2020年黑龙江省哈尔滨市南岗区虹桥中学中考数学一模试卷

合集下载

2020年黑龙江省哈尔滨中考数学一模试卷

2020年黑龙江省哈尔滨中考数学一模试卷

中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列各数中,小于-2的数是()A. 2B. 1C. -1D. -42.下列运算正确的是()A. a3•a2=a6B. (x3)3=x6C. x5+x5=x10D. -a8÷a4=-a43.下列图形中,既是中心对称,又是轴对称图形的是()A. B.C. D.4.在反比例函数y=的图象的每一条曲线上,y都随x的增大而增大,则k的值可以是()A. -1B. 0C. 1D. 25.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.6.不等式组的解集是()A. xB. -1C. xD. x≥-17.如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=()A. 5B. 5.5C. 6D. 78.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A. 60海里B. 45海里C. 20海里D. 30海里9.如图,点F是矩形ABCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()A.B.C.D.10.清清从家步行到公交车站台,等公交车去学校,下公交车后又步行了一段路程才到学校,图中的折线表示清清的行程s(米)与所花时间t(分)之间的函数关系.下列说法错误的是()A. 清清等公交车时间为3分钟B. 清清步行的速度是80米/分C. 公交车的速度是500米/分D. 清清全程的平均速度为290米/分二、填空题(本大题共10小题,共30.0分)11.2020年我国考研人数约为340万,将340万这个数用科学记数法表示为______.12.函数y=中,自变量x的取值范围是______.13.-=______.14.分解因式:4a2-16=______.15.如图,AB是⊙O的直径,C,D两点在⊙O上,∠BCD=25°,则∠AOD的度数为______ .16.一个扇形的面积为2πcm2,半径OA为4cm,则这个扇形的圆心角为______°.17.将抛物线y=3(x-4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是______ .18.已知矩形ABCD,E为CD的中点,F为AB上一点,连接EF,DF,若AB=4,BC=2,EF=,则DF的长为______.19.袋中装有大小相同的2个红球和2个绿球.先从袋中摸出1个球后放回,混合均匀后再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是______ .20.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为______.三、解答题(本大题共7小题,共60.0分)21.先化简,再求值:÷(x+2-),其中x=2cos45°-tan60°.22.如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A.B.C.D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,且△CDF的面积为4,CF与(1)中所画线段BE平行,连接AF,请直接写出线段AF的长.23.为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查样本容量是______;(2)请补全频数分布直方图中空缺的部分;(3)估计全校学生每周课外体育活动时间不少于6小时的人数.(4)求这50名学生每周课外体育活动时间的平均数.24.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有与AE相等的线段(除AE外).25.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?26.如图已知:MN为⊙O的直径,点E为弧MC上一点,连接EN交CH于点F,CH是⊙O的一条弦,CH⊥MN于点K.(1)如图1,连接OE,求证:∠EON=2∠EFC;(2)如图2,连接OC,OC与NE交于点G,若MP∥EN,MP=2HK,求证:FH=FE;(3)如图3,在(2)的条件下,连接EH交OC与ON于点R,T,连接PH,若RT:RE=1:5,PH=2,求OR的长.27.如图,抛物线y=-x2+bx+c与x轴正半轴交于A点,与y轴正半轴交于B,直线AB的解析式为y=-x+3.(1)求抛物线解析式;(2)P为线段OA上一点(不与O、A重合),过P作PQ⊥x轴交抛物线于Q,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;(3)在(2)的条件下,连接QN并延长交y轴于E,连接AE,求t为何值时,MN∥AE.答案和解析1.【答案】D【解析】解:比-2小的数是应该是负数,且绝对值大于2的数,分析选项可得,只有D符合.故选:D.根据题意,结合有理数大小比较的法则,从符号和绝对值两个方面分析可得答案.本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【答案】D【解析】解:A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选:D.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.【答案】A【解析】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:A.根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.【答案】D【解析】解:反比例函数的图象上的每一条曲线上,y随x的增大而增大,∴1-k<0,∴k>1.故选:D.对于函数来说,当k<0时,每一条曲线上,y随x的增大而增大;当k>0时,每一条曲线上,y随x的增大而减小.本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运用.易错易混点:学生对解析式中k的意义不理解,直接认为k<0,错选A.5.【答案】D【解析】解:从上边看第一列是两个小正方形,第二列是两个小正方形,第三列是一个小正方形,故选:D.根据俯视图是从上边看得到的图形,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.【答案】A【解析】解:,由①得,x>,由②得,x≥-1,故不等式组的解集为:x>.故选:A.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】A【解析】解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=4,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE==5,∴BD=5.故选:A.连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=4,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.【答案】D【解析】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.9.【答案】C【解析】解:∵四边形ABCD为矩形,∴AD∥BC,CD∥AB∵DE∥BC,∴=,=,所以B、选项结论正确,C选项错误;∵DF∥AB,∴=,所以A选项的结论正确;=,而BC=AD,∴=,所以D选项的结论正确.故选:C.先根据矩形的性质得AD∥BC,CD∥AB,再根据平行线分线段成比例定理,由DE∥BC得到=,=,则可对B、C进行判断;由DF∥AB得=,则可对A进行判断;由于=,利用BC=AD,则可对D进行判断.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例,熟记定理是解题的关键.10.【答案】D【解析】解:A、依题意在第5min开始等公交车,第8min结束,故他等公交车时间为3min,故选项正确;B、依题意得他离家400m共用了5min,故步行的速度为80米/分,故选项正确;C、他公交车(20-8)min走了(6400-400)km,故公交车的速度为6000÷12=500m/min,故选项正确.D、全程6800米,共用时25min,全程速度为272m/min,故选项错误;故选D.根据图象可以确定他离家6800m用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.11.【答案】3.4×106【解析】解:340万=3400000=3.4×106,故答案为:3.4×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】x≠4【解析】解:由题意得,x-4≠0,解得,x≠4,故答案为:x≠4.根据分式分母不为0列出不等式,解不等式即可.本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.【答案】【解析】解:原式=3-2=,故答案为:.先化简二次根式,再合并同类二次根式即可得.本题主要考查二次根式的加减,解题的关键是掌握二次根式的加减运算顺序和法则.14.【答案】4(a+2)(a-2)【解析】解:4a2-16=4(a2-4)=4(a+2)(a-2).故答案为:4(a+2)(a-2).首先提取公因式4,进而利用平方差公式进行分解即可.此题主要考查了提公因式法与公式法的综合运用,熟练掌握公式形式是解题关键.15.【答案】130°【解析】解:∵∠BCD=25°,∴∠BOD=50°,∴∠BCD=180°-50°=130°.故答案为130°.由∠BCD=25°,根据圆周角定理得出∠BOD=50°,再利用邻补角的性质即可得出∠AOD 的度数.本题考查了圆周角定理,以及邻补角的性质,解题的关键是同弧所对的圆周角等于圆心角的一半.16.【答案】45【解析】解:设扇形的圆心角为n°,根据扇形的面积公式得,=2π,∴n=45°,故答案为:45.根据扇形的面积公式解答即可.本题考查了扇形的面积公式,熟练掌握所写的面积公式是解题的关键.17.【答案】y=3(x-5)2-1【解析】解:y=3(x-4)2+2向右平移1个单位所得抛物线解析式为:y=3(x-5)2+2;再向下平移3个单位为:y=3(x-5)2-1.故答案为:y=3(x-5)2-1.根据“左加右减、上加下减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.【答案】或【解析】解:分两种情况:①点F靠近点A时,如图1所示:作FG⊥CD于G,则FG=BC=2,∠FGE=90°,∴GE===1,∵四边形ABCD是矩形,∴CD=AB=4,AD=BC=2,∵E是CD的中点,∴DE=CD=2,∴DG=2-1=1,∴DF===;②点F靠近点B时,如图2所示:作FG⊥CD于G,则FG=BC=2,∠FGE=90°,同①得出EG=1,∴DG=DE+EG=3,∴DF===;综上所述:DF的长为或.分两种情况:①点F靠近点A时,作FG⊥CD于G,则FG=BC=2,∠FGE=90°,由勾股定理求出GE,由矩形的性质和已知条件得出DG,由勾股定理求出DF的长;②点F靠近点B时,作FG⊥CD于G,则FG=BC=2,∠FGE=90°,同①得出EG=1,得出DG=DE+EG=3,由勾股定理求出DF的长即可.本题考查了矩形的性质、勾股定理;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键;本题需要分类讨论.19.【答案】【解析】解:画树状图得:∵共有16种等可能的结果,两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的概率是:=.故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到的球中有1个绿球和1个红球的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】3-3【解析】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E 作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x-x=3x,EF=ED=6-6x.在Rt△EFM中,FE=6-6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6-6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6-6x=3-3.故答案为:3-3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CF=2x,DE=FE=6-3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-3x=x,x=3-,∴DE=x=3-3.故答案为:3-3.(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE (SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x-x=3x、EF=ED=6-6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6-6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-3x=x可求出x 以及FE的值,此题得解.本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.21.【答案】解:原式=÷=•=,当x=2×-×=-3时,原式==.【解析】先算括号里面的,再算除法,求出x的值代入进行计算即可.本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.22.【答案】解:(1)作图如下:(2)AF==5.【解析】(1)根据题意可知:AB=,因为、、恰好构成以AB为斜边的直角三角形,由此画出图形即可;(2)根据题意可知:CD=,以CD为底,高为的三角形面积为4,由此画出图形,根据勾股定理求出AF的长即可.此题考查勾股定理运用,三角形的面积计算方法,灵活利用数据之间的联系,结合图形解决问题.23.【答案】50【解析】解:(1)由题意可得,本调查的样本容量是50,故答案为:50;(2)6≤x<8小时的学生人数为:50×24%=12,2≤x<4小时的学生人数为:50-5-22-12-3=8,补全的频数分布直方图如右图所示,(3)1000×=300(人),答:全校学生每周课外体育活动时间不少于6小时的有300人.(4)这50名学生每周课外体育活动时间的平均数为:×(1×5+3×8+5×22+7×12+9×3)=5.(1)根据题意可知本次调查的样本容量;(2)根据题目中的数据可以计算出6≤x<8小时的学生人数,然后即可计算出2≤x<4小时的学生人数,从而可以将频数分布直方图补充完整;(3)根据直方图中的数据可以计算出全校学生每周课外体育活动时间不少于6小时的人数.(4)据直方图中的数据即可计算出这50名学生每周课外体育活动时间的平均数.本题考查频数分布直方图、用样本估计总体、样本容量、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.24.【答案】(1)证明:如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD,∵BE=DF,∴OB-BE=OD-DF,即OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD,∴∠ABF=∠CDF=36°,∵AF=EF,∴∠FAE=∠FEA=72°,∵∠AEF=∠EBA+∠EAB,∴∠EBA=∠EAB=36°,∴EA=EB,同理可证CF=DF,∵AE=CF,∴与AE相等的线段有BE、CF、DF.【解析】(1)连接AC交BD于点O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,然后求出OE=OF,再根据对角线互相平分的四边形是平行四边形即可证明;(2)根据平行线的性质得到∠ABF=∠CDF=36°,根据三角形的内角和得到∠AFB=180°-108°-36°=36°,即可得到结论.本题考查了平行四边形的判定和性质,主要利用了对角线互相平分的四边形是平行四边形,邻边相等的平行四边形是菱形,作出辅助线是解题的关键.25.【答案】解:(1)设甲工程队每天修路x千米,则乙工程队每天修路(x-0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验,x=1.5是原方程的解,且符合题意,x-0.5=1,答:甲工程队每天修路1.5千米,乙工程队每天修路1千米;(2)设甲工程队修路a天,则乙工程队修(15-1.5a)千米,∴乙需要修路=15-1.5a(天),由题意可得0.5a+0.4(15-1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【解析】(1)可设甲工程队每天修路x千米,则乙工程队每天修路(x-0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲工程队修路a天,则可表示出乙工程队修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.26.【答案】解:(1)如图1,连接EM.∵MN为圆O的直径,∴∠MEN=90°,∵CH⊥MN于K,∴∠MKF=90°,∴∠MEF+∠MKF=180°,∴∠EFC=∠EMO,∵OE=OM,∴∠EON=2∠EMO=2∠EFC.(2)如图2,连接ME、EH、PN、EC、CN、HN.∵MN为圆O直径,∴∠MPN=∠MEN=90°,∵MP∥EN,∴∠PMN=∠ENM,∴△MPN≌△ENM(AAS),∴MP=EN,∵MN⊥CH于K,∴KH=CK=CH,HN=CN∴CH=2KH,∠HEN=∠CEN=∠NHC,∵MP=2KH,∴CH=MP=EN,∴∠HEC=∠NHE,∴∠HEN=∠EHC,∴FH=FE.(3)如图3,连接EM、PN、PE、CE、CN、HN、OH.∵PM=EN且MP∥EN,∠MPN=90°,∴四边形MENP是矩形,∴PE为圆O直径,∴∠PHE=∠PNE=90°∵∠ENC=∠EHC=∠HEN=∠HCN=∠NHC=∠CEN,∴CE=CN,∵OE=ON,∴OC垂直平分EN,∴∠EOC=∠NOC,由角平分线比例定理可知:==,∴设OT=x,则ON=OM=OP=OC=OE=5x,∴MT=6x,TN=4x,∵CE=CN=HN,∴∠EOR=∠HOT,∵OH=OE,∴∠OEH=∠OHE,∴△OER≌△OHT(ASA),∴OR=OT=x,TH=RE,设RT=y,则ER=HT=5y,ET=6y,由相交弦定理有:MT•TN=ET•TH,∴6x•4x=6y•5y,∴4x2=5y2,∴=,∴y=x,∴EH=ER+RT+TH=11y=x,在Rt△PHE中:PE2=PH2+EH2,∴100x2=8+=,∴x2==,∴x=,∴OR=.【解析】(1)由于MN是直径,于是连接EM,然后说明∠EMO=∠EFC即可.(2)证明∠CHE=∠NEH即可.(2)由已知条件可以推出∠EOC=∠CON=∠HON,进而推出OR平分∠EOT,EG=HT,OR=OT,根据角平分线比例定理OT:OE=RT:RE=1:5,故设OT=OR=x,RT=y,则MT、TN可用x表示出来,TH、TE可用y表示出来,根据相交弦定理可以得出x与y关系式,将y用x表示出来,EH也就用x表示出来了,同时注意到PE是直径,且PE 也用x表示出来,PH已知,利用勾股定理列方程即可解出x.本题为圆的综合题,主要考查了圆的基本性质、垂径定理、全等三角形的判定与性质、角平分线比例定理、相交弦定理、勾股定理等众多知识点.第三问是本题的难点,判定OR是角平分线并根据角平分线比例定理得出OT与OE的固定比值是解决问题的突破口和关键所在.27.【答案】解:(1)∵直线AB的解析式为y=-x+3,∴A(3,0),B(0,3),∵抛物线y=-x2+bx+c经过A点,B点,∴,解得,∴抛物线解析式为y=-x2+2x+3.(2)如图1中,过点M作MG⊥x轴于G,NH⊥GM,于H.∵OA=OB,∠AOB=90°,∴∠PAN=45°,∵∠NMP=90°,∴∠PAN=∠NMP,∴N、P、A三点在以M为圆心MA为半径的⊙M上,∴MN=MP,∵∠NHM=∠PGM=∠NMP=90°,∴∠NMH+∠PMG=90°,∠PMG+∠MPG=90°,∴∠NMH=∠MPG,∴△NMH≌△MPG,∴NH=MG,HM=PG,∵P(t,0),∴Q(t,-t2+2t+3),M(,),∴PG=MH=-t=,HG=+=,∴N y=,∵点N在直线AB上,∴N y=-N x+3,∴N x=3-=(0<t<3).(3)如图2中,∵MN∥AE,QM=MA,∴EN=QN,∴=,∴t2-2t=0,解得t=2或0(舍弃),∴t=2时,MN∥AE.【解析】(1)求出A、B两点坐标,利用待定系数法即可解决问题.(2)如图1中,过点M作MG⊥x轴于G,NH⊥GM,于H.首先证明N、P、A三点在以M为圆心MA为半径的⊙M上,再根据△NMH≌△MPG,得到NH=MG,HM=PG,即可解决问题.(3)如图2中,MN∥AE,QM=MA,得EN=QN,利用中点坐标公式,列出方程即可解决问题.本题考查二次函数综合题、圆、全等三角形的判定和性质、平行线等分线段定理、中点坐标公式等知识,解题关键是熟练掌握待定系数法确定函数解析式,学会利用圆,解决线段相等问题,属于中考压轴题.。

2020-2021学年黑龙江省哈尔滨中考数学一模试卷及答案解析

2020-2021学年黑龙江省哈尔滨中考数学一模试卷及答案解析

2020-2021学年⿊龙江省哈尔滨中考数学⼀模试卷及答案解析⿊龙江省哈尔滨中考数学⼀模试卷(解析版)⼀、选择题1.我市4⽉份某天的最⾼⽓温是22℃,最低⽓温是8℃,那么这天的温差是()A.30℃B.14℃C.﹣14℃D.12℃【分析】根据有理数的减法运算法则,减去⼀个数等于加上这个数的相反数进⾏计算即可得解.【解答】解:22﹣8=14(℃)故这天的温差是14℃.故选B.【点评】本题考查了有理数的减法,熟记减去⼀个数等于加上这个数的相反数是解题的关键.2.下列运算正确的是()A.a+a=a2B.a2?a=a2C.a3÷a2=a (a≠0)D.(a2)3=a5【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a3,不符合题意;C、原式=a,符合题意;D、原式=a6,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.下⾯四个图形中,不是中⼼对称图形的是()A.B. C.D.【分析】根据中⼼对称图形的概念和各图特点作答.【解答】解:A、是中⼼对称图形,不符合题意;B、不是中⼼对称图形,因为找不到任何这样的⼀点,使它绕这⼀点旋转180度以后,能够与它本⾝重合,即不满⾜中⼼对称图形的定义.符合题意;C、是中⼼对称图形,不符合题意;D、是中⼼对称图形,不符合题意;故选B.【点评】本题考查了中⼼对称图形的概念,掌握中⼼对称图形的概念:在同⼀平⾯内,如果把⼀个图形绕某⼀点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中⼼对称图形.这个旋转点,就叫做中⼼对称点.4.如图是由四个完全相同的正⽅体组成的⼏何体,这个⼏何体的左视图是()A. B. C. D.【分析】找到从左⾯看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从正⾯看易得第⼀层有1个正⽅形,第⼆层有1个正⽅形.故选B.【点评】本题考查了三视图的知识,左视图是从物体的左⾯看得到的视图.5.若反⽐例函数y=的图象经过点(2,﹣1),则该反⽐例函数的图象在()A.第⼀、⼆象限B.第⼀、三象限C.第⼆、三象限D.第⼆、四象限【分析】根据反⽐例函数图象在第⼀、三象限或在第⼆、四象限,根据(2,﹣1)所在象限即可作出判断.【解答】解:点(2,﹣1)在第四象限,则该反⽐例函数的图象的两个分⽀在第⼆、四象限.故选D.【点评】本题考查了反⽐例函数的性质,对于反⽐例函数y=(k≠0),(1)k>0,反⽐例函数图象在第⼀、三象限;(2)k <0,反⽐例函数图象在第⼆、四象限内.6.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的⼀个外⾓∠DCE等于()A.69°B.42°C.48°D.38°【分析】由∠BOD=138°,根据在同圆或等圆中,同弧或等弧所对的圆周⾓等于这条弧所对的圆⼼⾓的⼀半,即可求得∠A的度数,⼜由圆的内接四边四边形的性质,求得∠BCD的度数,继⽽求得∠DCE的度数.【解答】解:∵∠BOD=138°,∴∠A=∠BOD=69°,∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故选A.【点评】此题考查了圆周⾓定理与圆的内接四边形的性质.此题⽐较简单,解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周⾓等于这条弧所对的圆⼼⾓的⼀半与圆内接四边形的对⾓互补定理的应⽤.7.如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针⽅向旋转⼀个锐⾓α到△AB′C′的位置,连接CC′,若CC′∥AB,则旋转⾓α的度数为()A.40°B.50°C.30°D.35°【分析】先根据平⾏线的性质得∠ACC′=∠CAB=70°,再根据旋转得性质得AC=AC′,∠CAC′等于旋转⾓,然后利⽤等腰三⾓形的性质和三⾓形内⾓和计算出∠CAC′的度数即可.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A按逆时针⽅向旋转⼀个锐⾓α到△AB′C′的位置,∴AC=AC′,∠CAC′等于旋转⾓,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴旋转⾓α的度数为40°.故选A.【点评】本题考查了旋转的性质:对应点到旋转中⼼的距离相等;对应点与旋转中⼼所连线段的夹⾓等于旋转⾓;旋转前、后的图形全等.8.如图,点A为∠α边上的任意⼀点,作AC⊥BC于点C,CD⊥AB于点D,下列⽤线段⽐表⽰cosα的值,错误的是()A.B.C.D.【分析】利⽤垂直的定义以及互余的定义得出∠α=∠ACD,进⽽利⽤锐⾓三⾓函数关系得出答案.【解答】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD===,只有选项C错误,符合题意.故选:C.【点评】此题主要考查了锐⾓三⾓函数的定义,得出∠α=∠ACD是解题关键.9.下列说法中正确的是()A.不在同⼀条直线上的三个点确定⼀个圆B.相等的圆⼼⾓所对的弧相等C.平分弦的直径垂直于弦D.在同圆或等圆中,相等的弦所对的圆周⾓相等【分析】根据确定圆的条件、垂径定理、圆周⾓定理判断即可.【解答】解:不在同⼀条直线上的三个点确定⼀个圆,A正确;在同圆或等圆中,相等的圆⼼⾓所对的弧相等,B错误;平分弦(不是直径)的直径垂直于弦,C错误;在同圆或等圆中,相等的弦所对的圆周⾓相等或互补,D错误,故选:A.【点评】本题考查的是命题的真假判断,掌握确定圆的条件、垂径定理、圆周⾓定理是解题的关键.10.已知A、B两地相距4km,上午8:00时,亮亮从A地步⾏到B地,8:20时芳芳从B地出发骑⾃⾏车到A地,亮亮和芳芳两⼈离A地的距离S(km)与亮亮所⽤时间t(min)之间的函数关系如图所⽰,芳芳到达A地时间为()A.8:30 B.8:35 C.8:40 D.8:45【分析】根据题意可知:亮亮距离A地的距离随着时间的增⼤⽽增⼤,芳芳8点⾄8点20分由于没出发,故S=4⽶,8点20分后芳芳往A地⾛,故S随着时间的增⼤⽽减⼩.然后根据条件分别求出亮亮与芳芳S与t的函数关系式.【解答】解:由题意可知:设亮亮S与t的函数关系式为:S=mt(0≤t≤60),把t=60,S=4代⼊S=mt,∴4=60m,∴m=,∴S=t,当S=2时,此时t=30,设芳芳S与t的函数关系式为:S=at+b(t≥20),把t=30,S=2和t=20,S=4代⼊S=at+b,,解得:,∴S=﹣t+8,令S=0代⼊S=﹣t+8,∴t=40,故芳芳到达A地的时间为8点40分故选(C)【点评】本题考查函数的图象,涉及待定系数法求⼀次函数的解析式,求函数值等知识.⼆、填空题:11.长城某段长约为690 000⽶,690 000⽤科学记数法表⽰为 6.9×105.【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:690 000⽤科学记数法表⽰为6.9×105,故答案为:6.9×105.【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.12.在函数y=中,⾃变量x的取值范围是x≠6 .【分析】根据分式的意义即分母不等于0,可以求出x的范围.【解答】解:依题意得x﹣6≠0,∴x≠6.故答案为:x≠6.【点评】此题主要考查了确定函数⾃变量的取值范围,确定函数⾃变量的范围⼀般从三个⽅⾯考虑:(1)当函数表达式是整式时,⾃变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是⼆次根式时,被开⽅数⾮负.13.不等式组的解集是2<x<5 .【分析】分别求出每⼀个不等式的解集,根据⼝诀:同⼤取⼤、同⼩取⼩、⼤⼩⼩⼤中间找、⼤⼤⼩⼩⽆解了确定不等式组的解集.【解答】解:解不等式<2,得:x<5,解不等式1﹣(x﹣1)<0,得:x>2,则不等式组的解集为2<x<5,故答案为:2<x<5.【点评】本题考查的是解⼀元⼀次不等式组,正确求出每⼀个不等式解集是基础,熟知“同⼤取⼤;同⼩取⼩;⼤⼩⼩⼤中间找;⼤⼤⼩⼩找不到”的原则是解答此题的关键.14.代数式ax2﹣4ax+4a分解因式,结果是a(x﹣2)2.【分析】原式提取a,再利⽤完全平⽅公式分解即可.【解答】解:原式=a(x2﹣4x+4)=a(x﹣2)2,故答案为:a(x﹣2)2【点评】此题考查了提公因式法与公式法的综合运⽤,熟练掌握因式分解的⽅法是解本题的关键.15.现有四个外观完全⼀样的粽⼦,其中有且只有⼀个有蛋黄.若从中⼀次随机取出两个,则这两个粽⼦都没有蛋黄的概率是.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:解:⽤A表⽰没蛋黄,B表⽰有蛋黄的,画树状图如下:∵⼀共有12种情况,两个粽⼦都没有蛋黄的有6种情况,∴则这两个粽⼦都没有蛋黄的概率是=,故答案为:.【点评】此题主要考查了画树状图求概率,如果⼀个事件有n种可能,⽽且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.已知扇形的半径为5cm,圆⼼⾓等于120°,则该扇形的弧长等于.【分析】代⼊弧长公式计算即可.【解答】解:扇形的弧长是=.故答案是:.【点评】本题主要考查了弧长的计算公式,是需要熟记的内容.17.某商品经过两次连续的降价,由原来的每件25元降为每件16元,则该商品平均每次降价的百分率为20% .【分析】此题可设平均每次降价的百分率为x,那么第⼀次降价后的单价是原来的(1﹣x),那么第⼆次降价后的单价是原来的(1﹣x)2,根据题意列⽅程解答即可.【解答】解:设平均每次降价的百分率为x,根据题意列⽅程得25×(1﹣x)2=16,解得x1=0.,2,x2=1.8(不符合题意,舍去),即该商品平均每次降价的百分率为20%.【点评】本题考查了⼀元⼆次⽅程的应⽤.找到关键描述语,找到等量关系准确的列出⽅程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.18.如图,已知P为⊙O内⼀点,且OP=2cm,如果⊙O的半径是3cm,那么过P点的最短的弦等于2cm.【分析】过点P作弦AB⊥OP,此时AB为过P点的最短弦,如图,根据垂径定理得AP=BP,然后在Rt△APO中利⽤勾股定理计算出AP=,则AB=2AP=2.【解答】解:过点P作弦AB⊥OP,此时AB为过P点的最短弦,如图,∵OP⊥AB,∴AP=BP,在Rt△APO中,∵OP=2,OA=3,∴AP==,∴AB=2AP=2.故答案为2【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.19.已知△ABC,O为AC中点,点P在AC上,若OP=,tan∠A=,∠B=120°,BC=2,则AP= 2或.【分析】作CD⊥AB的延长线于D,求得∠CBD=60°,解直⾓三⾓形求得DC=3,进⽽求得AD=6,根据勾股定理求得AC=3,即可求得AO=,然后求得AP=2或.【解答】解:作CD⊥AB的延长线于D,∵∠ABC=120°,∴∠CBD=60°,∵BC=2,∴DC=BC?sin60°=2?=3,∵tan∠A=,∴AD=6,∴AC==3,∴AO=,∵OP=,∴AP=2或.【点评】本题考查了三⾓函数的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应⽤.20.已知正⽅形ABCD的边长为4,点E,F分别在边BC、CD上,∠EAF=45°,若AE?AF=,则EF的长为.【分析】如图将△ABE绕点A顺时针旋转90°得到△ADM,作FH⊥AE于H.⾸先证明△FAE≌△FAM,推出EF=FM,S△FAE=S△FAM,由FH⊥AE,∠FAH=45°,推出FH=AF?sin45°=AF,由S△AEFH=AEAF=AEAF=,由?EF?AD=,即可推出EF=.AEF=【解答】解:如图将△ABE绕点A顺时针旋转90°得到△ADM,作FH⊥AE于H.∵四边形ABCD是正⽅形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAF+∠MAD=45°,∴∠FAE=∠FAM,在△FAE和△FAM中,,∴△FAE≌△FAM,∴EF=FM,S△FAE=S△FAM,∵FH⊥AE,∠FAH=45°,∴FH=AF?sin45°=AF,∵S△AEF=?AE?FH=?AE?AF=?AE?AF=,∴?EF?AD=,∴EF=故答案为.【点评】本题考查正⽅形的性质、全等三⾓形的判定和性质、三⾓形的⾯积、等腰直⾓三⾓形的性质、锐⾓三⾓函数等知识,解题的关键是学会添加常⽤辅助线,构造全等三⾓形解决问题,属于中考常考题型.三、解答题(21、22题各7分,23、24题各8分,25-27题各10分,共计60分)21.(7分)化简求值:(﹣1)÷,其中x=tan60°﹣1.【分析】原式括号中两项通分并利⽤同分母分式的减法法则计算,同时利⽤除法法则变形,约分得到最简结果,把x的值代⼊计算即可求出值.【解答】解:原式=?=?=﹣,当x=tan60°﹣1=﹣1时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(7分)图a、图b是两张形状、⼤⼩完全相同的⽅格纸,⽅格纸中每个⼩正⽅形的边长均为1,点A、B在⼩正⽅形的顶点上.(1)在图a中画出△ABC(点C在⼩正⽅形的顶点上),使△ABC是等腰三⾓形且△ABC为钝⾓三⾓形;(2)在图b中画出△ABD(点D在⼩正⽅形的顶点上),使△ABD是等腰三⾓形,且tan∠ABD=1.【分析】(1)在⽹格上取AC=AB的点C即可;(2)作以AB为直⾓边的等腰直⾓三⾓形即可.【解答】解:(1)△ABC如图a所⽰;(2)△ABD如图b所⽰.AB=AD,∠BAD=90°,∴∠ABD=45°,∴tan∠ABD=1.【点评】本题考查了等腰三⾓形的判定、三⾓函数,等腰直⾓三⾓形的判定与性质,熟练掌握⽹格结构以及45°⾓的三⾓函数值是解题的关键.23.(8分)某学校为了解学⽣的课外阅读情况,王⽼师随机抽查部分学⽣,并对其暑假期间的课外阅读量进⾏统计分析,绘制成如图所⽰但不完整的统计图.已知抽查的学⽣在暑假期间阅读量为2本的⼈数占抽查总⼈数的20%,根据所给出信息,解答下列问题:(1)求被抽查学⽣⼈数并直接写出被抽查学⽣课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读3本及3本以上课外书者为完成假期作业,据此估计该校1500名学⽣中,完成假期作业的有多少名学⽣?【分析】(1)根据阅读2本的学⽣有10⼈,占20%即可求得总⼈数;(2)利⽤总⼈数50减去其它各组的⼈数就是读4本的学⽣数,据此即可作出统计图;(3)求得样本中3本及3本以上课外书者所占的⽐例,然后乘以总⼈数1500即可求解.【解答】解:(1)被抽查学⽣⼈数为:10÷20%=50(⼈),中位数是3本;(2)阅读量为4本的⼈数为:50﹣4﹣10﹣15﹣6=15(⼈),补全条形统计图如图:(3)×1500=1080(本),答:估计该校1500名学⽣中,完成假期作业的有1080名学⽣.【点评】本题考查的是条形统计图的综合运⽤.读懂统计图,从统计图中得到必要的信息是解决问题的关键.同时考查了总体与样本的关系.24.(8分)已知菱形ABCD的对⾓线相交于O,点E、F分别在边AB、BC上,且BE=BF,射线EO、FO分别交边CD、AD于G、H.(1)求证:四边形EFGH为矩形;(2)若OA=4,OB=3,求EG的最⼩值.【分析】(1)先根据对⾓线互相平分证明四边形EFGH是平⾏四边形,再证明△EBO≌△FBO,得EG=FH,所以四边形EFGH 是矩形;(2)根据垂线段最短,可知:当OE⊥AB时,OE最⼩,先利⽤⾯积法求OE的长,EG=2OE,可得结论.【解答】证明:(1)∵四边形ABCD是菱形,∴OA=OC,OB=OD,AB∥CD,AD∥BC,∴∠BAO=∠DCO,∠AOE=∠GOC,∴△AOE≌△COG(ASA),∴OE=OG,同理得:OH=OF,∴四边形EFGH是平⾏四边形,∵BE=BF,∠ABD=∠CBD,OB=OB,∴△EBO≌△FBO,∴OE=OF,∴EG=FH,∴四边形EFGH是矩形;(2)∵垂线段最短,∴当OE⊥AB时,OE最⼩,∵OA=4,OB=3,∠AOB=90°,∴AB2=OA2+OB2=25,∴AB=5,∴OA×OB=AB×OE,3×4=5×OE,OE=,∵OE=OG,∴EG=.答:EG的最⼩值是.【点评】本题考查了菱形的性质、矩形的性质和判定、三⾓形全等的性质和判定、勾股定理,熟练掌握矩形的判定是关键,同时还运⽤了⾯积法求线段OE的长.25.(10分)某商品经销店欲购进A、B两种纪念品,⽤160元购进的A种纪念品与⽤240元购进的B种纪念品的数量相同,每件B种纪念品的进价⽐A种纪念品的进价贵10元.。

2024年黑龙江省哈尔滨市南岗区虹桥初级中学中考一模数学(五四制)试题

2024年黑龙江省哈尔滨市南岗区虹桥初级中学中考一模数学(五四制)试题

2024年黑龙江省哈尔滨市南岗区虹桥初级中学中考一模数学(五四制)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣3的相反数是( )A .13-B .13C .3-D .32.下列计算正确的是( )A .224a a a +=B .()235a a =C .22(1)1a a +=+D .2a a a ⋅= 3.如图,一些大小相同的小正方体组成的一个几何体,其左视图是( )A .B .C .D .4.已知反比例函数()0k y x x=≠的图象经过点()2,5,若点()1,n 在此反比例函数的图象上,则n 的值为( )A .10B .7C .5D .2 5.如图,是一张长方形纸片(其中AB ∥CD ),点E ,F 分别在边AB ,AD 上.把这张长方形纸片沿着EF 折叠,点A 落在点G 处,EG 交CD 于点H .若∠BEH =4∠AEF ,则∠CHG 的度数为( )A .108°B .120°C .136°D .144°6.把2y x =-向左平移1个单位,然后向上平移3个单位,平移后抛物线的解析式为( ) A .()213y x =---B .()213y x =-+- C .()213y x =--+ D .()213y x =-++ 7.甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x 个零件,所列方程正确的是( )A .2403006x x =-B .2403006x x =+C .2403006x x =-D .2403006x x =+ 8.如图,⊙O 是∆ABC 的外接圆,半径为2cm ,若2cm BC =,则A ∠的度数为( )A .30°B .25°C .15°D .10°9.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A .861 B .863 C .865D .867 10.甲、乙两辆摩托车同时从相距20km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km )与行驶时间t (h )的函数关系.则下列说法错误的是A .乙摩托车的速度较快B .经过0.3小时甲摩托车行驶到A ,B 两地的中点C .经过0.25小时两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地km二、填空题11.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为立方米.12x 的取值范围是. 13.因式分解:x 2y-4y 3=.14.不等式组10{212x x -<-≥的最小整数解为. 15.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是.(结果保留π)16.如图,在ABC ∆中,已知2AB =,AD BC ⊥,垂足为D ,2BD CD =.若E 是AD 的中点,则EC =.17.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是. 18.如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD ON P ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠=.19.等腰ABC V 内接于O e ,若O e 半径为10cm ,ABC V 的底边长为12cm ,则这个等腰三角形的腰长AB =cm .20.如图,在四边形ABCD 中,90ABC ∠=︒,AC BD 、交于点E ,AC BD =,且A C B D ⊥,若4AB =,5AD =,则CD 的长为.三、解答题21.先化简,再求代数式21111121x x x x x +⎛⎫-÷ ⎪+-++⎝⎭的值,其中3tan30x =︒︒. 22.如图,每个小正方形的边长都是1的方格纸中,有线段AB 和线段CD ,点A B C D 、、、的端点都在小正方形的顶点上.(1)在方格纸中画出一个以线段AB为一边的菱形ABEF,所画的菱形的各顶点必须在小正方形的顶点上,并且其面积为20.(2)在方格纸中以CD为底边画出等腰三角形CDK,点K在小正方形的顶点上,且CDKV的面积为10.(3)在(1)、(2)的条件下,连接FK,请直接写出线段FK的长.23.小明对九年一班同学参加锻炼的情况进行了统计,(每人只能选其中一项)并绘制了下面的图1和图2,请根据图中提供的信息解答下列问题:图1图2(1)小明这次一共调查了多少名学生?(2)通过计算补全条形统计图;(3)若该校有2000名学生,请估计该校喜欢足球的学生比喜欢乒乓球的学生多约多少人?24.为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速,如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的终点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ 的长(结果保留根号);(2)当下引桥坡度1:i =AB 的长(结果保留根号). 25.春风中学计划从秋雨公司购买A B 、两种型号的黑板,经洽谈,购买一块A 型黑板比买一块B 型黑板多用20元.且购买5块A 型黑板和4块B 型黑板共需820元.(1)求购买一块A 型黑板、一块B 型黑板各需要多少元?(2)根据春风中学实际情况,需从秋雨公司购买AB 、两种型号的黑板共60块,要求购买A 、B 两种型号黑板的总费用不超过5240元.则购买A 型号的黑板最多多少块? 26.如图1,在O e 中,直径AB 垂直弦CD 于点G ,连接AD ,过点C 作CF AD ⊥于F ,交AB 于点H ,交O e 于点E ,连接DE .(1)如图1,求证:2E C ∠=∠;(2)如图2,求证:DE CH =;(3)如图3,连接BE ,分别交AD CD 、于点M N 、,当2OH OG =,HF EN 的长.27.如图1,在平面直角坐标系中,点O 为坐标原点,抛物线()22230y x ax a a =-++>与x 轴交于点B 、点A ,与y 轴正半轴交于点C ,4AB =,连接AC BC 、.图1 图2 图3(1)求抛物线的解析式;(2)如图2,在第一象限内的抛物线上有一点D ,连接CD BD 、,若BCD △的面积为S ,点D 的横坐标为t ,求S 与t 的函数关系式(不必写出t 的取值范围);(3)在(2)的条件下,如图3,作∥D E A C ,交BC 于点E ,交y 轴于点J ,若D E =,连接DC 并延长交x 轴于点F ,第一象限内抛物线上有一动点P ,连接PF ,作CQ PF ⊥交x 轴于点Q ,若2PQC PFQ ∠=∠,求点P 的横坐标?。

2024年黑龙江省哈尔滨市南岗区中考数学一模试卷(含解析)

2024年黑龙江省哈尔滨市南岗区中考数学一模试卷(含解析)

2024年黑龙江省哈尔滨市南岗区中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列实数中,最大的数是( )A. −1B. 0C. 1D. 22.下列运算正确的是( )A. a2+a3=a5B. a2⋅a3=a5C. a2÷a3=a5D. (a2)3=a53.我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是( )A. B. C. D.4.如图是一个立体图形的三视图,该立体图形是( )A. 三棱柱B. 圆柱C. 三棱锥D. 圆锥5.在反比例函数y=4−kx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则k的取值范围是( )A. k<0B. k>0C. k<4D. k>46.方程5x+1−1x−1=0的解为( )A. x=12B. x=1 C. x=32D. x=27.某2020年人均可支收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x,则下面所列方程正确的是( )A. 2.7(1+x)2=2.36B. 2.36(1+x)2=2.7C. 2.7(1−x)2=2.36D. 2.36(1−x)2=2.78.爬坡时坡面与水平面夹角为α,则每爬1m耗能(1.025−cosα)J,若某人爬了1000m,该坡角为30°,则他耗能(参考数据:3≈1.732,2≈1.414)( )A. 58JB. 159JC. 1025JD. 1732J9.如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD的大小是( )A. 35°B. 40°C. 45°D. 50°10.甲乙两地相距a千米,小亮8:00乘慢车从甲地去乙地,10分钟后小莹乘快车从乙地赶往甲地.两人分别距甲地的距离y(千米)与两人行驶时刻t(×时×分)的函数图象如图所示,则小亮与小莹相遇的时刻为( )A. 8:28B. 8:30C. 8:32D. 8:35二、填空题:本题共10小题,每小题3分,共30分。

2020年黑龙江省哈尔滨市南岗区中考数学第一次模拟测试试卷 含解析

2020年黑龙江省哈尔滨市南岗区中考数学第一次模拟测试试卷 含解析

2020年中考数学第一次模拟试卷一、选择题(共10小题)1.4的算术平方根是()A.2B.﹣2C.±2D.162.2016年元旦期间,地铁1号线日乘人数最高达到140000人次,数字140000用科学记数法可表示为()A.1.4×104B.1.4×10﹣5C.1.4×105D.1.4×1063.下列图案既不是轴对称图形又不是中心对称图形的是()A.B.C.D.4.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.35.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.6.一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A.B.C.D.7.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是()A.40°B.50°C.60°D.70°8.已知方程,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<49.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3B.4C.5D.610.冰雪大世界是“冰城”哈尔滨的一张名片,某天开始售票时,已有300名游客排队等候购票,同时每分钟又会有固定数量的游客进入售票区排队等候购票,已知每个售票口的售票速度相同开始售票后,新增购票人数m(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口购到票的人数n(人)与售票时间x(分)之间的函数关系如图②所示;在售票区排队等候购票的游客人数y(人)与售票时间x(分)的函数关系如图③所示,已知开始售票时开放了3个售票窗口,售票a分钟后,又增加了b个售票窗口,则b的值为()A.1B.2C.3D.4二、填空题11.计算:()﹣1﹣=.12.在函数y=中,自变量x的取值范围是.13.把9m2﹣36n2分解因式的结果是.14.若代数式和的值相等,则x=.15.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.16.如图,函数y=和y=﹣的图象分别是C1和C2.点P在C1上,PC⊥x轴,垂足为点C,与C2相交于点A,PD⊥y轴,垂足为点D,与C2相交于点B,则△PAB的面积为.17.如图(1),扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中O′点在直线BA上,如图(2)所示,则O点旋转至O′点所经过的轨迹长度(弧长)为.18.等腰△ABC中,AB=AC=5,△ABC的面积为10,则BC=.19.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AD=18,点E在AC上且CE =AC,连接BE,与AD相交于点F.若BE=15,则△DBF的周长是.20.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD 于点F,点E在BF上,连接AE,CE,∠EAF=45°,若tan∠ECD=,BC=6,则BE的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.先化简,再求代数式÷(1+)的值,其中a=tan60°﹣sin45°.22.如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应)请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请求出△ACE的面积S.23.网络购物发展十分迅速,某企业有4000名职工,从中随机抽取350人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图1和扇形图2.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对网络购物所持态度中的“经常(购物)”和“偶尔(购物)”统称为“参与购物”,那么这次接受调查的职工中“参与网购”的人数是多少?(3)这次调查中,“25﹣35”岁年龄段的职工“从不(网购)”的有22人,它占“25﹣35”岁年龄段接受调查人数的百分之几?(4)请估计该企业“从不(网购)”的人数是多少?24.在△ABC中,∠ACB=90°,D为AB边的中点,将△ADC沿着AC折叠,得到△AEC.(1)如图1,求证:四边形ADCE是菱形;(2)如图2,若BC=AC,菱形ADCE的面积为24,求AB边的长.25.松雷商厦两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇,用去资金17400元;第二次购进10台空调和30台电风扇,用去资金22500元.(1)求挂式空调和电风扇每台的采购价各是多少元?(2)若该商厦计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该商厦最多可再购进空调多少台?26.已知:AB,CF都是⊙O的直径,AH,CD都是⊙O的弦,CD⊥AB于点E,AH=CD.(1)如图1,求证:AH⊥CF;(2)如图2,延长AH,CD交于点P,求证:PH=PD;(3)如图3,在(2)的条件下,延长AC,HE交于点Q,若∠Q=45°,CQ=2,求AP的长.27.已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D 的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d 的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.参考答案一、选择题(每小题3分,共计30分)1.4的算术平方根是()A.2B.﹣2C.±2D.16【分析】根据乘方运算,可得一个数的算术平方根.解:∵22=4,∴=2,故选:A.2.2016年元旦期间,地铁1号线日乘人数最高达到140000人次,数字140000用科学记数法可表示为()A.1.4×104B.1.4×10﹣5C.1.4×105D.1.4×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:140000=1.4×105,故选:C.3.下列图案既不是轴对称图形又不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析即可.解:A、既不是轴对称图形又不是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.4.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.5.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:从俯视图可以看出直观图的各部分的个数,可得出左视图前面有2个,中间有3个,后面有1个,即可得出左视图的形状.故选:B.6.一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出这两个球上的两个数字之和为负数的情况数,即可求出所求的概率.解:列表得:31﹣23﹣﹣﹣(1,3)(﹣2,3)1(3,1)﹣﹣﹣(﹣2,1)﹣2(3,﹣2)(1,﹣2)﹣﹣﹣所有等可能的情况有6种,其中两个数字之和为负数的情况有2种,则P==.故选:B.7.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是()A.40°B.50°C.60°D.70°【分析】如图,证明OA=OC,∠AOB=∠COD;求出∠OCA=70°;求出∠BOC=10°;运用外角性质求出∠B即可解决问题.解:由题意得:△AOB≌△COD,∴OA=OC,∠AOB=∠COD,∴∠A=∠OCA,∠AOC=∠BOD=40°,∴∠OCA==70°;∵∠AOD=90°,∴∠BOC=10°;∵∠OCA=∠B+∠BOC,∴∠B=70°﹣10°=60°,故选:C.8.已知方程,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<4【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.解:分式方程去分母,得:3﹣a﹣(a﹣4)=9,解得:a=﹣1,经检验:a=﹣1是原分式方程的根,故不等式组的解集为:﹣1<x≤b,∵不等式组只有4个整数解,∴3≤b<4,故选:D.9.如图,矩形ABCD中,AB=8,把矩形沿直线AC折叠,点B落在点E处,AE交CD 于点F,若AF=,则AD的长为()A.3B.4C.5D.6【分析】根据平行线的性质和翻转变换的性质得到FD=FE,FA=FC,根据勾股定理计算即可.解:∵DC∥AB,∴∠FCA=∠CAB,又∠FAC=∠CAB,∴∠FAC=∠FCA,∴FA=FC=,∴FD=FE,∵DC=AB=8,AF=,∴FD=FE=8﹣=,∴AD=BC=EC==6,故选:D.10.冰雪大世界是“冰城”哈尔滨的一张名片,某天开始售票时,已有300名游客排队等候购票,同时每分钟又会有固定数量的游客进入售票区排队等候购票,已知每个售票口的售票速度相同开始售票后,新增购票人数m(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口购到票的人数n(人)与售票时间x(分)之间的函数关系如图②所示;在售票区排队等候购票的游客人数y(人)与售票时间x(分)的函数关系如图③所示,已知开始售票时开放了3个售票窗口,售票a分钟后,又增加了b个售票窗口,则b的值为()A.1B.2C.3D.4【分析】由图①②可得每分钟新增购票人数为5人,每个售票窗口每分钟购票2人,由图③列出方程可求a=30,b=1.解:由图①②可得每分钟新增购票人数为5人,每个售票窗口每分钟购票2人,由题意可得:300+5a﹣3×2×a=270,∴a=30,由题意可得:270+5×(84﹣30)=(84﹣30)×2×(b+3),∴b=2,故选:B.二、填空题(每小题3分,共计30分)11.计算:()﹣1﹣=﹣1.【分析】本题涉及负整数指数幂、二次根式化简两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:()﹣1﹣=2﹣3=﹣1.故答案为:﹣1.12.在函数y=中,自变量x的取值范围是x≠2.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣2≠0,求解可得自变量x的取值范围.解:根据题意,有x﹣2≠0,解得x≠2;故自变量x的取值范围是x≠2.故答案为x≠2.13.把9m2﹣36n2分解因式的结果是9(m﹣2n)(m+2n).【分析】首先提取公因式9,进而利用平方差公式分解因式得出答案.解:9m2﹣36n2=9(m2﹣4n2)=9(m﹣2n)(m+2n).故答案为:9(m﹣2n)(m+2n).14.若代数式和的值相等,则x=7.【分析】根据题意列出分式方程,求出分式方程的解得到x的值,经检验即可得到分式方程的解.解:根据题意得:=,去分母得:2x+1=3x﹣6,解得:x=7,经检验x=7是分式方程的解.故答案为:x=7.15.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【分析】由对顶角相等可得∠CGE=∠FGB′,由两角对应相等可得△ADF∽△B′GF,那么所求角等于∠ADF的度数.解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.16.如图,函数y=和y=﹣的图象分别是C1和C2.点P在C1上,PC⊥x轴,垂足为点C,与C2相交于点A,PD⊥y轴,垂足为点D,与C2相交于点B,则△PAB的面积为8.【分析】设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB的值,根据三角形的面积公式求出即可.解:设P的坐标(a,),则A(a,),B(﹣3a,),∴BP=4a,AP=,△PAB的面积=AP•BP=××4a=8.故答案为8.17.如图(1),扇形AOB中,OA=10,∠AOB=36°.若固定B点,将此扇形依顺时针方向旋转,得一新扇形A′O′B,其中O′点在直线BA上,如图(2)所示,则O点旋转至O′点所经过的轨迹长度(弧长)为4π.【分析】根据弧长公式,此题主要是得到∠OBO′的度数,再根据等腰三角形的性质即可求解.解:根据题意,知OA=OB.又∵∠AOB=36°,∴∠OBA=72°.∴点旋转至O′点所经过的轨迹长度==4π.故答案为4π.18.等腰△ABC中,AB=AC=5,△ABC的面积为10,则BC=2或4.【分析】作CD⊥AB于D,则∠ADC=∠BDC=90°,由三角形的面积求出CD,由勾股定理求出AD;分两种情况:①等腰△ABC为锐角三角形时,求出BD,由勾股定理求出BC即可;②等腰△ABC为钝角三角形时,求出BD,由勾股定理求出BC即可.解:作CD⊥AB于D,则∠ADC=∠BDC=90°,△ABC的面积=AB•CD=×5×CD=10,解得:CD=4,∴AD===3;分两种情况:①等腰△ABC为锐角三角形时,如图1所示:BD=AB﹣AD=2,∴BC===2;②等腰△ABC为钝角三角形时,如图2所示:BD=AB+AD=8,∴BD===4;综上所述:BC的长为2或4;故答案为:2或4.19.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AD=18,点E在AC上且CE =AC,连接BE,与AD相交于点F.若BE=15,则△DBF的周长是24.【分析】根据等腰三角形三线合一的性质得出BD=CD,又由CE=AC,可知F是△ABC的重心,根据重心的性质得出BF=BE=10,DF=AD=6,在Rt△BDF中利用勾股定理求出BD,进而得出△DBF的周长.解:∵在△ABC中,AB=AC,AD⊥BC,∴AD是△ABC的中线,∵CE=AC,即BE是△ABC的中线,∵BE与AD相交于点F,∴F是△ABC的重心,∴BF=BE=10,DF=AD=6.在Rt△BDF中,∵∠BDF=90°,∴BD==8,∴△DBF的周长=BD+DF+BF=8+6+10=24.故答案为24.20.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD 于点F,点E在BF上,连接AE,CE,∠EAF=45°,若tan∠ECD=,BC=6,则BE的长为.【分析】作AH⊥EA交BD的延长线于H,连接CH,根据余角的性质得到∠1=∠2,求得△AEH是等腰直角三角形,得到AE=AH,根据全等三角形的性质得到BE=CH,延长CE交AE于T,根据三角函数的定义得到AT=,CT=,tan∠CTA=,作EL⊥AB于L,设EL=4a,TL=3a,ET=5a,根据勾股定理列方程即可得到结论.解:作AH⊥EA交BD的延长线于H,连接CH,∵∠EAH=∠BAC=90°,∴∠1=∠2,∵AF⊥EF,∠EAF=45°,∴∠AEH=45°,∴△AEH是等腰直角三角形,∴AE=AH,∵AB=AC,∠1=∠2,∴△AEB≌△AHC(SAS),∴BE=CH,延长CE交AE于T,∴tan∠ECD=tan∠TCA=,AC=AB=3,∴AT=,CT=,tan∠CTA=,作EL⊥AB于L,设EL=4a,TL=3a,ET=5a,∵BT=AB﹣AT=3﹣=,∴BE2=(+3a)2+(4a)2,∴CH2=BE2=(+3a)2+(4a)2,AE2=(﹣3a)2+(4a)2=AH2,∴EH2=2[(﹣3a)2+(4a)2],∵∠AEB=∠AHC=180°﹣∠AEF=135°,∠EHC=135°﹣45°=90°,∴CE2=CH2+EH2,∴2[(﹣3a)2+(4a)2]+(+3a)2+(4a)2=(﹣5a)2,解得:a=,∴BE=,故答案为:.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.先化简,再求代数式÷(1+)的值,其中a=tan60°﹣sin45°.【分析】根据分式的运算法则即可求出答案.解:由题意可知:a=﹣×=﹣1原式=×==22.如图,在方格纸中,每个小正方形的边长均为1个单位长度,有一个△ABC,它的三个顶点均与小正方形的顶点重合.(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应)请在方格纸中画出△DEF;(2)在(1)的条件下,连接AE和CE,请求出△ACE的面积S.【分析】(1)根据图形平移的性质画出平移后的三角形即可;(2)连接AE和CE,利用矩形的面积减去三个顶点上三角形的面积即可得出S的值.解:(1)如图所示:(2)由图可知,S=5×4﹣×4×1﹣×2×4﹣×2×5=20﹣2﹣4﹣5=9.23.网络购物发展十分迅速,某企业有4000名职工,从中随机抽取350人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图1和扇形图2.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对网络购物所持态度中的“经常(购物)”和“偶尔(购物)”统称为“参与购物”,那么这次接受调查的职工中“参与网购”的人数是多少?(3)这次调查中,“25﹣35”岁年龄段的职工“从不(网购)”的有22人,它占“25﹣35”岁年龄段接受调查人数的百分之几?(4)请估计该企业“从不(网购)”的人数是多少?【分析】(1)根据样本的容量为350,得到中位数应为第175与第176两个年龄的平均数,根据条形统计图即可得到中位数所在的年龄区间;(2)找出“经常(购物)”和“偶尔(购物)”共占的百分比,乘以350即可得到结果;(3)“25﹣35”岁年龄段的职工“从不(网购)”的人数除以350,即可得到结果;(4)由扇形统计图求出“从不(网购)”所占的百分比,乘以4000即可得到结果.解:(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是25﹣35之间;(2)“经常(购物)”和“偶尔(购物)”共占的百分比为40%+22%=62%,则这次接受调查的职工中“参与网购”的人数是350×62%=217(人);(3)根据题意得:“从不(网购)”的占“25﹣35”岁年龄段接受调查人数的百分比为×100%=20%;(4)根据题意得:4000×(1﹣40%﹣22%)=1520(人),则该企业“从不(网购)”的人数是1520人.24.在△ABC中,∠ACB=90°,D为AB边的中点,将△ADC沿着AC折叠,得到△AEC.(1)如图1,求证:四边形ADCE是菱形;(2)如图2,若BC=AC,菱形ADCE的面积为24,求AB边的长.【分析】(1)由折叠性质可知AD=AE、CD=CE,若证四边形ADCE是菱形,需证AD=CD,在RT△ABC中,由斜边上中线等于斜边的一半即可得证;(2)连接DE,根据BC=AC可设BC=3a、AC=4a,则AB=5a,证四边形BDEC 是平行四边形得DE=BC=3a,由S菱形ADCE=2S△ACD==24求得a的值即可得答案.解:(1)∵∠ACB=90°,D为中点,∴CD=AD,∵△ADC折叠得到△AEC,∴AE=EC=CD=AD,∴四边形ADCE是菱形;(2)连接DE,设BC=3a,AC=4a,则AB=5a,∵四边形ADCE是菱形,∴CE∥BD,∵CE=CD=BD,∴四边形BDEC是平行四边形,∴DE=BC=3a,∵四边形ADCE是菱形,∴AC⊥DE,∴S菱形ADCE=2S△ACD==24,∴a=2,∴AB=5a=10.25.松雷商厦两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇,用去资金17400元;第二次购进10台空调和30台电风扇,用去资金22500元.(1)求挂式空调和电风扇每台的采购价各是多少元?(2)若该商厦计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该商厦最多可再购进空调多少台?【分析】(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,根据采购价格=单价×数量,可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设再购进空调a台,则购进风扇(70﹣a)台,根据采购价格=单价×数量,可列出关于a的一元一次不等式,解不等式即可得出结论.解:(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,根据题意,得,解得.答:挂式空调每台的采购价是1800元,电风扇每台的采购价是150元.(2)设再购进空调a台,则购进风扇(70﹣a)台,由已知,得1800a+150(70﹣a)≤30000,解得:a≤11,故该经营业主最多可再购进空调11台.26.已知:AB,CF都是⊙O的直径,AH,CD都是⊙O的弦,CD⊥AB于点E,AH=CD.(1)如图1,求证:AH⊥CF;(2)如图2,延长AH,CD交于点P,求证:PH=PD;(3)如图3,在(2)的条件下,延长AC,HE交于点Q,若∠Q=45°,CQ=2,求AP的长.【分析】(1)要证明AH⊥CF,只要证明即可,根据垂径定理和∠AOF=∠BOC,即可证明结论成立;(2)要证明PH=PD,只要证明PA=PC即可,根据AH=CD,即可得到,进而得到,然后即可得到结论成立;(3)要求AP的长,需要作AK⊥QH于点K,再根据∠Q=45°,CQ=2和全等三角形的判定与性质、三角形的相似、勾股定理即可求得AP的长.【解答】(1)证明:∵AH=CD,∴,∵AB是直径,CD⊥AB,∴,∵∠AOF=∠BOC,∴,∴AH⊥CF;(2)证明:连接AC,如图2所示,∵AH=CD,∴,∴,∴,∴∠PCA=∠PAC,∴PC=PA,又∵CD=AH,∴PD=PH,即PH=PD;(3)过点A作AK⊥QH于点K,连接DH,如图3所示,∵四边形ACDH内接于⊙O,∴∠PAC=∠PDH,由(2)知,∠PAC=∠PCA,∴∠PDH=∠PCA,∴DH∥AC,∴∠CQE=∠DHE,∵∠CEQ=∠DHE,CE=DE,∴△CQE≌△DHE(AAS),∴EQ=EH,CQ=DH=2,∵∠Q=45°,AK⊥QH,∴∠Q=∠QAK=45°,∴AK=QK,∵∠CEQ+∠AEK=180°﹣∠AEC=90°,∠AEK+EAK=90°,∴∠EAK=CEQ=∠PCA﹣∠Q=∠PAC﹣∠QAK=∠HAK,∵∠AKE=∠AKH=90°,AK=AK,∠EAK=∠HAK,∴△EAK≌△HAK(ASA),∴EK=HK,AE=AH=CD,设EK=x,则EH=EQ=2x,∴AK=QK=3x,AQ=AK=3x,AE==x=AH=CD,∴CE==,∴AC==,∵AQ﹣AC=CQ,∴3x﹣=2,解得,x=2,∴AC=10,AH=4,∵DH∥AC,∴△PDH∽△PCA,∴,∴,即,解得,PA=5,即AP的长是5.27.已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D 的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d 的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.【分析】(1)令y=0,则(x+2)(x﹣m)=0,根据AB=7可求出m的值,则答案可求出;(2)如图1,过点D作DK⊥x轴于点K,设∠DAB=α,则D(d,﹣),求出CE=5﹣(5﹣d)=d,根据三角形面积公式可得解;(3)如图2,过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD于点N.则∠ECF=∠HDE=α,HE=3k,CP =5k,CE=HD=d,证明△CEF≌△DHE,得出EF=HE=DN=3k,CF=DE=FN,可得出d=6k,在Rt△DHE中,tan,由(2)可求出d的值,则D点坐标可求出.则S=8.【解答】(1)由y=x2+x+m,令y=0,则(x+2)(x﹣m)=0,∴AO=2,BO=m,∴A(﹣2,0),B(m,0),∵AB=7,∴m﹣(﹣2)=7,m=5,∴y=;(2)过点D作DK⊥x轴于点K,设∠DAB=α,则D(d,﹣),∴=.∴EO=AO•tanα=5﹣d,CE=5﹣(5﹣d)=d,∴;(3)过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD于点N.∴∠ECF=∠HDE=α,HE=3k,CP=5k,CE=HD=d,∵CE=HD,∠CEF=∠CHD=90°,∴△CEF≌△DHE(ASA),∵EF∥DN,NF∥DE,∴四边形EDNF为平行四边形,∴EF=HE=DN=3k,CF=DE=FN,∴△CFN为等腰直角三角形,∴∠PCN=∠FNC=45°,∴∠PCN=∠PNC=45°﹣α,∴PC=PN=5k,∴PD=2k,∴CH=d﹣3k,PH=d﹣2k,∴(d﹣3k)2+(d﹣2k)2=(5k)2,∴(d﹣6k)(d+k)=0,∴d=6k,∴在Rt△DHE中,tan,由(2)知,∴.∴d=4,∴D(4,3),∴==8.。

2020年黑龙江省哈尔滨中考数学一模试卷含答案

2020年黑龙江省哈尔滨中考数学一模试卷含答案
4.【答案】B
【解析】解:俯视图从左到右分别是 2,1,2 个正方形,如图所示:

故选:B. 俯视图有 3 列,从左到右正方形个数分别是 2,1,2. 本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象 能力.
5.【答案】A
【解析】解:根据题意,在反比例函数
减小, 即可得 k-1>0, 解得 k>1. 故选:A.
3.【答案】B
【解析】解:A、是中心对称图形,故本选项不符合题意; B、不是中心对称图形,故本选项符合题意; C、是中心对称图形,故本选项不符合题意; D、是中心对称图形,故本选项不符合题意. 故选:B. 根据中心对称图形的概念对各选项分析判断即可得解. 本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 180 度后两部 分重合.
20. 如图,等腰直角三角形 ABC 中,AB=AC,∠BAC=90°,D 是 AB 上一点,连接 CD, 过点 A 作 AE⊥CD 于 F 交 BC 于 E,G 在是 CF 上一点,过点 G 作 GH⊥BC 于 H, 延长 GH 到 K 连接 KC,使∠K+2∠BAE=90°,若 HG:HK=2:3,AD=10,则线段 CF 的长度为______.
23. 随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚 ,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太 阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的 问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成 如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题: (1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图; (3)若洪祥中学共有 1350 名学生,请你估计最喜欢太阳岛风景区的学生有多少名

黑龙江省哈尔滨市2020版数学中考一模试卷(II)卷

黑龙江省哈尔滨市2020版数学中考一模试卷(II)卷

黑龙江省哈尔滨市2020版数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题:本大题有10个小题,每小题3分,共30分。

(共10题;共25分)1. (3分)的值是A . 7B . -1C . 1D . -72. (3分)(2016·毕节) 下列运算正确的是()A . ﹣2(a+b)=﹣2a+2bB . (a2)3=a5C . a3+4a= a3D . 3a2•2a3=6a53. (3分) (2019八上·荆门期中) 如果P点的坐标为(a,b),它关于y轴的对称点为P1 , P1关于x轴的对称点为P2 ,已知P2的坐标为(-2,3),则点P的坐标为()A . (-2,-3)B . (2,-3)C . (-2,3)D . (2,3)4. (3分)(2011·希望杯竞赛) 两个直角三角形如图放置,则∠BFE与∠CAF的度数之比等于()A . 8B . 9C . 10D . 115. (3分)已知甲、乙两种商品的原价和为200元,因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%,求甲、乙两种商品的原单价分别是()A . 50元,150元B . 150元,50元C . 80元,120元D . 120元,80元6. (2分)小明周末去爬山,从家出发到山下开始爬山,到达山顶后在原地休息了一会,再原路返回下山到家,那么小明离家的距离S(单位:千米)与离家的时间t(单位:时)之间的函数关系图象大致是()A .B .C .D .7. (2分)(2018·达州) 如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF= AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为()A .B .C .D . 18. (2分) (2017·北仑模拟) 如图,已知矩形ABCD满足AB:BC=1:,把矩形ABCD对折,使CD与AB 重合,得折痕EF,把矩形ABFE绕点B逆时针旋转90°,得到矩形A′BF′E′,连结E′B,交A′F′于点M,连结AC,交EF于点N,连结AM,MN,若矩形ABCD面积为8,则△AMN的面积为()A . 4B . 4C . 2D . 19. (2分) (2019九上·道里期末) 如图,过半径为2的外一点P作的两条切线PA、PB,切点分别为A,B,,连接OP,则OP的长为A .B .C . 3D .10. (2分)下列函数的图像在每一个象限内,值随值的增大而增大的是()A .B .C .D .二、填空题:本大题有6个小题,每小题4分,共24分, (共6题;共18分)11. (4分) (2018八上·长春期末) 分解因式:x2(x-y)+(y-x)=________ .12. (4分)(2019·扬中模拟) 某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是________.13. (4分) (2015八下·绍兴期中) 如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2 ,那么小道进出口的宽度应为________米.14. (2分)(2019·瑶海模拟) 如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE交于点G,则劣弧的长为________.15. (2分) (2019九上·香坊期末) 如图中,,,中,,,点D在线段AC上,点E在段BC的延长线上,将绕点C旋转得到,则 ________.16. (2分) (2018八上·嵊州期末) 已知等边三角形ABC中,AB=4,点D是边AB的中点,点E是边BC上的动点,连接DE,将△BDE沿直线DE翻折,点B的对应点为B′,当直线B′E与直线AC的夹角为30°时,BE的长度是________.三、解答题:本大题有7个小题,共66分. (共7题;共45分)17. (2分)(2016·义乌模拟) 解方程(1)解方程:(2)解不等式组:.18. (8分)为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如右表:体育成绩(分)人数(人)百分比(%)2681627a242815d29b e30c10根据上面提供的信息,回答下列问题:(1)求随机抽取学生的人数;(2)求统计表中b的值;(3)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.19. (2分)(2017·集宁模拟) 如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/秒;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/秒,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t <5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为y(cm2),求y与t之间的函数关系式.20. (8分)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义(2)求线段AB所表示的y1与x之间的函数表达式(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?21. (8分)(2017·河北) 如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=4 时,求的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.22. (2分) (2016九上·赣州期中) 如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c过A,B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PA,PC,PG,分别以AP,AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.23. (15分) (2019九上·慈溪期中) 已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时:①请判断四边形BDCE的形状,并证明你的结论②当∠ABC为多少度时,点E在圆D上?请说明理由.参考答案一、选择题:本大题有10个小题,每小题3分,共30分。

2020届中考复习哈尔滨市南岗区中考数学模拟试题(五)(有配套答案)

2020届中考复习哈尔滨市南岗区中考数学模拟试题(五)(有配套答案)

黑龙江省哈尔滨市南岗区中考数学模拟试卷(五)一、选择题1.﹣的相反数是()A.﹣2 B.2 C.﹣ D.2.下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x23.下列图形中不是轴对称图形的是()A.B.C.D.4.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+25.一个几何体的三视图如图所示,那么这个几何体是()A.B. C. D.6.如图,已知经过原点的直线AB与反比例函数y=(k≠0)图象分别相交于点A和点B,过点A作AC⊥x 轴于点C,若△ABC的面积为4,则k的值为()A.2 B.4 C.6 D.87.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.58.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,F为BC边上一点,连接AF交DE于点G,下列说法不正确的是()A. = B. = C. = D. =9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°10.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①② B.②③ C.②④ D.③④二、填空题11.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.12.计算﹣= .13.函数y=中,自变量x的取值范围是.14.把多项式a3b﹣6a2b+9ab因式分解,最后结果等于.15.不等式组的解集.16.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.17.用白铁皮做罐头盒,每张铁皮可制作16个盒身或制作43个盒底,1个盒身与2个盒底配成一套罐头盒,现有150张白铁皮,用多少张制做盒身,多少张白铁皮制做盒底,可以正好制成整套罐头盒?设用x张白铁皮制做盒身,可列方程为.18.如图,在△ABC中,以AB为直径的⊙O与AC相交于点M,弦MN∥BC,与AB相交于点E,且ME=1,AM=2,AE=,则弧BN的长为.19.在△ABC中,AD为高线,若AB+BD=CD,AC=4,BD=3,则线段BC的长度为.20.菱形ABCD中,∠B=60°,延长BC至E,使得CE=BC,点F在DE上,DF=6,AG平分∠BAF,与线段BC 相交于点G,若CG=2,则线段AB的长度为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中x=2sin45°﹣4sin30°.22.如图,在5×8的网格中,每个小正方形的边长均为1,线段AB的顶点均在小正方形的顶点上.(1)画出等腰直角△ABC,点C在格点上;(2)画出有一个锐角的正切值是2的直角△ABD,点D在格点上;(3)在(1)(2)的条件下,连接CD,请直接写出△BCD的面积.23.某校九年级举办了首届“汉字听写大赛”,全校500名九年级学生全部参加,他们同时听写50个汉字,每正确听写出一个汉字得1分,为了解学生们的成绩,随机抽取了部分学生的成绩,并根据测试成绩绘制出如下两幅不完整的统计表和频数分布直方图:组别成绩x分人数频率1组 25≤<30 4 0.082组 30≤x<35 8 0.163组 35≤x<40 a 0.324组 40≤x<45 b c5组 45≤x<50 10 0.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.24.在四边形ABCD中,延长CD至E,使得CE=BD,连接AE,∠ABD的角平分线与AE相交于点F.(1)如图1,当四边形ABCD为正方形时,连接AC交BF于G,求证:AF=FG;(2)如图2,当四边形ABCD为平行四边形时,判断线段AF与EF的数量关系,并证明你的判断.25.“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?26.在半圆O中,AB为直径,弦AD、BC交于E,连接CD,∠C+2∠D=90°.(1)如图1,求证:弧AC=弧CD;(2)如图2,点F为劣弧BD上一点,连接OF交BC于G,连接BF,若∠CBF=45°,求证:BG=EG;(3)如图3,在(2)的条件下,连接AG并延长与⊙O相交于点H,连接DH,若HG=5,DH=9,求线段BE的长度.27.抛物线y=ax(x﹣2)经过坐标原点O,与x轴相交于另外一点A,顶点B在直线y=x上;(1)如图1,求a值;(2)如图2,点C为抛物线上第四象限内一点,连接OC与对称轴相交于点D,过点C作x轴平行线,与对称轴相交于点E,与抛物线相交于点F,若BD=DE,求点C坐标;(3)如图3,在(2)的条件下,点M在线段OF上,连接并延长CM至点R,点N在第一象限的抛物线上,连接CN,EN,且CN=CM=RN,当∠CNR=4∠FCM时,求点N坐标.四、备用题28.下列说法正确的个数为()个①两组对边分别相等的四边形是平行四边形②对角线相等的四边形是矩形③对角线互相垂直的平行四边形是菱形④正方形是轴对称图形,有2条对称轴.A.1 B.2 C.3 D.429.如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,看旗杆顶部M的仰角为30°.两人(参考数据:,,相距30米且位于旗杆两侧(点B,N,D在同一条直线上).求旗杆MN的高度.结果保留整数)30.如图1,AB、CD是⊙O的弦,AB⊥CD,垂足为F,E是AB上一点,AE=CE.(1)延长OE与弧AC相交于点M,求证:点M是弧AC中点;(2)如图2,点G在AB上,连接DG,OG,延长DG,与EC相交于点H,若DG=AG.求证:∠DHC=2∠EOG;(3)在(2)的条件下,若∠EOG=60°,CH=2,AB=8.求CD的长.黑龙江省哈尔滨市南岗区中考数学模拟试卷(五)参考答案与试题解析一、选择题1.﹣的相反数是()A.﹣2 B.2 C.﹣ D.【考点】相反数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A,根据合并同类项,可判断B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相乘,故C错误;D、底数不变指数相减,故D错误;故选:B.【点评】本题考查了幂的运算,根据法则计算是解题关键.3.下列图形中不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+2【考点】二次函数的三种形式.【专题】转化思想.【分析】根据配方法进行整理即可得解.【解答】解:y=x2﹣2x+3,=(x2﹣2x+1)+2,=(x﹣1)2+2.故选:D.【点评】本题考查了二次函数的三种形式的转化,熟记配方法的操作是解题的关键.5.一个几何体的三视图如图所示,那么这个几何体是()A.B. C. D.【考点】由三视图判断几何体.【分析】首先根据俯视图得到这个几何体为锥体,再根据主视图和左视图得出该几何体是柱体和锥体的组合体.【解答】解:根据俯视图发现该几何体为圆锥,B、C不符合题意,根据主视图和左视图发现该几何体为圆柱和圆锥的结合体,D符合题意,故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.6.如图,已知经过原点的直线AB与反比例函数y=(k≠0)图象分别相交于点A和点B,过点A作AC⊥x 轴于点C,若△ABC的面积为4,则k的值为()A.2 B.4 C.6 D.8【考点】反比例函数与一次函数的交点问题.【分析】首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于2,然后由反比例函数y=的比例系数k的几何意义,可知△AOC的面积等于|k|,从而求出k的值.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=4÷2=2,又∵A是反比例函数y=图象上的点,且AC⊥x轴于点C,∴△AOC的面积=|k|,∴|k|=2,∵k>0,∴k=4.故选B.【点评】本题考查的是反比例函数与一次函数的交点问题,涉及到反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.7.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.5【考点】翻折变换(折叠问题).【专题】几何图形问题.【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.【点评】考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.8.如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,F为BC边上一点,连接AF交DE于点G,下列说法不正确的是()A. = B. = C. = D. =【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定得出△ADG∽△ABF,△AEG∽△ACF,△ADE∽△ABC,再根据相似三角形的性质得出比例式,最后逐个判断即可.【解答】解:A、∵DE∥BC,∴△ADG∽△ABF,△AEG∽△ACF,∴=, =,∴=,∴=,故本选项错误;B、∵DE∥BC,∴△ADG∽△ABF,△ADE∽△ABC,∴=, =,∴=,故本选项错误;C、根据DE∥BC和相似三角形的性质不能推出=,故本选项正确;D、∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,故本选项错误;故选C.【点评】本题考查了相似三角形的性质和判定的应用,能正确运用定理进行推理是解此题的关键.9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°【考点】旋转的性质.【专题】几何图形问题.【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.10.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①② B.②③ C.②④ D.③④【考点】相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.【专题】压轴题.【分析】①根据平行四边形的对边相等的性质即可求得AO≠BO,即可求得①错误;②易证△AOE≌△COF,即可求得EO=FO;③根据相似三角形的判定即可求得△EAM∽△EBN;④易证△EAO≌△FCO,而△FCO和△CNO不全等,根据全等三角形的传递性即可判定该选项错误.【解答】解:①平行四边形中邻边垂直则该平行四边形为矩形,故本题中AC≠BD,即AO≠BO,故①错误;②∵AB∥CD,∴∠E=∠F,又∵∠EOA=∠FOC,AO=CO∴△AOE≌△COF,∴OE=OF,故②正确;③∵AD∥BC,∴△EAM∽△EBN,故③正确;④∵△AOE≌△COF,且△FCO和△CNO不全等,故△EAO和△CNO不全等,故④错误,即②③正确.故选B.【点评】本题考查了相似三角形的判定,考查了全等三角形对应边相等的性质,考查了平行四边形对边平行的性质,本题中求证△AOE≌△COF是解题的关键.二、填空题11.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.计算﹣= ﹣.【考点】二次根式的加减法.【分析】首先化简二次根式进而合并同类二次根式求出答案.【解答】解:原式=×﹣2=﹣2=﹣.故答案为:﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.13.函数y=中,自变量x的取值范围是x≥﹣2且x≠0 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.把多项式a3b﹣6a2b+9ab因式分解,最后结果等于ab(a﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3b﹣6a2b+9ab,=ab(a2﹣6a+9),=ab(a﹣3)2.故答案为:ab(a﹣3)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.不等式组的解集﹣1≤x<.【考点】解一元一次不等式组.【分析】分别求得不等式①②的解,然后取其公共部分即可得到不等式组的解集.【解答】解:∵不等式组,∴解①得:x≥﹣1,解②得:x<,所以不等式组的解集为:﹣1≤x<,故答案为:﹣1≤x<.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.【考点】列表法与树状图法.【分析】此题可以借助于列表法求解,一共有20种情况记为m,其中选出的恰为一男一女的有12种情况记为n,根据概率公式可知选出的恰为一男一女的概率是=.【解答】解:列表得:男1,女2 男2,女2 男3,女2 女1,女2男1,女1 男2,女1 男3,女1 女2,女1男1,男3 男2,男3 女1,男3 女2,男3男1,男2 男3,男2 女1,男2 女2,男2男2,男3 男3,男1 女1,男1 女2,男1∴一共有20种情况,选出的恰为一男一女的有12种情况;∴选出的恰为一男一女的概率是=.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.17.用白铁皮做罐头盒,每张铁皮可制作16个盒身或制作43个盒底,1个盒身与2个盒底配成一套罐头盒,现有150张白铁皮,用多少张制做盒身,多少张白铁皮制做盒底,可以正好制成整套罐头盒?设用x张白铁皮制做盒身,可列方程为2×16x=43(150﹣x).【考点】由实际问题抽象出一元一次方程.【分析】用x张白铁皮制盒身,则可用(150﹣x)张制盒底,那么盒身有16x个,盒底有43(150﹣x)个,然后根据1个盒身与2个盒底配成一套罐头盒即可列出方程.【解答】解:设用x张白铁皮制盒身,则可用(150﹣x)张制盒底,根据题意列方程得:2×16x=43(150﹣x),故答案为2×16x=43(150﹣x).【点评】本题考查了由实际问题抽象出一元一次方程的知识,解答本题的关键是读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程.18.如图,在△ABC中,以AB为直径的⊙O与AC相交于点M,弦MN∥BC,与AB相交于点E,且ME=1,AM=2,AE=,则弧BN的长为π.【考点】弧长的计算;直线与圆的位置关系.【分析】先根据勾股定理判断出△AME的形状,再由垂径定理得出=,由锐角三角函数的定义求出∠A 的度数,故可得出∠MOB的度数,求出OM的长,再根据弧长公式即可得出结论.【解答】解:∵△AME中,ME=1,AM=2,AE=,∴AE2+ME2=AM2,∴△AME是直角三角形,即AE⊥MN,∵sinA==,∴∠A=30°,∴∠MOB=60°,∴=sin∠MOB,即=,解得OM=,∵AE⊥MN,∴=,∴弧BN的长为: =π.故答案是π.【点评】本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.求出∠MOB的度数以及⊙O的半径是解题的关键.19.在△ABC中,AD为高线,若AB+BD=CD,AC=4,BD=3,则线段BC的长度为5或11 .【考点】勾股定理;等腰三角形的判定与性质.【专题】分类讨论.【分析】分两种情形①如图1中,△ABC是锐角三角形时.②如图2中,△ABC是钝角三角形时,分别利用勾股定理,列出方程即可解决问题.【解答】解:如图1中,设AB=x,则CD=AB+BD=3+x,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴AD2=AB2﹣BD2=AC2﹣CD2,∴x2﹣32=(4)2﹣(x+3)2,解得x=5或﹣8(舍弃),∴BC=BD+CD=3+3+5=11.如图2中,设AB=x,则CD=AB+BD=3+x,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴AD2=AB2﹣BD2=AC2﹣CD2,∴x2﹣32=(4)2﹣(x+3)2,解得x=5或﹣8(舍弃),∴BC=CD﹣BD=5,故答案为5或11.【点评】本题考查勾股定理的应用,解题的关键是学会用分类讨论的思想思考问题,注意有两种图形,学会构建方程解决问题,属于中考常考题型.20.菱形ABCD中,∠B=60°,延长BC至E,使得CE=BC,点F在DE上,DF=6,AG平分∠BAF,与线段BC 相交于点G,若CG=2,则线段AB的长度为10 .【考点】菱形的性质.【分析】将△ADF绕点A顺时针旋转120°到△ABK,设AB=a.作FH⊥AD于H.首先证明KA=KG=a+4,在RT △AFH中利用勾股定理即可解决问题.【解答】解:将△ADF绕点A顺时针旋转120°到△ABK,设AB=a.作FH⊥AD于H.∵四边形ABCD是菱形,∴AB=BC=CD=AD=CE=a,AB∥CD,AD∥BC,∵∠ABC=60°,∴∠DCE=∠ABC=60°,∴△DCE是等边三角形,∴∠E=∠EDH=60°,∵DF=6,∴DH=DF=3,FH=3,∵∠AGK=∠DAG=∠DAF+∠FAC,∵∠DAF=∠KAB,∠FAC=∠BAC,∴∠KAG=∠KGA,∴KA=KG=AF=a+4,在RT△AHF中,∵AH2+FH2=AF2,∴(a+3)2+(3)2=(a+4)2,∴a=10.故答案为10.【点评】本题考查菱形的性质、全等三角形的性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会旋转法添加辅助线,构造全等三角形,学会用方程的思想思考问题,属于中考填空题中的压轴题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中x=2sin45°﹣4sin30°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先算括号里面的,再算除法,最后求出x的值代入进行计算即可.【解答】解:原式=•=•=•=,当x=2sin45°﹣4sin30°=2×﹣4×=﹣2时,原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.22.如图,在5×8的网格中,每个小正方形的边长均为1,线段AB的顶点均在小正方形的顶点上.(1)画出等腰直角△ABC,点C在格点上;(2)画出有一个锐角的正切值是2的直角△ABD,点D在格点上;(3)在(1)(2)的条件下,连接CD,请直接写出△BCD的面积.【考点】作图—应用与设计作图;等腰直角三角形;解直角三角形.【分析】(1)直接利用等腰直角三角形的性质结合勾股定理得出答案;(2)直接利用锐角三角函数关系进而得出答案;(3)直接利用三角形面积求法进而得出答案.【解答】解:(1)如图所示:△ABC,即为所求;(2)如图所示:△ABD,即为所求;(3)S△BCD=×3×4﹣×1×3﹣1﹣×1×2=2.5.【点评】此题主要考查了应用设计与作图和等腰直角三角形的性质,正确应用勾股定理是解题关键.23.某校九年级举办了首届“汉字听写大赛”,全校500名九年级学生全部参加,他们同时听写50个汉字,每正确听写出一个汉字得1分,为了解学生们的成绩,随机抽取了部分学生的成绩,并根据测试成绩绘制出如下两幅不完整的统计表和频数分布直方图:组别成绩x分人数频率1组 25≤<30 4 0.082组 30≤x<35 8 0.163组 35≤x<40 a 0.324组 40≤x<45 b c5组 45≤x<50 10 0.2(1)求此次抽查了多少名学生的成绩;(2)通过计算将频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)利用1组的人数除以1组的频率可求此次抽查了多少名学生的成绩;(2)根据总数乘以3组的频率可求a,用50减去其它各组的频数即可求得b的值,再用1减去其它各组的频率即可求得c的值,即可把频数分布直方图补充完整;(3)先得到成绩优秀的频率,再乘以500即可求解.【解答】解:(1)4÷0.08=50(名).答:此次抽查了50名学生的成绩;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如图所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次测试九年级学生中成绩优秀的人数是220名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.在四边形ABCD中,延长CD至E,使得CE=BD,连接AE,∠ABD的角平分线与AE相交于点F.(1)如图1,当四边形ABCD为正方形时,连接AC交BF于G,求证:AF=FG;(2)如图2,当四边形ABCD为平行四边形时,判断线段AF与EF的数量关系,并证明你的判断.【考点】正方形的性质;平行四边形的性质.【分析】(1)在等腰三角形ACE中,求得∠EAC=67.5°,根据∠AGF=∠ABG+∠BAG,求得∠AGF=67.5°,进而根据等角对等边,得出结论;(2)延长BF、CE交于点G,根据∠ABF=∠DBG,∠AFB=∠EFG,AB=EG,判定△ABF≌EGF(AAS),进而得出全等三角形对应边相等.【解答】解:(1)如图1,当四边形ABCD为正方形时,AC=BD,∠ACD=45°,∵CE=BD,∴AC=EC,∴等腰三角形ACE中,∠EAC=(180°﹣45°)÷2=67.5°,∵BG平分∠ABD,∠ABD=∠BAC=45°,∴∠ABG=22.5°,∴∠AGF=∠ABG+∠BAG=45°+22.5°=67.5°,∴∠EAC=∠AGF,∴AF=FG;(2)线段AF与EF相等.如图2,延长BF、CE交于点G,当四边形ABCD为平行四边形时,AB∥CD,∴∠ABF=∠G,∵BG平分∠ABD,∴∠ABF=∠DBG,∴∠G=∠DBG,∴BD=GD,又∵CE=BD,∴CE=GD,∴CD=GE,又∵平行四边形ABCD中,AB=CD,∴AB=EG,由∠ABF=∠DBG,∠AFB=∠EFG,AB=EG,可得△ABF≌EGF(AAS),∴AF=EF.【点评】本题主要考查了正方形的性质以及平行四边形的性质,解题时需要运用等腰三角形的判定方法,以及全等三角形的判定与性质,解决问题的关键是作辅助线构造全等三角形.25.(2013•衢州)“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据原有的人数﹣a分钟检票额人数+a分钟增加的人数=520建立方程求出其解就可以;(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由待定系数法求出函数的解析式,再将x=20代入解析式就可以求出结论;(3)设需同时开放n个检票口,根据原来的人数+15分进站人数≤n个检票口15分钟检票人数建立不等式,求出其解即可.【解答】解:(1)由图象知,640+16a﹣2×14a=520,∴a=10;(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,y=﹣26x+780,当x=20时,y=260,即检票到第20分钟时,候车室排队等候检票的旅客有260人.(3)设需同时开放n个检票口,则由题意知14n×15≥640+16×15解得:n≥4,∵n为整数,∴n最小=5.答:至少需要同时开放5个检票口.【点评】本题考查了待定系数法求一次函数的解析式的运用,一元一次不等式的运用,解答的过程中求出函数的解析式是关键,建立一元一次不等式是重点.26.在半圆O中,AB为直径,弦AD、BC交于E,连接CD,∠C+2∠D=90°.(1)如图1,求证:弧AC=弧CD;(2)如图2,点F为劣弧BD上一点,连接OF交BC于G,连接BF,若∠CBF=45°,求证:BG=EG;(3)如图3,在(2)的条件下,连接AG并延长与⊙O相交于点H,连接DH,若HG=5,DH=9,求线段BE的长度.【考点】圆的综合题.【分析】(1)连接BD,由AB为⊙O的直径,得到∠ADB=90°,根据直角三角形的性质得到∠A+∠ABD=90°,等量代换得到∠ABD=2∠ADC,求得∠ABC=∠CBD,即可得到结论;(2)连接OC,根据圆周角定理得到∠COF=90°,根据垂径定理得到OC⊥AD,推出AD∥OF,根据平行线等分线段定理即可得到结论;(3)连接BD,DG,作GM⊥DH于M,由AB为⊙O的直径,得到∠ADB=90°,根据直角三角形的性质得到DG=BG,推出∠GDM=∠BGH,通过△DGM≌△BGH,得到DM=HG,根据勾股定理即可得到结论.【解答】解:(1)连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠C+2∠D=90°,∠A=∠C,∴∠ABD=2∠ADC,∵∠ADC=∠ABC,∴∠ABC=∠CBD,∴=;(2)连接OC,∵∠CBF=45°,∴∠COF=90°,∵=,∴OC⊥AD,∴AD∥OF,。

2020届哈尔滨市南岗区中考数学模拟试卷(5月)(有答案)(已纠错)

2020届哈尔滨市南岗区中考数学模拟试卷(5月)(有答案)(已纠错)

黑龙江省哈尔滨市南岗区中考数学模拟试卷(5月份)一、选择题:(每题3分,共30分)1.(3分)3的倒数是()A.﹣3 B.3 C.D.2.(3分)下列运算正确的是()A.a3•a2=a6 B.(x3)3=x6C.x5+x5=x10D.﹣a8÷a4=﹣a43.(3分)下面的图案中,是轴对称图形而不是中心对称图形的是()A.B.C.D.4.(3分)反比例函数y=﹣的图象经过点(﹣1,3),则k的值为()A.3 B.C.﹣ D.﹣35.(3分)由4个相同的小立方块搭成的几何体如图所示,它的左视图是()A. B.C. D.6.(3分)不等式组的解集是()A.<x≤2 B.≤x<1 C.﹣2<x≤D.﹣2≤x≤7.(3分)用铝片做听装饮料瓶,现有150张铝片,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=43(150﹣x)B.16x=43(150﹣x)C.16x=2×43(150﹣x)D.16x=43(75﹣x)8.(3分)如图,为测量一幢大楼的高度,在地面上距离楼底O点30m的点A处,测得楼顶B 点的仰角∠OAB=65°,则这幢大楼的高度为()m.A.30•sin65°B.C.30•tan65°D.9.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.10.(3分)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,则乙在途中等候甲用了()秒.A.200 B.150 C.100 D.80二、填空题(每题3分,共30分)11.(3分)将201700000用科学记数法表示为.12.(3分)函数y=的自变量的取值范围是.13.(3分)化简:=.14.(3分)把多项式ax2+2ax+a分解因式的结果是.15.(3分)若扇形的弧长为6πcm,面积为15πcm2,则这个扇形所对的圆心角的度数为°.16.(3分)二次函数y=x2+2x﹣7的对称轴是直线.17.(3分)已知正方形ABCD中,点E为直线BC上一点,若AE=2BE,则∠DAE=度.18.(3分)如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD交AC于点B,若OB=5,则BC等于.19.(3分)在一个不透明的袋子中装有2个白球,3个黑球和若干个红球,他们除颜色不同外,其余均相同,从中随机摸出一个球是白球的概率为,则摸出一个球是黑球的概率为.20.(3分)如图,在等腰直角三角形ABC中,AB=CB=12,∠ABC=90°,点D为AC上一点,tan ∠ADB=3,过D作ED⊥BD,且DE=BD,连接BE,AE,EC,点F为EC中点,连接DF,则DF 的长为.三、解答题21.先化简,再求值:÷﹣,其中x=2tan60°﹣4sin30°.22.如图,在小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在图1中画一个以线段AB为一边的平行四边形ABCD,点C、D均在小正方形的顶点上,且平行四边形ABCD的面积为10;(2)在图2中画一个钝角三角形ABE,点E在小正方形的顶点上,且三角形ABE的面积为4,tan∠AEB=.请直接写出BE的长.23.某校组织学生书法比赛,在限定每人只交一份书法作品的条件下,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的学生书法作品共计多少份;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?24.如图1,四边形ABCD中,AC⊥BD于点O,点E、F、G、H分别为边AB、BC、CD、AD的中点,连接EF、FG、GH与EH.(1)求证:四边形EFGH为矩形;(2)如图2,连接FH,若FH经过点O,在不添加任何辅助线的情况下,请直接写出图中面积相等的矩形.25.在哈市地铁施工过程中的某项工程,由甲、乙两工程队合作20天可完成,甲工程队单独完成此项工程的时间是乙工程队单独完成此项工程时间的2倍.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?26.如图1,⊙O中,AB为直径,弧BC=弧AC,点P在⊙O上,连接PC交AB于点E,过C作PC的垂线交⊙O于点Q(1)求证:弧AP=弧BQ;(2)如图2,点F在弧AC上,∠FEA=∠QEB=30°,连接PF,求证:PF=AO;(3)在(2)的条件下,如图3,过E作EG⊥FP于点G,若EG=6,求OE的长.27.如图,在平面直角坐标系中,点O为坐标原点,直线y=3x﹣3交x轴于点A,交y轴于点C,抛物线y=ax2+5ax+c经过A、C两点,与x轴的另一个交点为点B(1)求抛物线的解析式(2)点P为第三象限抛物线上一点,连接AP交y轴于点E,过点P作PF⊥x轴于点F,设点P的横坐标为m,连接CP,△ACP的面积为S,求S与m的函数解析式.(3)在(2)的条件下,点M为BF上一点,且MF=OE,连接CM、BE,相交于点K,连接FK,若∠OBE=∠KFP,求点P的坐标.黑龙江省哈尔滨市南岗区中考数学模拟试卷(5月份)参考答案与试题解析一、选择题:(每题3分,共30分)1.(3分)3的倒数是()A.﹣3 B.3 C.D.【解答】解:3的倒数是.故选:C.2.(3分)下列运算正确的是()A.a3•a2=a6 B.(x3)3=x6C.x5+x5=x10D.﹣a8÷a4=﹣a4【解答】解:A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=﹣a4,符合题意,故选:D.3.(3分)下面的图案中,是轴对称图形而不是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:C.4.(3分)反比例函数y=﹣的图象经过点(﹣1,3),则k的值为()A.3 B.C.﹣ D.﹣3【解答】解:∵反比例函数y=﹣的图象经过点(﹣1,3),∴3=﹣,解得k=,故选:B.5.(3分)由4个相同的小立方块搭成的几何体如图所示,它的左视图是()A. B.C. D.【解答】解:从左面看,会看到叠放的两个正方形,故选C.6.(3分)不等式组的解集是()A.<x≤2 B.≤x<1 C.﹣2<x≤D.﹣2≤x≤【解答】解:,由①得,x≥,由②得,x<1;∴不等式组的解集为≤x<1,故选:B.7.(3分)用铝片做听装饮料瓶,现有150张铝片,每张铝片可制瓶身16张或制瓶底43张,一个瓶身和两个瓶底可配成一套,设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=43(150﹣x)B.16x=43(150﹣x)C.16x=2×43(150﹣x)D.16x=43(75﹣x)【解答】解:设用x张制瓶身,则用(150﹣x)张制瓶底才能正好制成整套的饮料瓶,根据题意列方程得,2×16x=43(150﹣x),8.(3分)如图,为测量一幢大楼的高度,在地面上距离楼底O点30m的点A处,测得楼顶B 点的仰角∠OAB=65°,则这幢大楼的高度为()m.A.30•sin65°B.C.30•tan65°D.【解答】解:如图,在RT△ABO中,∵∠AOB=90°,∠A=65°,AO=30m,∴tan65°=,∴BO=30•tan65°.故选:C.9.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是()A.B.3 C.5 D.【解答】解:∵AD∥BE∥CF,∴,即:,故选:B.10.(3分)甲、乙两人从少年宫出发,沿相同的路线分别以不同的速度匀速跑向体育馆,甲先跑一段路程后,乙开始出发,当乙超出甲150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向体育馆.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,则乙在途中等候甲用了()秒.A.200 B.150 C.100 D.80【解答】解:根据图象可以得到:甲共跑了900米,用了600秒,则速度是:900÷600=1.5米/秒;甲跑500秒时的路程是:500×1.5=750米,则CD段的长是900﹣750=150米,时间是:560﹣500=60秒,则速度是:150÷60=2.5米/秒;甲跑150米用的时间是:150÷1.5=100秒,则甲比乙早出发100秒.乙跑750米用的时间是:750÷2.5=300秒,则乙在途中等候甲用的时间是:500﹣300﹣100=100秒.故选:C.二、填空题(每题3分,共30分)11.(3分)将201700000用科学记数法表示为 2.017×108.【解答】解:201700000=2.017×108,故答案为:2.017×108.12.(3分)函数y=的自变量的取值范围是x≠1.【解答】解:根据题意,有x﹣1≠0,解可得x≠1;故自变量x的取值范围是x≠1,故答案为x≠1.13.(3分)化简:=.【解答】解:原式=3﹣2=.故答案为:.14.(3分)把多项式ax2+2ax+a分解因式的结果是a(x+1)2.【解答】解:ax2+2ax+a=a(x2+2x+1)=a(x+1)2.故答案为:a(x+1)2.15.(3分)若扇形的弧长为6πcm,面积为15πcm2,则这个扇形所对的圆心角的度数为216°.【解答】解:设这个扇形的半径为λ,弧长为μ,圆心角为α°;由题意得:,μ=6π,解得:λ=5;由题意得:,解得:α=216,故答案为216.16.(3分)二次函数y=x2+2x﹣7的对称轴是直线x=﹣1.【解答】解:∵y=x2+2x﹣7=(x+1)2﹣8,∴抛物线对称轴为x=﹣1,故答案为:x=﹣1.17.(3分)已知正方形ABCD中,点E为直线BC上一点,若AE=2BE,则∠DAE=60或120度.【解答】解:如图1,点E在线段BC上时,∵∠B=90°,AE=2BE,∴∠BAE=30°,∴∠DAE=90°﹣30°=60°,如图2,点E在CB的延长线上时,∵∠ABC=90°,∴∠ABE=90°,∵AE=2BE,∴∠BAE=30°,∴∠DAE=90°+30°=120°,综上所述,∠DAE=60°或120°,故答案为:60或120.18.(3分)如图,AD和AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD交AC于点B,若OB=5,则BC等于5.【解答】解:连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5;在Rt△ACD中,∠A=30°,AD=2OA=10,∴AC=cos30°×10=×10=15,∴BC=AC﹣AB=15﹣10=5.19.(3分)在一个不透明的袋子中装有2个白球,3个黑球和若干个红球,他们除颜色不同外,其余均相同,从中随机摸出一个球是白球的概率为,则摸出一个球是黑球的概率为.【解答】解:设红球的个数为x,根据题意,得:=,解得:x=5,经检验x=5是原分式方程的解,∴摸出一个球是黑球的概率为=,故答案为:20.(3分)如图,在等腰直角三角形ABC中,AB=CB=12,∠ABC=90°,点D为AC上一点,tan ∠ADB=3,过D作ED⊥BD,且DE=BD,连接BE,AE,EC,点F为EC中点,连接DF,则DF 的长为2.【解答】解:如图,作BM⊥AC于M,EH⊥AC于H,在HM上截取HN=AH,连接EN.∵∠EHD=∠BMD=∠EDB=90°,∴∠DBM+∠BDM=90°,∠BDM+∠EDH=90°,∴∠DBM=∠EDH,∵DE=DB,∴△BMD≌△DHE,∴BM=DH,DM=EH,∵tan∠ADB==3,设DM=a,则BM=DH=3a,∵AB=BC,∠ABC=90°,BM⊥AC,∴AM=CM=BM=3a,∵AM=DH,∴AH=DM=EH=a,∴AH=HN=MN=a,DN=2a,CD=2a,∴CD=DN,∵EF=FC,∴DF=EN=a,∵AB=BC=12,∴AC=6a=12,∴a=2,∴DF=2.故答案为2.三、解答题21.先化简,再求值:÷﹣,其中x=2tan60°﹣4sin30°.【解答】解:÷﹣===,当x=2tan60°﹣4sin30°=2﹣4×=2时,原式=.22.如图,在小正方形的边长均为1的方格纸中,有线段AB,点A、B均在小正方形的顶点上.(1)在图1中画一个以线段AB为一边的平行四边形ABCD,点C、D均在小正方形的顶点上,且平行四边形ABCD的面积为10;(2)在图2中画一个钝角三角形ABE,点E在小正方形的顶点上,且三角形ABE的面积为4,tan∠AEB=.请直接写出BE的长.【解答】解:(1)如图1所示;(2)如图2所示;BE==2.23.某校组织学生书法比赛,在限定每人只交一份书法作品的条件下,对参赛作品按A、B、C、D四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的学生书法作品共计多少份;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?【解答】解:(1)2÷20%=10人;(2)C有10×30%=3人,D有10﹣2﹣4﹣3=1人;如图:(3)750×=450人.答:参赛作品达到B级以上(即A级和B级)有450人.24.如图1,四边形ABCD中,AC⊥BD于点O,点E、F、G、H分别为边AB、BC、CD、AD的中点,连接EF、FG、GH与EH.(1)求证:四边形EFGH为矩形;(2)如图2,连接FH,若FH经过点O,在不添加任何辅助线的情况下,请直接写出图中面积相等的矩形.【解答】(1)证明:∵点E、F、G、H分别为边AB、BC、CD、AD的中点,∴EH、FG分别是△ABD、△BCD的中位线,∴EH∥BD,且EH=BD,FG∥BD,且FG=BD,同理:EF∥AC∥GH,∴四边形EFGH是平行四边形,又∵AC⊥BD,∴EF⊥EH,∴∠FEH=90°,∴四边形EFGH是矩形.(2)解:如图所示:由(1)得:四边形EFGH是平行四边形,同理:四边形EFKS、四边形SKGH、四边形EMOS,…都是矩形,∴图中共有9个矩形,△EFH的面积=△GFH的面积,△OMN的面积=△OFK的面积,△OHS 的面积=△OHN的面积,∴矩形EMOS的面积=矩形OKGN的面积,∴矩形EFKS的面积=矩形MFGNH的面积,矩形EMNH的面积=矩形GHSK的面积.25.在哈市地铁施工过程中的某项工程,由甲、乙两工程队合作20天可完成,甲工程队单独完成此项工程的时间是乙工程队单独完成此项工程时间的2倍.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?【解答】解:(1)设乙单独完成此项工程需要x天,则甲单独完成需要2x天,+=1,解得:x=30,经检验x=30是原方程的解.∴x+30=60,答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)设甲单独做了y天,y+(20﹣)×(1+2.5)≤64,解得:y≥36答:甲工程队至少要单独施工36天.26.如图1,⊙O中,AB为直径,弧BC=弧AC,点P在⊙O上,连接PC交AB于点E,过C 作PC的垂线交⊙O于点Q(1)求证:弧AP=弧BQ;(2)如图2,点F在弧AC上,∠FEA=∠QEB=30°,连接PF,求证:PF=AO;(3)在(2)的条件下,如图3,过E作EG⊥FP于点G,若EG=6,求OE的长.【解答】(1)证明:如图1,连接PQ.∵PC⊥CQ,∴∠PCD=90°.∴PQ是⊙O的直径,∴P、O、Q三点共线.∴∠POA=∠QOB,∴弧AP=弧BQ.(2)证明:如图2,延长FE交⊙O于点M,连接OQ、OM、QM;过点O作OS⊥EQ于点S,OT⊥EM于点T.∵∠FEA=∠MEB=∠QEB=30°,∴EB平分∠QEM.∴OS=OT,ES=ET.∵OQ=OM,∴Rt△OSQ≌Rt△OTM(HL),∴SQ=TM.∴EQ=EM.∵∠QEM=2∠QEB=60°,∴△EMQ是等边三角形.连接OF.∵∠QPF=∠QMF=60°,OP=OF,∴△POF是等边三角形,∴PF=OP=AO.即:PF=AO,(3)解:如图3,延长FE交⊙O于M,连接PM,PQ,QM,CM,∵PQ是⊙O的直径,∴PM⊥QM.∵EQ=EM,∠QEB=∠MEB=30°,∴EB⊥QM.∴AB∥PM.延长CO并延长交PM于点H.连接CM,∵,∴CH⊥PM.∴PH=MH,PC=MC,CH∥QM.∴∠POH=∠PQM=∠EFG.∵EG⊥FP,∴∠EGF=∠PHO.∴Rt△EGF∽Rt△PHO,∴,∵PF=OP,∴∵∠EFP=∠ECM,∠FEP=∠CEM,∴△EFP∽△ECM,∴∵AB∥PH∴,∵CP=CM,∴∴,∵∴,∴OE=EG=6.27.如图,在平面直角坐标系中,点O为坐标原点,直线y=3x﹣3交x轴于点A,交y轴于点C,抛物线y=ax2+5ax+c经过A、C两点,与x轴的另一个交点为点B(1)求抛物线的解析式(2)点P为第三象限抛物线上一点,连接AP交y轴于点E,过点P作PF⊥x轴于点F,设点P的横坐标为m,连接CP,△ACP的面积为S,求S与m的函数解析式.(3)在(2)的条件下,点M为BF上一点,且MF=OE,连接CM、BE,相交于点K,连接FK,若∠OBE=∠KFP,求点P的坐标.【解答】解:(1)∵直线y=3x﹣3交x轴于点A,交y轴于点C,∴A(1,0),C(0,﹣3),∵抛物线y=ax2+5ax+c经过A、C两点,∴,解得,∴y=x2+x﹣3(2)设P(m,m2+m﹣3),则F(m.0),∵OE∥PF,∴=,∴=,∴OE=(m+6),∴S△PAC =S△AEC+S△PEC=•[3﹣(m+6)]•(1+m)=﹣m2﹣m(﹣6<m<0).(3)对于抛物线y=x2+x﹣3,令y=0,得到x2+x﹣3=0,解得x=﹣6或1,∴B(﹣6,0),A(1,0),∵OE=FM,E[﹣,0],可得M[(m﹣6),0],∴直线BE的解析式为y=﹣(m+6)x﹣(m+6),直线CM的解析式为y=x﹣3,由,解得,∵∠PFK+∠BFK=90°,∠PF K=∠ABE,∴∠ABE+∠BFK=90°,∴FK⊥BE,∴K FK•K BE=﹣1,/ / ∴•[﹣(m +6)]=﹣1, 整理得(m +6)(m ﹣6)(m +2)=0, ∴m=±6或﹣2,∵﹣6<m <0,∴m=﹣2,∴P (﹣2,﹣6).。

2020年黑龙江省哈尔滨市南岗区中考数学模拟试卷及答案解析

2020年黑龙江省哈尔滨市南岗区中考数学模拟试卷及答案解析

2020年黑龙江省哈尔滨市南岗区中考数学模拟试卷一、选择题(共10小题,每小题3分,共计30分)1.﹣5的绝对值是()A.B.﹣5C.5D.﹣2.150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元3.下列运算正确的是()A.2a+3b=5ab B.3x2y﹣2x2y=1C.(2a2)3=6a6D.5x3÷x2=5x4.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.6.将抛物线y=﹣3x2+2平移得到抛物线y=﹣3(x+2)2﹣4,则这个平移过程正确的是()A.先向左平移2个单位,再向上平移6个单位B.先向左平移2个单位,再向下平移6个单位C.先向右平移2个单位,再向上平移6个单位D.先向右平移2个单位,再向下平移6个单位7.反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10B.﹣10C.4D.﹣48.如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3B.4C.5D.69.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.10.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形,其中正确的结论的个数为()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共计30分)11.=.12.在函数y=中,自变量x的取值范围是.13.不等式组的解集是.14.把多项式a4﹣a2分解因式的结果是.15.如图,为估算某河的宽度,在河对岸选定一个目标点A,在岸边顺次取点B,E,C,使得AB⊥BC,过点C作CD⊥BC交AE延长线于点D,若测得BE=20m,CE=10m,CD =20m,则河的宽度为m.16.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.17.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.18.据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,则这两年我国公民出境旅游总人数的年平均增长率为.19.等边△ABC的边长为3,在边AC上取点A1,使AA1=1,连接A1B,以A1B为一边作等边△A1BC1,则线段AC1的长为.20.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,连接BD,点O为BD的中点,连接AO并延长交BC于点E,若=,CD=4,则AD的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7分)先化简,再代入求值(a﹣1﹣)÷的值,其中a=sin60°+2tan45°.22.(7分)如图,在平面直角坐标系中,点O为坐标原点,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位得到对应的△A1B1C1,画出△A1B1C1并写出C1的坐标.(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出C2的坐标.23.(8分)为增强学生的身体素质,教育行政部门规定学生平均每天户外活动的时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)本次调查中,户外活动时间为0.5小时的学生有多少名?并补全下面的两幅统计图;(3)如果某校共有1200名学生,请你估计该校学生中户外活动时间为2小时的学生有多少名?24.(8分)如图,在四边形ABCD中,AB∥CD且CD=AB,点E为AB的中点,连接CE,DE,AC.(1)求证:△AED≌△EBC;(2)在不添加辅助线的情况下,请直接写出图中与△AED面积相等的所有三角形(△AED除外).25.(10分)某自行车销售A、B两种品牌的自行车,若购进A品牌的自行车5辆,B品牌的自行车6辆,共需进货款9500元,若购进A品牌的自行车3辆,B品牌的自行车2辆,需要进货款4500元.(1)求A、B两种品牌的自行车每辆进货价分别为多少元;(2)今年夏天,车行决定购进A、B两种品牌的自行车共50辆,在销售过程中,A品牌自行车的利润率为80%,B品牌自行车的利润率为60%,若将所购进的自行车全部销售完毕后其利润不少于29500元,那么此次最少购进多少辆A品牌自行车.26.(10分)已知:锐角△ABC(AB>BC)内接于⊙O,D为的中点,连接OD交AB于点E.(1)如图1,求证:OD⊥AB;(2)如图2,连接OC,点F是OC上一点,OE=OF,连接EF,∠CAB=m∠OEF,∠ABC=n∠OEF,若∠CAB<∠ABC时,求m与n之间的函数关系式;(3)如图3,在(2)的条件下,当m=2时,延长CO交AB于点H,AC=4HE,求∠ACH的正切值.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b(b>0)交x 轴于点A,交y轴于点B,以OA,OB为边作矩形AOBD,矩形AOBD的面积是16.(1)求b的值;(2)点P为BD上一点,连接PO,把PO绕点P逆时针旋转90°得到PQ,设PB的长为t,点Q的纵坐标为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点Q作QM∥PO交BD的延长线于点M,作∠POA的平分线OE交PM于点E,交PQ于点F,若FQ=2EM,求点Q的坐标.2020年黑龙江省哈尔滨市南岗区中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.﹣5的绝对值是()A.B.﹣5C.5D.﹣【分析】根据一个负数的绝对值是它的相反数求解即可.【解答】解:﹣5的绝对值是5.故选:C.【点评】本题考查了绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将150.5亿元用科学记数法表示1.505×1010元.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.2a+3b=5ab B.3x2y﹣2x2y=1C.(2a2)3=6a6D.5x3÷x2=5x【分析】根据整式的除法,幂的乘方与积的乘方,合并同类项分别进行计算,即可得出答案.【解答】解:A、不是同类项,不能相加,故本选项错误;B、3x2y﹣2x2y=x2y,故本选项错误;C、(2a2)3=8a6,故本选项错误;D、5x3÷x2=5x,故本选项正确.故选:D.【点评】此题考查了整式的除法,幂的乘方与积的乘方,合并同类项,掌握运算法则是本题的关键.4.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选:A.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及长方体展开图的各种情形.6.将抛物线y=﹣3x2+2平移得到抛物线y=﹣3(x+2)2﹣4,则这个平移过程正确的是()A.先向左平移2个单位,再向上平移6个单位B.先向左平移2个单位,再向下平移6个单位C.先向右平移2个单位,再向上平移6个单位D.先向右平移2个单位,再向下平移6个单位【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,将抛物线y=﹣3x2向左平移2个单位所得抛物线的解析式为:y=﹣3(x+2)2.由“上加下减”的原则可知,将抛物线y=﹣3(x+2)2向下平移6个单位所得抛物线的解析式为:y=﹣3(x+2)2﹣4;故选:B.【点评】此题考查了二次函数图象的平移与几何变换,利用抛物线解析式的变化规律:左加右减,上加下减是解题关键.7.反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10B.﹣10C.4D.﹣4【分析】将点(﹣2,5)代入解析式可求出k的值.【解答】解:∵反比例函数y=的图象经过点(﹣2,5),∴2﹣3k=﹣2×5=﹣10,∴﹣3k=﹣12,∴k=4,故选:C.【点评】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.8.如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3B.4C.5D.6【分析】先求得两个三角形的面积,再求出正六边形的面积,求比值即可.【解答】解:如图,∵三角形的斜边长为a,∴两条直角边长为a,a,∴S空白=a•a=a2,∵AB=a,∴OC=a,∴S正六边形=6×a•a=a2,∴S阴影=S正六边形﹣S空白=a2﹣a2=a2,∴==5,法二:因为是正六边形,所以△OAB是边长为a的等边三角形,即两个空白三角形面积为S△OAB,即=5故选:C.【点评】本题考查了正多边形和圆,正六边形的边长等于半径,面积可以分成六个等边三角形的面积来计算.9.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选:B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形,其中正确的结论的个数为()A.1个B.2个C.3个D.4个【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形,当四边形ABCD为正方形时,四边形MNPQ是正方形,故错误;故选:C.【点评】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.二、填空题(每小题3分,共计30分)11.=.【分析】先进行二次根式的化简,然后合并同类二次根式.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简.12.在函数y=中,自变量x的取值范围是x≠0.【分析】根据分式有意义,分母不等于0解答.【解答】解:由题意得,x≠0,所以,自变量x的取值范围是x≠0.故答案为:x≠0.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.不等式组的解集是x≤3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣2≥4x﹣5,得:x≤3,解不等式>﹣3,得:x<5,则不等式组的解集为x≤3,故答案为:x≤3【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键14.把多项式a4﹣a2分解因式的结果是a2(a+1)(a﹣1).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a2(a2﹣1)=a2(a+1)(a﹣1),故答案为:a2(a+1)(a﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.如图,为估算某河的宽度,在河对岸选定一个目标点A,在岸边顺次取点B,E,C,使得AB⊥BC,过点C作CD⊥BC交AE延长线于点D,若测得BE=20m,CE=10m,CD =20m,则河的宽度为40m.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴,∵BE=20m,CE=10m,CD=20m,∴=解得:AB=40,故答案为:40.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.16.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.【解答】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,∴∠MEF=∠ADE,∴在△DAE和△EMF中,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=故答案为:.或连接BD.根据SAS证明△ADE≌△BDF,得到AE=BF,列出方程即可.【点评】本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质等知识,解题的关键是运用三角形全等得出△BMF是等边三角形.17.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.【分析】首先过点C作CE⊥AD于点E,由∠ACB=90°,AC=3,BC=4,可求得AB 的长,又面积法,即可求得CE的长,由勾股定理求得AE的长,然后由垂径定理求得AD的长,从而得BD的长.【解答】解:过点C作CE⊥AD于点E,则AE=DE,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵S△ABC=AC•BC=AB•CE,∴CE==,∴AE===,∴AD=2AE=,∴BD=AB﹣AD=5﹣=,故答案为:.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.18.据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,则这两年我国公民出境旅游总人数的年平均增长率为20%.【分析】这两年我国公民出境旅游总人数的年平均增长率为x,根据我过2009年及2011年公民出境旅游总人数,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设这两年我国公民出境旅游总人数的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.故答案为:20%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.等边△ABC的边长为3,在边AC上取点A1,使AA1=1,连接A1B,以A1B为一边作等边△A1BC1,则线段AC1的长为2或.【分析】分两种情况:①当C1在A1B的上方时,如图1,证明△A1BC≌△ABC1,则A1C=AC1=2;②当C1在A1B的下方时,如图2,作辅助线,构建全等三角形和直角三角形,同理得:△ABA1≌△CBC1,则C1C=A1A=1,∠C1CB=∠BAC=60°,得到30°的Rt△C1CD,根据性质求得CD=,C1D=,最后利用勾股定理可得结论.【解答】解:分两种情况:①当C1在A1B的上方时,如图1,∵AB=3,AA1=2,∴A1C=3﹣1=2,∵△ABC和△A1BC1是等边三角形,∴AB=BC,A1B=BC1,∠ABC=∠A1BC1=60°,∴∠A1BC=∠ABC1,在△A1BC和△ABC1中,∵,∴△A1BC≌△ABC1(SAS),∴A1C=AC1=2;②当C1在A1B的下方时,如图2,连接C1C,过C1作C1D⊥AC于D,同理得:△ABA1≌△CBC1,∴C1C=A1A=1,∠C1CB=∠BAC=60°,∵∠ACB=60°,∴∠C1CD=60°,Rt△C1CD中,∠CC1D=30°,∴CD=C1C=,C1D==,Rt△AC1D中,AD=3+=,由勾股定理得:AC1===,综上所述,则线段A1C的长为2或.故答案为:2或.【点评】本题考查了三角形全等的性质和判定、勾股定理、等边三角形,采用分类讨论的思想,利用等边三角形的性质证明三角形全等是关键.20.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,连接BD,点O为BD的中点,连接AO并延长交BC于点E,若=,CD=4,则AD的长为2.【分析】延长BC,AD交于F,过D作DS∥BC交AE于S,过A作AH⊥BF于H,设BE=3m,CE=5m,得到BC=8m,根据全等三角形的性质得到DS=BE=3m,求得CF =CD=4,得到DF=4,BF=8m+4,根据相似三角形的性质即可得到结论.【解答】解:延长BC,AD交于F,过D作DS∥BC交AE于S,过A作AH⊥BF于H,∵=,∴设BE=3m,CE=5m,∴BC=8m,∵点O为BD的中点,∴BO=DO,∵DS∥BE,∴∠EBO=∠SDO,∵∠BOE=∠DOS,∴△BOE≌△DOS(ASA),∴DS=BE=3m,∵∠BAD=∠BCD=90°,∠ABC=45°,∴∠F=45°,∴△ABF和△DCF是等腰直角三角形,∴CF=CD=4,∴DF=4,BF=8m+4,∴BH=FH=BF=4m+2,AF=BF=4m+2;∴EF=BF﹣BE=5m+4,AD=4m﹣2,∵DS∥EF,∴△ADS∽△AFE,∴=,∴=,解得:m=1(负值舍去),∴AD的长为2,故答案为:2.【点评】本题考查了直角三角形斜边上的中线,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7分)先化简,再代入求值(a﹣1﹣)÷的值,其中a=sin60°+2tan45°.【分析】根据分式的运算法则即可化简原式,然后将a的值算出后代入即可求出答案.【解答】解:原式=×=×=∵a=+2∴原式==【点评】本题考查分式运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7分)如图,在平面直角坐标系中,点O为坐标原点,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位得到对应的△A1B1C1,画出△A1B1C1并写出C1的坐标.(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出C2的坐标.【分析】(1)利用点平移的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;(2)利用关于原点对称的点的坐标特征写出点A1、B1、C1的对应点A2、B2、C2的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1为所作,点C1的坐标为(4,4);(2)如图,△A2B2C2为所作,点C2的坐标为(﹣4,﹣4).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.23.(8分)为增强学生的身体素质,教育行政部门规定学生平均每天户外活动的时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)本次调查中,户外活动时间为0.5小时的学生有多少名?并补全下面的两幅统计图;(3)如果某校共有1200名学生,请你估计该校学生中户外活动时间为2小时的学生有多少名?【分析】(1)由1.5小时的人数及其百分比可得总人数;(2)根据各时间段人数之和等于总人数求得0.5小时的人数,再分别用1小时、2小时的人数除以总人数可得其百分比,据此可补全统计图;(3)用总人数乘以样本中2小时的百分比可得答案.【解答】解:(1)20÷25%=80,答:在这次调查中共调查了80名学生;(2)本次调查中,户外活动时间为0.5小时的学生有80﹣(32+20+12)=16名,则1小时人数所占百分比为×100%=40%,2小时人数所占百分比为×100%=15%,补全图形如下:(3)1200×15%=180,答:估计该校学生中户外活动时间为2小时的学生有180名.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意,根据统计图得出解题所需数据是解本题的关键.24.(8分)如图,在四边形ABCD中,AB∥CD且CD=AB,点E为AB的中点,连接CE,DE,AC.(1)求证:△AED≌△EBC;(2)在不添加辅助线的情况下,请直接写出图中与△AED面积相等的所有三角形(△AED除外).【分析】(1)由DC∥AB,且DC=AB,E为AB的中点,可判定四边形ADCE是平行四边形,有CE=AD,CE∥AD⇒∠BEC=∠BAD,故可由SAS证得△BEC≌△EAD,(2)在平行四边形ADCE中,△AED,△AEC,△ECD都是等底等高的三角形,故它们的面积相等,再结合全等三角形的性质即可解决问题.【解答】(1)证明:∵DC=AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形ADCE是平行四边形.∴CE=AD,CE∥AD.∴∠BEC=∠BAD.在△BEC和△EAD中,,∴△AED≌△EBC(SAS).(2)解:∵AD∥EC,∴S△ADE=S△ADC,∵△AED≌△EBC,∴S△AED=S△EBC,∵AE=EB,∴S△EBC=S△AEC.∴△AED的面积相等的三角形有:△AEC,△ECD,△EBC.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,等高模型等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.25.(10分)某自行车销售A、B两种品牌的自行车,若购进A品牌的自行车5辆,B品牌的自行车6辆,共需进货款9500元,若购进A品牌的自行车3辆,B品牌的自行车2辆,需要进货款4500元.(1)求A、B两种品牌的自行车每辆进货价分别为多少元;(2)今年夏天,车行决定购进A、B两种品牌的自行车共50辆,在销售过程中,A品牌自行车的利润率为80%,B品牌自行车的利润率为60%,若将所购进的自行车全部销售完毕后其利润不少于29500元,那么此次最少购进多少辆A品牌自行车.【分析】(1)设A品牌自行车每辆的进价为x元,B品牌自行车每辆的进价为y元,根据“购进A品牌的自行车5辆,B品牌的自行车6辆,共需进货款需要9500元,若购进A品牌的自行车3辆,B品牌的自行车2辆,需要进货款4500元”列方程组求解可得;(2)设购进A品牌自行车m辆,则购进B品牌自行车(50﹣m)辆,根据“所购进的自行车全部销售完毕后其利润不少于29500元”列不等式,解之可得.【解答】解:(1)设A品牌自行车每辆的进价为x元,B品牌自行车每辆的进价为y元,根据题意,得:,解得:,答:A品牌自行车每辆的进价为1000元,B品牌自行车每辆的进价为750元;(2)设购进A品牌自行车m辆,则购进B品牌自行车(50﹣m)辆,根据题意,得:1000×80%m+750×60%(50﹣m)≥29500,解得:m≥20,答:此次最少购进20辆A品牌自行车.【点评】本题主要考查二元一次方程组和一元一次不等式的应用,理解题意,找到题目中蕴含的相等关系或不等关系列出方程组、不等式是解题的关键.26.(10分)已知:锐角△ABC(AB>BC)内接于⊙O,D为的中点,连接OD交AB于点E.(1)如图1,求证:OD⊥AB;(2)如图2,连接OC,点F是OC上一点,OE=OF,连接EF,∠CAB=m∠OEF,∠ABC=n∠OEF,若∠CAB<∠ABC时,求m与n之间的函数关系式;(3)如图3,在(2)的条件下,当m=2时,延长CO交AB于点H,AC=4HE,求∠ACH的正切值.【分析】(1)连接AO、BO,先证∠AOD=∠BOD,又因为AO=BO,可由三线合一定理得出结论;(2)设∠OEF=∠OFE=α,则∠COD=180°﹣2α,∠CAB=mα,∠ABC=nα,∠COB =2mα,将含m,n,α的代数式代入等式∠COE=∠COB+∠EOB,再进行化简即可得出m与n之间的函数关系式;(3)当m=2时,n=4,∠ABC=2∠CAB=4α,延长AB至点P使BP=CB,过点C作CQ⊥AP于Q,设EQ=a,BQ=b,求出EB=AE=a+b,AQ=PQ=2a+b,BP=CB=BH =2a,AH=2b,HE=a﹣b,AC=4(a﹣b),在Rt△ACQ和Rt△CBQ中,利用勾股定理求出a=4b,CQ=3b,所以tan∠QCB===,最终推出tan∠ACH =.【解答】证明:(1)连接AO、BO,∵D为的中点,∴,∴∠AOD=∠BOD,又∵AO=BO,∴OD⊥AB;(2)∵OE=OF,∴∠OEF=∠OFE,设∠OEF=∠OFE=α,∴∠COD=180°﹣2α,∵∠CAB=m∠OEF=mα,∠ABC=n∠OEF=nα,∴∠COB=2∠CAB=2mα,∵∠ACB=180°﹣∠CAB﹣∠CBA=180°﹣mα﹣nα,又∵∠AOB=2∠ACB=2∠EOB,∴∠EOB=180°﹣mα﹣nα,∵∠COE=∠COB+∠EOB,∴180°﹣2α=2mα+180°﹣mα﹣nα,∴m=n﹣2;(3)当m=2时,n=4,∴∠ABC=2∠CAB=4α,延长AB至点P使BP=CB,连接PC,∴∠BCP=∠BPC=2α,∴∠CAP=∠CP A=2α,过点C作CQ⊥AP于Q,∴AQ=PQ,设EQ=a,BQ=b,∴EB=AE=a+b,∴AQ=PQ=2a+b,∴BP=QP﹣QB=2a,∴CB=2a,又∵∠COE=180°﹣2α,∠OEH=90°,∴∠CHB=90°﹣2α,∴∠HCQ=90°﹣(90°﹣2α)=2α,∵∠CBQ=∠BCP+∠BPC=4α,∴∠QCB=90°﹣∠CBQ=90°﹣4α,∴∠HCB=∠HCQ+∠QCB=90°﹣2α=∠CHB,∴BC=BH=2a,∴AH=2(a+b)﹣2a=2b,HE=a﹣b,∴AC=4HE=4(a﹣b),∴在Rt△ACQ和Rt△CBQ中,AC2﹣AQ2=BC2﹣BQ2,∴16(a﹣b)2﹣(2a+b)2=(2a)2﹣b2,∴(2a﹣b)(a﹣4b)=0,∵2b>a,∴a=4b,∴CQ==3b,∴tan∠QCB===,∵∠ACH=∠BCQ=90°﹣4α,∴tan∠ACH=.【点评】本题考查了圆的有关概念及性质,勾股定理,锐角三角函数等,解题关键是能够熟练掌握圆的有关概念及性质并能够灵活运用等.27.(10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b(b>0)交x 轴于点A,交y轴于点B,以OA,OB为边作矩形AOBD,矩形AOBD的面积是16.(1)求b的值;(2)点P为BD上一点,连接PO,把PO绕点P逆时针旋转90°得到PQ,设PB的长为t,点Q的纵坐标为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点Q作QM∥PO交BD的延长线于点M,作∠POA的平分线OE交PM于点E,交PQ于点F,若FQ=2EM,求点Q的坐标.【分析】(1)先由解析式求出得A、B点的坐标,得OA=OB,得四边形AOBD为正方形,再根据正方形的面积求得边长,便可得b的值;(2)过点Q作QG⊥BD交BD延长沿于点G,证明Rt△BOP≌Rt△GPQ(AAS),得DG =BP,进而求得结论便可;(3)过点P作PH⊥OE于点H,延长PH交MQ的延长线于点R,MQ的延长线与x轴交于点N,过Q作QK⊥x轴于点K.证明Rt△BOP≌Rt△GPQ(AAS),得PF=QR,∠R=∠OFP,再证明∠R=∠EPR,得MP=MR,再证EM=NR,设EM=NR=k,NQ=m,在Rt△PQM中,由勾股定理列出方程,得到k与m的关系,解Rt△PQM得tan∠PMQ,进而把这个函数值运用到△OBP中,求得t的值,再运用(2)中结论得Q的纵坐标d 的值,再运用到△QNK中求得NK,NQ的值,进而求得ON,便可得Q的横坐标的值.【解答】解:(1)∵直线y=﹣x+b交x轴于点A,交y轴于点B,∴A(b,0),B(0,b),∴OA=OB=b,∴矩形AOBD是正方形,∵AOBD的面积是16,∴OB=4,∴b=4;(2)如图1,过点Q作QG⊥BD交BD延长沿于点G,∵∠OPQ=90°,∴∠BPO+∠GP90°,∵∠BPO+∠BOP=90°,∴∠BOP=∠GPQ,∵QM∥PO,∠OPQ=90°,∴∠OPQ=∠PQR=90°,由旋转知,PQ=OP,在Rt△BOP和Rt△GPQ中,,∴Rt△BOP≌Rt△GPQ(AAS),∴BP=GQ,∵BP=t,∴GQ=t,∴d=4﹣t;(3)过点P作PH⊥OE于点H,延长PH交MQ的延长线于点R,MQ的延长线与x轴交于点N,过Q作QK⊥x轴于点K.则BP=t,QK=d,且d=4﹣t.。

2020年中考数学模拟试卷(哈尔滨考卷)(一)(答案、评分标准)

2020年中考数学模拟试卷(哈尔滨考卷)(一)(答案、评分标准)

2020年中考数学全真模拟试卷一(哈尔滨考卷)答案及评分标准题号答案及评分标准一、选择题〔共10小题,每题3分,共30分〕1.A 2.A 3A 4.B 5.A6.B7.D8.C9.D 10.B每小题3分二、填空题〔共10小题,每题3分,共30分。

请将结果直接填入答题纸相应位置上〕11. ﹣2.12. 2(x+y)(x﹣y).13. .14. x≥﹣1.15. AB=DE.16.17. 或.18.k>﹣.19. 420. 2每空3分三、解答题(其中21、22题各7分,23、24题各8分,25、26、27题各10分,共计60分)21.原式=[﹣]÷=(﹣)•=•=,当x=4tan45°+2cos30°=4×1+2×=4+时,原式===.2分2分3分22. (1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;2分3分(2)如图2所示:四边形ABCD即为所求.2分23. (1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数。

12÷20%=60,答:共调查了60名学生.(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.×1500=150(名)答:该中学最喜爱律师职业的学生有150名.2分4分2分24.(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∴∠ABE=∠DF,∵AE⊥BD于点E,CF⊥BD于点F,3分∴∠AEB =∠CFD =90°, 在△ABE 和△CDF 中,,∴△ABE ≌△CDF (AAS ), ∴AE =CF ;(2)解:△ABE 的面积=△CDF 的面积=△BCE 的面积=△ADF 的面积=矩形ABCD 面积的81. 理由如下: ∵AD ∥BC ,∴∠CBD =∠ADB =30°, ∵∠ABC =90°, ∴∠ABE =60°, ∵AE ⊥BD , ∴∠BAE =30°,∴BE =AB ,AE =AD ,∴△ABE 的面积=BE ×AE =×AB ×AD =81AB ×AD =81矩形ABCD 的面积, ∵△ABE ≌△CDF ,∴△CDF 的面积═81矩形ABCD 的面积;作EG ⊥BC 于G ,如图所示: ∵∠CBD =30°,∴EG =BE =×AB =AB ,∴△BCE 的面积=BC ×EG =BC ×AB =81BC ×AB =81矩形ABCD 的面积,同理:△ADF 的面积=81矩形ABCD 的面积.1分 2分1分1分25. (1)设A款毕业纪念册的销售为x元,B款毕业纪念册的销售为y元,根据题意可得:,解得:,答:A款毕业纪念册的销售为10元,B款毕业纪念册的销售为8元;(2)设能够买a本A款毕业纪念册,则购买B款毕业纪念册(60﹣a)本,根据题意可得:10a+8(60﹣a)≤529,解得:a≤24.5,则最多能够买24本A款毕业纪念册.3分2分3分2分26. (1)证明:连接OC,∵CD与⊙O相切于点C,∴OC⊥CD,∵OB=OC,∴∠OBC=∠OCB,∵CE⊥AB,∴∠OBC+∠BCE=90°,∵∠OCB+∠BCD=∠OCD=90°,∴∠BCE=∠BCD;(2)解:连接AC,∵AB是直径,∴∠ACB=90°,∴∠OCB+∠ACO=90°,∵∠BCD+∠OCB=90°,∴∠BCD=∠ACO,∵OA=OC,∴∠ACO=∠CAO,∴∠BCD=∠DAC,∵∠CDB=∠ADC,∴△CBD∽△ACD,∴=4分6分∵CE=2BE,∴在Rt△BCE中,tan∠ABC==2,∴在Rt△ABC中,tan∠ABC==2,∴2=,∴CD=5,设⊙O的半径为r,∴BD=AD﹣2r=10﹣2r,∵CD2=BD•AD,∴BD=,即10﹣2r=,解得r=∴⊙O的半径为.27. (1)由题意把点(﹣1,0)、(2,3)代入y=ax2+2x+c,2分得,,解得a=﹣1,b=2,∴此抛物线C函数表达式为:y=﹣x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(﹣1,0)、(2,3)代入y=kx+b中,得,,解得,k=1,b=1,∴y AB=x+1,设点M(a,﹣a2+2a+3),则K(a,a+1),则MK=﹣a2+2a+3﹣(a+1)=﹣(a﹣)2+,根据二次函数的性质可知,当a=时,MK有最大长度,∴S△AMB最大=S△AMK+S△BMK=MK•AH+MK•(x B﹣x H)=MK•(x B﹣x A)=××3=∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×=,M(,);(3)如图2,设抛物线对称轴与直线y=交于点E,抛物线顶点为Q,作点E关于点Q的对称点F,此时抛物线C上任意一点P到点F的距离等于到直线y=的距离,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴Q(1,4),E(1,),∵点F与点E关于点Q对称,∴F(1,).1分1分1分1分1分1分。

【附20套中考模拟试题】黑龙江省哈尔滨市南岗区2020届中考一模数学试题含解析

【附20套中考模拟试题】黑龙江省哈尔滨市南岗区2020届中考一模数学试题含解析

已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计
局发布的 2017 年和 2018 年我市居民人均教育、文化和娱乐消费支出的折线图.
说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如 2018 年第二季度与 2017 年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如 2018 年第二季度与 2018 年第一 季度相比较. 根据上述信息,下列结论中错误的是( ) A.2017 年第二季度环比有所提高
黑龙江省哈尔滨市南岗区 2020 届中考一模数学试题
一、选择题(本大题共 12 个小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有一项是符合 题目要求的.)
1.将二次函数 y x2 的图象先向左平移 1 个单位,再向下平移 2 个单位,所得图象对应的函数表达式是
()
A. y (x 1)2 2
那么乙的速度是__km/h.
14.分解因式:2x3﹣4x2+2x=_____.
15.如果关于 x 的方程 x2 2x m 0 (m 为常数)有两个相等实数根,那么 m=______.
16.如图,某小型水库栏水坝的横断面是四边形 ABCD,DC∥AB,测得迎水坡的坡角 α=30°,已知背水 坡的坡比为 1.2:1,坝顶部 DC 宽为 2m,坝高为 6m,则坝底 AB 的长为_____m.
D.| 2 |3 和 23
4. 4 的平方根是( )
A.2
B. 2
C.±2
D.± 2
5.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫 6 种颜色的花.如 果有 AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是( )

2020年黑龙江省哈尔滨市南岗区中考数学一模试卷

2020年黑龙江省哈尔滨市南岗区中考数学一模试卷

中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.比实数小的数是()A. 2B. 3C. 4D. 52.下列计算中,正确的是()A. =±3B. (-1)0=1C. |a|-a=0D. 4a-a=33.下列图标中,是中心对称图形的是()A. B. C. D.4.下列图形中,主视图为矩形的是()A. B. C. D.5.下列四个点中,有三个点在同一反比例函数y=的图象上,那么不在这个函数图象上的是()A. (-3,-3)B. (1,9)C. (3,3)D. (4,2)6.若关于x的一元二次方程x2-x+a=0没有实数根,则a的取值范围是()A. a>B. a<C. a≥D. a=7.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,侧得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC为()A. 90+30B. 90+60C. 90+90D. 90+1808.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,以点A为圆心作圆,如果圆A与线段BC没有公共点,那么圆A的半径r的取值范围是()A. 5≥r≥3B. 3<r<5C. r=3或r=5D. 0<r<3或r>59.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A. 3x-20=24x+25B. 3x+20=4x-25C. 3x-20=4x-25D. 3x+20=4x+2510.横店国际马拉松将于2015年5月17日鸣枪开跑,这个赛事的举办掀起了当地跑马拉松的热潮,如图是甲、乙两位马拉松爱好者在一次10公里的“迷你马拉松”训练中两人分别跑的路程y(公里)与时间x(分钟)的函数关系图象,他们同时出发,乙在75分钟的时候到达终点,并在终点等候甲,在甲跑完这个“迷你马拉松”的过程中,(1)甲前半程的速度是公里/分;(2)乙在冲刺阶段的速度公里/分;(3)在前半程甲一直领先于乙;(4)甲与乙刚好相距0.1公里的次数是4次.以上说法正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共10小题,共30.0分)11.把数字0.000032用科学记数法表示为______.12.在函数y=中,自变量x的取值范围是______.13.把多项式a2b-2ab+b分解因式的结果是______.14.不等式组的整数解为______.15.计算-2的结果是______.16.已知二次函数y=(x-2)2+3,当x<2时,y随x的增大而______.(填“增大”或“减小”)17.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为______.18.扇形的半径为20cm,扇形的面积为100πcm2,则该扇形的圆心角为______度.19.在△ABC中,AB=2,AC=,tan∠B=,则BC的长度为______.20.如图,矩形ABCD中,AC与BD交于点O,AE⊥BD,垂足为E,点F在线段OD上,∠EAO=∠FCB,AE=EF=4,则AD的长为______.三、计算题(本大题共1小题,共7.0分)21.先简化,再求代数式的值,其中x=2cos30°-1.四、解答题(本大题共6小题,共53.0分)22.如图,在正方形网格纸中,每一个小正方形的边长为一线段AB的两个端点都在小正方形的顶点上,请按下面的要求画图.(1)在图1中画钝角三角形ABC,点C落在小正方形顶点上,其中△ABC有一个内角为135°,△ABC的面积为4,并直接写出∠ABC的正切值;(2)在图1中沿小正方形网格线画一条裁剪线,沿此裁剪线将钝角三角形ABC分隔成两部分图形,按所裁剪图形的实际大小,将这两部分图形在图2中拼成一个平行四边形DEFG,要求裁成的两部分图形在拼成平行四边形时互不重叠且不留空隙,其中所拼成的平行四边形的周长为8+,各顶点必须与小正方形的顶点重合.23.为了解家长关注孩子成长方面的状况,某学校开展了针对家长的“您最关心孩子哪方面的成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取了部分家长进行调查,要求家长只能选择其中一个项目,根据调查结果绘制了如下两幅不完整的统计图.(1)本次调查共抽取了多少名学生家长?(2)通过计算补全条形统计图;(3)若全校共有2000名学生家长,估计有多少位学生家长最关心孩子“情感品质”方面的成长?24.在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,AB=CF.(1)如图1,求证:DF=DB;(2)如图2,若AF=DF,在不添加任何辅助线和字母的情况下,请写出图中所有度数与3∠FAE的度数相等的角.25.某公司研发生产的560件新产品需要精加工后才能投放市场.现由甲、乙两个工厂来加工生产.已知甲工厂每天加工生产的新产品件数是乙工厂每天加工生产新产品件数的1.5倍,并且加工生产240件新产品甲工厂比乙工厂少用4天.(1)求甲、乙两个工厂每天分别可加工生产多少件新产品?(2)若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批新产品的加工生产总成本不超过60万元,至少应安排甲工厂加工生产多少天?26.已知:AB为⊙O的直径,弦CD⊥AO,垂足为点E,连接AD,点N是AD上一点,连接CN交AE于点F,延长CN交⊙O与点M,连接AM,MD.(1)如图1,求证:∠AMC=∠MCD+∠ADM;(2)如图2,连接BC,过点A作AG⊥AD交⊙O与点G,求证:AG=BC;(3)如图3,在(2)的条件下,AN=ND,延长CM至点K,MK=2MN=6,FE=3,连接KA,GC,并延长KA,GC交于点H,求HG的长.27.在平面直角坐标系中,点0为坐标原点,抛物线y=ax2-2ax-3a与x轴交于点B,C,与y轴交于点A,点A的坐标为(0,),点D为抛物线的顶点.(1)如图1,求拋物线的顶点D的坐标;(2)如图2,点P是第一象限内对称轴右侧拋物线上一点,连接PB,过点D作DQ⊥BP于点H,交x轴于点Q,设点P的横坐标为m,点Q的横坐标为n,求n 与m的函数关系式;(3)如图3,在(2)的条件下,过点C作CE∥y轴交BP的延长线于点E,点F 为CE的中点,连接FQ,若∠DQC+∠CQF=135°,求点P的坐标.答案和解析1.【答案】A【解析】解:∵4<5<9,∴2<<3,∴比实数小的数是2,故选:A.根据实数的估计解答即可.本题考查了实数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.2.【答案】B【解析】解:A、=3,故此选项错误;B、(-1)0=1,正确;C、|a|-a=0(a≥0),故此选项错误;D、4a-a=3a,故此选项错误;故选:B.直接利用算术平方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案.此题主要考查了算术平方根的定义以及绝对值的性质、合并同类项,正确掌握相关运算法则是解题关键.3.【答案】C【解析】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【解析】解:A.此几何体的主视图是等腰梯形;B.此几何体的主视图是矩形;C.此几何体的主视图是等腰梯形;D.此几何体的主视图是等腰三角形;故选:B.主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:A、k=-3×(-3)=9;B、k=1×9=9;C、k=3×3=9;D、k=4×2=8,故A、B、C在同一函数图象上.由反比例函数表达式的特点可知,在其图象上的点的横、纵坐标的乘积都等于k,所以判断点是否在反比例函的图象上,只要验证一下横、纵坐标的乘积是否与k相等就可以了.本题主要考查反比例函数图象上点的坐标特征.所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.【答案】A【解析】解:∵关于x的一元二次方程x2-x+a=0没有实数根,∴△=(-1)2-4a<0,解得:.故选:A.根据题意得:根的判别式△<0,即可得出关于a的一元一次不等式,解之即可得出结论.本题考查了根的判别式,根据方程根的情况知根的判别式△<0,得出关于a的一元一次不等式是解题的关键.7.【答案】C【解析】解:如图,∵在Rt△ABD中,AD=90,∠BAD=45°,∴BD=AD=90(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=90×=90(m),∴BC=BD+CD=90+90(m)答:该建筑物的高度BC为(90+90)米.故选:C.在Rt△ABD中,根据正切函数求得BD=AD•tan∠BAD,在Rt△ACD中,求得CD=AD•tan∠CAD,再根据BC=BD+CD,代入数据计算即可.此题考查了解直角三角形的应用-仰角俯角问题.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.8.【答案】D【解析】解:∵在Rt△ABC中,∠C=90°,AC=3,BC=4,以点A为圆心作圆,当圆A的半径0<r<3或r>5时,圆A与线段BC没有公共点;故选:D.根据直线与圆的位置关系得出相切时有一交点,再结合图形即可得出答案.此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案.【解析】解:设该校七年一班有学生x人,根据题意可得:3x+20=4x-25.故选:B.直接利用总本书相等进而得出等式.此题主要考查了由实际问题抽象出一元一次方程,正确得出等式是解题关键.10.【答案】D【解析】解:甲前半程的速度是:5÷30=(公里/分),故(1)正确;乙在冲刺阶段的速度为:(10-9)÷(75-70)=(公里/分),故(2)正确;根据函数图象可知,在前半程甲的函数图象在乙的函数图象上方,所以在前半程甲一直领先于乙,故(3)正确;当0≤x≤30时,,当x>30时,y甲=,当0≤x≤70时,y乙=x,当70<x≤75时,y乙=x-3,甲与乙刚好相距0.1公里时,即,,解得:x=,,解得:x=,,解得:x=,=10-0.1,解得:,∴甲与乙刚好相距0.1公里的次数是4次,故(4)正确;故选:D.根据函数图象,获取时间、路程,根据速度=路程÷时间,即可解答(1)(2);观察据函数图象可知,在前半程甲的函数图象在乙的函数图象上方,所以在前半程甲一直领先于乙,故(3)正确;分别表示出甲、乙在各个时间段的函数解析式,根据甲与乙刚好相距0.1公里.列出方程即可解答.本题考查了一次函数的运用,待定系数法求一函数的解析式的运用,路程=速度×时间的运用,在解答时利用函数解析式建立等量关系求解是关键.11.【答案】3.2×10-5【解析】解:0.000032=3.2×10-5.故答案为:3.2×10-5.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【答案】x≠【解析】解:根据题意得,-2x+3≠0,解答x≠,故答案为x≠.由分式的分母不为0,列出关于x的不等式,即可求出x的范围.此题考查了函数自变量的取值范围,掌握分式有意义的条件:分母不为0是解本题的关键.13.【答案】b(a-1)2【解析】解:a2b-2ab+b=b(a2-2a+1)=b(a-1)2.故答案为:b(a-1)2.直接提取公因式b,再利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.【答案】-1【解析】解:解不等式①得:x<0,解不等式②得:x>-2,∴不等式组的解集是-2<x<0,∴不等式组的整数解为-1,故答案为:-1.先求出不等式组的解集,再求出不等式组的整数解即可.本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.15.【答案】【解析】解:原式=2-2×=2-=,故答案为:.原式各项化为最简二次根式,合并即可得到结果.此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.16.【答案】减小【解析】解:∵a=1>0,对称轴x=2,∴当x<2时,y随着x的增大而减小.故答案为:减小.对于二次函数顶点式y=a(x-h)2+k,当a>0时,x>h:y随x的增大而减增大,x<h:y随x的增大而减小;当a<0时,x>h:y随x的增大而减小,x<h:y随x的增大而增大.本题考查二次函数顶点式y=a(x-h)2+k增减性.解决本类题目的关键是分清a的符号和h的符号.17.【答案】【解析】解:∵共8个数,大于6的有2个,∴P(大于6)==,故答案为:.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.【答案】90【解析】解:设扇形的圆心角是n°,则=100π,解得:n=90,即扇形的圆心角是90°,故答案为:90.设扇形的圆心角是n°,根据扇形面积公式得出=100π,求出即可.本题考查了扇形的面积公式,能熟记扇形的面积公式是解此题的关键,注意:圆心角是n°,半径为r的扇形的面积S=.19.【答案】5【解析】解:如图,过点A作AD⊥BC交于D.∵tan∠B==,设AD=x,则BD=2x∵AB=2∴在△ABD中,由勾股定理得(2)2=x2+(2x)2解得,x1=2,x2=-2(不符合,舍去)∴BD=4同理,在△ACD中,由勾股定理得DC===1∴BC=DC+BD=4+1=5故答案为:5如图,过点A作AD⊥BC交于D.则tan∠B==,设AD=x,利用勾股定理即可求BC.此题主要考查解直角三角形,掌握解直角三角形的正切、正弦、余弦及勾股定理是解题的关键.20.【答案】4【解析】解:过C点作CM⊥BD于M点,∴EM∥AE,∴∠MCO=∠EAO.∵∠EAO=∠FCB,∴∠MCO=∠FCB,∴∠MCO-∠FCO=∠FCB-∠FCO,即∠FCM=∠OCB.∵四边形ABCD是矩形,∴∠OCB=∠OBC.∵∠OBC+∠BDC=90°,∠MCD+∠MDC=90°,∴∠OBC=∠MCD.∴∠MCF=∠MCD.∴FM=MD.在△AEB和△CMD中,∴△AEB和△CMD(AAS).∴BE=MD.设BE=MD=MF=x,在Rt△ABD中,AE⊥BD,根据射影定理可得AE2=BE•ED,即16=x(4+2x),解得x=2.∴BM=8.在Rt△CMB中,利用勾股定理可得BC2=BM2+MC2,所以BC==4.所以AD=BC=4.故答案为4.过C点作CM⊥BD于M点,证明∠FCM=∠OCB,借助矩形性质及同角的余角相等,得到∠FCM=∠MCD,从而得到DM=MF=BE,在Rt△ABD中利用射影定理AE2=BE•ED,可求BE及MF、MD长,在Rt△BMC借助勾股定理求出BC长就是AD的值.本题主要考查矩形的性质、全等三角形的判定和性质、相似三角形的判定和性质,解题的关键是证明BE=FM=MD这三条线段相等,找到相似模型中的射影定理求解.21.【答案】解:原式=•-=1-=-=,当x=2cos30°-1=2×-1=-1时,原式==.【解析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出x的值,代入计算可得.本题考查分式的化简求值,解答本题的关键是掌握分式混合运算顺序和运算法则及特殊锐角的三角函数值.22.【答案】解:(1)如图1中,△ABC即为所求.作AH⊥BC于H.∵S△AB=•BCC•AH=4,BC=2,∴AH=在Rt△ABH中,BH==,∴tan∠ABC==.(2)如图2中,平行四边形DEFG如图所示.【解析】(1)利用数形结合的思想解决问题即可.(2)沿图中虚线剪开,可以拼成平行四边形DEFG.本题考查作图-应用与设计,勾股定理,平行四边形的判定和性质,图形的拼剪等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:(1)本次调查共抽取家长人数为:30÷30%=100(人);(2)100-30-52-8=10(人),如图所示:(3)2000×=160(人),答:估计有160位学生家长最关心孩子“情感品质”方面的成长.【解析】(1)依据“健康安全”一项的人数以及百分比,即可得到抽取的家长数量;(2)求得“习惯养成”一项的人数,即可补全条形统计图;(3)依据“情感品质”一项所占的百分比,即可估计有多少位学生家长最关心孩子“情感品质”方面的成长.本题主要考查了条形统计图以及扇形统计图,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.24.【答案】证明:(1)∵AD⊥BC,CE⊥AB∴∠B+∠DAB=90°,∠B+∠∠DCE=90°∴∠DAB=∠DCE,且∠ADB=∠ADC=90°,CF=AB∴△ADB≌△CDF(AAS)∴DF=BD(2)∠CAB,∠ABC,∠DFC,∠AFE与3∠FAE的度数相等,理由如下:如图:连接BF,∵DF=DB,∠ADB=90°∴∠DFB=∠DBF=45°,BF=DF,且AF=DF∴AF=BF∴∠FAE=∠FBE∴∠DFB=2∠FAE=2∠ABF=45°∴∠FAE=∠FBE=22.5°∴∠ABD=∠DBF+∠ABF=67.5°∴∠ABD=3∠FAE∵△ADB≌△CDF∴∠DCF=∠ABD=∠AFE=67.5°=3∠FAE,AD=CD∴∠DAC=∠DCA=45°∴∠CAB=67.5°=3∠FAE【解析】(1)由余角的性质可得∠DAB=∠DCE,由“AAS”可证△ADB≌△CDF,可得DF=BD;(2)由等腰三角形的性质可求∠DFB=∠DBF=45°,即可求∠ABD=∠DBF+∠ABF=67.5°,由全等三角形的性质可得∠CAB=∠DCF=∠ABD=∠AFE=67.5°=3∠FAE.本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键.25.【答案】解:(1)设乙工厂每天可以加工生产x件新产品,则甲工厂每天可以加工生产1.5x件新产品,依题意,得:-=4,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工厂每天可以加工生产30件新产品,乙工厂每天可以加工生产20件新产品.(2)设安排甲工厂加工生产m天,则安排乙工厂加工生产(28-1.5m)天,依题意,得:3m+2.4(28-1.5m)≤60,解得:m≥12.答:至少应安排甲工厂加工生产12天.【解析】(1)设乙工厂每天可以加工生产x件新产品,则甲工厂每天可以加工生产1.5x 件新产品,根据工作时间=工作总量÷工作效率结合加工生产240件新产品甲工厂比乙工厂少用4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲工厂加工生产m天,则安排乙工厂加工生产(28-1.5m)天,根据总费用=3×甲工厂加工生产的天数+2.4×乙工厂加工生产的天数结合总成本不超过60万元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.26.【答案】解:(1)证明:如图1,连接AC,∵AB为⊙O的直径,弦CD⊥AO∴=∴∠ADC=∠ACD,即∠ADC=∠ACM+∠MCD∵=,=∴∠ACM=∠ADM,∠ADC=∠AMC∴∠AMC=∠ADM+∠MCD(2)证明:∵CD⊥AO∴∠AED=90°∴∠BAD+∠ADC=90°∵∠ADC=∠ABC∴∠BAD+∠ABC=90°∵∠BAD+∠BAG=90°∴∠ABC=∠BAG∴=∴+=+即:=∴AG=BC(3)如图3,过点D作DR∥AE交CK于R,∴∵AB为直径,CD⊥AO∴CE=DE∴CF=FR∴DR=2EF=2×3=6∵DR∥AE∴∠FAN=∠RDN∵AN=ND,∠ANF=∠DNR∴△ANF≌△DNR(ASA)∴AF=DR=6过点A作AT∥DM交CM于点T,∴∠TAN=∠MDN,∵AN=ND,∠ANT=∠DNM∴△ANT≌△DNM(ASA)∴TA=MD,TN=MN∵2MN=MK∴2TN=2MN=TM=MK=6∵=∴∠MAD=∠MCD∵∠AMC=∠ADM+∠MCD∴∠AMC=∠TAN+∠MAD=∠TAM∴TA=TM=MD=MK=6过点O作OW⊥MD,连接OM,OD,OC,∵OM=OD∴MW=DW=MD=3,∠MOW=∠DOW=∠MOD∴FE=MW=3∵=∴2∠DCM=∠MOD∴∠MCD=∠MOW=∠DOW∵∠FEC=∠MWO=90°∴△FEC≌△MWO(AAS)∴OM=CF=OC∴FE=OE=3,OC=CF=OA=3+3+6=12在Rt△CEF中,CE==ED=3,在Rt△AED中,AD==6,在Rt△BCE中,BC==6,∵∠AMD=180°-∠MDA-∠MAD=180°-∠AMC=∠AMK,AM=AM,MD=MK∴△AMD≌△AMK(SAS)∴AK=AD=6过点N作NL⊥AK于点L,则∠ALN=90°,设AL=a,LK=6-a,∵AN=ND=AD=3,NK=3+6=9,NL2=AN2-AL2=NK2-KL2,∴,解得:,∵∠GAD=90°,∠LAN+∠LNA=90°=∠LAN+∠HAG∴∠HAG=∠LNA∴sin∠HAG=sin∠LNA===,过点H作HQ⊥AG于点Q,设HA=8b,HQ=7b,则AQ===b,∵AG=BC=6,∴QG=6- b∵∠AGC=∠ABC∴tan∠AGC=tan∠ABC∴,解得:b=,∴HQ=,QG=,HG==.【解析】(1)连接AC,AB为⊙O的直径,弦CD⊥AO,得=,∠ADC=∠ACM+∠MCD,再由同弧所对的圆周角相等即可得证;(2)根据等角的余角相等可得:∠ABC=∠BAG,再根据同圆中,相等的圆周角所对的弧相等可得:=,易证结论;(3)过点D作DR∥AE交CK于R,易证:△ANF≌△DNR(ASA),得到:AF=DR=6,再过点A作AT∥DM交CM于点T,求得TA=TM=MD=MK=6,过点O作OW⊥MD,连接OM,OD,OC,可求得FE=OE=3,OC=CF=OA=12,AK=AD=6,过点N作NL⊥AK于点L,设AL=a,通过构建方程求a,可求得:sin∠HAG=sin∠LNA=,最后过点H作HQ⊥AG于点Q,设HA=8b,HQ=7b,构建方程即可得解.本题是一道有关圆的综合题,涉及知识点多,难度较大,对学生解题能力要求较高;主要考查了相似三角形的性质、全等三角形的判定及性质、解直角三角形的知识、圆的性质等,解题的关键是添加辅助线构造相似三角形、全等三角形.27.【答案】解:(1)将点A(0,)代入抛物线中,-3a=,解得a=-,∴抛物线的解析式为y=-x2+x+,∵-=1,解得y=2,∴D(1,2).(2)如图1所示,过点D作DH垂直于x轴于点H,过点P作PN垂直于x轴于点N,∴DH=2,QH=n-1,PN=-m2+m+,BN=m+1,∵△BPN∽△DHQ,∴,即,解得n=4-m.(3)如图2所示,∵D(1,2),Q(4-m,0),C(3,0)B(-1,0),∴BN=2,DN=2,NQ=3-m,∵∠BNG=∠DNQ,∠NDQ=∠GBN,∴△BGN≌△DNQ(ASA),∴GN=NQ=3-m,连接GQ,∴∠GQN=45°,∵∠DQC+∠FQC=135°,∴∠GQD=∠FQC,∵DG=m-1,过点P作y轴的平行线PM,过点D作x轴的平行线交MP于点M,连接MG,∴MD=m-1,∴MD=DG,∴∠DGM=45°,∵∠NGQ=45°,∴∠MGQ=90°,∴∠MGP=∠GQD=∠FQC,连接GF,GF∥BC,∴∠GFQ=∠FQC=∠MGP,∠FGQ=∠GMP=45°,∴△GMP∽△GQF,∴,∵MP=2-(-m2+m+)=m2-m+,MG=(m-1),FG=2,GQ=(3-m),解得m1=1(舍),m2=,∴m=,∴P(,).【解析】(1)将点A代入抛物线解析式可求出a,抛物线解析式和顶点D可求.(2)分别过点D、P作x轴的垂线,可得到三角形相似,用点坐标转换线段长度,列比例关系就可以得到m和n的函数关系.(3)用点坐标转换为线段长度,可以得到相关线段的长度相等,从而得到全等三角形及相似三角形,列比例关系就可以得到点P的坐标.此题考查了几何图形和二次函数相结合的问题,解题关键在于用点坐标转换为线段长度,发现隐藏的线段长度相等,从而得到全等三角形和相似三角形.。

2020年黑龙江省哈尔滨市南岗区虹桥中学中考数学模拟试卷

2020年黑龙江省哈尔滨市南岗区虹桥中学中考数学模拟试卷

2020年黑龙江省哈尔滨市南岗区虹桥中学中考数学模拟试卷(4月份)一、选择题(本大题共20小题,共60.0分)1.−25的倒数是()A. −52B. 25C. 52D. |−25|2.下列运算正确的是()A. a2⋅a3=a6B. a6÷a2=a3C. a2+a3=a5D. (a3)2=a63.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.4.若反比例函数y=−k−3x的图象经过点(3,−2),则k的值为()A. −6B. 3C. 6D. −35.下面两幅图是由5个小正方体搭成的几何体的主视图与俯视图,则搭成这个几何体的左视图为()A.B.C.D.6.分式方程4x =3x−1的解为()A. x=−4B. x=−3C. x=4D. x=37.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A. mcosαB. m⋅cosαC. m⋅sinαD. m⋅tanα8.如图,AB为⊙O的直径,CD为弦,CD⊥AB,垂足为E,若∠BAC=30°,则∠AOD的度数为()A. 135°B. 120°C. 150°D. 110°9.已知二次函数y=(x+2)2−1向左平移h个单位,再向下平移k个单位,得到二次函数y=(x+3)2−4,则h和k的值分别为()A. 1,3B. 3,−4C. 1,−3D. 3,−310.如图,在矩形ABCD中,点F在AD上,射线BF交AC于点G,交CD的延长线于点E,则下列等式正确的为()A. ABED =EFBFB. AFBC =ABCEC. FGBG =CGAGD. FDBC =EDCD11.√2的倒数是()A. √2B. √22C. −√2 D. −√2212.下列运算正确的是()A. x2+x3=x5B. (x−2)2=x2−4C. 2x2⋅x3=2x5D. (x3)4=x713.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14.如图所示的由六个小正方体组成的几何体的俯视图是()A.B.C.D.15.对于每一象限内的双曲线y=m−2x,y都随x的增大而增大,则m的取值范围是()A. m>−2B. m<2C. m<−2D. m>216.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=20米,则树的高AB(单位:米)为()A. 20sin37∘B. 20tan37° C. 20tan37∘D. 20sin37°17.下列命题中,真命题是()A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线互相垂直且平分的四边形是正方形18.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A. ADBD =AEECB. AFAE =DFBEC. AEEC =AFFED. DEBC =AFFE19.如图,在正方形ABCD中,AB=5,点E在CD边上,DE=2,把△ADE绕点A顺时针旋转90°,得到△ABE′,连接EE′,则线段EE′的长为()A. 2√26B. 2√29C. √58D. √2920.甲、乙两个工程队同时开始维修某一段路面,一段时间后,甲队被调往别处,乙队独自完成了剩余的维修任务.已知乙队每小时维修路面的长度保持不变,甲队每小时维修路面30米.甲、乙两队在此路段维修路面的总长度y(米)与维修时间x(时)之间的函数图象如图所示,下列说法中(1)甲队调离时,甲、乙两队已维修路面的总长度为150米;(2)乙队每小时比甲队多维修20米:(3)乙队一共工作2小时;(4)a=190.正确的有()个.A. 1B. 2C. 3D. 4二、填空题(本大题共20小题,共60.0分)21.将数2020000用科学记数法表示为______.22.计算:√48−6√1=______ .323.函数y=x+1中自变量x的取值范围是______.x−324.把多项式b3−6b2+9b分解因式的结果是______.25.不等式组{2x−3<11−x≤3的解集为______ .26.如图,∠ACB=90°,AC=BC=AD,若AB=4√2,则图中阴影部分的面积为______ .27.为了防控新型冠状病毒感染,我区要从3名男士和2名女士中随机抽取2人做宣传活动,抽取的恰好是一名男士和一名女士的概率为______ .28.为了配合新型冠状病毒的防控工作,某药店将某药品经连续两次降价后,售价变为原来的81%.若两次降价的百分率相同,则该药品每次降价的百分率为______ .29.在矩形ABCD中,点E是直线AD上一点,若∠ACB=∠ACE,BC=4,DE=1,则CD的长为______ .30.如图,在正方形ABCD中,点E为正方形内部一点连接CE、BE、DE,若BE=AB,∠BED=135°,CE=√2,则DE的长为______ .31.将数据14400000用科学记数法可表示为______ .32.若x2x+1有意义,则x的取值范围是______.33.化简:√8−√12=______ .34.把多项式2m2−8n2分解因式的结果是______ .35.不等式组{12x≥−13x−2<0的解集为______.36.已知直径长为6的扇形的圆心角为120°,则此扇形的面积为______ (结果保留π).37.小华等12人随机排成一列,从1开始按顺序报数,小华报到偶数的概率是______ .38.一商店某种品牌的羊毛衫标价960元,按标价的八折出售,仍可获利20%,则该品牌的羊毛衫的进价是每件______ 元.39.矩形ABCD中,AC的中垂线交直线BC于点E,交直线AB于点F,若AB=4,BE=3,则BF的长为______.40.如图,在四边形ABCD中,∠BAD=90°,连接AC与BD相交于点E,AC=AB,∠DAC=60°,BD=2BC,△ABD的面积是8,则线段CE的长______ .三、解答题(本大题共14小题,共120.0分)41.先化简,再求代数式(3a+2−2a−3a2−4)÷a−3a+2的值,其中a=tan60°+2√2cos45°.42.如图,方格纸中每个小正方形的边长均为1,线段AB.DE的端点AB、DE均在小正方形的顶点上.(1)在图中画一个以AB为斜边的直角三角形ABC,且tan∠A=12,点C在小正方形的顶点上;(2)在图中画一个以DE为腰的等腰三角形DEF,且三角形DEF的面积等于52,点F 在小正方形的顶点上.连接CF,请直接写出线段CF的长.43.为增强学生体质,某中学将在复学后开展体育大课间活动,并通过微信小程序“问卷星”开展以“我最想参加的课间活动”为主题的网络调查活动,围绕“跳绳、踢毽子,打羽毛球,打篮球、踢足球共五种活动中,你最想参加的活动是哪种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行网络问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据统计图的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若该中学共有2100名学生,请你估计该中学复学后大课间想参加打篮球的学生大约有多少名.44.已知:在菱形ABCD中,∠B=60°,点E和点F分别在BC边和CD边上,连接AE、AF、AC,∠EAF=60°.(1)如图1,求证:BE=CF;(2)如图2,当点E是BC边中点时,连接对角线BD分别交AE、AC、AF于点M、O、N,连接EF交对角线AC于点P,在不添加任何辅助线和字母的情况下,请直接写出图2中面积等于△PEC面积3倍的三角形或四边形.45.2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品.爱民药店库存一批N95和普通医用两种类型口罩,N95口罩进价是普通医用口罩进价的5倍,药店把N95口罩和普通医用口罩在进价基础上分别加价40%、50%做为零售价.某人在爱民药店用84元购买一种口罩,发现买普通医用口罩的数量恰好比买N95口罩的数量4倍还多4个.(1)求两种口罩的进价分别是多少元?(2)随着疫情的进一步恶化,爱民药店的口罩很快被抢购一空.该药店再去厂家进货时发现,由于原材料上涨,N95口罩进价上涨20%,普通医用口罩进价上涨了30%.爱民药店购进这两种口罩共1500个,在零售时,N95口罩保持原售价不变,而普通医用口罩在原售价基础上上调20%,该药店要想在这批口罩全部售出后的利润不少于2000元(不考虑其它因素),则这次至少购进N95口罩多少个?46.已知:△ABC内接于⊙O,点D在BC上,连接AD、OB,AD=DC.(1)如图1,求证:∠ADC=2∠ABO;(2)如图2,点E在AD上,连接CE,若∠ABC=∠CED,求证:AB=CE;(3)如图3,在(2)的条件下,若DE=OB,AE=2,CE=2√10,求线段BC的长.47.在平面直角坐标系xOy中,直线AB交x轴于点A(5,0),交y轴于点B(0,10).(1)如图1,求直线AB的解析式;(2)如图2,点E、C分别在OA、OB上,连接CE,过点O作OD⊥CE交AB点D,且OD=CE,连接CD,设点D的横坐标为t,△BCD的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,延长DC交x轴负半轴于点H,点N、G分别为DH、OA上的点,连接NG,过点N作直线NF⊥NG,交H于点M,分别过点F、N作OH的垂线,垂足分别为T、Q,QN=2TO,FT与NG交于点R,FR=GM,连接DF、HF,当∠DFH=90°,∠DFN−∠NGH=45°时,求直线GN的解析式.48.先化简,再求值:3x−6x2+4x+4÷x−2x+2−1x+2,其中x=2tan60°−4sin30°.49.图1、图2分别是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图1中画出以AB为直角边的直角△ABC,点C在小正方形的顶点上,且tanA=25;(2)在图2中画出以AB为腰的钝角等腰△ABD,点D在小正方形的顶点上,且△ABD的面积为10.并直接写出线段AD的长.50.我国北方又进入了火灾多发季节,为此,某校在全校1200名学生中随机抽取一部分人进行“安全防火,警钟长鸣”知识问卷调查活动,对问卷调查成绩按“很好”、“较好”、“一般”“较差”四类汇总分析,并绘制了如下扇形统计图和条形统计图.(1)本次活动共抽取了多少名同学?(2)补全条形统计图;(3)根据以上调查结果分析,估计该校1200名学生中,对“安全防火”知识了解“较好”和“很好”的学生大约共计有多少名.51.如图,已知点A、C在EF上,AD//BC,DE//BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).52.某商品经销店欲购进A、B两种纪念品,用160元购进的A种纪念品与用240元购进的B种纪念品的数量相同,每件B种纪念品的进价比A种纪念品的进价贵10元.(1)求A、B两种纪念品每件的进价分别为多少元?(2)若该商店A种纪念品每件售价24元,B种纪念品每件售价35元,这两种纪念品共购进1000件,这两种纪念品全部售出后总获利不低于4900元,求A种纪念品最多购进多少件.53.已知:在⊙O中,AB是直径,C为⊙O上一点,BD⊥OC,垂足为D,连接BC.(1)如图1,求证:∠BOC=2∠CBD;(2)如图2,E为OC延长线上一点,且∠CBE=∠OBD,求证:CE=2OD;(3)如图3,在(2)的条件下,连接AC并延长,交B于F,若OE=10,BD=4√2,求CF的长.54.在平面直角坐标系中,点O为坐标原点,抛物线y=a(x+2)(x+m)与x轴交于点A、C(点A在点C的左侧),与y轴正半轴交于点B,OC=2OB=4.(1)如图1,求a、m的值;(2)如图2,抛物线的顶点坐标是M,点D是第一象限抛物线上的一点,连接AD交抛物线的对称轴于点N,设点D的横坐标是t,线段MN的长为d,求d与t的函数关系式;(3)如图3,在(2)的条件下,当d=15时,过点D作DE//x轴交抛物线于点E,点P4x+b经过点是x轴下方抛物线上的一个动点,连接PE交x轴于点F,直线y=211 D交EF于点G,连接CG,过点E作EH//CG交DG于点H,若S△CFG=3S△EGH,求点P的坐标.答案和解析1.【答案】A【解析】解:∵−25×(−52)=1,∴−25的倒数是−52,故选:A.根据倒数定义:乘积是1的两数互为倒数可以直接得到答案.此题主要考查了倒数,关键是掌握倒数定义.2.【答案】D【解析】解:A、a2⋅a3=a5,故错误;B、a6÷a2=a4,故错误;C、不是同类项,故不能合并,故错误;D、(a3)2=a6,故正确,故选D.利用幂的运算性质及合并同类项的知识分别判断后即可确定正确的选项.本题考查了幂的运算性质及合并同类项的知识,解题的关键是能够熟练掌握幂的有关运算性质.3.【答案】D【解析】解:A、是中心对称图形,不是轴对称图形,故此选项不合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,是轴对称图形,故此选项符合题意;故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【解析】解:依题意,得x=3时,y=−2,所以,−k−3=xy=−6,所以,k=3.故选:B.把点(3,−2)代入反比例函数y=−k−3中,可求k的值.x本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特点.关键是设函数关系式,根据已知条件求函数关系式.5.【答案】A【解析】解:这个几何体的左视图为.故选:A.由已知条件可知,左视图有2列,每列小正方形数目分别为1,2,据此可画出图形.本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.【答案】C【解析】解:去分母得:4x−4=3x,解得:x=4,经检验x=4是分式方程的解.故选:C.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.7.【答案】D,【解析】解:在Rt△ABC中,∠C=90°,tanB=ACBC∴AC=BC⋅tanB=m⋅tanα,故选:D.根据正切的定义列式计算,得到答案.本题考查的是锐角三角函数的定义,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.8.【答案】B【解析】解:∵AB为⊙O的直径,CD为弦,CD⊥AB,∴BC⏜=BD⏜,∴∠BOD=2∠BAC=60°,∴∠AOD=180°−∠BOD=120°,故选:B.由垂径定理可得BC⏜=BD⏜,推出∠BOD=2∠BAC=60°,由此即可解决问题.本题考查垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】A【解析】解:∵抛物线y=(x+2)2−1的顶点坐标是(−2,−1),则向左平移h个单位,再向下平移k个单位后的坐标为:(−2−ℎ,−1−k),∴平移后抛物线的解析式为y=(x+2+ℎ)2−k−1.又∵平移后抛物线的解析式为y=(x+3)2−4.∴2+ℎ=3,−k−1=−4,∴ℎ=1,k=3,故选:A.根据“左加右减,上加下减”的规律进行解答即可.本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减是解题的关键.10.【答案】B【解析】【分析】由矩形ABCD的性质得到AD//BC,AB//CD,证明△ABF与△DEF相似,△AFG与△CBG 相似,△ABG与△CEG相似,△EFD与△EBC相似即可分别判断各选项的对与错.本题考查了矩形的性质,相似三角形的判定等,解题的关键是找准相似三角形的对应边.【解答】解:∵四边形ABCD为矩形,∴AD//BC,AB//CD,∴△ABF∽△DEF,△AFG∽△CBG,△EFD∽△EBC,△ABG∽△CEG,∵△ABF∽△DEF,∴ABED =BFEF,故A错误;∵△AFG∽△CBG,△ABG∽△CEG,∴AFBC =AGGC,ABCE=AGGC,∴AFBC =ABCE,故B正确;∵△AFG∽△CBG,∴FGBG =AGCG,故C错误;∵△EFD∽△EBC,∴FDDC =EDEC,故D错误;故选:B.11.【答案】B【解析】【分析】根据乘积为1的两个数互为倒数,可得答案.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.【解答】解:由√2×√22=1,得√2的倒数是√22,故选:B.12.【答案】C【解析】解:A、x2+x3,无法计算,故此选项错误;B、(x−2)2=x2−4x+4,故此选项错误;C、2x2⋅x3=2x5,故此选项正确;D、(x3)4=x12,故此选项错误;故选:C.直接利用合并同类项法则以及完全平方公式和单项式乘以单项式、幂的乘方运算法则分别计算得出答案.此题主要考查了合并同类项法则以及完全平方公式和单项式乘以单项式、幂的乘方运算,正确掌握相关运算法则是解题关键.13.【答案】C【解析】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.14.【答案】D【解析】解:从上面看易得左边第一列有3个正方形,中间第二列有1个正方形,最右边一列有1个正方形.故选D.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.15.【答案】B的图象在每一象限内y的值随x值的增大而增大,【解析】解:∵函数y=m−2x∴m−2<0,解得m<2.故选:B.先根据反比例函数的性质得出关于m的不等式,求出m的取值范围即可.本题考查的是反比例函数的性质,熟知反比例函数在每一象限内的增减性是解答此题的关键.16.【答案】B【解析】解:如图,在直角△ABC中,∠B=90°,∠C=37°,BC=20m,∴tanC=ABBC,则AB=BC⋅tanC=20tan37°.故选:B.通过解直角△ABC可以求得AB的长度.本题考查了解直角三角形的应用−仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.17.【答案】B【解析】解:A、对角线互相平分且相等的四边形是平行四边形,故A错;B、对角线互相平分的四边形是平行四边形,故B正确;C、对角线互相平分且垂直的四边形是菱形,故C错;D、对角线互相垂直平分且相等的四边形是正方形,故D错误;故选:B.分别利用矩形、菱形、正方形及平行四边形的判定方法判定后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解矩形、菱形、正方形及平行四边形的判定方法,难度不大.18.【答案】D【解析】解:∵DE//BC,DF//BE,∴ADBD =AEEC,△ADE∽△ABC,AFFE=ADBD,DEBC=ADAB,AFAE=DFBE=ADAB,∴AEEC =AFFE,∴选项A、B、C正确,D错误;故选:D.由平行线分线段成比例定理和相似三角形的性质即可得出结论.本题考查了平行线分线段成比例定理、相似三角形的判定与性质;熟练掌握平行线分线段成比例定理相似三角形的判定与性质是解决问题的关键.19.【答案】C【解析】解:∵在正方形ABCD中,AB=5,点E在CD边上,DE=2,∴EC=3,BC=5,又∵把△ADE绕点A顺时针旋转90°,得到△ABE′,∴DE=BE′=2,∴E′C=E′B+BC=2+5=7,又∵△EE′C是直角三角形,∴EE′=√EC2+E′C2=√49+9=√58,故选:C.根据旋转的性质得到DE=BE′=2,在正方形ABCD中,AB=5,从而得到E′C=E′B+ BC=7,最后在直角三角形EE′C中可以求得EE′的值.本题主要考查了旋转的性质的知识,解答本题的关键是求出CE′的长,利用勾股定理求EE′,此题难度不大.20.【答案】B【解析】解:(1)由图象知,甲队调离时,甲、乙两队已维修路面的总长度为150米,故(1)正确;(2)∵甲、乙队共同工作3小时共维修150米,甲队维修3×30米=90米,乙队每小时维修路面(150−90)÷3米=20米,所以乙队每小时比甲队少维修10米:故(2)错误;(3)由图象知,甲、乙两队共同工作3小时,乙又工作2小时,乙工作5小时,故(3)错误;(4)a=150+20×2=190,故(4)正确.综上所述,正确的有:(1)(4)共2个.故选:B.(1)根据图象解答即可;(2)根据题意列式计算即可;(3)根据图象解答即可;(4)根据题意得出甲、乙两队每小时维修路面的总长度解答即可.本题考查了一次函数的应用,解决本题的关键是读懂图象,获取相关信息.21.【答案】2.02×106【解析】解:2020000=2.02×106.故答案为:2.02×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.22.【答案】2√3【解析】解:原式=4√3−2√3=2√3,故答案为:2√3根据二次根式的性质即可求出答案.本题考查二次根式的运算,解题的关键是熟练运用二次根式的性质,本题属于基础题型.23.【答案】x≠3【解析】解:根据题意得:x−3≠0,解得:x≠3.分式有意义的条件是分母不等于0,根据这一点就可以求出x的范围.本题考查的知识点为:分式有意义,分母不为0.24.【答案】b(b−3)2【解析】解:原式=b(b2−6b+9)=b(b−3)2,故答案为:b(b−3)2原式提取b,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.【答案】−2≤x<2【解析】解:解不等式2x−3<1,得:x<2,解不等式1−x≤3,得:x≥−2,则不等式组的解集为−2≤x<2,故答案为:−2≤x<2.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.【答案】8−2π【解析】解:∵∠ACB=90°,AC=BC,∴∠A=45°,∵AB=4√2,∴AC=√22AB=4,∴图中阴影部分的面积为12×4×4−45⋅π×42360=8−2π,故答案为:8−2π.根据等腰直角三角形的性质和扇形的面积公式即可得到结论.本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的识别图形是解题的关键.27.【答案】35【解析】解:画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男士和一名女士的结果数为12,所以抽取的恰好是一名男士和一名女士的概率为1220=35,故答案为:35.画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男士和一名女士的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.28.【答案】10%【解析】解:设每次降价的百分率为x%,原售价为a元,由题意可知:a(1−x)2=0.81a,∴x=0.1或x=1.9(舍去),故答案为:10%.设每次降价的百分率为x%,原售价为a元,根据题意列出方程即可求出答案.本题考查一元二次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.29.【答案】2√2或2√6【解析】解:分两种情况:①当CD<BC时,如图1所示:∵四边形ABCD是矩形,∴∠ADC=90°,AD=BC=4,AD//BC,∴∠DAC=∠ACB,∵∠ACB=∠ACE,∴∠DAC=∠ACE,∴CE=AE=AD=DE=4−1=3,∴CD=√CE2−DE2=√32−12=2√2;②当CD>BC时,如图2所示:同①得:CE=AE=AD+DE=4+1=5,∴CD=√CE2−DE2=√52−12=2√6;故答案为:2√2或2√6.分两种情况,画出图形,证出CE=AE,由勾股定理求出CD即可.本题考查了矩形的性质、等腰三角形的判定以及勾股定理等知识;熟练掌握矩形的性质和勾股定理,证明CE=AE是解题的关键.30.【答案】√3−1【解析】解:如图:连接BD,过A作AN⊥BD于N,过B作BM⊥DE交DE的延长线于点M,∵∠BED=135°,∴∠BEM=180°−∠BED=45°.∵BM⊥DE,∴∠MBE=∠BEM=45°.∴BM=ME.在△ABN和△BEM中:{∠ANB=∠BME=90°∠NAB=∠MEB=45°AB=BE,∴△ABN≌△BEM(AAS).∴BM=BN=DN.∴∠BDM=30°.∵∠MEB=∠EDB+∠EBD,∴∠EBD=15°.∴∠EBC=∠CBD+∠EBD=60°.∴△BCE为等边三角形.∵CE=√2,∴BC=CD=√2.∴BD=√2BC=√2⋅√2=2.BM=ME=BN=12BD=1.∴DM=√BD2−BM2=√22−12=√3.∴DE=DM−ME=√3−1.故答案为√3−1.连接BD,过A作AN⊥BD于N,过B作BM⊥DE交DE的延长线于点M,通过添加辅助线,构造△ABN和△BEM全等,进而得出△BCE为等边三角形.利用CE=√2求出ME,BD,再利用勾股定理求出DM,结论可得.本题主要考查了正方形的性质,全等三角形的性质和判定,通过添加辅助线构造全等三角形是解题关键.31.【答案】1.44×107【解析】解:将14400000用科学记数法表示为:1.44×107.故答案为:1.44×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.32.【答案】x≠−12【解析】解:由题意得:2x+1≠0,解得:x≠−12,故答案为:x≠−12.根据分式有意义的条件可得2x+1≠0,再解即可.此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.33.【答案】3√22【解析】【分析】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.首先化简二次根式,进而合并得出即可.【解答】解:√8−√12=2√2−√22=3√22.故答案为:3√22.34.【答案】2(m+2n)(m−2n)【解析】解:2m2−8n2=2(m2−4n2)=2(m+2n)(m−2n).故答案为:2(m+2n)(m−2n).直接提取公因式2,进而利用平方差公式分解即可.此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.35.【答案】−2≤x<23【解析】解:{12x≥−1①3x−2<0②∵解不等式①得:x≥−2,解不等式②得:x<23,∴不等式组的解集为−2≤x<23,故答案为:−2≤x<23.先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.36.【答案】3π【解析】解:∵半径长为3的扇形的圆心角为150°,∴此扇形的面积=120⋅π×32360=3π.故答案为:3π.直接根据扇形的面积公式进行计算即可.本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.37.【答案】712【解析】解:∵小华是12人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,∴偶数一共有7,∴小华报到偶数的概率是:712;故答案为:712根据一共有12个人,其中偶数有7个,再利用概率公式进行求解即可.此题主要考查了概率公式的应用,根据已知得出偶数的个数是解题关键,用到的知识点为:概率=所求情况数与总情况数之比.38.【答案】640【解析】解:设该品牌的羊毛衫的进价是每件x元,由题意得960×0.8−x=20%x,解得:x=640.故该品牌的羊毛衫的进价是每件640元.故答案为:640.设该品牌的羊毛衫的进价是每件x元,根据按标价的八折出售,仍可获利20%,列方程求解.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.39.【答案】6或32【解析】解:①当点F在AB的延长线上时,设BF=x,如图1所示:∵在Rt△ABE中,AB=4,BE=3,由勾股定理得:AE=√AB2+BE2=√32+42=5,又∵FH是线段AC的中垂线,∴AE=CE,∴∠EAC=∠ECA,又∵四边形ABCD是矩形,∴AD//BC,∴∠HAC=∠ECA,∴∠EAC=∠HAC,又∵AO⊥EH,∴∠AOE=∠AOH=90°,在△AOE和△AOH中,{∠EAO=∠HAO AO=AO∠EOA=∠HOA,∴△AOE≌△AOH(ASA)。

2020年黑龙江省哈尔滨市南岗区虹桥中学中考数学一模试卷

2020年黑龙江省哈尔滨市南岗区虹桥中学中考数学一模试卷
、原式利用同底数幂的除法法则计算得到结果,即可做出判断.
【解答】
、原式不能合并,错误;
、原式= ,错误;
、原式= ,正确;
、原式= ,错误.
3.下列图形中既是轴对称图形又是中心对称图形的是()
A.
B.
C.
D.
【答案】
A
【考点】
中心对称图形
轴对称图形
【解析】
根据轴对称图形与中心对称图形的概念求解.
【解答】
【解答】
在这次调查中,一共抽取的学生数是: (人),
= ;扇形统计图中 级对应的圆心角为 = ;
故答案为: , , ;
补全条形统计图如图.
∵ 名
∴若该校共有 名学生,估计该校 级学生有 名.
如图,反比例函数 经过点 ,且点 的坐标为 .
(1)求反比例函数的解析式;
(2)如图,直线 交 轴于点 ,交 轴于点 ,交反比例函数图象于另一点 ,若 = ,求 的面积.
【答案】
、 两种笔记本每本的进价分别为 元、 元;
最多购进 种笔记本 本
【考点】
一元一次不等式的实际应用
分式方程的应用
【解析】
(1)关键语是“用 元购进的 种笔记本与用 元购进的 种笔记本的数量相同”可根据此列出方程;
(2)设最多购进 种笔记本 本,依据“这两种笔记本全部售出后总获利高于 元”列出不等式.
∴ , ,
解 得 或 ,
∴ ,
∴ .
经纬文教用品商店欲购进 、 两种笔记本,用 元购进的 种笔记本与用 元购进的 种笔记本的数量相同,每本 种笔记本的进价比每本 种笔记本的进价贵 元.
(1)求 、 两种笔记本每本的进价分别为多少元?
(2)若该商店 种笔记本每本售价 元, 种笔记本每本售价 元,准备购进 、 两种笔记本共 本,且这两种笔记本全部售出后总获利高于 元,则最多购进 种笔记本多少本?

黑龙江省哈尔滨市南岗区2020年中考数学模拟试卷 附解析

黑龙江省哈尔滨市南岗区2020年中考数学模拟试卷 附解析

2020年黑龙江省哈尔滨市南岗区中考数学模拟试卷一.选择题(共10小题)1.﹣5的绝对值是()A.B.﹣5C.5D.﹣2.中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为()A.1.505×109元B.1.505×1010元C.0.1505×1011元D.15.05×109元3.下列运算正确的是()A.2a+3b=5ab B.3x2y﹣2x2y=1C.(2a2)3=6a6D.5x3÷x2=5x4.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.6.将抛物线y=﹣3x2+2平移得到抛物线y=﹣3(x+2)2﹣4,则这个平移过程正确的是()A.先向左平移2个单位,再向上平移6个单位B.先向左平移2个单位,再向下平移6个单位C.先向右平移2个单位,再向上平移6个单位D.先向右平移2个单位,再向下平移6个单位7.反比例函数y=的图象经过点(﹣2,5),则k的值为()A.10B.﹣10C.4D.﹣48.如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3B.4C.5D.69.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.10.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形,其中正确的结论的个数为()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.=.12.在函数y=中,自变量x的取值范围是.13.不等式组的解集是.14.把多项式a4﹣a2分解因式的结果是.15.如图,为估算某河的宽度,在河对岸选定一个目标点A,在岸边顺次取点B,E,C,使得AB⊥BC,过点C作CD⊥BC交AE延长线于点D,若测得BE=20m,CE=10m,CD =20m,则河的宽度为m.16.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.17.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.18.据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,则这两年我国公民出境旅游总人数的年平均增长率为.19.等边△ABC的边长为3,在边AC上取点A1,使AA1=1,连接A1B,以A1B为一边作等边△A1BC1,则线段AC1的长为.20.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,连接BD,点O为BD的中点,连接AO并延长交BC于点E,若=,CD=4,则AD的长为.三.解答题(共7小题)21.先化简,再代入求值(a﹣1﹣)÷的值,其中a=sin60°+2tan45°.22.如图,在平面直角坐标系中,点O为坐标原点,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位得到对应的△A1B1C1,画出△A1B1C1并写出C1的坐标.(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出C2的坐标.23.为增强学生的身体素质,教育行政部门规定学生平均每天户外活动的时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)本次调查中,户外活动时间为0.5小时的学生有多少名?并补全下面的两幅统计图;(3)如果某校共有1200名学生,请你估计该校学生中户外活动时间为2小时的学生有多少名?24.如图,在四边形ABCD中,AB∥CD且CD=AB,点E为AB的中点,连接CE,DE,AC.(1)求证:△AED≌△EBC;(2)在不添加辅助线的情况下,请直接写出图中与△AED面积相等的所有三角形(△AED除外).25.某自行车销售A、B两种品牌的自行车,若购进A品牌的自行车5辆,B品牌的自行车6辆,共需进货款9500元,若购进A品牌的自行车3辆,B品牌的自行车2辆,需要进货款4500元.(1)求A、B两种品牌的自行车每辆进货价分别为多少元;(2)今年夏天,车行决定购进A、B两种品牌的自行车共50辆,在销售过程中,A品牌自行车的利润率为80%,B品牌自行车的利润率为60%,若将所购进的自行车全部销售完毕后其利润不少于29500元,那么此次最少购进多少辆A品牌自行车.26.已知:锐角△ABC(AB>BC)内接于⊙O,D为的中点,连接OD交AB于点E.(1)如图1,求证:OD⊥AB;(2)如图2,连接OC,点F是OC上一点,OE=OF,连接EF,∠CAB=m∠OEF,∠ABC=n∠OEF,若∠CAB<∠ABC时,求m与n之间的函数关系式;(3)如图3,在(2)的条件下,当m=2时,延长CO交AB于点H,AC=4HE,求∠ACH的正切值.27.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b(b>0)交x轴于点A,交y轴于点B,以OA,OB为边作矩形AOBD,矩形AOBD的面积是16.(1)求b的值;(2)点P为BD上一点,连接PO,把PO绕点P逆时针旋转90°得到PQ,设PB的长为t,点Q的纵坐标为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点Q作QM∥PO交BD的延长线于点M,作∠POA的平分线OE交PM于点E,交PQ于点F,若FQ=2EM,求点Q的坐标.答案与试题解析1:C.2:B.3:D.4:B.5:A.6:B.7:C.8:C.9:B.10:C.11:.12:x≠0.13:x≤3 14:a2(a+1)(a﹣1)15:40.16:.17:.18:20%.19【解答】解:分两种情况:①当C1在A1B的上方时,如图1,∵AB=3,AA1=2,∴A1C=3﹣1=2,∵△ABC和△A1BC1是等边三角形,∴AB=BC,A1B=BC1,∠ABC=∠A1BC1=60°,∴∠A1BC=∠ABC1,在△A1BC和△ABC1中,∵,∴△A1BC≌△ABC1(SAS),∴A1C=AC1=2;②当C1在A1B的下方时,如图2,连接C1C,过C1作C1D⊥AC于D,同理得:△ABA1≌△CBC1,∴C1C=A1A=1,∠C1CB=∠BAC=60°,∵∠ACB=60°,∴∠C1CD=60°,Rt△C1CD中,∠CC1D=30°,∴CD=C1C=,C1D==,Rt△AC1D中,AD=3+=,由勾股定理得:AC1===,综上所述,则线段A1C的长为2或.故答案为:2或.20.【解答】解:延长BC,AD交于F,过D作DS∥BC交AE于S,过A作AH⊥BF于H,∵=,∴设BE=3m,CE=5m,∴BC=8m,∵点O为BD的中点,∴BO=DO,∵DS∥BE,∴∠EBO=∠SDO,∵∠BOE=∠DOS,∴△BOE≌△DOS(ASA),∴DS=BE=3m,∵∠BAD=∠BCD=90°,∠ABC=45°,∴∠F=45°,∴△ABF和△DCF是等腰直角三角形,∴CF=CD=4,∴DF=4,BF=8m+4,∴BH=FH=BF=4m+2,AF=BF=4m+2;∴EF=BF﹣BE=5m+4,AD=4m﹣2,。

黑龙江省哈尔滨市2020年初中升学考试模考试试题(一)数学试卷

黑龙江省哈尔滨市2020年初中升学考试模考试试题(一)数学试卷

2020年哈尔滨市初中升学考试模试题(一)数学试卷第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,比-3小的数是( )A .-3B .-2C .0D .-42.下列计算正确的是( )A .235m n mn +=B .()()623623x x x -÷-=C .11(3)3a a-=D .22(3)9x x -=- 3. 下列图形中,既是中心对称图形又是轴对称图形的是( ) A . B . C . D .4. 下面的几何体中,主视图为三角形的是( )A .B .C .D .5.如图,点A 是反比例函数2(0)y x x=>图象上任意一点,AB y ⊥轴于点B ,点C 是x 轴上的一个动点,则ABC △的面积为( )A .1B .2C .4D .无法确定6.把二次函数2y x =-的图象向左平移1个单位,然后向上平移3个单位,则平移后的图象对的二次函数的关系式为( )A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .2(1)3y x =-++ 7. 如图,已知AOB ∠是O e 的圆心角,60AOB ∠=︒,则圆周角ACB ∠的度数是( )A .50°B .25°C .100°D .30°8.如图,把OAB △绕点O 逆时针旋转80°,到OCD △的位置,若AOB 45∠=︒,则AOD ∠等于( )A .35°B .90°C .45°D .50°9. 某农场2017年蔬菜产量为50吨,2019年蔬菜产量为60.5吨.该农场蔬菜产量的年平均增长率相同.设该农场蔬菜产量的年平均增长率为x ,则根据题意可列方程为( )A .260.5(1)50x -= B .250(1)60.5x -= C .250(1)60.5x += D .260.5(1)50x += 10.如图,在平行四边形ABCD 中,E F 、分别是AD 、CD 边上的点,连接BE 、AF ,它们相交于点G ,延长BE 交CD 的延长线于点H ,下列结论错误的是( )A .AE BE ED EH =B .EH DH EB CD =C .EG AE BG BC =D .AG BG FG GH= 第Ⅱ卷(共90分)二、填空题(每题3分,满分30分,将答案填在答题纸上)11. 将20 200 000用科学记数法表示为 .12. 在函数y =x 的取值范围是 .13. = .14.不等式组21318x x -≥-⎧⎨->⎩的解集为 . 15.因式分解:244ax ax a -+= .16.已知扇形半径是9cm ,弧长为4 cm π,则扇形的圆心角为_________度.17. 布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的球都是白球的概率是 .18. 如图,AB 是O e 的弦,4AB =,C 是O e 上的一个动点,45ACB ∠=︒,若点M 、N 分别是AB 、BC 的中点,则MN 长的最大值是 .19. ABC △中,ABC 90∠=︒,AC 边的垂直平分线交直线BC 于点E ,若3AB =,4BE =.则tan ACB ∠的值为 .20.如图,四边形ABCD 中,CD AD =,CDA ABD 90∠=∠=︒,点E 为CD 边的中点,连接BE ,2AB =,BC =BD= .三、解答题:(21,24题各7分,23,24题各8分,25-27题各10分,共计60分).解答应写出文字说明、证明过程或演算步骤.21. 先化简,再求值231122x x x -⎛⎫-÷ ⎪++⎝⎭的值,其中4sin 452cos60x ︒=-︒. 22.图1、图2分别是108⨯的网格,网格中每个小正方形的边长均为1,A 、B 两点在小正方形的顶点上,请在图1、图2中各取两点C 、D (点C 、D 必须在小正方形的顶点上).使以A 、B 、C 、D 为顶点的四边形分别满足以下要求:(1)在图1中画一个菱形ABCD ,连接AC ,且使1tan CAB 3∠=; (2)在图2中画一个以AB 为对角线的四边形AEBF ,且此四边形为轴对称图形,AFB 90∠=︒,并直接写出所画四边形的面积;23.哈市某中学为了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果外为A 、B 、C 、D 四个等级,请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若九年级共有600名学生,请你估计九年级学生中体能测试结果为D 等级的学生有多少名?24.已知平行四边形ABCD ,连接AF ,CE 、AF 平分BAD ∠交BC 于点F ,CE 平分BCD ∠交AD 于点E.(1)如图1,求证:四边形AFCE 为平行四边形;(2)如图2,连接BD ,分别交AF 、CE 于G 、H ,若2BC AB =,在不添加其他辅助线的情况下,直接找出图中面积为平行四边形ABCD 面积的14的三角形或四边形.25. 电器商场销售A 、B 两种型号计算器,两种计算器的进货价格分别为每台30元、40元,商场销售4台A 型号和2台B 型号计算器,可获利润80元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A 、B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于2500元的资金购进A 、B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?26.已知:如图,AB 为O e 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠.(1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.27.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B.过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D.(1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H.设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.2020年哈尔滨市初中升学考试模拟题(—)数学试卷参考答案一、选择题1-5: DCDCA 6-10: CDACC二、填空题11.72.0210⨯12.2x >- 13.3x >15.2(2)a x - 16.80 17.110 18.19.3或13三、解答题 21.化简结果11x +1x =原式4= 22.(1)图形正确-(2)图形正确面积为1023.解:(1)50(2)16图形正确(3)48024.(1)略(2)ABF △,DCE △ 四边形AMNE ,四边形FMNC25.解:(1)设A 型售价每台x 元,B 型每台售价y 元,由题意得: 4(30)2(40)806(30)3(40)120x y x y -+-=⎧⎨-+-=⎩ 解得:4256x y =⎧⎨=⎩(2)设购A 型m 台,则B 型为()70m -台,根据题意得: 3040(70)2500m m +-≤解得:30m ≥26.(1)证明:设HAG ∠为α∵HAG BDC ∠=∠,∴HAG BDC α∠=∠=∵CD AB ⊥ ∴BDC DBE 90∠+∠=︒∴90DBE α∠=︒-∵AHG ∠与ABD ∠同对弧AD∴AHG ABD 90α∠=∠=︒-∴AHG HAG 90∠+∠=︒∴18090AGH AHG HAG ∠=︒-∠-∠=︒∴AG HD ⊥(2)连接AC 、AD 、CF∵AB 为直径,AB CD ⊥∴CE DE =∴AB 垂直平分CD ∴AC AD = FC FD =∴ACD ADC ∠=∠ FCD FDC ∠=∠∴ACD FCD ADC FDC ∠-∠=∠-∠∴ACF ADF ∠=∠设ACF ADF β∠=∠= FCD FDC α∠=∠=∵ADH ∠与ACH ∠同对弧AH∴ADH ACH β∠=∠=∴HCF HCA ACF 2β∠=∠+∠=∵HFC FCD FDC ∠=∠+∠∴HFC 2α∠=∵HC HF =∴HCF HFC ∠=∠ ∴22αβ=∴αβ=∵AB 为直径 ∴90ADB ∠=︒ ∴HDB 90β∠=︒-∵HAB ∠与HDB ∠同对弧BH∴HAB HDB 90β∠=∠=︒-∵AB CD ⊥∴BFD 9090αβ∠=︒-=︒-∵HFA BFD 9090αβ∠=∠=︒-=︒-∴HFA HAF ∠=∠∴HF HA = ∴HC HA =(2)解:在DH 上截取DT HC =.∵ADH ∠与ACH ∠同对弧AH∴ADH ACH ∠=∠ ∵AB 为直径AB CD ⊥∴弧AC=弧AD ∴AC AD = ∴AHC ATD ≌△△∴AH AT = ∵AG HT ⊥ ∴HG TG =∴HG CH GT DT GD +=+=设HG 2k =,则CH 4k =,GD 6k =,∵F 为DG 中点 ∴3GF DF k ==∴HF HG GF 5k =+=在HCF △中,由勾股定理逆定理得HCF 90∠=︒过点C 作CM HD ⊥于点M解HCD △得1tan CDF 2∠=解ACE △得1tan CAB 3∠= 易求OF ,OH由勾股定理逆定理得HOF 90∠=︒易求1tan KHG 2∠= 1tan HAG 3∠= ∴15KG AK =27.(1)112y x =-+ (2)过点E 作EM y ⊥轴于点M ,过点E 作EN x ⊥轴于点N , 令26112y x y x =+⎧⎪⎨=-+⎪⎩ 解得22x y =-⎧⎨=⎩ ∴()2,2E -易证EDM EAN ≅△△ENH EMG ≅△△∴AH DG ==∴1d t =-+(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK = 易证四边形BGMT 与四边形HNMC 均为矩形由(2)问可知AH GD 1t ==-,则HC 6t =-BG MT 6t ==-∴MN MT =∵KNM LTM 90∠=∠=︒∴ENH EMG ≅△△∴NKM L ∠=∠设KMN α∠=,则KMB KMN α∠=∠= ∴NKM 90α∠=︒-∴NKM L 90α∠=∠=︒- ∵BL //MN∴MBL BMN 2α∠=∠=∴BML 180MBL L 90α∠=︒-∠-∠=︒- ∴BM ML = ∵1tan KCH 2∠=∴11KH CH 3t 22==- ∴13KN KH HN 3t t 3t TL 22=+=--=-= ∴3BL BT TL 5t BM 2=+=-= 在Rt BMG △中, 222BM BG GM =+解得6t 5+=(不合题意舍去)或65t -=。

2020年黑龙江省哈尔滨市中考数学一模试题(附带详细解析)

2020年黑龙江省哈尔滨市中考数学一模试题(附带详细解析)

外…………○………装…………学校:________姓名:___________内…………○………装…………绝密★启用前 2020年黑龙江省哈尔滨市中考数学一模试题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.﹣3的绝对值是( ) A .﹣3 B .3 C .-13 D .13 2.(4分)下列运算正确的是( ) A .a 3−a 2=a B .(a 2)3=a 5 C .a 4⋅a =a 5 D .3x +5y =8xy3.下列图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D . 4.如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为( ) A . B . C . D . 5.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是 A .()2y x 12=-+ B .()2y x 12=++ C .2y x 1=+ D .2y x 3=+ 6.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x ,根据题意可列方程为( )…外…………○…………………订…………线…※※请※※订※※线※※内※※答…内…………○…………………订…………线…A .200(1-x )2=162 B .200(1+x )2=162 C .162(1+x )2=200 D .162(1-x )2=200 7.分式方程52=x+3x 的解是( ) A .x=2 B .x=1 C .x=12 D .x=-2 8.已知A (,1y ),B (2,2y )两点在双曲线32m y x +=上,且12y y >,则m 的取 值范围是( ) A .m 0> B .m 0< C .3m 2>- D .3m 2<-9.如图,△ABC 中,点D 在AB 上,过点D 作DE ∥BC 交AC 于点E ,过点E 作 EF ∥AB 交BC 于点F ,连接CD ,交EF 于点G ,则下列说法不正确的是( )A .BD BFFG FC = B .DE AEBC AC = C .AD AEAB AC = D .BF ADBC AB =第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题10.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D .若AOC=80°,则ADB 的度数为( )A .40°B .50°C .60°D .20° 11.将2034000用科学记数法表示为_____.12.在函数21xy x =+中,自变量x 的取值范围是_____.………○…………订…………○………学校:___________考号:___________………○…………订…………○………13.将多项式m 2n ﹣2mn+n 因式分解的结果是_______________. 14.不等式组1{212x x ≥-->-的解集是_________. 15.二次函数y =x 2﹣4x ﹣3的顶点纵坐标是_____. 16.如图,将矩形ABCD 绕点A 旋转至矩形AB ′C ′D ′位置,此时AC ′的中点恰好与D 点重合,AB ′交CD 于点E .若AB =3,则△AEC 的面积为_____.17.一个扇形的半径为6cm ,面积为10πcm 2,则此扇形的圆心角为_____度. 18.在一个不透明的袋子中装有红、白两种颜色的球(形状、大小、质地完全相同)共5个,其中白球有3个.每次从中随机摸出一个球,并记下颜色后放回,那么从袋子中连续摸出两次红球的概率是_____. 19.在△ABC 中,∠ACB =90°,∠A =40°,D 为AB 边上一点,若△ACD 是等腰三角形,则∠BCD 的度数为_____. 20.如图,△ABC 中,∠ABC =60°,BC =8,点D 为△ABC 内一点,BD =CD ,∠ABD+∠ADC =180°,若AD =2,则AC 的长为_____. 三、解答题 21.先化简,再求代数式2213222a a a a a ++⎛⎫÷-+ ⎪++⎝⎭的值,其中a =2sin60°+tan45°.22.图l 、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长………外…………○…………订…………○…………线……※※装※※订※※线※※内※※答※※题※※ ………内…………○…………订…………○…………线……(1 ) 在图1中画出△ABC (点C 在小正方形的顶点上),△ABC 的面积为5.且△ABC 中有一个角为45°(画一个即可) (2)在图2中画出△ABD (点D 在小正方形的顶点上),使△ABD 的面积为5, 且∠ ADB=90°(画一个即可). 23.某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计图解答下列问题:(1)求本次抽样人数有多少人?(2)补全条形统计图;(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人? 24.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE =2DE ,过点C 作CF ∥BE 交DE 的延长线于F ,连接CD .(1)求证:四边形BCFE 是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC 面积相等的所有三角形(不包括△BEC ).25.某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和○…………外…○…………订……班级:___________考号:___○…………内…○…………订……(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台? 26.已知,在⊙O 中,AB 、CD 是直径,弦AE ∥CD . (1)如图1,求证:»»EC BC ; (2)如图2,直线EC 与直线AB 交于点F ,点G 在OD 上,若FO =FG ,求证:△CFG是等腰三角形; (3)如图3,在(2)的条件下,连接BD ,若AE+CD =32BD ,DG =4,求线段FC 的长. 27.平面直角坐标系中,点O 是坐标原点,抛物线y =ax 2+32x+c 与x 轴交于A 、B 两点,点B 的坐标为(4,0),与y 轴交于点C ,直线y =kx+2经过A 、C 两点. (1)如图1,求a 、c 的值; (2)如图2,点P 为抛物线y =ax 2+32x+c 在第一象限的图象上一点,连接AP 、CP ,设点P 的橫坐标为t ,△ACP 的面积为S ,求S 与t 的函数解析式,并直接写出自变量t 的取值范围; (3)在(2)的条件下,点D 为线段AC 上一点,直线OD 与直线BC 交于点E ,点F 是直线OD 上一点,连接BP 、BF 、PF 、PD ,BF =BP ,∠FBP =90°,若OE =3,求直线PD 的解析式.参考答案1.B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 2.C【解析】试题分析:A.不是同类项,不能合并,选项错误;B.(a2)3=a6,选项错误;C.正确;D.不是同类项,不能合并,选项错误.故选C.考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.3.B【解析】【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.4.D【解析】【分析】【详解】解:俯视图是从物体的上面向下看得到的视图.从上面向下看,从左到右有三排,且其正方形的个数分别为2、3、1.故选:D【点睛】本题考查简单组合体的三视图.5.C【解析】【分析】根据向下平移,纵坐标相减,即可得到答案.【详解】∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2-1,即y=x2+1.故选C.6.A【解析】【分析】【详解】解:因为销售单价原来为200元,而平均每次降价的百分率为x,所以降一次后的售价为200(1-x)元,降两次后的售价为200(1-x)2元,所以可列方程200(1﹣x)2=162,故选A.【点睛】本题考查一元二次方程的应用.7.A【解析】【分析】首先去掉分母,观察可得最简公分母是x (x +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可.【详解】解:去分母,得5x=2(x +3),解得x=2.经检验,x=2是原方程的解.故选A .8.D【解析】【分析】∵A (1-,1y ),B (2,2y )两点在双曲线32m y x+=上, ∴根据点在曲线上,点的坐标满足方程的关系,得1232m 32m y y 12++==-,. ∵12y y >,∴32m 32m >12++-,解得3m 2<-.故选D. 【详解】请在此输入详解!9.A【解析】因为DE ∥BC, 所以,,DE AE AD AE BC AC AB AC== 因为EF ∥AB, 所以,,BF AE BD BC BC AC FK CF== 所以,BF AD BC AB =故选A.10.B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.11.2.034×106【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:2034000=2.034×106,故答案为:2.034×106.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.x≠-1 2【解析】【分析】分式有意义的条件就是分式的分母不为零,列不等式求解即可. 【详解】解:由题意可得:210x+≠解得: x≠-12故答案为: x≠-12 【点睛】本题考查分式成立的条件,掌握分式的分母不能为0是本题的解题关键.13.n(m ﹣1)2【解析】【分析】【详解】解:m 2n ﹣2mn+n =()221n m m -+=()21n m -. 【点睛】本题主要考查了提公因式法分解因式和公式法分解因式.分解因式时应首先提公因式,然后再利用其他方法分解因式,分解因式应分解到不能再分解为止.14.-2≤x <3【解析】【分析】不等式组解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【详解】解不等式①可得:x≥-2,解不等式②得:x <3,则不等式组的解集为-2≤x <3.考点:解一元一次不等式组15.﹣7【解析】【分析】用配方法将二次函数的解析式转化为顶点式,确定顶点坐标即可.【详解】解:∵二次函数y =x 2﹣4x ﹣3=(x ﹣2)2﹣7,∴该函数的顶点坐标为(2,﹣7),∴该函数的顶点纵坐标为﹣7,故答案为:﹣7.【点睛】本题考查了二次函数的性质:二次函数y=a(x-h)2+k(a≠0)的顶点坐标为(h,k).16【解析】【分析】先求出∠ACD=30°,进而可算出CE、AD,再算出△AEC的面积.【详解】如图,由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=1122AC AC=',∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴AE=EC,∴DE =1122AE EC =, ∴CE =22233CD AB ==, DE =113AB =,AD∴12AEC S EC AD ==n n【点睛】本题考查了旋转的性质、矩形的性质、直角三角形中30度角的性质,三角形面积计算等知识点,难度不大.清楚旋转的“不变”特性是解答的关键.17.100【解析】【分析】设扇形的圆心角是n °,根据扇形的面积公式S =2π360n r ,可得到一个关于n 的方程,解方程即可求解.【详解】解:设这个扇形的圆心角为n °,则2π6360n ⨯=10π, 解得,n =100,故答案为:100.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.18.425【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与连续两次摸出红球的情况,再利用概率公式即可求得答案.【详解】解:∵红、白两种颜色的球(形状、大小、质地完全相同)共5个,其中白球有3个,∴红球为2个,画树状图如图所示:∵共有25种等可能的结果,连续摸出两次红球的有4种情况,∴连续摸出两次红球的概率为4 25,故答案为:4 25.【点睛】本题考查了树状图法求概率以及概率公式,随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.19.20°或50°【解析】【分析】分以下两种情况求解:①当AC=AD时,②当CD=AD时,先求出∠ACD的度数,然后即可得出∠BCD的度数【详解】解:①如图1,当AC=AD时,∴∠ACD=∠ADC=12(180°﹣40°)=70°,∴∠BCD=90°﹣∠ACD=20°;②如图2,当CD=AD时,∠ACD=∠A=40°,∴∠BCD=90°﹣∠ACD=50°,综上可知∠BCD的度数为20°或50°,故答案为:20°或50°.【点睛】本题考查了等腰三角形的性质以及三角形的内角和,解题的关键是根据题意画出图形,并运用分类讨论的思想求解.20.【解析】【分析】延长AD交BC于E,在AB上截取AF=AD,连接DF,作AH⊥BC于H,设∠ABD=α,先根据角度之间的转化得出∠BAD=60°,从而得出△ABE为等边三角形,进而得出△ADF 也为等边三角形.利用SAS证明△BFD≌△DEC,得出EC=DF=AD,然后可求出BE的长,在等边△ABE中,根据勾股定理可得出AH的长,最后在Rt△ACH中,利用勾股定理可得出AC的长.【详解】解:如图,延长AD交BC于E,在AB上截取AF=AD,连接DF,作AH⊥BC于H.设∠ABD=α,则∠ADC=180°﹣α,∠DBC=60°﹣α,∠EDC=α,∵DB=DC,∴∠DCB =∠DBC =60°﹣α,∴∠BDC =60°+2α,∴∠BDE=∠BDC-∠EDC=60°+α,又∠BDE=∠ABD+∠BAE=α+∠BAE ,∴∠BAE=60°,又∠ABE=60°,∴△AEB 是等边三角形,∵AF =AD =2,∴△ADF 是等边三角形,∴DF =AD =AF =2,∵∠FBD =∠EDC =α,BF =DE ,BD =DC ,∴△BFD ≌△DEC (SAS ),∴EC =DF =2,∵BC =8,∴BE =AB =AE =8﹣2=6,∵AH ⊥EB ,∴BH =EH =3,∴AH =,又CH=CE+EH=2+3=5,∴AC故答案为:【点睛】本题考查了等腰三角形的性质,全等三角形的判定与性质,等边三角形的判定与性质以及勾股定理等知识,正确作出辅助线构造等边三角形与全等三角形是解题的关键.21.11a a +-,33+. 【解析】【分析】先利用分式的运算法则进行化简,再根据特殊角的三角函数值化简a ,最后将a 的值代入即可得出结果.【详解】解:原式=2(1)2aa++÷212aa-+=2(1)22(1)(1) a aa a a++⨯++-=11 aa+-,∵a=2sin60°+tan45°=2,.【点睛】本题考查了分式的化简求值以及特殊角的三角函数值,掌握基本运算法则是解题的关键.22.(1)见解析;(2)见解析.【解析】【分析】【详解】解:(1)如图1所示:(2)如图2所示:点评:考查应用与设计作图;得到另一端点所在的直线是解决本题的突破点.23.(1)50人;(2)见解析;(3)180人.【解析】【分析】(1)根据喜欢跑步的人数是5,所占的百分比是10%,即可求得总人数;(2)根据百分比的意义求出喜欢篮球的人数,作图即可;(3)利用总人数乘以对应的百分比即可求解.【详解】(1)本次抽样的人数:5÷10%=50(人);(2)喜欢篮球的人数:50×40%=20(人),如图所示:;(3)九年级最喜欢跳绳项目的学生有600×1550=180(人). 考点:条形统计图;用样本估计总体;扇形统计图.24.(1)证明见解析;(2)△FEC 、△AEB 、△ADC 、△BDC .【解析】【分析】(1)结合三角形中位线的性质先证明四边形BCFE 是平行四边形,再得出邻边BC=BE ,则四边形BCFE 是菱形;(2)根据平行线的性质、三角形的面积公式解答即可.【详解】(1)证明:∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,BC =2DE .∵CF ∥BE ,∴四边形BCFE 是平行四边形.∵BE =2DE ,BC =2DE ,∴BE =BC .∴四边形BCFE 是菱形;(2)解:①∵由(1)知,四边形BCFE是菱形,∴BC=FE,BC∥EF,∴△FEC与△BEC是等底等高的两个三角形,∴S△FEC=S△BEC.②∵E为AC的中点,∴△AEB与△BEC是等底同高的两个三角形,则S△AEB=S△BEC.③∵D为AB的中点,∴S△ADC =S△BDC=12S△ABC,又S△BEC=12S△ABC,则S△ADC=S△BDC=S△BEC.综上所述,与△BEC面积相等的三角形有:△FEC、△AEB、△ADC、△BDC.【点睛】此题主要考查菱形的性质和判定,三角形中位线的性质以及三角形面积的计算,掌握基本性质和判定定理是解题的关键.25.A型42元,B型56元;30台.【解析】试题分析:(1)首先设A种型号计算器的销售价格是x元,A种型号计算器的销售价格是y 元,根据题意可等量关系:①5台A型号和1台B型号计算器,可获利润76元;②销售6台A型号和3台B型号计算器,可获利润120元,根据等量关系列出方程组,再解即可;(2)根据题意表示出所用成本,进而得出不等式求出即可.试题解析:(1)设A型号计算器售价为x元,B型号计算器售价为y元由题意可得:()() ()() 5304076 {630340120x yx y-+-=-+-=解得:42 {56 xy==答:A型号计算器售价为42元,B型号计算器售价为56元.(2)设购进A型号计算器a台,则B型号计算器(70-a)台由题意可得: 30a+40(70-a)≤2500解得:a≥30答:最少需要购进A型号计算器30台.点睛:本题考查了由实际问题抽象出二元一次方程组的知识,解答此题的关键是仔细审题得到等量关系,根据等量关系建立方程;还考查了不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.26.(1)证明见解析;(2)证明见解析;(3)FC=.【解析】【分析】(1)连接OE,根据平行线的性质以及等腰三角形的性质得出∠EOC=∠COB,从而可得出结果;(2)连接BC,设∠CBO=α,先根据等腰三角形的性质及对顶角相等求出∠FGO=∠FOG =180°﹣2α,再根据平行线的性质和圆内接四边形的性质得出∠FEA=∠OBC=∠FCD=α,在△FCG中利用三角形的内角和可得出∠CFG=∠FCG=α,最后可得出FG=CG;(3)连接AC,CB,EO,延长AB至M,使BM=AE,连接CM,过点C作CH⊥AB于H,先利用SAS证明△AEC≌△MBC,得出AC=CM,再由cos∠CAB=AC AHAB AC==12AMAC=34,设AH=3x,AC=4x,进一步可得出1142AE BMCO AB==.再由平行得出△AEF∽△OCF,有14AE EF FACO FC FO===,再根据线段间的等量关系可求出x的值,从而可得出AC,BC的长,进而得出EC的长,最后根据14EFFC=可得出结果.【详解】(1)证明:连接OE,∵AO=EO,∴∠OAE=∠OEA,∵AE∥CD,∴∠OAE=∠COB,∠OEA=∠EOC,∴∠EOC=∠COB,∴»»;EC BC(2)证明:连接BC,设∠CBO=α,∵OB=OC,∴∠OCB=∠OBC=α,∴∠BOC=180°﹣2α,∴∠FOG=180°﹣2α,∵FO=FG,∴∠FGO=∠FOG=180°﹣2α,∵四边形AECB是圆内接四边形,∴∠FEA=∠OBC=α,∵AE∥CD,∴∠FEA=∠FCD=α,∴∠CFG=180°﹣∠FCD﹣∠FGC=α,∴∠CFG=∠FCG=α,∴FG=CG,∴△FCG是等腰三角形;(3)解:如图,连接AC,CB,EO,延长AB至M,使BM=AE,连接CM,过点C作CH⊥AB于H,∵AB是直径,∴∠ACB=90°,∵∠AOC=∠BOD,∴AC=BD,∵AB=CD,AE+CD=32 BD,∴AE+AB=32 AC,∴BM+AB=AM=32 AC,∴32 AMAC=,∵»»EC BC=,∴∠EAC=∠CAB,EC=BC,∵四边形AECB是圆内接四边形,∴∠ABC+∠AEC=180°,且∠ABC+∠CBM=180°,∴∠AEC=∠CBM,且EC=BC,AE=BM,∴△AEC≌△MBC(SAS),∴AC=CM,且CH⊥AB,∴AH=MH=12 AM,∵cos∠CAB=AC AHAB AC==12AMAC=34,∴设AH=3x,AC=4x,则AM=6x,AB=163x,∴BH=AB﹣AH=73x,BM=AE=HM﹣BH=23x,∴1142AE BMCO AB==,∵AE∥CO,∴△AEF∽△OCF,∴14 AE EF FACO FC FO===,设FA=a,则FO=4a,AO=FO﹣FA=3a,∵FO=FG=CG=4a,∴OG=CG﹣CO=a,∴DG=DO﹣OG=3a﹣a=2a=4,∴a=2,∴AO=CO=6,∴AB=12,∴163x=12,∴x=94,∴AC=9,∴BC,∴EC=,∵14 EFFC=,∴FC=.【点睛】本题是圆的综合题,主要考查了弧、弦、圆周角的关系,圆心角定理的推论,圆内接四边形的性质,相似三角形的判定与性质,等腰三角形的判定与性质,勾股定理以及平行线的性质等知识点,正确作出辅助线并能综合运用基本性质进行推理是解题的关键,题目难度较大.27.(1)a=12-、c=2;(2)S=14t2+14t(0<t<4);(3)直线PD的解析式为y=45x+75.【解析】【分析】(1)令y=kx+2中x=0,可得出点C的坐标,再将B,C的坐标代入y=ax2+32x+c,可求出a,c的值;(2)过点P作x轴的垂线,垂足为点M,且与直线AC交于点K,过点C作PK的垂线,垂足为点N,先求出点A的坐标,从而可得出直线y=kx+2的解析式,由P点的横坐标为t,可得P(t,﹣12t2+32t+2),K(t,2t+2),得出PK=12t2+12t,最后根据S=S△AMK﹣S△AMP﹣S△CPK可得出函数解析式;(3)过点O作OH⊥BC于点H,结合面积法和勾股定理可先求出OH,BH的长,进一步可得出EH,BE,CE的长;过点E作EG⊥y轴于点G,先得出tan∠CEG=tan∠OBE=12,可求出CG,EG的长,从而可求出点E的坐标,利用待定系数法可求出直线OE的解析式,再与直线AC的解析式联立可求出点D坐标;过点B作x轴的垂线,与过点P、F作的y轴的垂线分别交于Q、T两点,先证明△PQB≌△BTF,从而有BT=PQ=4﹣t,FT=BQ=﹣1 2t2+32t+2,F(12t2﹣32t+2,t﹣4),设TF交y轴于点I,根据tan∠OEG=2=tan∠OFI可得出关于t的方程,解出t可得出点P的坐标,最后根据待定系数法可求出直线PD的解析式.【详解】解:(1)∵直线y=kx+2经过C点,∴C(0,2),把点B的坐标为(4,0),C(0,2)代入y=ax2+32x+c,得到01662a cc=++⎧⎨=⎩,解得122ac⎧=-⎪⎨⎪=⎩;(2)如图1,过点P作x轴的垂线,垂足为点M,且与直线AC交于点K,过点C作PK的垂线,垂足为点N,∵y =﹣12x 2+32x +2, ∴A (﹣1,0),∵直线y =kx+2经过A 点,∴k =2,∴y =2x+2,∵P 点的横坐标为t ,∴P (t ,﹣12t 2+32t+2),K (t ,2t+2), ∴PK =12t 2+12t , ∴S =S △AMK ﹣S △AMP ﹣S △CPK =2KM AM ⋅﹣2PM AM ⋅﹣2PK CN ⋅=()2PK AM CN ⋅-=2PK , ∴S =14t 2+14t (0<t <4); (3)∵OC =2,OB =4,∴tan ∠OBE =12, 如图2:过点O 作OH ⊥BC 于点H ,∴OH =OB OC BC =g∴BH ,∵OE EH15,∴BE,∴CE,过点E作EG⊥y轴于点G,∵tan∠CEG=tan∠OBE=12,∴CG=23,EG=43,∴E(﹣43,83),∴易得直线OE的解析式y=﹣2x,∵直线AC的解析式为y=2x+2,∴联立直线OE与直线AC的解析式,解得D(﹣12,1),过点B作x轴的垂线,与过点P、F作的y轴的垂线分别交于Q、T两点,∵∠FBP=90°,∴∠PBQ=∠BFT,∵BP=BF,∴△PQB≌△BTF(AAS),∴BT=PQ=4﹣t,FT=BQ=﹣12t2+32t+2,∴F(12t2﹣32t+2,t﹣4),设TF交y轴于点I,∵tan∠OEG=2=tan∠OFI,∴t﹣4=﹣2(12t2﹣32t+2),解得t=2或t=0(舍),∴P (2,3),设直线PD 的解析式为y=kx+b ,则23112k b k b +=⎧⎪⎨-+=⎪⎩,解得4575k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线PD 的解析式为y =45x+75. 【点睛】本题是二次函数的综合题,主要考查待定系数法求函数解析式,割补法求面积问题,解直角三角形,解一元二次方程,勾股定理等知识点,综合性较强,难度较大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档