材料力学压杆稳定PPT分析

合集下载

材料力学压杆的稳定性教学课件

材料力学压杆的稳定性教学课件
脆性材料
如铸铁、玻璃等,其压杆稳定性 主要受材料强度和截面形状影响
,临界载荷较高。
塑性材料
如钢材、铜材等,其压杆稳定性受 材料屈服点和截面形状影响,临界 载荷较低。
复合材料
如玻璃纤维增强塑料等,其压杆稳 定性受材料性能和结构参数影响较 大,临界载荷取决于材料和结构的 设计。
04
压杆的稳定性实验
实验目的与要求
案例三:机械零件中的压杆稳定性分析
总结词
机械零件中的压杆稳定性分析是确保机械设备正常运转的关键因素,通过对机械零件中压杆的稳定性进行分析, 可以提高机械设备的可靠性和安全性。
详细描述
在机械设备中,压杆通常用于传递载荷或支撑部件,其稳定性对机械设备的性能和寿命具有重要影响。通过分析 机械零件中压杆的受力情况、材料特性等因素,可以评估其稳定性,并优化设计以提高机械设备的可靠性和安全 性。
定义
材料力学是研究材料在各种力和 力矩作用下的应力和应变行为的 科学。
重要性
材料力学为工程设计和结构分析 提供了理论基础,确保了工程结 构的稳定性和安全性。
材料力学的基本假设与理论
假设
材料是连续的、均匀的、各向同性的。
理论
胡克定律、弹性力学、塑性力学等。
材料力学在工程中的应用
01
02
03
建筑
建筑设计中的结构分析, 如梁、柱、板等。
本课件旨在帮助学生深入理解材料力学压杆稳定性的基本概念、原理和方法,提高 解决实际问题的能力。
课程目标
01
02
03
04
掌握压杆稳定性的基本概念、 原理和方法。
了解不同类型压杆的稳定性分 析方法。
掌握临界载荷和失稳形式的计 算方法。

压杆的稳定性PPT课件

压杆的稳定性PPT课件
l 2
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。

cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩

材料力学之压杆稳定课件

材料力学之压杆稳定课件
变形量等,绘制 压力与变形关系曲线。
分析实验数据,得出压 杆的临界压力和失稳形式。
实验结果分析
分析压杆在不同压力 下的变形情况,判断 压杆的稳定性。
总结临界压力与失稳 形式的规律,为实际 工程应用提供依据。
对比不同长度、直径、 材料等因素对压杆稳 定性的影响。
总结词
机械装置中的压杆在承受载荷时,其稳 定性对于机械的正常运转和安全性至关 重要。
VS
详细描述
在机械装置中,如压力机、压缩机等,压 杆是重要的承载元件。通过材料力学的方 法,可以分析压杆的稳定性,确定其临界 载荷和失稳模式,从而优化机械装置的设 计,提高其稳定性和安全性。
05
压杆稳定的应用与发展
工程实例二:建筑压杆
总结词
建筑压杆在高层建筑、大跨度结构等建筑中广泛应用,其稳定性是保证建筑安全的重要 因素。
详细描述
高层建筑和大跨度结构的稳定性分析中,建筑压杆的稳定性分析占据重要地位。通过材 料力学的方法,可以对建筑压杆的承载能力和稳定性进行精确计算,从而为建筑设计提
供可靠的支持。
工程实例三:机械装置压杆
数值模拟
随着计算机技术的发展,数值模 拟方法在压杆稳定性分析中得到 广泛应用,能够更精确地预测结
构的稳定性。
材料性能研究
新型材料的不断涌现,对压杆稳定 性的影响也日益受到关注,相关研 究正在不断深入。
多因素耦合分析
在实际工程中,多种因素如载荷、 温度、腐蚀等会对压杆稳定性产生 影响,因此需要开展多因素耦合分析。
欧拉公式是由瑞士科学家欧拉提出的一个公式,用于计算等截面直杆的临界应力。 根据欧拉公式,临界应力只与压杆的材料性质和截面形状有关,而与压杆的长度 和外载大小无关。
稳定性校核

材料力学压杆稳定概念欧拉公式计算临界力课件

材料力学压杆稳定概念欧拉公式计算临界力课件

杆的长度远大于横截面尺 寸,且横截面尺寸保持不 变。
杆的材料需满足胡克定律 ,即应力与应变成线性关 系。
欧拉公式在压杆稳定中的应用
01
通过欧拉公式,可以计算出压杆在临界状态下的临界力,即压杆失稳 前的最大承载力。
02
临界力的大小与压杆的材料、截面形状、尺寸等因素有关,是评估压 杆稳定性能的重要指标。
通过优化载荷分布,可以改善压杆的受力状态,从而提高稳定性。
THANKS
感谢观看
详细描述
理想压杆的临界力不受压杆重量和惯性影响,因此在实际应用中 ,需要考虑这些因素对临界力的影响。
实际压杆临界力计算
总结词
实际压杆是指考虑自身重量和惯 性影响的压杆,其临界力计算需 考虑这些因素。
总结词
实际压杆的临界力受到自身重量 和惯性影响,因此需要考虑这些 因素对临界力的影响。
详细描述
在计算实际压杆的临界力时,需 要考虑压杆自重产生的挠度以及 横截面面积和长度等因素的影响 。
02
推导过程中,考虑了压杆的弯曲变形和轴向压缩变形,利用能
量守恒和弹性力学的基本方程,最终得到了欧拉公式。
推导过程涉及了数学和物理的相关知识,需要一定的专业背景
03
和理论基础。
欧拉公式应用条件
欧拉公式适用于理想弹性 材料制成的细长等截面直 杆。
杆的受力方式为两端受压 ,且轴向压力逐渐增加直 到临界状态。
材料力学压杆稳定概念欧 拉公式计算临界力课件
• 压杆稳定概念 • 欧拉公式 • 临界力计算 • 压杆稳定性的影响因素 • 提高压杆稳定性的措施
01
压杆稳定概念
压杆失稳现象
01
02
03
弯曲变形
当压杆受到压力时,可能 会发生弯曲变形,导致承 载能力下降。

[PPT]材料力学课件之压杆稳定

[PPT]材料力学课件之压杆稳定

一、工程背景
自动翻斗车中的活塞杆也 有类似的问题。
如图示塔吊,立柱承受压力,当 压力过大时,立柱也有可能从直 线的平衡构形变成弯曲的平衡构 形。除此之外,组成塔吊的桁架 中受压力的杆子也可能从直线的 平衡构形变成弯曲的平衡构形, 也就是稳定性问题。
一、工程背景
如图示紧凑型超高压输电线路相间绝缘 间隔棒,当它受压从直线的平衡构形变成 弯曲的平衡构形时是否一定丧失正常功能 呢?这需要经过实验确定,观察在不同的 力的作用下弯曲到什么程度。

l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B

D

线 形
C
C

A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l
EI
2
Pcr
2EI
(0.7l)
2
Pcr
2EI
(0.5l ) 2
Pcr (22lE) 2I
长度系数μ =1 0.7 =0.5 =2
即: cr
2E 2
i I ——惯性半径。 A
注:如果压杆在不同平面内失稳,且各平面内支承约束条件不
同,则应分别计算在各平面内失稳时的l,并按其大者来
计算 cr ,因压杆总是在柔度较大的平面内失稳。
3.柔度:
L ——杆的柔度(或长细比)
i
l综合地反映了压杆的长度(l)、支承方式(m)与截面 几何性质(i)对临陆界应力的影响。
EIk 2
4.492 l2
EI
2EI
(0.7l)2

材料力学压杆稳定PPT课件

材料力学压杆稳定PPT课件

6
工程背景 (Engineering background)
crane truck
7
问题的提出
p pcr
p pcr
p pcr
求载荷pcr是稳定问题的实质!!! 对象—压杆
方法—静力学方法
基本问题—
求pcr; 讨论支承对临界力的影响;
8
压杆稳定条件
2 细长压杆的欧拉临界压力
横向干扰力产生初始变形, P
1983年10月4日,北京的一幢正在施工的高层建筑 的高54.2m、长17.25m、总重565.4kN大型脚手架屈 曲坍塌,5人死亡、7人受伤 。
1907年北美魁北克圣劳伦斯河上大铁桥施工中,珩架下 弦受压杆屈曲,就如少一杆,成变形体而坍塌.
1925年苏联莫兹尔桥试运行时,因压杆失稳而破坏。
1940年美国塔科马桥,一场大风,因侧向压杆失稳而破 坏。
解:压杆在xoy平面内,
z
l
iz
1210012.21 17 .32
压杆在xoz平面内,
y
l1
iz
1200086 .6 11 .55
1
2E p
2205109
200106
101
maxmax{y,z}121.21
18
iz
b 23
17 .32 mm
iy
a 23
1ห้องสมุดไป่ตู้ .55 mm
所以,压杆为细长杆。
Pcr2E2 A33.06kN
3
液压缸顶杆
hydraulic pressure post rod
4
Scaffold frame
脚手架中的压杆
工程背景 (Engineering background)

第十章压杆稳定材料力学PPT课件

第十章压杆稳定材料力学PPT课件
Iy2 [Iy1A 1(z0a/2)2]
2 [2.6 5 1.7 2 ( 4 1 .5 2 a /2 )2 ]
即 :1.9 3 8 2.6 5 1.7 2(1 4 .5 2 a/2 )2时合
a=4.32cm
27
2、求临界力:
L0.76
i
Iz
0.76 39 .6 6 10 8
10 .5 6p
2EIy L22
③、压杆的临界力 F crmiF c nry,(Fcr)z
15
例3:求下列细长压杆的临界力。(L=0.5m,E=200 MPa)
F
解:图(a)
FP
Imi n51 0 12 30 1 0 12 4.1 7 1 0 9m 4
10
பைடு நூலகம்
Fcr
2IminE (1l)2
24.1(07.71009.5)22 00106
cr
S
cr a b
P
2E
cr
2
o
s
P
L
i
19
四、注意问题:
1、计算临界力、临界应力时,先计算柔度,判断所用公式。 2、对局部面积有削弱的压杆,计算临界力、临界应力时,
其截面面积和惯性距按未削弱的尺寸计算。但进行强度 计算时需按削弱后的尺寸计算。
例4:一压杆长L=1.5m,由两根 56566 等边角钢组成,两端 铰支,压力 F=150kN,角钢为A3钢,试用欧拉公式或经验公 式求临界压力和安全系数 σcr=304-1.12λ(MPa) 。 解:一个角钢: A 18 .36 cm 2 7 ,Iy12.6 3c3m 4
Fcr4L22EI(L2/E2)I2
=0.5
14
例2:求下列细长压杆的临界力。(yz面失稳两端铰支,长L2;xy 面失稳一端固定,一端铰支,长L1)

材料力学压杆稳定PPT

材料力学压杆稳定PPT
面(xz平面)内两端为弹性固定,长度因数μy=0.8。试求此
压杆的临界应力;又问b与h的比值等于多少才是合理的。
b
解: 1)求临界应力
y
h
z
y
x
在xy平面内: z
iz
Iz
bh3 /12
A
bh
h 60 1.73m 2 m 12 12
z
zl
iz
1200011.55 17.32
在xz平面内:
iy
压杆失稳的现象:
1. 轴向压力较小时,杆件能保持稳定的直线平衡状态; 2. 轴向压力增大到某一特殊值时,直线不再是杆件唯
一的平衡状态;
稳定: 理想中心压杆能够保持稳定的(唯一的) (Stable) 直线平衡状态;
失稳: 理想中心压杆丧失稳定的(唯一的)直 (Unstable) 线平衡状态;
临界力
(Critical force)
=69 kN
[FN BC]120kN FNBC4.5q≤Fcr =69
得:q=15.3 kN/m
§9-3 不同杆端约束下细长压杆临界力的 欧拉公式 · 压杆的长度因数
π2EI
Fcr ( l )2
μ称为长度因数。
约束越强,μ系数越小, 临界力Fcr越高,稳定性越好;
约束越弱, μ系数越大, 临界力Fcr越低, 稳定性越差。
2) 柔度越大, 压杆越细柔,临界应力Fcr越低, 稳定
性越差。
cr
π2E
2
p
p
π2E π E
p
p
λp仅与材料有关。
对于Q235钢λp=100。 可以使用欧拉公式计算压杆的临界力的条件是:
p
越是细柔的压杆, 柔度λ越大, 越可以使用欧拉

材料力学之压杆稳定(ppt 39页)

材料力学之压杆稳定(ppt 39页)
原因:忽略了对桥梁重量的精确计算导致悬臂桁架中个别 受压杆失去稳定产生屈曲,造成全桥坍塌;
NEXT
压杆稳 定
该桥计算时疏忽了对风荷载的验算,桥建成试通车后, 发现桥面已发生扭曲,于是委托麻省理工大学进行检测,麻 省理工大学制作了一个原桥的模型,进行风荷载试验,发现 桥面扭曲的直接原因是风荷载,于是麻省理工大学用6天时 间另搞了一个完善设计,在桥主梁侧面打开一些空洞,以减 少风荷载的影响,可惜这一方案尚未实施完毕,桥面已出现 剧烈扭曲,通过桥梁的最后一辆车是一辆轿车,受桥面扭曲 影响。在桥面上已无法行驶,在相关营救人员的援助下,车 主逃脱险境,之后不久桥就全部损坏。
NEXT
(2)沪东中华造船集团有限公司
十几秒中36人丧生
• 01年7月17日上午8点,在上海市 沪东中华造船(集团)有限公司由 上海电力建筑工程公司承担的 600吨门式起重机在吊装过程中 发生特大事故。
• 36人死亡、3人受伤,同济大学9 人不幸全部遇难
• 早晨,机械学院的几位打算去沪 东造船厂指挥安装龙门起重机的 老师回机械南馆取资料,守门的 师傅替他们开了门。谁曾想,一 个多小时后,他们都在沪东造船 厂的事故中遇难。一行9人中, 有53岁的老教授,也有才30岁风 华正茂的博士后。
(a) 稳定平衡 (b) 不稳定平衡
(c) 随遇平衡
RETURN
压杆稳
定 9.1.3 压杆失稳与临界压力 :
1.理想压杆:材料绝对理想;轴线绝对直;压力绝对沿轴线作用。 2.压杆的稳定平衡与不稳定平衡:
P Pcr









P Pcr
见稳定平衡.AVI
见不稳定平衡.AVI

材料力学--压杆稳定问题 ppt课件

材料力学--压杆稳定问题  ppt课件


F

Fcr nst

151.47 3
50.5KN
所以起重机架的最大起重量取决于杆AC的强度,为
Fmax 26.7KN
材料力学
PPT课件
42
例8-4 图示托架结构,梁AB与圆杆BC 材料相同。梁AB为16号工字 钢,立柱为圆钢管,其外径D=80 mm,内径d=76mm,l=6m,a=3 m, 受均布载荷q=4 KN/m 作用;已知钢管的稳定安全系数nw=3,试对立
n Fcr Fp
269 150
1.793 nst 1.8
所以压杆的稳定性是不安全的.
材料力学
PPT课件
38
例8-3 简易起重架由两圆钢杆组成,杆AB:d1 30mm,杆
AC:d2 20mm,两杆材料均为Q235钢, E 200GPa, s 240MPa p 100,0 60 ,规定的强度安全系数ns 2,稳定安全系 数 nst 3,试确定起重机架的最大起重量 Fmax 。
柱进行稳定校核。
l
q
B
A
F
a
C
材料力学
PPT课件
43
压杆稳定问题/提高压杆稳定性的措施
五、提高压杆稳定性的措施
材料力学
PPT课件
44
压杆稳定问题/提高压杆稳定性的措施
1、合理选择材料
细长杆: cr与E成正比。
普通钢与高强度钢的E大致相同,但比铜、铝合金的 高,所以要多用钢压杆。
中长杆: cr随 s 的提高而提高。
压杆稳定问题/细长压杆的临界力
2) 一端固定,一端铰支
C w
BC段,曲线上凸,
1 0;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临界力
(Critical force)
压杆失稳时,两端轴向压力的特殊值
§9-2 细长中心受压直杆临界力的欧拉公式
思路: 假设压杆在某个压力Fcr作用下在曲线状态 平衡,然后设法去求挠曲函数。若:
1)求得的挠曲函数≡0, 说明只有直线 平衡状态;
2)求得不为零的挠曲函数,说明压杆的 确能够在曲线状态下平衡,即出现失 稳现象。
l x x
x Fcr
A
w
Fcr (+)
w
M (x)= Fcrw
B y
(a)
B y
(b)
M(x)=Fcrw
EIw'' M (x) Fcrw 令 Fcr k 2
EI w''k 2w 0 w Asin kx Bcoskx
当x=0时,w=0。
0 A0 Bcoskx
得:B=0,
w Asin kx
w Asin kx
又当x=l时, w=0。
得 Asin kl = 0
要使上式成立,
x
1)A=0
w=0;
Fcr
代表了压杆的直线平衡状态。
A
2) sin kl = 0
w
Fcr
此时A可以不为零。
w
M (x)= Fcrw
l x x
B y
(a)
B y
(b)
w Asin kx 0 失稳!!!
失稳的条件是: sin kl 0 kl nπ
第9章 压杆稳定
§9-1 压杆稳定性的概念
稳定
事物保持常态。
失稳
事物无法保持常态。
理想中心压杆: 1. 直杆(无初曲率), 2. 无残余应力, 3. 压力无偏心。
F
F(较小) F(较小) F(特殊值) F(特殊值)
QQ
QQ
轴压
压弯
恢复
直线平衡 曲线平衡 直线平衡
压弯
失稳
曲线平衡 曲线平衡
保持常态、稳定
Ⅰ-Ⅰ截面
解:1)求BC杆的轴力
以AB梁为分离体,对A点 取矩,有:
MA 0
1 2
q
32
FNBC
sin
30
2
0
FNBC 4.5q
2)求BC杆的临界力
π(D4 d 4 ) π(504 404 )
I
=181132mm4。
64
64
2m
A 30°
Ⅰ Ⅰ C
1m q
B
Fcr
π 2 EI l2
π2
206103 ×181132
y z
故压杆在xz平面内失稳。
因为y p 100
所以欧拉公式可用。
cr
π2E
2
π2 206 103 138 .52
106MPa
2)b与h的合理比值
y
yl
iy
z
zl
iz
当压杆在两个失稳平面内的稳定性相同时最合理:
y z
y z
yl zl
iy
iz
0.8l 1 l b / 12 h / 12
解:1)实心圆截面压杆
i d 4
60 4
15mm
l 1 2000 133.3 p
i
15
2E p
π2 206103 100.8
200
故欧拉公式可用。
Fcr
π 2 EI
(l)2
π2
206103π 604 (1 2 103 )2
/
64
323.5kN
2)空心圆截面压杆 i和λ均发生了变化,故应重新计算。
Fcr l nπ EI
Fcr
n 2 π 2 EI l2
(n=1,2,…)
Fcr
Fcr min
π 2 EI l2
理想中心压杆的欧拉临界力
Fcr
π 2 EI l2
在确定的约束条件下,欧拉临界力Fcr: 1)仅与材料(E)、长度(l)和截面尺寸(A) 有关,材料的E越大,截面越粗,杆件越 短,临界力Fcr越高; 2)是压杆的自身的一种力学性质指标,反映
承载能力的强弱,临界力Fcr越高,稳定性 越好,承载能力越强;
3)与外部轴向压力的大小无关。
例:托架的撑杆为钢管,外径D=50mm,内径d=40mm,
2m
A 30°
Ⅰ Ⅰ C
1m q
B
两端球形铰支,材料为Q235钢, E=206GPa。试根据该杆的稳定性 要求,确定横梁上均布载荷集度 q之许可值。
(2×103/cos30°)2
=69 kN
[FNBC ] 120kN FNBC 4.5q ≤Fcr =69
得:q=15.3 kN/m
§9-3 不同杆端约束下细长压杆临界力的 欧拉公式 ·压杆的长度因数
Fcr
π 2 EI
(l)2
μ称为长度因数。
约束越强,μ系数越小, 临界力Fcr越高,稳定性越好; 约束越弱,μ系数越大, 临界力Fcr越低,稳定性越差。
§11-3 欧拉公式的应用范围
1. 欧拉公式的应用范围
π 2 EI
Fcr (l)2
cr
Fcr A
π 2 EI
(l)2 A
π2E
(l)2 A
π2E
(l )2
欧拉临界应力
Ii
l
i
cr
π2E
2
λ称为柔度, 无量纲。
cr
π2E
2
l
i
1) 柔度λ中包含了除材料之外压杆的所有信息,是
压杆本身的一个力学性能指标;
2) 柔度越大,压杆越细柔,临界应力Fcr越低,稳定
性越差。
cr
π2E
2
p
p
π2E π E
p
p
λp仅与材料有关。 对于Q235钢λp=100。 可以使用欧拉公式计算压杆的临界力的条件是:
p
越是细柔的压杆,柔度λ越大, 越可以使用欧拉
公式计算压杆的临界力。
例 两端为球形铰支的压杆,长度l=2m,直径d=60mm, 材料为Q235钢,E=206GPa,σp=200MPa。试求该压杆的 临界力;若在面积不变的条件下,改用外径和内径分别 为D1=68mm和d1=32mm的空心圆截面,问此压杆的临界 力等于多少?
b
解:1)求临界应力
y
h
z
y
x
在xy平面内: z
iz
Iz A
bh3 /12 h 60 17.32mm
bh
12 12

z
zl
iz
1 2000 17.32
115.5
在xz平面内:
iy
Iy A
b3h /12
bh
b 40 11.55mm 12 12
y
yl
iy
0.8 2000 11.55
138.5
失去常态、失稳
压杆失稳的现象:
1. 轴向压力较小时,杆件能保持稳定的直线平衡状态; 2. 轴向压力增大到某一特殊值时,直线不再是杆件唯
一的平衡状态;
稳定: 理想中心压杆能够保持稳定的(唯一的) (Stable) 直线平衡状态;
失稳: 理想中心压杆丧失稳定的(唯一的)直 (Unstable) 线平衡状态;
例 图示矩形截面压杆,h=60mm,b=40mm,杆长l=2m, 材料为Q235钢,E=206GPa 。两端用柱形铰与其它构件 相连接,在正视图的平面(xy平面)内两端视为铰支;
在俯视图的平面(xz平面)内两端为弹性固定,长度因
数μy=0.8。试求此压杆的临界应力;又问b与h的比值等
于多少才是合理的。
相关文档
最新文档