产生感应电荷共同产生的电场对q1产生的电场 力。同理 q2 受电场力为������2 ,是q1和分界面上产生的感应电荷共同产生的电场对q2 的电场 力。
2
3.9 解: 1)嵌入金属壳后,球形电容器的电场有变化,原因如下: 当嵌入金属壳 S 后将球形电容器内电介质分成两部分,S 成为这两部分电介质的分界面。 在该分界面上电位处的相等,即 S 面是等势面。类似地,我们也可把(a)图中的介质分成 如(b)图一样的两部分,显然在(a)图中,S 对应的分界面不再是等势面,因此(a)(b) 两图中的边缘问题的边界条件不相同,其解必不同。 2)若金属球壳与球形电容器同心,则 S 的嵌入不改变边缘问题的边界条件,因此不改变电 场的分布,因为球形电容器中的等势面正好是与球心同心一簇同心球面。
=
������0⁄ln
������2 ������1
∗
1 ������
当������ = ������1时
������������������������
=
������0 ln������2⁄������1
∗
1 ������1
对������1 ∗ ln ������2⁄������1求导得到 ������1 = ������2⁄ⅇ时������������������������最小为ⅇ������0 ∕ ������2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课
∂
2πrE = S
rω ∂ψ ' => E = ψ 0 cos ωt ; 2 ∂t
ωa 2 ∂ψ ' => E = ψ 0 cos ωt 2r ∂t
3.9 假定E= (x0+jy0)e–jz,H=(y0–jx0)e–jz,求用z、ωt表示的S以及<S>。 解: E(t ) = cos(ωt − z )x 0 − sin (ωt − z )y 0
S(t ) = z 0
mπx nπy ,求磁场强度 H ,以及瞬时坡印廷功 cos a b
ˆ0 = y ˆ 0 E ym sin 3.10 设电场强度 E = E y y
率流 S (t) 与平均坡印廷功率流 < S > 。 解: H =
1 − jωμ 0
∇×E =
1 − jωμ 0
(
ˆ0 mπE ym z ∂ mπx nπy ˆ0 ) = cos cos Ey z ∂x − jωμ 0 a a b
m
ˆ ,则 答:不可以,假定 E = yx
∂B ∂B ˆ ,在 y=0 的平面上 E=0,但 = −∇ × E = z ≠ 0. ∂t ∂t
3.5 对于调幅广播,频率f从 500KHz到 1MHz,假定电离层电子浓度N = 1012m–3,确定电离层 有效介电系数εe的变化范围。 解: ω P =
Ne 2 = 5.64 × 10 7 ; mε 0
H (t ) = cos(ωt − z )y 0 + sin (ωt − z )x 0
.k hd
)
∂ψ ' ,其中ψ ' 表示被积分环路包围 ∂t
aw .
q (− r0 ) = q 2 (− x 0 cos ϕ − y 0 sin ϕ ) = q 2 (− x 0 cos ωt − y 0 sin ωt ) 2 4πr 4πr 4πr
在这过程中,应用了叠加原理。 3.4 如果在某一表面 E=0,是否就可以得出在该表面
课
则: E t = E1 + E 2 , Bt = B1 + B2 , H t = H 1 + H 2 , Dt = D1 + D2
后 答
案
网
∂ ( D1 + D2 ) ; ∂t
ww w
∂ ( B1 + B2 ) ; ∂t
co
m
3.7 一点电荷(电量为 10–5库仑)作圆周运动,其角速度ω = 1000 弧度/秒,圆周半径r = 1cm, 如图P3.7,试求圆心处位移电流密度。 解: 为了计算方便,设 t = 0 时ϕ = 0,而ϕ = ωt,点电荷 q 在 O 点产生电位移矢量 D 为
x0 y0 z0 S(t ) = E(t ) × H(t ) cos(ωt − z ) − sin (ωt − z ) 0 = z 0 sin (ωt − z ) cos(ωt − z ) 0
案
网
× H e jωt }ຫໍສະໝຸດ ww wˆ mπE ym z 1 1 mπx nπy mπx nπy ˆ 0 E ym sin Re{E × H * } = Re{y cos × 0 cos cos }=0 2 2 a b jωμ 0 a a b
1 2 B =3.98 × 105J。 2μ
.k hd
ε
2
4aωμ 0
Vemf
∂ψ m πa 2 B =− =− ω = − Bωa 2 / 2 ∂t 2π
D=
位移电流密度为
J dx = J dy
圆柱体内外任意点的电场强度。 答:由法拉第电磁感应定律:
后 答
3.8 在一半径为 a 的无限长圆柱体中有一交变磁通通过,其变化规律为ψ = ψ 0 sin ωt ,试求
案
网
把数值代入上式: J d =
ˆ0 =x < S >=
2 − mπE ym
3.11 说明 S ≠ Re{E × H e 3.12 说明 S ≠ Re{E e
jωt
jω t
}.
Re{E × H e jωt } = Re{( E r + jE i ) × ( H r + jH i )e jωt }
Re{E e jωt × H e jωt } = Re{( E r + jE i )e jωt × ( H r + jH i )e jωt } = Re{[( E r × H r − E i × H i ) + j ( Ei × H r + E r × H i )]e 2 jωt } = ( E r × H r − Ei × H i ) cos 2ωt − ( E i × H r + E r × H i ) sin 2ωt
sin
2mπx nπy cos 2 sin 2ωt a b
E 2 =4.425 × 10-4J;
aw .
co
ˆ 0 E ym sin S (t) = E(t) × H(t) = y
ˆ 0 mπE ym z mπx nπy mπx nπy cos cos ωt × cos cos sin ωt a b − ωμ 0 a a b
因此,上面两题目中的不等式成立。 3.13 求在电场E=104V/m或磁场B=104G(高斯G=10-4Wb/m2)两种情况下,比较单位体积中 存储的电场能与磁场能的差别。 答:对于E=104V/m,单位体积内的电场能: W = 对于B=104G,单位体积内的磁场能: W =
课
= Re{[( E r × H r − Ei × H i ) + j ( E i × H r + E r × H i )]e jωt }
3.1 以下几个量的量纲是什么? J/m3 ; b) H*B J/m3; a)E*D
c) S
W/m2
ˆ 0 + yz ˆ 0 , D 随时间变化吗? 3.2 无源空间 H = zy
答: ∇ × H = J +
∂D ∂D = 0,Q J = 0,∴ = 0 ,所以 D 随时间不变化。 ∂t ∂t
B
、 (E2,B2,H2和D2)分别为源(J1、ρv1) 、 (J2、ρv2)激发的满 3.3 假定(E1,B1,H1,和D1) 足麦克斯韦方程的解。求源为(Jt =J1 +J2、ρvt=ρv1+ρv2)时麦克斯韦方程的解。在得出你 的解中,你应用了什么原理? 答:
∇ × E1 = −
∂B1 ∂D1 ; ∇ × H1 = J1 + ; ∇ ⋅ B1 = 0 ; D1 = ε ⋅ E1 ; B1 = μ ⋅ H 1 ∇ ⋅ D1 = ρ v1 ; ∂t ∂t ∂B2 ∂D2 ; ∇× H2 = J2 + ; ∇ ⋅ D2 = ρ v 2 ; ∇ ⋅ B 2 = 0 ; D2 = ε ⋅ E 2 ; ∂t ∂t
m
当ω = 1MHz,
εe ⎛ 31.7 × 1014 ⎞ ⎟ = −79.1 = ⎜1 − 6 2 ⎟ ε0 ⎜ ⎝ (2π × 10 ) ⎠
所以电离层有效介电系数εe的变化范围为 − 320.5ε 0 < ε e < −79.1ε 0 。 3.6 一半径为 a 的导体圆盘以角速度 ω 在均匀磁场中做等速旋转,设圆盘与磁场互相垂直, 入图 P3.6,试求圆盘中心与它边缘之间的感应电动势。 (图略) 答:由法拉第电磁感应定律,该圆盘在磁场中旋转运动时,等效为对于任一径向方向与整个 圆盘形成的环路的磁通量有了变化,可以得到:
2 ⎞ ωp εe ⎛ = ⎜1 − 2 ⎟ ⎟ ε0 ⎜ ⎝ ω ⎠
当ω = 0.5MHz,
εe ⎛ 31.7 × 1014 ⎞ ⎟ = −320.5 = ⎜1 − 6 2 ⎟ ε0 ⎜ ⎝ (2π × 0.5 × 10 ) ⎠
.k hd
∂B = 0 ?为什么? ∂t
aw .
co
∇ × E2 = −
10 2 x 0 sin 10 3 t − y 0 cos10 3 t 4π
(
ww w
∂D x qω = x0 sin ωt ∂t 4πr 2 qω = −y 0 cos ωt 4πr 2
∫ E ⋅ dl = ∂t ∫ B ⋅ dS ,在半径为 r 处满足:
的磁通的大小。 在圆柱体内: 2πrE = πr 2 在圆柱体外: 2πrE = πa 2
B2 = μ ⋅ H 2
如果媒质为线性的,则有:
∇ × ( E1 + E2 ) = −
∇ × (H1 + H 2 ) = ( J1 + J 2 ) +
∇ ⋅ ( D1 + D2 ) = ρ v1 + ρ v 2 ;
∇ ⋅ ( B1 + B2 ) = 0 ; D1 + D2 = ε ⋅ ( E1 + E 2 ) ; B1 + B2 = μ ⋅ ( H 1 + H 2 )
= ( E r × H r − E i × H i ) cos ωt − ( Ei × H r + E r × H i ) sin ωt
后 答
答: S = Re{ E × H * } = Re{( E r + jE i ) × ( H r − jH i )} = E r × H r + E i × H i