钢筋混凝土梁的正截面承载力计算PPT课件
钢筋混凝土受弯构件—T形截面梁正承载力计算
现浇肋梁楼盖(梁跨中截面) (a)
槽型板 (b)
(a)
(b)
空(c心) 板
(c)
单元4 T形截面梁正截面承载力计算
T形梁有效(计算)翼缘宽度:
离梁肋越远,T形梁翼缘受压的 压应力越小,因此对受压翼缘的宽 度有一定限制,在这个限制的宽度 范围内,认为翼缘的压应力均匀分 布。
单元4 T形截面梁正截面承载力计算
2.T形梁截面复核例题
上一例题中,若已配置受拉钢筋为8Φ25,即As=4418mm2,弯矩设计值 M=650KN.m,其余已知条件不变,试验算截面是否安全。
解题分析:T形梁首先需要确定计算翼缘宽度,之后判定T形截面类别,再进 行相应计算。 [解] (1)确定翼缘计算宽度
as
同上一题,取bf'=600mm
(2)判别T形截面类别
fc=9.6N/mm2,ft=1.1N/mm2; fy=300N/mm2, ξb=0.55
1
fcbf
hf
h0
hf 2
1.0 9.6
600
100
730
100 2
391 .7 10 6
N .mm
391 .7KN.m 450 KN.mm 第二类T形截面
(3)求M1
139.8mm b h0
0.55 740mm
(5)求As As
1 fcbx 1 fc b f
fy
bh f
1.0 9.6 250139.8 1.0 9.6 600 250100 2238mm2
300
(6)选钢筋 选用6Φ22,As=2281mm2
6Φ22
250
单元4 T形截面梁正截面承载力计算
求:验算截面是否安全
受弯构件正截面承载力计算基本假定ppt课件
3.正截面承载力计算的基本原则
(1)正截面承载力计算的基本假定
《混凝土结构设计规范》( GB 50010-2010):
6.2.1 正截面承载力应按下列基本假定进行计算: 5 纵向钢筋的应力取钢筋应变与其弹性模量的乘积,但其值应符合下列要求:
第i层非预应力筋的应力
第正截面承载力计算的基本假定
《混凝土结构设计规范》( GB 50010-2010):
6.2.1 正截面承载力应按下列基本假定进行计算: 2 不考虑混凝土的抗拉强度,即全部拉力由纵向受拉钢筋承担。
3
3.正截面承载力计算的基本原则
(1)正截面承载力计算的基本假定
《混凝土结构设计规范》( GB 50010-2010):
6.2.1 正截面承载力应按下列基本假定进行计算: 3 混凝土受压的应力与应变关系按下列规定取用:
n≤ 2 0≥0.002 cu ≤ 0.0033, 轴压时取04
3.正截面承载力计算的基本原则
(1)正截面承载力计算的基本假定
《混凝土结构设计规范》( GB 50010-2010):
6.2.1 正截面承载力应按下列基本假定进行计算: 4 纵向受拉钢筋的极限拉应变取为0.01;
正截面承载力计算的基本假定
1
3.正截面承载力计算的基本原则
(1)正截面承载力计算的基本假定
《混凝土结构设计规范》( GB 50010-2010):
6.2.1 正截面承载力应按下列基本假定进行计算: 1 平截面假定:截面应变保持平面,即变形前的平面变形后仍为平面,截面上各点应变保 持线性关系;
2
3.正截面承载力计算的基本原则
混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算
◆判别条件:f y As 1 fcb'f h'f
第一类T形截面
满足:
0M 1 fcb'f h'f h0 h'f 2 否则为第二类截面
混凝土结构设计原理
第4章
■第一类T形截面的计算公式及适用条件
图4.13 第一类T形截面计算简图
◆计算公式: 1 fcbf x f y As
0M
1
f cbf x(h0
由式(4-27)可得:
x h0
h02
M 2
fyAs(h0
1 fcb
as)
As
fyAs 1 fcbx
fy
…4-34 …4-35
混凝土结构设计原理 情形2:已知条件
第4章
M1
0M
f
' y
As'
h0
as'
x h0
h02
M1
0.51 fcb
x h0 b N
Y
x 2as'
按 A未s' 知,重新计算 和As' As
x) 2
◆适用条件: 1.防止超筋破坏: x bh0 2.防止少筋破坏 : As minbh
按 bf h的单筋
矩形截面计算
混凝土结构设计原理
第4章
■第二类T形截面的计算公式及适用条件
图4.14 第二类T形截面计算简图
◆计算公式: 1 fcbx 1 fc (bf b)hf fy As
0M
② 由式(4-27)求 Mu
Mu
fyAs(h0 as) 1 fcbx(h0
x) 2
…4-37
③ 验算: Mu M ?
混凝土结构设计原理
第三章 钢筋混凝土受弯构件正截面承载力计算
第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第三章钢筋混凝土受弯构件正截面承载力计算第一节钢筋砼受弯构件的构造一、钢筋砼板的构造二、钢筋砼梁的构造一、钢筋砼板(reinforced concreteslabs)的构造1、钢筋砼板的分类:整体现浇板、预制装配式板。
2、截面形式小跨径一般为实心矩形截面。
跨径较大时常做成空心板。
如图所示。
3、板的厚度:根据跨径(span)内最大弯矩和构造要求确定,其最小厚度应有所限制:行车道板一般不小于100mm;人行道板不宜小于60mm(预制板)和80mm(现浇筑整体板)。
4、板的钢筋由主钢筋(即受力钢筋)和分布钢筋组成如图。
钢筋混凝土板桥构造图(1)主筋布置:布置在板的受拉区。
直径:行车道板:不小于10mm;人行道板:不小于8mm。
间距:间距不应大于200mm。
主钢筋间横向净距和层与层之间的竖向净距,当钢筋为三层及以下时,不应小于30mm,并不小于钢筋直径;当钢筋为三层以上时,不应小于40mm,并不小于钢筋直径的1.25倍。
净保护层:保护层厚度应符合下表规定。
序号构件类别环境条件ⅠⅡⅢ、Ⅳ1 基础、桩基承台⑴基坑底面有垫层或侧面有模板(受力钢筋)⑵基坑底面无垫层或侧面无模板465756852 墩台身、挡土结构、涵洞、梁、板、拱圈、拱上建筑(受力主筋)34453 人行道构件、栏杆(受力主筋)22534 箍筋22535 缘石、中央分隔带、护栏等行车道构件34456 收缩、温度、分布、防裂等表层钢筋15225梁构件,在不同环境条件下,保护层厚度值注:请点击<按扭Ⅰ,Ⅱ,Ⅲ&Ⅳ>,以查看不同保护层厚度值(2)分布钢筋(distribution steel bars):垂直于板内主钢筋方向上布置的构造钢筋称为分布钢筋作用:A、将板面上荷载更均匀地传递给主钢筋B、固定主钢筋的位置C、抵抗温度应力和混凝土收缩应力(shrinkage stress)布置:A、在所有主钢筋的弯折处,均应设置分布钢筋B、与主筋垂直C、设在主筋的内侧数量:截面面积不小于板截面面积的0.1%。
钢筋混凝土受弯构件正截面承载力计算
配筋率要比b 低一些。
4.2.1 正截面受弯的三个受力阶段
试验方法
荷载分配梁
试验梁
P
外加荷载
数据采集系统
应变计
位移计
L/3
L/3
L
h0
h
As
b
As
bh0
矩M/Mu~ af 关系曲线如图:
af
第一阶段 —— 截面开裂前阶段。 第二阶段 —— 从截面开裂到纵向受拉钢筋
屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
各阶段和各特征点的截面应力 — 应变分析:
cu
应变图
应力图 M
t u
Mcr
M
y
My
M
xc C
Mu Z
sAs
I
ftk sAs
Ia
sAs
II
fyAs IIa
fyAs III
fyAs=T IIIa
进行受弯构件截面各受力工作阶段的分析, 可 以详细了解截面受力的全过程, 而且为裂缝、变形 及承载力的计算提供依据。
(1)受弯构件、偏心受拉、轴心受拉构件其 一侧纵向受拉钢筋的配筋百分率不 应小于0.2%和0.45ft/fy中的较大值 ;
(2)卧置于地基上的混凝土板,板的受拉钢 筋的最小配筋百分率可适当降低, 但不应小于0.15%。
4.4 单筋矩形截面的承载力计算
4.4.1 基本计算公式及适用条件
1fc
x
Mu
C=1fc bx
• 破坏前裂缝、变形有明显的发展, 有破坏征 兆, 属延性破坏
• 钢材和砼材料充分发挥
• 设计允许
4.2.2 正截面受弯的三种破坏
第三章-钢筋混凝土受弯构件正截面承载力计算
§3.3 建筑工程中受弯构件正截面承载力计算方法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
fcu,k——混凝土立方体抗压强度标准值;
n——系数,当计算的n大于2.0时,应取为2.0。
n,ε0,εcu的取值见表3—1。
由表3-1可见,当混凝土的强度等级小于和等于C50时,
n,ε0和εcu均为定值。当混凝土的强度等级大于C50时,随 着混凝土强度等级的提高,ε0的值不断增大,而εcu值却逐渐
M
f y As (h0
x) 2
(3-9b)
式中M——荷载在该截面上产生的弯矩设计值; h0——截面的有效高度,按下式计算
h0=h-as
h为截面高度,as为受拉区边缘到受拉钢筋合力作用点的距离。
对于处于室内正常使用环境(一类环境)的梁和板,
当混凝土强度等级> C20,保护层最小厚度(指从构件 边缘至钢筋边缘的距离)不得小于25mm,板内钢筋的混凝 士保护层厚度不得小于15mm
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;
单筋矩形截面梁、板正截面受弯承载力计算教学课件.
0.96
0.76
0.95
0.73
0.94
0.74
水工混凝土结构
1.3 相对受压区计算高度
相对受压区计算高度是等效矩形混凝土受压区计算高度x
与截面有效高度h0的比值,用ξ= x/h0表示。 当梁发生界限破坏时,即受拉钢筋屈服的同时,受压区
混凝土也达到极限压应变εcu。这时混凝土受压区计算高度xb
与截面有效高度h0的比值,称为相对界限受压区计算高度ξb, ξb= xb/h0。这一临界破坏状态,就是适筋梁与超筋梁的界限。
HPB235
≤C50 HRB335 HRB400 RRB400
0.614
0.550 0.518
0.425
0.399 0.384
0.522
0.468 0.440
0.386
0.358 0.343
水工混凝土结构
1.4 受拉钢筋配筋率 受拉钢筋的配筋率ρ是指受拉钢筋截面面积As与截面有效 截面面积bh0比值的百分率,即ρ =As /(bh0 )×100﹪。 通常用ρmax表示受拉钢筋的最大配筋率; 用ρmin表示受拉钢筋的最小配筋率。 当ρ>ρmax时,将发生超筋破坏; 当ρ<ρmin时,将发生少筋破坏; 当ρmin≤ρ≤ρmax时,将发生适筋破坏。 为避免发生超筋破坏与少筋破坏,截面设计时,应控制 受拉纵筋的配筋率ρ在ρmin~ρmax范围内。
水工混凝土结构
2015.03
钢筋混凝土梁板设计
单筋矩形截面梁、板正截面承载力计算
1 正截面承载力计算的一般规定
1.1 计算方法的基本假定
(1) 截面应变保持为平面:
c
x
c
y
c
钢筋混凝土课件 第3章 正截面受弯
3.2 受弯构件正截面受力全过程及破坏特征 3.2.1 正截面的破坏特征 3. 超筋破坏 当梁的配筋率 比较大时,梁发生超筋破坏。 破坏特征: (1) 由于 比较大,受拉钢筋还没有屈服时,受压区混 凝土已经被压碎(其承载力较高)。 (2) 截面破坏时,没有明显预兆——脆性破坏。 (3) 梁发生超筋破坏时,混凝土被压碎,但钢筋强度未 充分利用,故在实际工程的设计中应予避免。 防止措施:主要是通过限制梁的最大配筋率 max或限 制梁的最大受压区高度。
3.2 受弯构件正截面受力全过程及破坏特征 3.2.1 适筋梁受力破坏的全过程 2. 适筋梁的受力全过程 跨中截面在弯矩作用下,中和轴以上受压,简称“受 压区”,中和轴以下受拉,简称“受拉区”。 试验结果表明:适筋梁从开始加载到破坏,其正截面 的受力全过程分成三个阶段: (1) 第Ⅰ阶段——整体工作阶段:从开始加载到拉区混 凝土即将开裂;受力特 点为:压区应力由混凝 M M 土承担,拉区因混凝土 A A <f =f ( = ) 未开裂,由钢筋和混凝 应力分布 应变分布 应力分布(阶段末) 第一阶段跨中截面应变及应力分布 土共同承担拉力。
分布钢筋 受力钢筋
3.2 受弯构件正截面受力全过程及破坏特征 3.2.1 适筋梁受力破坏的全过程 1. 试验装置 ⑴ 反力支撑系统;
P
外加荷载
数据采 集系统
荷载分配梁
h0 h
⑵ 加载系统;
⑶ 量测系统; ⑷ 数据处理系统 。
试验梁
应变计
位移计
b
L/3 L L/3
As
As bh0
根据适筋梁的荷载试验,可测出梁从开始加载到破 坏整个受力过程中各测点的应变和梁的挠度变形,然后 根据各测点的应变和跨中变形,分析跨中截面的应力分 布规律。
钢筋混凝土轴心受力构件正截面承载力计算优秀课件.ppt
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第3 章
2. 构造要求
❖ 不得采用绑扎的搭接接头。
❖ 纵筋一侧配筋率 0.2%,且 45ft fy。
( f t为混凝土轴心抗拉强度设计值)
❖ 纵筋应沿截面周边均匀对称布置,并宜优先 采用直径较小的钢筋。
❖ 箍筋直径 d≥6mm, 间距s ≤200mm (腹杆中 s ≤150mm)。
混凝土结构设计原理
第3 章
§3.1 概 述
轴线
N
(轴拉) 轴线
N
(轴压)
主页
N
目录
理想的轴心受力构
件不存在。
上一章
N
下一章
帮助
钢筋混凝土轴心受力构件正截面承 载力计算优秀课件
混凝土结构设计原理
第3 章
§3.2 轴心受拉构件
3.2.1 受力过程及破坏特征
N
N
N
Nu Ncr
o
钢筋混凝土轴心受力构件正截面承 载力计算优秀课件
4. 构造要求
❖ 材料:混凝土宜高一些,钢筋宜用HRB400级。 ❖ 截面: b≥250mm, l0 /b≤30 。
❖ 纵筋: d≥12mm, 圆柱中根数 ≥6, ≤ 5%;
50mm ≤ @ ≤ 350mm, c≥25mm。
钢筋混凝土轴心受力构件正截面承 载力计算优秀课件
主页 目录 上一章 下一章 帮助
钢筋混凝土轴心受力构件正截面承 载力计算优秀课件
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第3 章
3.2.2 桥梁工程中的轴拉构件
0 Nd
} fsd As
X0
oNd fsdAs
…3-2
钢筋混凝土受弯构件正截面承载力PPT课件
斜截面波坏
正截面波坏
图3-1受弯构.件破坏截面
2
3.1.1 受弯构件的截面形状与尺寸
(1)受弯构件的截面尺寸
梁的截面形式主要有矩形、T形、倒T形、L形、Ⅰ形、十 字形、花篮形等
板的截面形式一般为矩形、空心板、槽形板等
计算步骤如下:
①确定截面有效高度h0
②求受压区高度x,并判断梁的类型
x As f y 1 fcb
若As mibn h,且 xbh0 为适筋梁;
若x bh0 为超筋梁若 ;As minbh 为少筋梁。
③计算截面极限抵抗弯矩Mu
适筋梁 M uA sfyh 0x2
超筋梁 M u M u m , ax 1 fc b0 2b h (1 0 .5b )
.
7
(2)板内钢筋的布置
受力钢筋的直径 一般为6~12 mm。
钢筋间距:当板 厚≤150 mm时,不易大 于200mm;当板厚>150 mm时,不易大于1.5d且 不易大于250 mm。为了 保证施工质量,钢筋间 距也不宜小于70 mm。
.
8
分布钢筋的作用:
将板上荷载更有效地传递到受力钢筋上去, 防止因温度或混凝土收缩等原因沿跨度方向引起 裂缝;固定受力钢筋的正确位置。
① 适筋破坏
配置适量纵向受力钢筋的梁称为适筋梁。 ρmin≤ρ≦ρmax
特征:有明显的三个阶段
属于:“塑性破坏”
第Ⅰ阶段(未裂阶段) 加载→即将开裂 开裂弯矩Mcr
第Ⅱ阶段(带裂缝工作阶段) 开裂→屈服 屈服弯矩My
第Ⅲ阶段(破坏阶段)
屈服→压碎
钢筋混凝土受弯构件正截面承载力计算
板厚度较大时如水闸,钢筋直径可用12~25mm,Ⅱ级钢筋; ◆ 受力钢筋间距一般在70~250mm之间;要便于混凝土浇捣。 ◆ 垂直于受力钢筋的方向应布置分布钢筋,以便将荷载均匀地传
递给受力钢筋,并便于在施工中固定受力钢筋的位置,同时也 可抵抗温度和收缩等产生的应力,每米不少于3根。
◆ 同时不应小于0.2%
◆ 对于现浇板和基础底板沿每个方向受拉钢筋的最小配筋 率不应小于0.15%。
板常用配筋率: 矩形截面 0.6 %~0.8 %
梁常用配筋率: 0.6%~1.5%
T形截面配筋率: 0.9%~1.8%
第三章 钢筋混凝土受弯构件正截面承载力计算
三、截面配筋计算步骤:
已知材料强度、截面尺寸,M 求 AS ?
结性能,钢筋的混凝土保护层厚度c一般不小于 25mm;
并符合附录四附表4—1的规定。 截面有效高度 h0 h as
Ý¡ 30mm
1.5d cݡ cmin
d
混凝土保护层计算厚度as:
h0
钢筋一层布置时 as=c+d/2 ,
钢筋二层布置时 as=c+d+e/2, a
其中e为钢筋之间净距。
Ý¡ cmin 1.5d
⑴ 等效前后混凝土压应力的合力C大小相等; ⑵ 等效前后两图形中受压区合力C的作用点不变。 见图3-10
第三章 钢筋混凝土受弯构件正截面承载力计算
㈢ 相对受压区高度
混凝土相对受压区高度
正截面混凝土受压区高度x与h0的比值为大小受压区高度
即
x
h0
当截面内纵向受力钢筋达到屈服时,混凝土受压区最
水工钢筋混凝土结构受弯正截面承载力计算PPT
❖ 砼达到极限拉应变
(et=etu),截面即将开裂
(Ⅰa状态),弯矩为开裂 弯矩Mcr;
❖ Ⅰa状态是抗裂计算依据。
3.2 受弯构件正截面的试验研究
第三章 受弯构件正截面承载力计算
(二)第Ⅱ阶段—裂缝阶段
❖ 荷载↑,拉区出现裂缝,
中和轴上移,拉区砼脱离 工作,拉力由钢筋承担。
d
d
d=10~28mm(常用)
h0=h-a
三.砼保护层
为保证耐久性、防 火性以及钢筋与砼 的粘结性能,钢筋 外面须有足够厚度 的砼保护层。
3.1 受弯构件的截面形式和构造
第三章 受弯构件正截面承载力计算
≥30mm
1.5d c≥cmin d
h0
≥cmin
d
a
c≥cmin
d
≥cmin c≥cmin
d
d
第三章 受弯构件正截面承载力计算
二.适筋和超筋破坏的界限条件
❖界限破坏:受拉钢筋达到
屈服强度的同时受压砼达到 极限压应变,此时:
e s e y f y / Es
e c e cu 0.0033
❖根据平截面假定:
0b
x0b h0
e cu e cu e y
0.0033 0.0033 f y / Es
d=10~28mm(常用)
h0=h-a
四.梁内钢筋直径和间距
❖梁底部纵向受力钢筋一般不少
于2根,直径常用10~28mm;梁上 部无受压钢筋时,需配置2根架 立筋,与箍筋和梁底部纵筋形成 钢筋骨架,直径一般不小于10mm;
❖为保证砼浇注的密实性,梁底
部钢筋的净距不小于30mm及钢筋
直径d,梁上部钢筋的净距不小 于30mm及1.5 d。
第五章钢筋混凝土受扭构件承载力计算ppt课件
开裂原因是拉应变达到混凝土的极限拉应变)。因此当截面
主拉应力达到混凝士抗拉强度后,结构在垂直于主拉应力 σtp作用的平面内产生与纵轴呈45°角的斜裂缝,如图5-2
试验表明:无筋矩形截 面混凝土构件在扭矩作用下 首先在截面长边中点附近最 薄弱处产生一条呈45°角方 向的斜裂缝,然后迅速地以 螺旋形向相邻两个面延伸, 最后形成一个三面开裂一面 受压的空间扭曲破坏面,使 结构立即破坏,破坏带有突 然性,具有典型脆性破坏性 质,在混凝上受扭构件中可
(5-8)
Astl ——箍筋的单肢截面面积; s ——箍筋的间距;
Acor——截面核芯部分的面积Acor = bcor hcor; ξ——抗扭纵筋与箍筋的配筋强度比,按下式计算
(5-9)
式中 Astl——对称布置在截面中的全部抗扭纵筋的截 面面积;
fy——抗扭纵筋的抗拉强度设计值;
ucor——核芯部分的周长。ucor=2(bcor+hcor),bcor 和hcor分别为箍筋内 表面计算的截面核芯部分的短边 和长边尺寸 。
另一类是静定结构中由于变形的协调使截面产生的扭 转 称为协调扭转或附加扭转 例如图5-l的框架边梁 由于框 架边梁具有一定的截面扭转刚度,它将约束楼面梁的弯曲 转动,使楼面梁在与框架边梁交点的支座处产生负弯矩作 为扭矩荷载在框架边梁产生扭矩。由于框架边梁及楼面梁 作为超静定结构,边梁及楼面梁混凝土开裂后其截面扭转 刚度将发生显著变化,边梁及楼面梁将产生塑性变形内力 重分布,楼面梁支座处负弯矩值减小,而其跨内弯矩值增 大;框架边梁扭矩也随扭矩荷载减小而减小。
钢筋混凝土结构在扭矩作用下,根据扭矩形成的原 因,可以分为两种类型:一是平衡扭转,二是协调扭转 或称为附加扭转。
若结构的扭矩是由荷载产生的,其扭矩可根据平衡 条件求得,与构件的抗扭刚度无关,这种扭转称为平衡
混凝土结构设计原理PPT课件第3章 受弯构件正截面承载力计算
3.5.3计算方法 1)截面计算
情况1:已知截面尺寸、材料的强度类别,弯 矩计算值,求 As和As 。
(1)假设 as和as ,求得h0 has。
(2)验算是否需要双筋截面。
M M ufcb d02 hb(1.5b)
(3)补充条件xbh0 ,求得 As和As 。
(4)分别选择受压及受拉钢筋的直径和根数,进 行截面布置。
第三章
受弯构件正截面承载力计算
受弯构件的主要破坏形态:
3.1受弯构件的截面形式与构造 3.1.1截面的形式和尺寸
板
受压区
现浇板宽度 比较大,计算 时可取单位宽 度的矩形截面 计算。
b 整体式板
受拉钢筋
钢筋混凝土简支板的标准跨径不宜大于13m,连 续板桥的标准跨径不宜大于25m,预应力连续板桥 的标准跨径不宜大于30m。
As
M fsd(h0 as)
(4)当 xbh0且 x2as时,由基本公式求 A s 。
(5)选择钢筋的直径和根数,布置截面钢筋。
2)截面复核 (1)检查钢筋布置是否符合要求。 (2)按双筋截面求受压区高度x。
(3)当 xbh0且 x2as时,由下式求受拉钢筋面积。
As
M fsd(h0 as)
箍筋直径不小于8mm或受压钢筋直径的1/4倍。
受压钢筋的应力 由图可得:
cu 0.0033
x c xc as s
a s
cs uxcx cas (1a xc s)(10.8 xas)
A s
As
s
0.00(1303.8as) x
取 x 2as
C0bx0bxc 0bch0 yc 2x12xc 12ch0
x = βxc
河海大水工钢筋混凝土课件第3章 受弯构件的正截面受弯承载力
3.1 受弯构件正截面受弯的受力全过程 3.2 正截面受弯承载力计算原理
(单筋矩形截面、双筋矩形截面、T形截面)
3.3 梁、板的一般构造
3.1 受弯构件正截面的受弯的受力全过程
3.1 受弯构件正截面受弯的受力全过程
3.1.1 适筋梁正截面受弯的三个受力阶段 3.1.2 正截面受弯的三种破坏形态
Ⅱ阶段截面应力和应变分布
3.1 受弯构件正截面的受弯的受力全过程
带裂缝工作阶段(Ⅱ阶段)
◆ 随着荷载增加,受拉区不断出现一些裂缝,拉区混凝
土逐步退出工作,截面抗弯刚度降低,荷载-挠度曲线或
弯矩-曲率曲线有明显的转折。
M/Mu
1.0 Mu 0.8 My
Ⅱa Ⅲ Ⅲa
0.6 Ⅱ
0.4
M/Mu
1.0 Mu 0.8 My
“延性破坏”
3.1 受弯构件正截面的受弯的受力全过程
Ⅰa状态:计算Mcr的依据
M/Mu
1.0 Mu 0.8 My
0.6 Ⅱ
0.4
Mcr
Ⅰa Ⅰ
0
Ⅱa Ⅲ
Ⅲa
f
3.1 受弯构件正截面的受弯的受力全过程
Ⅰa状态:计算Mcr的依据 Ⅱ阶段:计算裂缝、挠度的依据
M/Mu
1.0 Mu 0.8 My
0.6 Ⅱ
弯矩称为极限弯矩 Mu 。
fy
Ⅲa 阶段截面应力和应变分布
3.1 受弯构件正截面的受弯的受力全过程
M/Mu
1.0 Mu 0.8 My
Ⅱa Ⅲ Ⅲa
0.6 Ⅱ
0.4
Mcr Ⅰa
Ⅰ
0
f
配筋合适的钢筋混凝土梁在破坏阶段这种承载力基本
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
项目3 钢筋混凝土梁的设计与施 工
教学目标: 任务1 掌握矩形截面梁、T形截面梁的承载力计算 任务2 绘制梁平法结构施工图 任务3 框架梁的翻样与计算
任务1 矩形截面梁、T形截面梁的承载力计 算
工作任务: 根据PKPM建模计算得到的二层梁设计弯矩包络图,
计算配置二层框架梁的支座截面、跨中截面的纵向受力钢筋 。
当ρ<ρmin·h/h0时发生少 筋破坏,少筋梁破坏时的极 限弯矩M0u小于开裂弯矩M0cr
少筋破坏的总体特征:脆性破坏 图2-8 梁跨中截面弯矩值与跨中截面
曲率的关系示意图
3、 界限破坏及界限配筋率
界限配筋率ρb:钢筋应力到达屈服强度的同时受压区边缘纤维应变 也恰好到达混凝土受弯时的极限压应变值。 这种破坏形态称为“界限破坏”,即适筋梁与超筋梁的界限。
bh0
ห้องสมุดไป่ตู้
思考题: 1、 钢筋混凝土构件中箍筋的主要作用有哪些? 2、规范对钢筋混凝土梁纵向钢筋的净间距有具体要 求,对于梁上部钢筋和下部钢筋最小净间距分别为多 少?为什么要控制钢筋最小净间距? 3、混凝土保护层厚度是指哪个距离?有哪三个作用? 4、适筋梁的受弯全过程经历了哪几个阶段?各阶段 的主要特点是什么?与计算或验算有何关系? 5、正截面受弯的三种破坏形态有哪些? 6、什么是界限配筋率?
界限破坏也属于延性破坏类型,所以界限配筋的梁也属于 适筋梁的范围。
结论:适筋梁的材料强度能得到充分发挥,安 全经济,是正截面承载力计算的依据,而少筋梁、 超筋梁都应避免。 适筋梁、超筋梁、少筋梁的界限依据:以配筋 率为界限,超过最大配筋率为超筋梁,低于最小配 筋率为少筋梁。
配筋率: As
凝土在钢筋屈服前即达到极限
压应变被压碎而破坏。破坏时
钢筋的应力还未达到屈服强度,
因而裂缝宽度均较小,且形不
成一根开展宽度较大的主裂缝,
梁的挠度也较小。
图2-8 梁跨中截面弯矩值与跨中截面
曲率的关系示意图
超筋破坏的总体特征:脆性破坏
(3)少筋破坏 破坏特征:梁破坏时,裂缝往往集中出现一条,
不但开展宽度大,而且沿梁高延伸较高。一旦出现裂缝, 钢筋的应力就会迅速增大并超过屈服强度而进入强化阶段, 甚至被拉断。
筋的合力点至截面受压边缘的竖向距离。
c c25mm
d
c
c
h h0
b
图1-2(b) 梁截面内纵向钢筋布置及截面有效高度h0
混凝土保护层厚度:从最外层钢筋(包括箍筋、构 造筋、分布筋等)的外表面到截面边缘的垂直距离。
混凝土保护层有三个作用: 1)防止纵向钢筋锈蚀; 2)在火灾等情况下,使钢筋的温度上升缓慢; 3)使纵向钢筋与混凝土有较好的粘结。
(3)第III阶段:钢筋开始屈服至截面破坏的破坏阶段
图2-4 适筋梁工作的第Ⅲ阶段混凝土应变、应力分布图
(3)第III阶段:钢筋开始屈服至截面破坏的破坏阶段
1)纵向受拉钢筋屈服,拉力保持为常值;裂缝截面处,受拉区 大部分混凝土已退出工作,受压区混凝土压应力曲线图形比较 丰满,有上升段曲线,也有下降段曲线; 2)由于受压区混凝土合压力作用点外移使内力臂增大,故弯矩 略有增加; 3)受压区边缘混凝土压应变达到其极限压应变实验值时,混凝 土被压碎,截面破坏; 4)弯矩——曲率关系为接近水平的曲线。 阶段Ⅲa可作为正截面受弯承载力计算的依据。
图2-3 适筋梁工作的第Ⅱ阶段混凝土应变、应力分布图 1)在裂缝截面处,受拉区大部分混凝土退出工作,拉力主要由 纵向受拉钢筋承担,但钢筋没有屈服; 2)受压区混凝土已有塑性变形,但不充分,压应力图形为只有 上升段的曲线; 3)弯矩与截面曲率是曲线关系,截面曲率与挠度的增长加快。 阶段Ⅱ相当于梁正常使用时的受力状态,可作为正常使用阶段 验算变形和裂缝开展宽度的依据。
适筋梁从加载到破坏的几个受力阶段
阶段Ia —— 抗裂计算依据; 阶段II ——变形、裂缝宽度计算依据; 阶段IIIa——承载力计算依据。
图2-5 混凝土应变沿截面高度的变化
图2-6 钢筋应力实测结果
图2-7 梁跨中截面弯矩实验值与跨中 截面曲率的关系曲线
2、 正截面受弯的三种破坏形态
二层梁设计弯矩包络图如下所示。
图A 二层梁设计弯矩包络图
工作任务: 根据PKPM建模计算得到的二层梁设计剪力包络图,
计算配置二层框架梁的支座截面、跨中截面的箍筋。 二层梁设计剪力包络图如下所示。
图B 二层梁设计剪力包络图
一、 梁的构造
图1-1 梁钢筋骨架
梁内纵向受力筋宜用HRB400和HRB500,常用直径: d 12 ~ 25mm
1)混凝土没有开裂; 2)受压区混凝土的应力图形是直线,受拉区混凝土的应力图形在
第Ⅰ阶段前期是直线,后期是曲线; 3)受拉区边缘纤维的拉应变值到达混凝土的极限拉应变时,在最薄弱的某 截面受拉区出现第一条裂缝; 4)弯矩与截面曲率基本上是直线关系。
Ⅰa阶段可作为受弯构件抗裂度的计算依据。
(2)第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段
梁内箍筋宜用HRB335和HRB400,常用直径为6、8、10mm
图3-2 梁内钢筋示意图
(a)
(b)
(c)
图3-3 梁中部钢筋
净距30mm 1.5钢筋直径d
h h0
净距25mm
b
净距25mm
钢筋直径d
钢筋直径d
图1-2(a) 梁截面内纵向钢筋布置及截面有效高度h0
梁截面有效高度ho:正截面上所有下部纵向受拉钢
二、受弯构件正截面的受弯性能
1 适筋梁正截面受弯的三个受力阶段
试验 梁
荷载分 配梁 P
外加荷 载
应变 计
位移
L/3
L/3 计
L
数据采集 系统
h0 h
As b
As
bh0
图2-1 适筋梁正截面受弯承载力试验装置
(1)第Ⅰ阶段:混凝土开裂前的未裂阶段
图2-2 适筋梁工作的第Ⅰ阶段混凝土应变、应力分布图
图3-8 梁的三种破坏形态 (a)适筋破坏;(b)超筋破坏;
(c)少筋破坏
(1)适筋破坏
其特点是纵向受拉钢筋 先屈服,受压区边缘混凝土随后 压碎时,截面才破坏,属延性破 坏类型。
适筋梁的破坏特点是破 坏始自受拉区钢筋的屈服。
图2-8 梁跨中截面弯矩值与跨中截面 曲率的关系示意图
(2)超筋破坏
破坏特征:受压区混